First-Principles Study of Electromigration in the Metallic Liquid State of the GeTe and Sb2**Te**³ **Phase Change Compounds Supporting Information**

M. Cobelli,^{†,‡} M. Galante,[‡] S. Gabardi,[†] S. Sanvito,[‡] and M. Bernasconi*,†

†Dipartimento di Scienza dei Materiali, Universita` di Milano-Bicocca, Via R. Cozzi 55, I-20125,

Milano, Italy

‡School of Physics and CRANN, Trinity College Dublin 2, Ireland

E-mail: marco.bernasconi@unimib.it

TABLE S1: Primitive vectors (\hat{A}) of the 64-atom supercell of liquid GeTe.

	x	U	\overline{z}
\overline{a}			
		8.6085 0.0000 0.0000 -4.3043 7.4552 0.0000	
$c-1$			0.0000 0.0000 29.7679

TABLE S2: Primitive vectors (A) of the 65-atom supercell of liquid $Sb₂Te₃$.

FIG. S1: Total and partial pair correlation functions of GeTe in the 64-atom prismatic cell (see Table S1) at 1020 K compared with the result from a 216-atom cubic cell at 1150 K from Ref. (1).

FIG. S2: Total and partial pair correlation functions of $Sb₂Te₃$ in the 65-atom prismatic cell (see Table S2) at 920 K compared with the result from a 240-atom cubic cell at 1003 K from Ref. (2) .

FIG. S3: Atomic model of the Al/Sb₂Te₃/Al junction used for the NEGF+DFT calculations. The model consists of 65 atoms of Sb_2Te_3 (13 formula units) and 108 atoms of Al in the two electrodes.

FIG. S4: Profile of the planar average of the electrostatic potential as a function of the position along the *z* direction in a representative Al/GeTe/Al model (upper panel) and Al/Sb₂Te₃/Al model (lower panel). The shaded area at the edges correspond to the two Al electrodes. Results for different bias between the two electrodes in the range 0.1-0.3 V are reported.

FIG. S5: Electronic density of states (DOS) close to the Fermi level (zero of energy) of a single snapshot of a 216-atom cell of liquid GeTe at 1150 K (see Ref. (1)) compared with the DOS projected on the central 51 atoms of the Al/GeTe/Al model at 1020 K (see Figs. 1-2 in the article). The DOS are computed with the code Siesta within the same framework used for the NEGF calculations (see article).

FIG. S6: Map of the electromigration forces taken as the different of the force at zero and finite bias on individual atoms. The projection of the forces in the *xz* plane is shown for a representative Al/GeTe/Al model at 0.1 V and 0.3 V bias between the electrodes. Only atoms in the central region where the planar averaged electric field is approximatively uniform are considered in the calculation of *Z*[∗] (shaded area).

FIG. S7: Map of the electromigration forces taken as the different of the force at zero and finite bias on individual atoms. The projection of the forces in the *xz* plane is shown for a representative $A\frac{1}{Sb_2Te_3}/A$ l model at 0.1 V bias between the electrodes. Only atoms in the central region where the planar averaged electric field is approximatively uniform are considered in the calculation of *Z*[∗] (shaded area).

FIG. S8: Electromigration forces as a function of electric field for a) Ge atoms in GeTe, b) Te atoms in GeTe, c) Sb atoms in $Sb₂Te₃$ and d) Te atoms in $Sb₂Te₃$ for ten independent models. Each point is the result of the average over all atoms in the central region of a single model, i.e. for a single configuration of the liquid. The error bar is the spread in the values of the electromigration forces for the different atoms in a single model. Different colors correspond to different models.

References

- (1) Sosso, G.; Caravati, S.; Behler, J.; Bernasconi, M. Neural network interatomic potential for the phase change material GeTe. *Phys. Rev. B* 2012, *85*, 174103.
- (2) Caravati, S.; Bernasconi, M.; Parrinello, M. First-principles study of liquid and amorphous Sb2Te3. *Phys. Rev. B* 2010, *81*, 014201.