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Abstract 

Purpose: The use of arterial partial pressure of carbon dioxide  (PaCO2) as a target intervention to manage elevated 
intracranial pressure (ICP) and its effect on clinical outcomes remain unclear. We aimed to describe targets for  PaCO2 
in acute brain injured (ABI) patients and assess the occurrence of abnormal  PaCO2 values during the first week in the 
intensive care unit (ICU). The secondary aim was to assess the association of  PaCO2 with in-hospital mortality.

Methods: We carried out a secondary analysis of a multicenter prospective observational study involving adult inva-
sively ventilated patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracranial hemorrhage 
(ICH), or ischemic stroke (IS).  PaCO2 was collected on day 1, 3, and 7 from ICU admission. Normocapnia was defined as 
 PaCO2 > 35 and to 45 mmHg; mild hypocapnia as 32–35 mmHg; severe hypocapnia as 26–31 mmHg, forced hypocap-
nia as < 26 mmHg, and hypercapnia as > 45 mmHg.

Results: 1476 patients (65.9% male, mean age 52 ± 18 years) were included. On ICU admission, 804 (54.5%) patients 
were normocapnic (incidence 1.37 episodes per person/day during ICU stay), and 125 (8.5%) and 334 (22.6%) were 
mild or severe hypocapnic (0.52 and 0.25 episodes/day). Forced hypocapnia and hypercapnia were used in 40 (2.7%) 
and 173 (11.7%) patients.  PaCO2 had a U-shape relationship with in-hospital mortality with only severe hypocapnia 
and hypercapnia being associated with increased probability of in-hospital mortality (omnibus p value = 0.0009). 
Important differences were observed across different subgroups of ABI patients.

Conclusions: Normocapnia and mild hypocapnia are common in ABI patients and do not affect patients’ outcome. 
Extreme derangements of  PaCO2 values were significantly associated with increased in-hospital mortality.
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Introduction
Changes in the arterial partial pressure of carbon diox-
ide  (PaCO2) can exert profound effects on cerebrovascu-
lar regulation, leading to adjustments in cerebrovascular 
tone, cerebral blood flow (CBF), and cerebral blood vol-
ume (CBV) in acute brain-injured (ABI) patients [1, 2]. 
Induced hypocapnia secondary to hyperventilation is 
utilized as a secondary intervention to control elevated 
intracranial pressure (ICP) that remains unresponsive 
to initial therapeutic measures [3–5]. Nevertheless, it is 
essential to exercise caution when employing induced 
hypocapnia, as some studies have demonstrated to cause 
cerebral hypoperfusion [1], particularly when reaching 
 PaCO2 levels < 25 mmHg.

Indeed, prophylactic or prolonged use of extreme 
hypocapnia is discouraged based on the most recent 
recommendations from the Brain Trauma Foundation 
Guidelines, supported by level IIB evidence [6], and it 
should be considered only in cases of life-threatening 
brain herniation. The most recent evidence-based Guide-
lines of the European Society of Intensive Care Medicine 
(ESICM) on ventilatory management of ABI patients 
have not provided definitive recommendations regard-
ing target  PaCO2 levels in case of intracranial hyperten-
sion [7]. The lack of conclusive guidance is attributed to 
the limited quality of evidence available on this complex 
pathophysiological framework. Therefore, the optimal 
cutoffs for  PaCO2 in acute brain-injured patients, with 
and without intracranial hypertension, are currently 
under debate.

We performed a secondary analysis of a worldwide 
multicenter prospective observational study conducted 
in ABI patients who received invasive ventilation in  the 
intensive care unit (ICU), with the aim to assess the 
incidence of abnormal  PaCO2 values on admission and 
during the first week of ICU stay. We also assessed the 
association between  PaCO2 values and in-hospital mor-
tality in the entire population, as well as in different ABI 
subgroups.

Methods
Study design and ethics
This is a preplanned secondary analysis of a worldwide, 
multicenter, observational cohort study named “Extu-
bation strategies in Neuro-Intensive care unit patients 
and associations with Outcomes” (ENIO) (registra-
tion number NCT03400904) conducted between June 
2018 and November 2020 [8]. ENIO was endorsed by 
the PROtective VEntilation Network (PROVE Net), the 
ESICM, the French Society of Anesthesiology and Criti-
cal care (SFAR), and Colegio Mexicano de Medicina 
Critica (CMMC). The study protocol was approved by 
the International Review Board (IRB) of the Groupe 

Nantais d’Éthique dans le Domaine de la Santé, Nantes, 
France (IRB No. 7/11/2017), and then by each participat-
ing site. Informed consent was collected in accordance 
with the local regulations. Initial approval also included 
the secondary analysis, which underwent a preliminary 
evaluation and was approved by the Steering Commit-
tee of ENIO. This study was conducted according to the 
STROBE reporting guidelines for observational studies 
[9] (electronic supplementary material, ESM, Table S1).

