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1 Introduction and summary

One of the most interesting and fascinating aspect of quantum gauge theories at strong
coupling is the possibility for two different theories to flow to the same conformal fixed
point at long distances.

The infrared dynamics can sometimes be described only in terms of a few gauge-
singlet fields, theories with this property are usually called S-confining. In the context of
3d N = 2 gauge theories, a paradigmatic example is the duality between SQED with one
flavor (Q, Q̃) and the XYZ model [1]. On the electric side, the infrared degrees of freedom
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can be understood as the monopole operators M± and the meson M = QQ̃, mapping to
three chiral fields on the magnetic side, interacting through a superpotential of the form
W = XY Z, as the name of the model suggests.

More general S-confining dualities relate gauge theories to Wess-Zumino theories (or
free chirals in the particular case of vanishing superpotential). Some of them can be
obtained starting from a known Aharony-like duality [2] and appropriately choosing the
matter content and the superpotential. As an example, Sp(N − 1) SQCD with Nf = 2N
flavors andW = σM (i.e. flipped monopole superpotential) is dual to a theory of N(2N−1)
free chirals, transforming in the rank-two antisymmetric representation of the SU(2N)
flavor group.

Confining dualities are useful to deconfine fields transforming in rank-two representa-
tions of various gauge groups. This observation has been used in the context of 4d N = 1
gauge theories [3–6] and of 3d N = 2 gauge theories [7–10]. Ref. [10] sequentially deconfined
either U(N) gauge theories with an adjoint and F flavors or Sp(N) gauge theories with an
antisymmetric and 2F fundamentals.

In this paper, we propose new confining dualities of gauge theories with orthogonal
gauge groups. We start from a duality for theories with SO(N) gauge groups and matter in
the vector representation, found by Aharony, Razamat, Seiberg and Willett (ARSW) [11],
building on [12–15]:

SO(Nc)w/ F chiral flavorsQ
W = 0 ⇐⇒

SO(F −Nc + 2)w/ F chiral flavors q
1 + F (F + 1)/2 singlets σ, Sij
W = σM+ + Sij Tr(qiqj)

(1.1)

For F < Nc − 2, SO(Nc) SQCD has no supersymmetric vacuum, while one may expect
confining dualities for F = Nc − 1 or F = Nc = 2, which we obtain decoupling flavors in
the ARSW duality. In the first case, we propose that the magnetic theory is actually a
Wess-Zumino model with an SU(Nc − 1) symmetric matrix of chirals S, a vector q and a
singlet σ with superpotential W = Tr(qSq) + σ2detS, (2.8). For F = Nc − 2, the theory
develops a smooth quantum moduli space. However, we propose a mechanism to prevent
the moduli space from smoothing: we start from the case with F = Nc − 1, we turn on a
mass term for a flavor, then we gauge a Z2 symmetry. On the magnetic side, the discrete
gauge symmetry is Higgsed while on the electric side, there is no Higgsing and the gauge
group is turned from SO to O+/Spin. We thus arrive to the duality (2.15).

A second starting point is a variation of the ARSW duality with linear monopole
superpotential [11, 16]:

SO(Nc)w/ F chiral flavorsQ
W = M+ ⇐⇒

SO(F −Nc)w/ F chiral flavors q
and F (F−1)

2 singlets Sij ,
W = M+ + Sij Tr(qiqj)

(1.2)

In this case, there are no supersymmetric vacua for F < Nc and one can expect to find
interesting confining dualities for F = Nc + 1 or F = Nc. In the first case, we propose
the dual to be a Wess-Zumino model with a symmetric matrix of chirals S, a vector q and
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superpotential W = Tr(qSq)+detS, (3.4). For F = Nc we expect again a smooth quantum
moduli space. Building on the previous lesson, we avoid a quantum deformed moduli space
taking SO(Nc) SQCD with Nc + 1 flavors and linear monopole superpotential, turning on
a mass term for one flavor and gauging/Higgsing a Z2 symmetry. On the electric side, the
gauged discrete symmetry is preserved and we end up with a confining duality for O+(Nc)
gauge group (3.10).

All such dualities are useful in deconfining rank-two symmetric representations (of
SU(F ) or subgroups thereof). In particular, we apply such dualities, together with sym-
plectic confining dualities [2, 17], to find S-confining dualities for SO(N) (Sp(N)) gauge
theories with an adjoint and 1 (2) fundamentals, respectively. In both cases, the dual
consists of a Wess-Zumino or free chirals depending on the choice of superpotential. Such
S-confining dualities can be used in turn as an intermediate step to prove other proposed
dualities in the literature as duality appetizers [18–21]. Turning on a real mass for a flavor,
we are able to prove the duality appetizer of [19] between SO(2N)1 with an adjoint Φ and
N free chirals (duals of the composite operators Tr(Φ2i),PfΦ) and the duality appetizer
of [21] between Sp(N) 1

2
with and adjoint and one flavor with N free chirals (duals of ad-

joint traces). Moreover, we propose and derive a new duality appetizer: SO(2N + 1)1 with
adjoint dual of N free fields, mapping again to the adjoint traces in the electric theory.1 If
we keep the CS level to be vanishing but pick an appropriate superpotential, we are able
to prove instead that the 3d mirror of (A1, A2N ) Argyres-Douglas is a theory of N free
massless hypermultiplets, as already claimed in [21].

In a companion paper [22], we apply such new confining dualities in order to sequen-
tially deconfine Sp(N), O+(2N + 1) and SO(2N) gauge theories with an adjoint and an
arbitrary number of fundamental flavors.

The structure of the paper is the following: in section 2 we review the basic ARSW
duality for orthogonal groups and, building on that, we prove new confining dualities with
flipped monopole superpotential for orthogonal gauge theories; new confining dualities
with monopole superpotential are instead derived in section 3. All the dualities useful to
deconfine rank-two matter in ortho-symplectic gauge theories are collected in section 4.
Those dualities are used in section 5.1 to derive S-confining dualities for SO(N) (Sp(N))
gauge theories with an adjoint and 1 (2) fundamentals, respectively. Building on those,
we also derive the aforementioned duality appetizers and 3d mirror of (A1, A2N ) Argyres-
Douglas, in section 6 and 7, respectively.