Patients
Inclusion criteria of the ENIO study were: (1) 
age ≥ 18  years; (2) patients receiving invasive ventila-
tion ≥ 24  h; (3) admitted for ABI (including traumatic 
brain injury—TBI; subarachnoid hemorrhage—SAH; 
intracranial hemorrhage—ICH; ischemic stroke—IS) 
with a Glasgow Coma Scale (GCS) score ≤ 12; (4) having 
underwent an attempt to discontinue ventilation (defined 
as an extubation trial and/or tracheostomy). Pregnant 
patients, patients with spinal cord injury above T4, post-
cardiac arrest patients, and Guillain–Barré syndrome 
patients were excluded. ENIO also excluded patients with 
withdrawal of life-sustaining treatment (WLST) in the 
first 24 h of ICU admission, patients with tracheostomy 
before ICU admission, and patients with major respira-
tory comorbidities or major chest trauma [10]. For this 
subanalysis, we additionally excluded patients for whom 
 PaCO2 data were missing at admission.

Management of acute brain injury
The primary care of brain damage, according to the main 
ENIO study, was specific to the initial pathology (trauma, 
subarachnoid hemorrhage, intracranial bleeding, etc.) 
and followed international guidelines [3, 5] as well as 
local practice. Neuromonitoring, brain imaging, and sur-
gical approach were carried out in accordance with local 
procedures of each center [10].

Data collection
Data extracted from the ENIO dataset included: demo-
graphic and baseline characteristics [age, gender, height, 
weight, body mass index (BMI), previous comorbidities 
(chronic obstructive pulmonary disease, cardiovascular 
comorbidities, arterial hypertension, smoking, diabetes 

Take‑home message 

Extreme values of hypo- and hypercapnia are associated with 
in-hospital mortality in acute brain injured patients, with mild 
hypocapnia being better tolerated, especially in the traumatic brain 
injured subpopulation.
The targets of carbon dioxide should take in consideration the type 
of acute brain injury as well as physiological/neuromonitoring data.



mellitus, history of malignancy, etc.)]; type and severity 
of brain injury (as for GCS); neurosurgical and neuro-
critical care management, including tier three therapies 
(barbiturate coma, therapeutic hypothermia, ICP moni-
toring, and decompressive craniectomy) according to the 
Seattle Guidelines [3, 5]; airway and ventilatory manage-
ment (i.e., tracheostomy, gag reflex, cough, spontaneous 
breathing trial, extubation, and reintubation); in-ICU 
events, in-hospital mortality, and in-ICU outcomes (need 
for and duration of IMV, ICU length of stay [LOS], mor-
tality, need for non-invasive mechanical ventilation, and 
duration).

Definitions
Patients were initially binned in five  PaCO2 groups, 
according to the values on day 1 at ICU admission, 
according to previous literature [11] and  on most 
recent guidelines [3, 5] as follows: normocapnia, 
 PaCO2 > 35–45  mmHg, mild hypocapnia 32–35  mmHg, 
severe hypocapnia  as 26– < 32  mmHg, forced hypocap-
nia as  PaCO2 < 26  mmHg, and hypercapnia as 
 PaCO2 > 45  mmHg. Abnormal  PaCO2 was defined as a 
value < 35  mmHg and > 45  mmHg. Samples of  PaCO2 
were obtained in the morning, at around 8 am, as for 
ENIO protocol.

Objectives
The primary objective was to describe the  PaCO2 val-
ues measured in ABI patients and assess the occurrence 
of abnormal  PaCO2 values on admission and during 
the ICU stay in the study cohort. The secondary objec-
tive was to assess the association between  PaCO2 values 
and in-hospital mortality in the entire population and 
according to different brain injury groups (i.e., TBI, SAH, 
ICH, and IS).

Statistical analysis
Continuous variables are reported as mean ± standard 
deviation (SD) or median (interquartile range [IQR]) as 
appropriate; discrete variables are presented as numbers 
and percentages. For continuous baseline characteristics, 
ANOVA was used for comparing  PaCO2 discrete catego-
ries (forced, severe, and mild hypocapnia, normocapnia, 
and hypercapnia); if the variable did not meet the nor-
mality assumption, Kruskal–Wallis test was used instead. 
For the comparison of discrete variables, a Chi-square 
test was used.