2 Dualities and confinements for orthogonal gauge theories

In this section we study the 3d N = 2 gauge theories with orthogonal groups with Nc

colors, and matter in F copies of the vector representation. Building upon the duality first
proposed by Aharony, Razamat, Seiberg and Willett (ARSW) [11], valid for F ≥ Nc, we
discuss the infrared behavior for F = Nc − 1 and F = Nc − 2. In the next section we

1To be precise, the electric theory of the proposed duality has a non-zero superpotential of flipping type.
For this reason, this is not actually a proper appetizer in the sense of [18–21].
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discuss the same theories with a linear monopole superpotential turned on. A prominent
role will be played by discrete global symmetries.

Let us start with a review of the properties of the discrete symmetries. Different
orthogonal groups can differ in their global properties, due to the gauging of discrete
global symmetries. The usual SO(Nc) gauge group comes with two global Z2: the charge-
conjugation C (or ZC2), that acts on vectors as a reflection and a magnetic symmetryM (or
ZM2 ) associated to non-trivial center of the group and changing sign to the fundamental
monopole operator. Gauge-invariant operators in the chiral ring are said baryonic if they
are charged under C and can be both baryons in the usual terminology (i.e. composite op-
erators made of chiral fields contracted with the Levi-Civita tensor) or baryon-monopoles,
using the terminology of [11]. By gauging different combinations of such discrete sym-
metries, different gauge groups are obtained, usually denoted by O(Nc)±, Spin(Nc) and
Pin(Nc). The variouss possible gaugings are summarized in (2.1).

SO(Nc)

O+(Nc)

Spin(Nc)

O−(Nc)

Pin(Nc)

C

M

CM

M

C

M

(2.1)

In general, gauging a discrete symmetry strongly affects the chiral ring, projecting out part
of the generators: this is the case, for instance, of the baryonic operators when charge
conjugation C is gauged, as in O(Nc)+ and Pin(Nc).

2.1 Dualities

The duality for orthogonal groups (special and not) proposed in [11] generalizes the dualities
previously proposed in [12–15] for O+(Nc) strictly. The starting point is SO(Nc) SQCD
with F flavors Q. Since the group is special, both C and M are global symmetries and
none of the possible chiral ring generators is projected out. Thus, the global symmetry
group of the theory is:

Gglob = SU(F )× U(1)A × ZC2 × ZM2
Z2

. (2.2)

In (2.2), U(1)A denotes the axial symmetry acting on the flavors; moreover, the quotient
with respect to a Z2 factor, is due to the relation CNc ·MF ·eiπA = 1, where A the generator
of U(1)A. The chiral ring of the theory is generated by the following operators: the meson
Tr(QiQj), transforming in the rank-2 symmetric representation of SU(F ) and the baryon
εK ·QK where εK denotes the Levi-Civita tensor of SO(Nc) and the contraction of indices
is understood. The baryon transforms in the rank-K antisymmetric representation under
SU(F ) and it has a non-trivial charge under C. Together with such composite operators
we also find monopole operators. In the case of SO(Nc) we have two different kind of
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monopoles, depending on their charge under C action. The unit-flux monopoles are usually
denoted as M± where the sign reveals the charge under ZC2 . The odd monopole M−,
however, it is not invariant on its own, but it actually needs to be dressed with Nc − 2
flavors;2 the resulting “baryon-monopole” will be denoted as M−

ε·QNc−2 , it only exists for
F ≥ Nc− 2 and it transforms in the rank-(Nc− 2) antisymmetric representation of SU(F ).
Both the even and odd monopole transform non-trivially under the magnetic symmetry
M. All the charges are summarized in table 2.3.

SU(F ) U(1)A C M
Tr(QiQj) symm2 2 + +
εK ·QK antisymK K − +
M+ singlet −F + −
M−

ε·QK−2 antisymK−2 K − F − 2 − −

(2.3)

R[M+] = F (1−R[Q]) + 2−Nc

The ARSW duality states that

SO(Nc)w/ F chiral flavorsQ
W = 0 ⇐⇒

SO(F −Nc + 2)w/ F chiral flavors q
1 + F (F + 1)/2 singlets σ, Sij
W = σM+ + Sij Tr(qiqj)

(2.4)

with mapping 
Tr(QQ)
ε ·QNc
M+

M−
ε·QNc−2

 ⇐⇒


S

M−
ε·qF−Nc
σ

ε · qF−Nc+2

 (2.5)

Duality (2.4) is valid for F ≥ Nc. As in all Aharony-like dualities, the meson Tr(QiQj) in
the electric theory maps to the gauge singlet matrix Sij in the magnetic dual, while the even
monopole of the electric theory M+ maps to the flipping field σ on the magnetic side. The
non-trivial part of the ARSW proposal consists in the mapping of the baryonic operators.
The baryon εNc ·QNc of the electric theory maps to the baryon-monopole M−

ε·qF−Nc of the
magnetic dual.3 Viceversa, the baryon-monopole of the original theory, M−

ε·QNc−2 , gets
mapped to the baryon εF−Nc+2 · qF−Nc+2. In order to make the comparison more clear, all

2In fact, a non trivial vev of a unit-flux monopole breaks the gauge group to S(O(Nc− 2)×O(2)) where
we stress the presence of a residual gauged Z2 factor, i.e. the reflection in both O(2) and O(Nc − 2). The
odd monopole is not invariant under such residual Z2 factor, and it needs to be dressed with another odd
operator (invariant with respect to the continuous part of the residual gauge group); such operator can be
built appropriately contracting the Levi-Civita symbol εNc−2.

3Observe that all the charges actually match since in the magnetic frame, the chiral fields q have charge
−1 under U(1)A and transforms in the anti-fundamental representation of SU(F ).
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the charges of the chiral ring generators of the magnetic theory are collected in table 2.6.

SU(F ) U(1)A C M
Sij symm2 2 + +
εF−K+2 · qF−K+2 antisymK−2 K − F − 2 − +
σ singlet −F + −
M−

ε·qF−K antisymK K − −

(2.6)

A careful reader could have observed at this point that a mismatch in the mapping of
the Z2 charges seems to be present: for instance, in the electric frame the baryon is only
charged under Cel. but its proposed magnetic dual, the baryon-monopole, transforms under
both Cmag. andMmag.. The reason of such mismatch is that there is a non-trivial mapping
of the discrete symmetries also:

Cel., ↔ Cmag. , Mel., ↔ (C ·M)mag. . (2.7)

The analogue ARSW duality for non-special orthogonal groups are obtained by the appro-
priate gauging of the discrete symmetries and taking into account (2.7). Let us start with
the O(Nc)+ case. Gauging charge conjugation, all the baryonic operators are projected
out. The map (2.7) implies that in the magnetic theory charge conjugation is also gauged
and the two magnetic symmetries maps to each other. Thus the appropriate Aharony-
like duality for O(Nc)+ is completely analogous to (2.4) with O+ gauge groups in both
frame [12, 13, 15].