For descriptive purposes,  PaCO2 continuous  (PaCO2c) 
was log-transformed due to high skewness. As such, 
its trajectory over days 1, 3, and 7 was depicted using 
a locally weighted scatterplot smoothing (LOWESS) 
method [12]. We used longitudinal survival regression 
for inferential analysis. Using this method, we directly 

evaluated the association between  PaCO2 (continu-
ous and categorized) and in-hospital mortality. For this 
analysis,  PaCO2c was log-transformed due to high skew-
ness. The model assumed a Weibull distribution for the 
baseline hazard and random intercept on patient iden-
tification (ID). Variable selection was carried out by 
backward elimination using a multivariable fractional 
polynomial (FP) procedure (see ESM for further details) 
[13]. The baseline variables selected (at day 1) by this 
method included: age (years), gender, history of hyper-
tension, diabetes, and heart failure, treatment with mida-
zolam, neuromuscular blockers, pentothal, propofol, and 
dexmedetomidine, ventilatory mode, respiratory rate 
(breaths/min), tidal volume (mL/kg of predicted body 
weight [PBW]), positive end-expiratory pressure (PEEP), 
arterial pH (pHa), GCS, and acute respiratory distress 
syndrome (ARDS). Results from the model of  PaCO2 
with 5 discrete categories were expressed as hazard ratios 
(HRs) with 95% confidence intervals (CIs). Based on 
the U-shaped association suggested by the  PaCO2 cat-
egorical model, we decided to model  PaCO2c with 5-df 
restricted cubic splines (RCS) to capture the non-linear 
trajectory [14]. Within this framework, the result was 
instead depicted through a graph where the HR on the 
y-scale was plotted against the continuum of  PaCO2c. To 
account for interdependence among centers, the models 
included a cluster-based adjustment of the standard error 
estimation.

As a second step, we used a linear mixed-effects model. 
We evaluated the differences in the log of  PaCO2c over 
the 3 days (using day 1 as reference); the model included 
a random intercept on the study center and on patient 
ID to account for correlated measurements from the two 
clusters. In addition, the variable ICU days (1, 3, and 7) 
was included as a random coefficient with an unstruc-
tured covariance matrix. This model also included the 
same subset of covariates used in the longitudinal sur-
vival regression. Results were expressed as predicted 
means—also known as least square means (LSM).

Relative distribution analysis [15] evaluated the asso-
ciation between the continuum of  PaCO2c and the cumu-
lative proportion of in-hospital mortality with the results 
depicted as a figure, where the vertical axis shows the 
relative density of the two distributions (as a ratio) and 
the horizontal axis shows the percentiles of the refer-
ence group  (PaCO2c values when in-hospital mortal-
ity = 0). Further details on statistical analysis are provided 
in ESM, Item S1. A significance level < 0.05 was used for 
all analyses. Stata 18.0 was used for data clean-up and 
preparation.



Results
Patients
Of the 1512 patients enrolled in the ENIO study, a total 
of 1476 were included in the analysis (36 patients were 
excluded for missing  PaCO2 data). The mean age of the 
study cohort was 52 ( ± 18) years, and 973 (65.9%) were 
male. Mean BMI was 26.3 ( ± 5.1) kg/m2; 715 (48.4%) 
were admitted for TBI, 264 (17.9%) for SAH, 509 (34.5%) 
for ICH, and 132 (9.2%) for IS (Table 1 and Table S2 for 
additional data). Demographic characteristics, ventilator 
management, and arterial blood gas parameters accord-
ing to neurologic status (GCS > 9 and ≤ 9), type of ABI, 
and different categories of  PaCO2 are presented in ESM, 
Tables S3–S9.

Carbon dioxide values on admission and during ICU stay
On admission, median  PaCO2 was 37 (34–41) mmHg; 
804 (54.5%) patients presented with normocapnia on 
ICU admission, 125 (8.5%) patients were hypercapnic, 
and 334 (22.6%) and 173 (11.7%) were mild and moderate 
hypocapnic; forced hypocapnia was observed in 40 (2.7%) 
patients (Table  1). Significant differences were observed 
among different  PaCO2 categories according to the coun-
try of admission, gender, and type of ABI (Table  1, and 
ESM, Tables S2–S9). Normo- and mild hypocapnia were 
more frequently observed in the presence of ICP moni-
toring (p < 0.001), but not in patients who received tier 
three therapies or according to GCS and pupils’ charac-
teristics (Table  1). The occurrence of abnormal  PaCO2 
values over time is shown in Fig.  1; only a minority 
experienced multiple events of abnormal  PaCO2 values, 
with mild hypocapnia being more common than other 
abnormalities.