The O(Nc)− theory is less common in literature: in this case C ·M is gauged and thus
both the even monopole M+ and the baryon εK · QK are not gauge invariant anymore.4
The chiral ring still contains the meson Tr(QiQj), the baryon monopole and the monopole
usually denoted by M+

Spin, that is the even monopole with two units of magnetic flux. It
is evident from the mapping (2.7) that if we gauge Cel. ·Mel. on the electric side, in the
magnetic frame we need to gaugeMmag., i.e. the magnetic gauge group Spin(F −Nc + 2).
In such a theory, all unit-flux monopoles (either baryonic or not) are not gauge invariant
but the chiral ring contains a two-units-flux baryon-monopole (defined analogously to the
usual baryon-monopole), together with the two-units-flux even monopole M+

Spin, the baryon
and the meson. The mapping of the operators between the two sides of the duality is
straightforward.

Finally, gauging in a Pin(Nc) theory all discrete symmetry are gauged and thus all
monopoles and baryonic operators are projected out. The chiral ring is generated by
the meson and the two-units-flux even monopole. A Pin(Nc) gauge theory is dual to a
Pin(F −Nc + 2) gauge theory.

2.2 Confining dualities

For F < Nc − 2, the electric theory SO(Nc) with F flavors breaks supersymmetry. The
cases F = Nc−1 and F = Nc−2 are confining, we discuss their low energy behavior below.

4However, the product M+(εK ·QK) is still in the chiral ring.
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2.2.1 F = Nc − 1
If F = Nc − 1, we propose the following S-confining duality

SO(K + 1)w/ K chiral flavorsQ
W = 0 ⇐⇒

Wess-Zumino w/ a singlet σ,
an SU(K) symmetric S and a
SU(K) anti-fundamental q ,
W = qSq + σ2 det(S)

(2.8)

with mapping 
Tr(QQ)
M+

M−
ε·QK−1

 ⇐⇒


S
σ

q

 (2.9)

Using that R[M+] = 1 − KR[Q], R[M−
ε·QK−1 ] = 1 − R[Q], it is easy to check that the

global symmetries are consistent with the duality and the mapping.5 We also checked
duality (2.8) with the supersymmetric index.

We can derive duality (2.8) starting from (2.4) with Nc = F = K+1, so that the r.h.s.
is an SO(2) gauge theory with K+1 flavors, W = σM+ + Sij Tr(qiqj). A mass term for
the last flavor on the l.h.s. is mapped to SK+1,K+1, so on the r.h.s. the theory is Higgsed
SO(2)→ SO(1). One of the two components of the original flavors, together with the gauge
singlets Si,K+1 become massive and can be integrated out. Along the flow a superpotential
term σ2 det(S) is consistent with all global symmetries, hence we expect it to be generated
by non-perturbative effects.

2.2.2 F = Nc − 2
We now move to the case F = Nc − 2, which is described in the infrared by a quantum
deformed moduli space [11]. Starting from (2.8) with K → K + 1, turning on a mass term
of the form tr(Q0Q0)↔ S00, on the r.h.s. the superpotential becomes

W = S00 + Sijqiqj + q0S
iqi + S00q0q0 + σ2 (S00det(S) + εKεKSK−1SiSj) (2.10)

where we split S→ {Sij , Si, S00} and q → {qi, q0}, i, j = 1, . . . ,K. The F-terms of S00

(q0)2 + σ2det(S) + 1 = 0 (2.11)

Since q0 and/or σ2det(S) is taking a non zero vev, Si and qi are always massive. Hence
at low energy we have

SO(K + 2)w/ K chiral flavorsQ
W = 0 ⇐⇒

Wess-Zumino w/
three singlets σ, S00, q0,
an SU(K) symmetric S ,

W = S00((q0)2 + σ2det(S) + 1))

(2.12)

with mapping 
Tr(QQ)
M+

M−
ε·QK

 ⇐⇒


S
σ

q0

 (2.13)

5On the r.h.s. R[qSq] = 2R[Q] + 2(1−R[Q]) = R[σ2 det(S)] = 2(1−KR[Q]) + 2KR[Q] = 2.
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2.3 Confining dualities with flipped monopole

Let us begin with F = Nc−1, flipping M+ ↔ σ in (2.8) we obtain the following S-confining
duality:

SO(K + 1)w/ K chiral flavorsQ
W = σM+ ⇐⇒

Wess-Zumino w/ K(K+1)
2 chirals

symmetric of SU(K) Sij ,
K chirals qj ,W = qi Sij qj

(2.14)

Some comments: on the gauge theory side, the chiral ring contains the meson Tr(QiQj)
and the baryon-monopole M−

εK−1·QK−1 , the latter transforming in the anti-fundamental
representation of flavor group SU(K). For algebraic reasons, it is not possible to build
the baryon while the even monopole M+ is flipped: thus, we can observe that the discrete
symmetry C ·M acts trivially on the chiral ring of the gauge theory frame. On the Wess-
Zumino side, Sij is the dual of the meson, while qi is the dual of the baryon monopole. In the
magnetic frame, we can still introduce a charge-conjugation C, charging q and coinciding
with three-dimensional reflection; we do not have, instead, any magnetic discrete symmetry,
consistently with the fact that l.h.s. C ·M has a trivial action on the chiral ring. Gauging
any combination of the discrete symmetries in l.h.s. of (2.14), the duality is not confining
anymore: the magnetic theory would be an O(1)+ gauge theory.

Duality (2.14) can be useful to deconfine a symmetric field coupled to a flavor, we will
use it in section 5 and in [22].

We can study the case F =Nc − 2 either turning on a mass term for a single flavor
in (2.14), or flipping M+ ↔ σ in (2.12). On the r.h.s. we obtain a quantum deformed
moduli space with the equation (q0)2 = −1. So there are two disconnected branches.
Recall that q0 maps to the baryon monopole M−

ε·QK on the gauge theory side.
This means that we can do the following: we gaugeM or C in the gauge theory side, in

the r.h.s. we then have a Z2 gauge theory, which is however Higgsed down to a trivial gauge
group going on one of the two branches q0 = ±i. We then obtain the following duality

O+(K + 2) or Spin(K + 2)
w/ K chiral flavorsQ

W = σM+
⇐⇒ Free SU(K) symmetric

S↔ Tr(QQ) (2.15)

Duality (2.15) can be used to deconfine any symmetric field, even if we do not use it,
neither in this paper nor in [22].

3 Dualities and confinement for orthogonal gauge theories with
monopole superpotential

3.1 Dualities

The following monopole duality for SO gauge groups is valid for F ≥ Nc + 2 [11, 16]:

SO(Nc)w/ F chiral flavorsQ
W = M+ ⇐⇒

SO(F −Nc)w/ F chiral flavors q
and F (F−1)

2 singlets Sij ,
W = M+ + Sij Tr(qiqj)

(3.1)
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with mapping {
Tr(QQ)
ε ·QNc

}
⇐⇒

{
S

ε · qF−Nc

}
(3.2)

On both sides, the linear monopole superpotential breaks the magnetic symmetryM while
charge conjugation is preserved. The linear monopole superpotential also breaks the U(1)
axial symmetry and the R-charge of the chiral fields is fixed to be

R[Q] = 1− Nc

F
, R[q] = 1− F −Nc

F
. (3.3)

The chiral ring is generated by the meson and the baryon only.
Eq. (3.1) is related to (2.4): starting from (2.4) with two additional flavors, when we

turn on M+ ↔ σ, on the r.h.s. the monopole takes a vev, forced by the F-terms of σ. Such
a vev implies a Higgsing SO(F + 2 − Nc) → SO(F − Nc). Along the RG flow the linear
monopole term M+, preserving all global symmetries, is generated.

If F < Nc a runaway superpotential is generated and supersymmetry is broken. The
cases F = Nc + 1 and F = Nc are instead confining, and we analyze them below.

3.2 Confining dualities

In the case F = Nc + 1 we propose the following S-confining duality:

SO(K − 1)w/ K chiral flavorsQ
W = M+ ⇐⇒

Wess-Zumino w/
SU(K) symmetric Sij ,

SU(K) antifundamental qi ,
W = qi Sij qj + det(S)

(3.4)

with mapping {
Tr(QQ)
ε ·QK−1

}
⇐⇒

{
S
q

}
(3.5)

As a check of duality (3.4), we notice that the marginality of the superpotential implies, on
the l.h.s., R[Q] = 1

K , on the r.h.s. R[S] = 2
K , R[qi] = K−1

K , consistently with the mapping
stated above. Moreover, we notice that in the special case K = 3, duality (3.4) coincides
with a known duality for U(1) gauge group.6 The duality (3.4) can be tested using the
superconformal index. For electric theory in (3.4) the supersymmetric index reads:

Iel., (3.4)(x,µ) =
∑
m

1
|W|m

∫ dz
2πizZ

SO(K)
vec (z)Zmat(x, zfund,µfund) , (3.7)

6In the special case K = 3, the l.h.s. is equal to U(1) with (3, 3) flavors and W = M+ + M−, which is
known to satisfy the following confining duality [23]:

U(1)w/ (3, 3) flavorsQ, Q̃
W = M+ + M−

⇐⇒
Wess-Zumino w/ a 3× 3

matrix of chirals µ ,
W = det3×3(µ) .

(3.6)

The global symmetry is SU(3) × SU(3), under which the matrix µ transforms as a bifundamental. Under
the diagonal subgroup SU(3), µ splits into a symmetric S and antisymmetric A, defining qi = εijkAjk,
det(µ) = Sij Tr(qiqj) + det(S), in agreement with (3.4).
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where the functions appearing in the previous expressions are reviewed in appendix A.
We denoted by m, z the units of GNO magnetic fluxes and the fugacities of the gauge
group respectively. µ denotes instead the fugacities of the SU(K) flavor group and x is the
R-charge fugacity. In the matter contributions, we explicitly stressed how the fugacities
organize. Observe that in (3.4), the magnetic symmetry of the orthogonal gauge group
is explicitly broken by the linear monopole in the superpotential; moreover, for K even,
the most interesting case for us in the following, the charge conjugation can actually be
identified with an element of the flavor group, as reviewed below (2.2). For this reason, it
not necessary to taken into account fugacities neither for ZM2 (that is broken) nor for ZC2
that is not a true symmetry of the theory. The index (3.7) can be evaluated expanding the
integrand as a power series in the R-charge fugacity x. Evaluating it for various choices of
K and flavors R-charge, one always get:

Iel., (3.4) = 1 + χsym2(µ)x
2
K + χfund(µ)x1− 1

K + . . . (3.8)

Here χR(µ) stands for the character of the representation R of the flavor symmetry group
SU(K). One can easily check that this expansion matches the one for the magnetic theory
of (3.4).

Duality (3.4) can be obtained deforming duality (3.1) with Nc = K − 1, F = K + 1,
turning on a mass term for a single flavor. On the r.h.s. the gauge group SO(2) is Higgsed
and the superpotential term det(S) is generated. Alternatively, we can obtain duality (3.4)
from (2.4) with Nc = K + 1, F = K, so that the r.h.s. is SO(2) with K flavors, W =
σM+ +Sij Tr(qiqj). Turning on M+ ↔ σ, on the r.h.s. the F-terms of σ force the monopole
to take a non zero vev, so the gauge group SO(2) is Higgsed.

We now move to the case of SO(Nc) with Nc flavors. If we simply add a mass term
to (3.4) we obtain a duality with a quantum deformed moduli space on the r.h.s. Since in
this paper we are interested in confining dualities useful to deconfine symmetric matter,
we flip operators in the gauge theory side so that the quantum deformed moduli space is
replaced by a free theory. As a first step, let us flip (3.4) (with K → K + 2) as

SO(K+1) K

1

1

W= M++ uTr(QQK+1) + αTr(QK+1QK+1)

Q0

QK+1 u×

Q
⇐⇒

WZ model with

Sij , Si 0, S00, S0K+1 (from S)
qK+1, qi, q0 (from q)

W= qiS
ijqj +S00q2

0 +S0K+1q0qK+1+
+Si 0qiq0 + (S0K+1)2 det(Sij)

(3.9)
where i, j = 1, 2, . . . ,K. Now we deform this duality with δW = Tr(Q0Q0) ↔ S00. The
F-terms of S00, q2

0 = −1, imply that q0 (which maps into a baryon monopole) takes a
vev. The vev of q0 in turn makes the fields S0K+1, qK+1, S

i 0, qi massive. Only the SU(K)-
symmetric chiral field Sij remains massless. There are two disconnected branches, so the
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r.h.s. becomes the direct sum of two copies of free SU(K)-symmetric chiral fields (in the
sense that the Hilbert space is the direct sum of the Hilbert space of one copy of free
SU(K)-symmetric chiral field).