The median  PaCO2 significantly increased over time 
in the whole population from day 1 to 3 (from 37 mmHg 
[34–41] to 38  mmHg [36–37]; p < 0.001) and from day 
1 to 7 (from 37  mmHg [34–41] to 39  mmHg [39–40], 
p < 0.001) in the whole population (ESM, Figure S2) and 
in all ABI categories (except ischemic stroke, ESM, Fig-
ure S4). Figure 2 and supplemental Figure S3 present the 
transition of the different  PaCO2 categories from day 1 
to day 3 and day 7. Most of the changes occurring in the 
hypocapnia group were toward normocapnia, and only a 
few were toward severe hypocapnia. Most patients with 
forced hypocapnia remained in the same category. Most 
patients with hypercapnia evolved toward normocapnia.

Effect of carbon dioxide on in‑hospital mortality in the 
overall cohort
The overall in-hospital mortality in the population was 
12.1% (n = 178 patients); trajectories of  PaCO2 values 
during ICU stay in survivors vs non-survivors are pre-
sented in supplemental Figures  S6–S8. When modeled 

as a continuous variable,  PaCO2 had a U-shaped rela-
tionship with in-hospital mortality, with both hypo- and 
hypercapnia being independently associated with an 
increased probability of in-hospital mortality (omnibus 
p = 0.0009—Fig. 3a).

When  PaCO2 was modeled according to its discrete 
categories, the U-shaped curve persisted (Fig.  3b). 
Compared to normocapnia, patients with forced 
hypocapnia (adjusted hazard ratio [aHR] 4.31; 95% CI 
1.56–11.87—p = 0.005) had the highest rate of in-hos-
pital mortality, followed by hypercapnia (aHR 3.67; 95% 
CI = 1.75–7.71—p = 0.001), and severe hypocapnia (aHR 
2.77; 95% CI 1.31–5.87—p = 0.008). Patients with mild 
hypocapnia had a  borderline significant association 
with increased in-hospital mortality (aHR 2.07; 95% CI 
1.02–4.12—p = 0.049).

Relative distribution analysis further confirmed the 
U-shaped association between hypo- and hypercapnia 
and in-hospital mortality (Fig. 4). In particular, a signifi-
cant increase in the probability for in-hospital mortality 
for values > 45  mmHg and < 32  mmHg. Similar results 
were confirmed when  PaCO2 values were assessed sepa-
rately on each day (Fig. 4b).

The relationship between  PaCO2 stratified according 
to neurologic status (GCS > 9 and ≤ 9) and according to 
the single time points of observation showed a consistent 
U-shaped curve (supplemental Figures S1 and S9).

Effect of carbon dioxide on in‑hospital mortality 
in different ABI subgroups’ population
In TBI patients (supplemental Figures  S10 and S11), a 
statistically significant association with mortality was 
found only for severe hypocapnia (aHR 4.43; 95% CI 
1.29–15.21—p = 0.018) and hypercapnia (aHR 4.58; 95% 
CI 1.81–11.58—p = 0.001), but not for  other  PaCO2 
categories. In patients with ICH (supplemental Fig-
ures  S12 and S13), only hypercapnia was significantly 
associated with increased mortality (aHR 3.47; 95% CI 
1.08–11.18—p = 0.037).

In patients with SAH (Figures  S14 and S15), forced 
hypocapnia (aHR 46.76; 95% CI = 7.22–302.69—
p < 0.001), severe (aHR = 7.04; 95% CI = 2.12–23.42—
p = 0.001), and mild hypocapnia (HR 3.68; 95% 
CI = 1.12–12.05—p = 0.032) were independently asso-
ciated with in-hospital mortality, whereas hypercapnia 
was not. In patients with IS (supplemental Figures  S16 
and S17), any of the  PaCO2 categories were significantly 
associated with in-hospital mortality, as compared with 
normocapnia.

Discussion
In this worldwide multicenter observational cohort of 
severe ABI patients, we found that—in the early days of 



Table 1 Characteristics of the patients included in the cohort at admission and outcomes, considering the whole popula‑
tion and according to different subgroups of carbon dioxide ranges

Total n = 1476 
(100)

Forced hypocapnia 
 (PaCO2 < 26 mmHg) 
n = 40 (2.7%)

Severe 
hypocapnia 
 (PaCO2 26 
to < 32 mmHg) 
n = 173 (11.7%)

Mild hypocap‑
nia  (PaCO2 32 
to 35 mmHg) 
n = 334 (22.6%)

Normocapnia 
 (PaCO2 > 35 
to 45 mmHg) 
n = 804 (54.5%)

Hypercapnia 
 (PaCO2 > 45 mmHg) 
n = 125 (8.5%)

P value

Demographics at ICU admission
Age, years, mean 

(SD)
52 (18) 50 (18) 52 (19) 51 (18) 51 (18) 52 (19) 0.965

Gender (male), 
n (%)

973 (65.9) 22 (55) 98 (56.6) 206 (61.7) 553 (68.8) 94 (75.2) 0.001

BMI, kg/m2, 
mean (SD)

26.3 (5.1) 25.8 (5.4) 25.9 (4.3) 26.0 (4.7) 26.4 (5.4) 27.1 (5.2) 0.198

Study country, n (%) 0.001

The Netherlands 52 (3.5) 5 (12.5) 5 (2.9) 12 (3.6) 27 (3.4) 3 (2.4)

France 646 (43.8) 8 (20) 62 (35.8) 152 (45.5) 373 (46.4) 51 (40.8)

United Kingdom 50 (3.4) 0 (0) 2 (1.2) 10 (3) 33 (4.1) 5 (4)

India 78 (5.3) 6 (15) 17 (9.8) 19 (5.7) 32 (4) 4 (3.2)

Mexico 202 (13.7) 15 (37.5) 41 (23.7) 50 (15) 82 (10.2) 14 (11.2)

Argentina 45 (3) 0 (0) 1 (0.6) 12 (3.6) 32 (4) 0 (0)

Belgium 20 (1.4) 0 (0) 1 (0.6) 1 (0.3) 13 (1.6) 5 (4)

Italy 131 (8.9) 2 (5) 12 (6.9) 29 (8.7) 67 (8.3) 21 (16.8)

Uruguay 33 (2.2) 0 (0) 4 (2.3) 6 (1.8) 21 (2.6) 2 (1.6)

Canada 11 (0.7) 0 (0) 6 (3.5) 2 (0.6) 3 (0.4) 0 (0)

Spain 27 (1.8) 0 (0) 3 (1.7) 7 (2.1) 15 (1.9) 2 (1.6)

Switzerland 77 (5.2) 3 (7.5) 8 (4.6) 14 (4.2) 46 (5.7) 6 (4.8)

Greece 33 (2.2) 0 (0) 1 (0.6) 7 (2.1) 21 (2.6) 4 (3.2)

Japan 30 (2) 1 (2.5) 4 (2.3) 5 (1.5) 17 (2.1) 3 (2.4)

United States 7 (0.5) 0 (0) 0 (0) 2 (0.6) 5 (0.6) 0 (0)

Other 34 (2.3) 0 (0) 6 (3.5) 6 (1.8) 17 (2.1) 5 (4)

Medical history, n (%)
Pulmonary 

disease
49 (3.3) 0 (0) 4 (2.3) 9 (2.7) 23 (2.9) 13 (10.4) < 0.001

Heart failure 43 (2.9) 2 (5) 4 (2.3) 9 (2.7) 24 (3) 4 (3.2) 0.919

Hypertension 436 (29.6) 11 (27.5) 58 (33.5) 99 (29.7) 232 (28.9) 36 (28.8) 0.805

Active smoking 324 (22.1) 3 (7.5) 33 (19.2) 62 (18.7) 194 (24.2) 32 (25.8) 0.025

Diabetes 179 (12.1) 3 (7.5) 25 (14.5) 40 (12) 94 (11.7) 17 (13.6) 0.721

Malignancy 65 (4.4) 6 (15) 7 (4) 14 (4.2) 35 (4.4) 3 (2.4) 0.018

Neurological status at ICU admission
Lowest GCS 

motor, median 
(IQR)

4 (2; 5) 4 (3; 5) 4 (2; 5) 4 (2; 5) 4 (2; 5) 4 (2; 5) 0.827

Lowest GCS, 
median (IQR)

7 (5; 9) 7 (6; 8) 7 (4; 8) 7 (5; 9) 7 (5; 9) 7 (5; 9) 0.984

Episode of aniso-
coria, n (%)

406 (27.6) 9 (23.1) 43 (24.9) 95 (28.6) 219 (27.3) 40 (32) 0.649

Type of brain injury, n (%)
TBI 715 (48.4) 19 (47.5) 69 (39.9) 159 (47.6) 394 (49) 74 (59.2) 0.026