In order to obtain a well defined theory on the r.h.s. we gauge both sides of the duality
the Z2 global symmetry under which ε·(QKQK+1) ↔ q0 is charged. This means that on
the r.h.s. the two branches are gauge equivalent, so the Z2 is Higgsed and we are left with a
single copy of a free theory. On the l.h.s. the Z2 global symmetry is charge conjugation C,
so the gauge group SO(K + 1) becomes O+(K + 1). We thus obtain the following duality:

O+(K+1) K

1

W = M+ + uTr(Qv) + αTr(vv)

v
u×

Q

⇐⇒ Free SU(K)-symmetric

chirals S↔ Tr(QQ)

(3.10)

This duality will be of crucial relevance in the sequential deconfining of ortho-symplectic
theories with adjoint in [22]. On the gauge theory side, the linear monopole superpotential
explicitly breaks the magnetic discrete symmetry M and an Abelian symmetry, so that
the global symmetry is SU(K) × U(1)Q, where the axial U(1)Q charges +1 the flavors Q.
The superpotential fixes the R-charges of the other fields:

R[v] = −KRQ , R[u] = 2 + (K−1)RQ , R[α] = 2 + 2KRQ . (3.11)

Let us observe that the field v has an R-charge below 1
2 , but this is not actually a problem,

since Tr(vv) is flipped, so it is zero in the chiral ring, and there is no chiral ring operator
below the unitarity bound. The singlets u are needed in order to flip the meson Tr(vQ)
that otherwise would be part of the chiral ring, spoiling the duality. The unique generator
is actually the meson Tr(QiQj), mapping to free symmetric chiral fields Sij on the Wess-
Zumino side. A crucial test for the duality (3.10) is provided by the computation of the
supersymmetric index. This can be performed in the same fashion as for the duality (3.4):

Iel., (3.10) = 1 + φ2χsym2(µ)x2RQ + φ4
(
χsym4 + χbox2×2

)
x4RQ + . . . (3.12)

where box2×2 is the (0, 2, 0, . . . , 0) representation of SU(K), a 2×2 box in terms of Young
tableaux. φ denotes the fugacity of the U(1)Q axial symmetry. The index (3.12) coincides
with the index of K(K + 1)/2 free chirals of R-charge 2RQ and transforming in the rank-2
symmetric representation of SU(K). It may worth stressing that in computing the index,
it is not necessary to introduce any additional fugacity forM that is broken by the linear
monopole superpotential; moreover it is interesting to observe that the way the gauging
of C is taken into account in the supersymmetric index is the following: first, as reviewed
for instance in [40, 41], it is possible to include a fugacity σ for the charge conjugation,
labelling the even and odd parity operators. The gauging is then performed summing the
index over the even sector, σ = +1, and the odd sector, σ = −1, so that no fugacity remain
visible in the index after the index, consistently with the fact that no discrete symmetries
are left.
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4 A hand-book of 3d N = 2 (de)confining ortho-symplectic dualities

In this short section we summarize the dualities that are useful to confine fields transform-
ing in the symmetric and antisymmetric representation and/or to confine symplectic or
orthogonal gauge groups. We will use these dualities in section 5.

For antisymmetric fields / symplectic gauge groups, the following two dualities are
useful:

Sp(N − 1) 2N

W = γM

Q

⇐⇒ Free SU(2N)-antisymmetric
(4.1)

(this is a variation of Aharony duality.)7

Sp(N − 1) 2N+1

1

W = M + uTr(Qv)

v
u

Q

⇐⇒ Free SU(2N+1)-antisymmetric

(4.3)

(this is a variation of 4d Intriligator-Pouliot S-confining duality, reduced to 3d.)
For symmetric fields / orthogonal gauge groups, the following two dualities, found in

the previous sections, are useful:

O+(N+1) N

1

W = M+ + uTr(Qv) + αTr(vv)

v
u×

Q

⇐⇒ Free SU(N)-symmetric

(4.4)

SO(N+1) N

W = γM+

Q

⇐⇒

Wess-Zumino w/ SU(N)-symmetric Sij

and SU(N)-antifundamental qi,

W = qi S
ij qj (4.5)

7Let us start from the original duality proposed in [2]:

Sp(N − 1)w/ 2N chiral flavors
W = 0

⇔
Wess-Zumino w/ 2N × 2N antisymmetric
matrix of chiral fields A, and a singlet σ

W = σPfaff(A)
(4.2)

In this duality the monopole is mapped to σ (M↔ σ), so if we flip the monopole in the l.h.s. with a gauge
singlet γ, on the r.h.s. we obtain a superpotential term σγ, so σ and γ become massive, integrating them
out the superpotential becomes zero and we obtain the duality (4.1).
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5 S-confining dualities for SO/Sp with adjoint

In this section we apply the deconfining dualities proposed in sections 2 and 3, summarized
in section 4, in order to find examples of S-confining 3d N = 2 theories.

We show that Sp(N) with adjoint Φ and two fundamentals p, q, with cubic superpo-
tential W = Φpp, is S-confining:

Sp(N)w/ adjoint Φ
and 2 fundamentals q, p

W = Φpp
⇐⇒

Wess-Zumino w/ 4N chirals
mj ↔MΦj , j = 0, . . . , 2N − 1

µi ↔ Tr(Φ2i+1qq), i = 0, . . . , N − 1 ,
σk ↔ Tr(Φ2k), k = 1, . . . , N ,

(5.1)

Similarly, we show that SO(K) with adjoint Φ and one fundamental t, with vanishing
superpotential, is S-confining, either if K = 2N :

SO(2N)w/ adjoint Φ
and 1 fundamental t

W = 0
⇐⇒

Wess-Zumino w/ 4N chirals
mj ↔MΦj , j = 0, . . . , 2N − 2
µi ↔ Tr(tΦ2it), i = 0, . . . , N − 1
σk ↔ Tr(Φ2k), k = 1, . . . , N − 1
m− ↔ Baryon-monopole M−ΦN−1

B↔ Baryon PfΦ .