SAH 264 (17.9) 5 (12.5) 29 (16.8) 70 (21) 148 (18.4) 12 (9.6) 0.059

ICH 509 (34.5) 17 (42.5) 69 (39.9) 115 (34.4) 268 (33.3) 40 (32) 0.382

IS 136 (9.2) 3 (7.5) 17 (9.8) 26 (7.8) 73 (9.1) 17 (13.6) 0.416

CNS infection 74 (5) 5 (12.5) 6 (3.5) 20 (6) 38 (4.7) 5 (4) 0.156

Brain tumor 68 (4.6) 1 (2.5) 16 (9.2) 14 (4.2) 33 (4.1) 4 (3.2) 0.040

Other 29 (2) 0 (0) 2 (1.2) 5 (1.5) 20 (2.5) 2 (1.6) 0.555



ICU admission—PaCO2 values were generally main-
tained within normal to mild hypocapnia ranges, and 
that both profound hypo- and hypercapnia were associ-
ated with mortality. However, the prevalence and the 
effect of  PaCO2 on in-hospital mortality importantly 
change according to the type of ABI, with mild hypocap-
nia being better tolerated in the TBI and ICH population, 
when compared to the SAH and IS.

Current European Guidelines on mechanical ventila-
tion in ABI patients are inconclusive regarding the opti-
mal target of  PaCO2 [7]; the Seattle algorithm suggests 
maintaining normocapnia as the first instance, and then 
target to a value of 35–38 mmHg as tier 1 and eventu-
ally 32–35  mmHg (mild hypocapnia) as tier 2, avoid-
ing profound hypocapnia except for life-threatening 

conditions and risk of brain herniation. Although low 
 PaCO2 values can lead to a reduction in ICP, and pos-
sibly improve cerebral autoregulation, the consequent 
vasoconstriction related to hypocapnia can potentially 
lead to a transitory reduction of CBF and oxygenation 
[16–18].

Some authors demonstrated an increase of cerebral 
hypoperfused areas using positron emission tomogra-
phy (PET) following hyperventilation [19], as well as 
important changes in cerebral metabolism or microdi-
alysis data, suggesting a higher risk of cerebral ischemia 
[20, 21]. However, other studies [22, 23] suggested that 
mild and short-term hypocapnia can be safe on cerebral 
function, causing minimal and not clinically important 
changes in brain oxygenation and metabolism [23, 24].

LOS, lengths of stay, ICU, intensive care unit, IQR, interquartile range, SD, standard deviation, ICP, intracranial pressure, EVD, extra ventricular drainage, TBI, traumatic 
brain injury, SAH, subarachnoid hemorrhage, IS, ischemic stroke, ICH, intracerebral hemorrhage, CNS, central nervous system, GCS, Glasgow Coma scale, BMI, body 
mass index, PaCO2, arterial partial pressure of carbon dioxide; VAP, ventilator-associated pneumonia; ARDS, acute respiratory distress syndrome

Table 1 (continued)

Total n = 1476 
(100)

Forced hypocapnia 
 (PaCO2 < 26 mmHg) 
n = 40 (2.7%)

Severe 
hypocapnia 
 (PaCO2 26 
to < 32 mmHg) 
n = 173 (11.7%)

Mild hypocap‑
nia  (PaCO2 32 
to 35 mmHg) 
n = 334 (22.6%)

Normocapnia 
 (PaCO2 > 35 
to 45 mmHg) 
n = 804 (54.5%)

Hypercapnia 
 (PaCO2 > 45 mmHg) 
n = 125 (8.5%)

P value

Neurosurgical management in ICU, n (%)
ICP monitoring 626 (42.5) 5 (12.5) 61 (35.3) 143 (43.1) 370 (46.0) 47 (37.6) < 0.001

EVD 428 (29) 9 (22.5) 56 (32.4) 101 (30.3) 237 (29.5) 25 (20) 0.132

Therapeutic 
hypothermia

59 (4) 0 (0) 6 (3.5) 14 (4.2) 34 (4.2) 5 (4) 0.747

Barbiturate coma 83 (5.6) 0 (0) 8 (4.6) 24 (7.2) 42 (5.2) 9 (7.2) 0.277

Need for neuro-
surgery

593 (40.2) 15 (37.5) 71 (41) 153 (45.9) 314 (39.1) 40 (32) 0.071

Decompressive 
craniectomy

284 (19.3) 10 (25) 31 (17.9) 75 (22.5) 146 (18.2) 22 (17.6) 0.383

ICU events and outcomes
VAP, n (%) 584 (40) 12 (30) 60 (35.1) 143 (43.1) 319 (40.2) 50 (40.3) 0.319