(5.2)

or K = 2N + 1, in which case:

SO(2N + 1)w/ adjoint Φ
and 1 fundamental t

W = 0
⇐⇒

Wess-Zumino w/ 4N + 2 chirals
mj ↔MΦj , j = 0, . . . , 2N − 1
µi ↔ Tr(tΦ2it), i = 0, . . . , N − 1
σk ↔ Tr(Φ2k), k = 1, . . . , N

m− ↔ Baryon-monopole M−
tΦN−1

B↔ Baryon ε·(tΦN ) .

(5.3)

The superpotential on the r.h.s. of (5.1), (5.2) and (5.3) is a complicated polynomial
in the massless fields. The superpotential simplifies if we flip the powers of the adjoint
Tr(Φ2k) and, in the SO case, the baryon and the baryon-monopole. In this way the most
general superpotential consistent with the U(1)×U(1)×U(1)R global symmetry8 is a cubic
polynomial which we write explicitly in eqs. (5.19), (5.23) and (5.27). In this way the duality
is also unitary: all the gauge invariant operators are above the unitarity bound R > 1

2 .
From these S-confining dualities, it is easy to prove that the 3d reduction of the 4d

N = 1 Lagrangian for (A1, A2N ) Argyres-Douglas theory is dual to free hypers, as proposed
in [21], see next section. Moreover from (5.1), turning on real masses for the flavors, one
can immediately obtain the duality appetizers.

All the dualities derived in this section applying the confining ones of section 2, can
be further checked using the supersymmetric index, in the same way as we did for the
duality (3.4).

8In the electric theories, the two non-R U(1) factors act on Φ and t respectively.
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5.1 Sp(N) with adjoint and 2 fundamentals

We now prove the above S-confining dualities using a sequential deconfinement strategy,
as in [8–10, 24]. We start with the theory on the l.h.s. of (5.1) in quiver notation:

T1 : CN

1

1

Φ

W = Tr(pΦp)
q

p

(5.4)

The continuous global symmetry is U(1)Φ×U(1)q×U(1)R. We denote the R-charge of the
adjoint field Φ by rΦ and the R-charge of the chiral q by rq; it is useful to remember that:

R[p] = 1− rΦ
2 , R[M] = 1− rq − (2N − 1/2)rΦ . (5.5)

One could think of deconfining the symplectic adjoint field using the duality (3.10).
However, given the particular form of the superpotential in (5.4), with the cubic superpo-
tential Φpp, it is more convenient to deconfine using the duality (2.14). The resulting dual
theory is thus a two-node quiver:

BN CN

1

b
q

W = γM+,o
T1′ : (5.6)

Observe that:

R[b] = rΦ
2 , R[M+,o] = 1−NrΦ ⇒ R[γ] = 1 +NrΦ . (5.7)

Now we can dualize the symplectic node in the quiver with duality (4.2). Seiberg-like
dualities in 3d N = 2 quivers, with particular emphasis on monopole operators, were
studied in [25], see also [26]. The symplectic node confines, so we get an SO(2N + 1)
theory and flow to the following dual frame:

T2 : BN

1

A

W = γM−
ε·AN−1t

+ σAε2N+1(AN t)t

(5.8)

The superpotential of the theory T2 deserves some comments. Since the symplectic node
confined, the linear monopole superpotential is lifted.9 However, we still see the flipping
field γ in the superpotential, flipping the baryon monopole M−

ε·AN−1t
. Such superpotential

9Had the symplectic group not confined, the superpotential would contain flipped monopoles with one
unit of magnetic flux for the symplectic node turned on.
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term is dynamically generated; indeed γ has the appropriate R-charge (and more in general,
quantum numbers) to flip the baryon monopole:

R[M−
ε·AN−1t

] = R[M−]+(N−1) rΦ +rt = 1−NrΦ ⇒ R[γ]+R[M−
ε·AN−1t

] = 2 . (5.9)

The superpotential term flipping the baryon instead is a direct consequence of the confine-
ment of the symplectic node. In fact, as stressed in the footnote 7, when the symplectic
node confines, this generates a Pfaffian term and indeed one can rewrite:

ε2N+1(AN t) = Pfaff
(
A −t

+t 0

)
. (5.10)

Now we proceed to deconfine the adjoint field in T2 using the deconfinement duality with
linear monopole superpotential (4.3):

CN−1 BN

1

1

c

t

uv

W = M•,o + σA Tr(ut) + γM0,−
ε·c2N−2t

+ Tr(vcu)

T2′ : (5.11)

In T2′ , the baryon monopole has the same definition as before, supplemented by the pre-
scription A → (cc) while the baryon has been replaced by Tr(ut). The R-charges of the
auxiliary fields u and v are:

R[v] = 2− (2N+1)rΦ
2 , R[u] = NrΦ . (5.12)

We can now dualize the orthogonal node: also in this case, the node confines and we are
left with a symplectic gauge theory. We use duality (2.8) flipped by v, σA and γ:

SO(2N + 1)w/
(2N − 2)c + 1u + 1t chiral flavors

W = vTr(uc) + σA Tr(ut) + γM−
ε·c2N−2t

⇐⇒

Wess-Zumino w/
{S, β, µ0, q̃} ↔ {cc, uu, tt, ct}

{p̃,m2N−1,m0} ↔ {M−ε·c2N−3ut
,M−

ε·c2N−2u
,M+}

W = Sp̃2 + µ0m
2
2N−1 + p̃q̃m2N−1+

m2
0 β(det(S)µ0 + S2N−3q̃q̃)

(5.13)
where we expanded the cubic and determinant terms in the r.h.s. of (2.8) as:

q(S)q =
(
p̃ 0 m2N−1

)S 0 q̃

0 β 0
q̃ 0 µ0


 p̃

0
m2N−1

 = Sp̃2 + µ0m
2
2N−1 + p̃q̃m2N−1 (5.14)

det(S) = det

S 0 q̃

0 β 0
q̃ 0 µ0

 = βε2N−2ε2N−2(S2N−2µ0 + S2N−3q̃q̃) (5.15)
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Applying duality (5.13) to T2′ , four gauge singlets appear:

• A singlet β, dual of Tr(uu). Observe that R[β] = 2NrΦ. β maps to Tr(Φ2N ) in the
original theory T1.

• A singlet µ0, dual of Tr(tt). It has R-charge R[µ0] = 2rq +rΦ and it maps to Tr(Φqq)
in T1.

• A singlet m2N−1 dual of the baryon monopole Mo,−
εc2N−2u

. It maps to the dressed
monopole MΦ2N−1 in T1.

• A singlet m0 dual of the monopoles M0,+. It maps to the fundamental monopole M

in T1.

The linear monopole term in the superpotential is lifted, and we are left with

T3 : CN−1

1

1
+ 4 singlets

{µ0,m0,m2N−1, β}

S

W = Tr(p̃ Sp̃) + µ0m
2
2N−1 + Tr(p̃q̃)m2N−1 + m2

0 β(det(S)µ0 + εεS2N−3q̃q̃)

q̃

p̃

(5.16)

Notice that T3 is equal to T1, modulo replacing N → N − 1 and modulo superpotential
terms which are of flipping type. This means that we can perform the same procedure that
took us from T1 to T3 N − 1 times, and one is left with a theory with trivial gauge group
and 4N singlets, that is a Wess-Zumino model, as promised.

S-confinement of the flipped Sp(N) with adjoint and 2 fundamentals. We can
repeat the above procedure starting from T1 with the N traces of the adjoint Tr(Φ2i) flipped
by ρi.

T1 flipped : CN

1

1

Φ

W = Tr(pΦp) +∑N
J=1 ρJ Tr(Φ2J)

q

p

(5.17)

The superpotential term ∑N
J=1 ρJ Tr(Φ2J) maps to ∑N

J=1 ρJ Tr(A2J) in T2,flipped, to∑N
J=1 ρJ Tr((cc)2J) in T2′,flipped and to ρNβ + ∑N−1

J=1 ρJ Tr(S2J) in T3,flipped. So when we
arrive to T3, and produce the singlet β, β pairs up with ρN , the flipper of Tr(Φ2N ): both
singlets become massive and disappear. As a consequence of this, the superpotential in T3
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simplifies to:

T3, flipped : CN−1

1

1
+ 3 singlets
{µ0,m0,m2N−1}

S

W = Tr(p̃ Sp̃) + µ0m
2
2N−1 +∑N−1

J=1 ρJ Tr(Φ2J) + Tr(p̃q̃)m2N−1

q̃

p̃

(5.18)

Iterating the procedure N times we get the duality with the cubic Wess-Zumino10

Sp(N)w/ adjoint Φ
and 2 fundamentals q, p

W = Φpp+∑N
J=1 ρJ Tr(Φ2J)

⇐⇒

Wess-Zumino w/ 3N chirals
mj ↔MΦj , j = 0, . . . , 2N − 1

µi ↔ Tr(Φ2i+1qq), i = 0, . . . , N − 1 ,
W = ∑

i,j,k mimjµkδi+j+2k−4N+2

(5.19)

Using (5.5), we see that the superpotential on the r.h.s. is the most general consistent with
the U(1)Φ ×U(1)q ×U(1)R global symmetry.

Notice that we didn’t include the mapping of the operator Tr(pq). The reason is that
Tr(pq) is actually a composite operator: Tr(pq) ∼∑N

i=1 Tr(qΦ2i−1q)×MΦ2N−2i .11

5.2 SO(2N) with adjoint and 1 fundamental

Starting from

T1 : DN

1

A

W = 0t

(5.20)

we deconfine the adjoint to:

CN−1 DN

1

c

t

W = γM•,o
T1′ : (5.21)

The map of the operators is not straightforward in this case but there is a non-trivial
mixing. Let us make an example: the flipping field γ maps to the baryon PfA in T1 and

10To be precise, this argument is not enough to prove that the final superpotential is exactly the one on
the r.h.s. of (5.19). See [24] for a full proof of the form of the cubic Wess-Zumino superpotential in the case
of 4d N = 1 Sp(N) with antisymmetric and 6 fundamentals.

11Notice that this chiral ring relation is consistent with the global symmetries, as can be seen from (5.5):
the l.h.s. has R = 1− rΦ

2 +rq, and the r.h.s. has R = 2rq +(2i−1)rΦ +1−rq− (2N −1/2)rΦ +(2N −2i)rΦ,
which are equal.
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the monopole M0,+ in T2 is dual to the baryon monopole in the original theory. We use
duality (2.8) to confine the SO(2N) node and get

T2 : CN−1

1

1
+ 4 singlets

{γ, µ0,m2N−2,m−}

S

W = Tr(p̃ Sp̃) + µ0m
2
2N−2 + Tr(p̃q̃)m2N−2+

(m−)2(µ0det(S) + εεSN−2q̃q̃) + γ(. . . )

q̃

p̃

(5.22)

The four singlets {γ, µ0,m2N−2,m−} map to {εAN ,Tr(tt),M+
A2N−2 ,M

−
εAN−1} in T1. The

flipping field γ appears in the superpotential multiplying all possible cubic polynomials
involving two dressed monopoles and a meson such that the sum of all R-charges adds
up to 2. Since the precise form of such superpotential is not useful in the following, we
do not write it explicitly. Using the result of section 5.1, we can replace the Sp(N − 1)
with a Wess-Zumino model with 4(N − 1) fields, and obtain a Wess-Zumino model with
4 + 4(N − 1) = 4N fields (N − 1 powers of the adjoint, 2N − 1 dressed monopoles, N
dressed mesons, a baryon and a baryon-monopole).

Flipping the traces of the powers of the adjoint, the baryon-monopole and the baryon,
we get a unitary S-confining duality with a Wess-Zumino model with a cubic superpotential:

SO(2N) with adjoint A
and 1 flavor t,

W = ∑N−1
J=1 ρJ Tr(A2J)+

γM−
ε2N−2AN−1 + σ ε2NA

N

⇐⇒

Wess-Zumino with 3N − 1 chiral fields
mj ↔M+

Aj
, j = 0, . . . , 2N − 2

µi ↔ Tr(tA2it), i = 0, . . . , N − 1 ,
W = ∑

i,j,k mimjµkδi+j+2k−4N+4 .

(5.23)

It is easy to check that the superpotential on the r.h.s. preserves the U(1)t×U(1)A×U(1)R
global symmetry using the formula for the R-charges of the monopole in T1:

R[M+] = 1− rt − (2N − 2)rA . (5.24)

5.3 SO(2N + 1) with adjoint and 1 fundamental

For completeness, we discuss this case explicitly, but all the ingredients already appeared
in the discussion for Sp(N) with adjoint and 2 fundamentals of section 5.1.