Tracheo bronchi-
tis, n (%)

136 (9.4) 3 (7.7) 12 (7.1) 29 (8.9) 86 (11) 6 (4.9) 0.177

ARDS, n (%) 135 (9.3) 1 (2.5) 10 (5.8) 29 (8.8) 18 (9.8) 17 (13.7) 0.096

Mild 24 (17.8) 1 (100) 4 (36.4) 7 (24.1) 8 (10.4) 4 (23.5)

Moderate 54 (40.0) 0 (0) 5 (45.5) 11 (37.9) 33 (42.9) 5 (29.4)

Severe 57 (42.2) 0 (0) 2 (18.2) 11 (37.9) 36 (46.8) 8 (47.1)

Withdrawal 
life-sustaining 
treatments, 
n (%)

85 (5.9) 0 (0) 12 (7.1) 14 (4.3) 49 (6.2) 10 (8.1) 0.227

ICU mortality, 
n (%)

94 (6.5) 2 (5.1) 12 (7.1) 24 (7.3) 48 (6.1) 8 (6.5) 0.942

Hospital mortal-
ity, n (%)

178 (12.1) 6 (15) 28 (16.2) 41 (12.3) 85 (10.6) 18 (14.4) 0.245

LOS in ICU, 
median (IQR)

14 (8; 24) 12 (6.8; 16.2) 12 (7; 23) 15 (9; 25) 14 (8; 25) 14 (7; 28) 0.099

Tracheostomy 
required, n (%)

409 (28.0) 15 (37.5) 60 (34.9) 88 (26.5) 212 (26.6) 34 (27.6) 0.138



The only randomized-controlled trial on this topic [25] 
was performed on a small group of patients more than 
30 years ago, explored the effect of prophylactic hypocap-
nia, and the results were inconclusive because of impor-
tant methodological limitations. A recent CENTER-TBI 
study [4] suggested that large variability across countries 
still exists regarding  PaCO2 targets, but clinicians tend to 
use mean values of  PaCO2 of 38.9 (SD ± 5.2) mmHg, with 
mean minimum  PaCO2 of 35.2 (SD ± 5.3) mmHg, and 
even lower values are generally used in patients receiving 
ICP and having intracranial hypertension.

Our study confirms these results regarding the use of 
relatively low values of  PaCO2 adopted in the clinical 
practice, as in the whole population the median value 
was 37 mmHg on day 1, and only slightly increased over 

the following days. Mild hypocapnia was commonly 
observed and was more frequently used when an ICP 
probe was inserted and in TBI patients vs. other patholo-
gies. This suggests that clinicians tend to target  PaCO2 to 
a normo-/mild hypocapnia in ABI and especially in TBI 
patients where a higher number of evidence/recommen-
dations are available, and especially in the early phase 
of ICU admission when patients have more important 
issues in controlling ICP.

Interestingly, in the above-mentioned CENTER-TBI 
study, centers where profound hyperventilation was used 
did not present worsened outcomes [4]. On the other 
hand, a recent study from the BRAIN-PROTECT group 
[26], including a cohort of 1776 TBI patients with end-
tidal (ET)  CO2 levels measured during prehospital care, 

Fig. 1 Number of patients experiencing abnormally low and high partial pressure of carbon dioxide-PaCO2-episodes during the ICU stay. The 
bars indicate the number of patients with 0, 1, 2, and 3 episodes of abnormal  PaCO2. Incidence rates (as number of episodes per 1 person-day) of 
hypocapnia and hypercapnia during ICU stay are provided. IR, incidence rate; CI, Confidence Interval



found a L-shaped association between  ETCO2 levels and 
30-day mortality, with important increase in mortal-
ity for values below 35 mmHg. However, this study pre-
sents important limitations, as it refers only to a limited 
timeframe setting (prehospital) and does not totally take 
in account confounding physiological factors which can 
have influenced decreases in  ETCO2. Our results are 
importantly different; we found a clear U-shaped curve 
in the whole population, with a steeper part of the curve 
for hypercapnia, and a tendency to a better outcome 
for normocapnia or mild hypocapnia. Interestingly, this 
curve had different shapes when comparing different 
types of ABIs. In addition, when stratifying for the sever-
ity of ABI (GCS ≤ 9 vs > 9), the U-shaped relationship 
between  PaCO2 and in-hospital mortality was consist-
ent. This suggests that both hypocapnia and hypercapnia 

are associated with increased in-hospital mortality, 
regardless of GCS status. However, the risk related to 
forced hypocapnia is more pronounced in patients with 
GCS ≤ 9, implying that patients with more severe brain 
injuries are more vulnerable to aggressive reductions in 
 PaCO2.

In TBI patients, and similarly in ICH,  PaCO2 between 
32  mmHg and 42  mmHg had lower rates of hospital 
mortality as compared with other acute neurological 
conditions, suggesting that maintaining these values 
is associated with better outcomes in this group. In 
contrast, hypocapnia had a stronger effect on mortal-
ity risk in the context of subarachnoid hemorrhage 
and ischemic stroke, whereas hypercapnia appears 
less harmful. We can speculate that in TBI and ICH 
patients, where the main issue pivots on the mass effect 

Fig. 2 Sankey plot providing a visual representation of the transition of patients with different categories of abnormal  PaCO2 at day 1, 3, and 7. The 
different colors show the number of patients in each  PaCO2 category and how they changed from day 1 to day 7. Most of the transitions occurring 
in the hypocapnia group were toward normocapnia. Most patients with forced hypocapnia remained in the same category, whereas most patients 
with hypercapnia evolved toward normocapnia. Overall, the pattern of flows between days 3 and 7 was similar to the pattern of flows between 
days 1 and 3



related to cerebral edema and bleeding, lower values 
of  PaCO2 can help in managing intracranial hyperten-
sion and can mitigate secondary brain damage; on the 
contrary, in patients with SAH or IS patients who are at 
risk of vasospasm or cerebral hypoperfusion, hypocap-
nia can further cause cerebral vasoconstriction and 
lead to secondary brain damage.

Strengths of our study include the preplanned design, 
and the use of a large database prospectively collected 
involving different centers worldwide, which can provide 
important insights into the state of the art on this topic 
across different centers. We believe that our results may 
be of great importance as these provide novelty and deep 
insights into the optimal values that could potentially be 
recommended for achieving ventilatory targets [27] in 
the ABI population with the ultimate goal of improving 
clinical outcomes. In particular, our results confirm the 
large use of mild hypocapnia across different centers, and 
the safety in the use of cutoffs of  PaCO2 32–35 mmHg in 
TBI patients as suggested by Seattle Guidelines [5].

Limitations
This study has several limitations that need to be men-
tioned. Although our results were obtained from a pre 
planned secondary analysis, data from the ENIO study 
are observational and therefore do not allow causality to 
be inferred from our findings.

In our study, we have used a snapshot approach, with 
data on  PaCO2 available only on days 1, 3, and 7. We 
acknowledge that this methodology only provides a 
cross-sectional view of the patients’  PaCO2 status at those 
specific time points and may not reflect the actual time-
weighted exposure to different  PaCO2 levels. Although 
continuous monitoring of  PaCO2 would be ideal for cap-
turing the duration of exposure, this granularity of data 
is often not available in multicenter observational studies 
due to practical constraints; it is also a clinical snapshot 
of real daily practice, where  PaCO2 is typically not moni-
tored continuously.

In addition, the ENIO collected outcome data on 
in-hospital and ICU mortality, length of stay, and ICU-
related complications. No data on Glasgow Outcome 
Scale extended (GOSE), modified Rankin scale (mRS), 
and quality of life were available from the main study. 
Finally, according to the study design, it is not possible 
to fully understand whether hypo- or hypercapnia was 
related to an intentional treatment or the patients’ clini-
cal conditions. In this context, a more specific analysis 
evaluating the association with the outcome of ventila-
tory variables, such as mode of ventilation, is ongoing 
and will provide more insights on this topic.

Fig. 3 A Association between  PaCO2 (modeled as a continuous variable) and in-hospital mortality using a longitudinal survival regression.  PaCO2c 
was modeled with 5-df restricted cubic splines (RCS). For esthetic purposes,  PaCO2 distribution was trimmed between 20 mmHg and 60 mmHg. 
The graph shows the adjusted hazard ratio (aHR) for in-hospital mortality on the y-axis across the full range of  PaCO2 values on the x-axis. The solid 
line represents the hazard ratio and the shaded area is the 95% confidence interval. B The association between categorical  PaCO2 values and in-
hospital mortality risk using a longitudinal survival regression. The graph shows the hazard ratios with 95% confidence intervals using normocapnia 
a reference category



Conclusions
Both hypo- and hypercapnia are associated with in-
hospital mortality when considering the whole cohort. 
However, mild hypocapnia seemed not to be harm-
ful, especially in the TBI subpopulation. Specific targets 
should be considered according to the type of ABI. Ran-
domized-controlled trials are warranted to confirm our 
preliminary observational results.
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