Starting from

T1 : BN

1

A

W = 0t

(5.25)
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we deconfine the adjoint to:

CN−1 BN

1

1

c

t

uv

W = M•,o + Tr(vcu)T1′ : (5.26)

We use duality (2.8) to confine the SO(2N + 1) node, and lift the linear monopole su-
perpotential. Modulo flips, we obtain Sp(N − 1) with adjoint Φ and 2 fundamentals p, q,
W = Φpp. The flippers are 6 singlets mapping to

{Tr(uu),Tr(tt),Tr(ut),M0,−
ε·c2N−2u

,M0,−
ε·c2N−2t

,M0,+}

in T1′ . These 6 singlets map to

{Tr(A2N ),Tr(tt), εAN t,M+
A2N−1 ,M

−
ε·AN−1t

,M+}

in T1. Using the result of section 5.1, we can replace the Sp(N − 1) with a Wess-Zumino
model with 4(N−1) fields, and we obtain a Wess-Zumino model with 6+4(N−1) = 4N+2
fields (N powers of the adjoint, 2N dressed monopoles, N dressed mesons, a baryon and a
baryon-monopole).

Flipping the traces of the powers of the adjoint, the baryon-monopole and the baryon,
we get a unitary S-confining duality with the same Wess-Zumino model dual to Sp(N) with
adjoint and 2 fundamentals, with a cubic superpotential:

SO(2N + 1) with adjoint A
and 1 flavor t,

W = ∑N
J=1 ρJ Tr(A2J)+

γM−
ε2N−1AN−1t

+ σ ε2N+1A
N t

⇐⇒

Wess-Zumino with 3N chiral fields
mj ↔M+

Aj
, j = 0, . . . , 2N − 1

µi ↔ Tr(tA2it), i = 0, . . . , N − 1 ,
W = ∑

i,j,k mimjµkδi+j+2k−4N+2 .

(5.27)

It is easy to check that the superpotential on the r.h.s. preserves the U(1)t×U(1)A×U(1)R
global symmetry using the formula for the R-charges of the monopole in T1:

R[M+] = 1− rt − (2N − 1)rA . (5.28)

6 3d mirror of A2N Argyres-Douglas from 4d Lagrangians

4d N = 1 Lagrangians flowing in the IR to N = 2 (A1, A2N ) Argyres-Douglas theories have
been discovered in [27] (see [28–30] for generalizations). In four dimensions, the N = 2
Argyres-Douglas theory is reached in the IR, at the end of an RG flow described by an
N = 1 lagrangian:

4d Sp(N) with adjoint Φ
and 2 flavors p, q,

W = Tr(pΦp) +∑N
J=1 ρJ Tr(Φ2J)+

+∑N
J=1 τJ Tr(qΦ2J−1q)

=⇒ (A1, A2N ) Argyres-Douglas (6.1)
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Ref. [21] argued that, reducing the theory to 3d, the superpotential of the lagrangian
theory does not change. This behaviour is similar to the case of (A1, A2N+1) Argyres-
Douglas, discussed in [31], but notice that for (A1, D2N ) and (A1, D2N+1) the 3d superpo-
tential is different from the 4d superpotential [30, 32].

Ref. [21] also proposed that the 3dmirror of (A1, A2N ) Argyres-Douglas is a theory of N
free massless hypermultiplets. Such a statement implies the duality between 4-supercharges
lagrangian and a theory of free chirals:

Sp(N) with adjoint Φ
and 2 flavors p, q,

W = Tr(pΦp) +∑N
J=1 ρJ Tr(Φ2J)+

+∑N
J=1 τJ Tr(qΦ2J−1q)

⇐⇒ 2N free chiral fields
∼ Sp(N)-monopoles

(6.2)

Ref. [21] checked this duality with the S3 partition function. See [33] for additional checks
of the 3d mirror duality. With the techniques developed in this paper, we are now in a
position to derive duality (6.2). Duality (6.2) is an immediate consequence of duality (5.19).
From (5.19):

Sp(N)w/ adjoint Φ
and 2 fundamentals q, p

W = Φpp+∑N
J=1 ρJ Tr(Φ2J)

⇐⇒

Wess-Zumino w/ 3N chirals
mj ↔MΦj , j = 0, . . . , 2N − 1

µi ↔ Tr(Φ2i+1qq), i = 0, . . . , N − 1 ,
W = ∑

i,j,k mimjµkδi+j+2k−4N+2

(6.3)

we flip the l.h.s. mesons and their r.h.s. images

Tr(Φ2i+1qq)↔ µi . (6.4)

On the r.h.s. we are left with a theory of 2N chiral fields mj ↔ MΦj , j = 0, . . . , 2N − 1.
Such a theory is free because no non-trivial polynomial superpotential invariant under
U(1)Φ × U(1)q × U(1)R exists. Hence, we obtain the 3d mirror duality (6.2) from the S-
confining duality (5.19). Notice that in (6.2) the global SU(2N) symmetry rotating the 2N
chiral fields (or N hypers) is emergent in the IR, it is not visible in the UV, not even the
Cartan generators are visible. This phenomenon is the same as for the theory SU(N) with
adjoint and 1 flavor with appropriate flipping superpotential, which is dual to N = 4 U(1)
with N flavors [31] and hence has SU(N) global symmetry in the IR, which is not visible in
the UV and is destroyed if we start in the UV from a different flipping type superpotential.

7 Generalized duality appetizers for SO or Sp with adjoint

Some time ago, [18] noticed that N = 2 SU(2)1 with an adjoint and vanishing superpoten-
tial is dual to a theory of a free chiral field, and called this duality duality appetizer. Ref. [19]
soon generalized the duality to a class of dualities, relating an N = 2 theory with a simple
gauge group, appropriate Chern-Simons level, a rank-2 field and vanishing superpotential
to theories of free chiral fields. In the case of SO(2N)1 with adjoint, we can prove such du-
ality appetizers as a simple consequence of the S-confining dualities obtained in section 5.12

12The duality appetizers for U(N) with adjoint and for Sp(N) with antisymmetric can be obtained in a
similar way from S-confining dualities, see [20, 21].
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A similar strategy allows us to prove an appetizer duality for SO(2N + 1)1 with adjoint,
and the duality appetizer proposed in [21] for Sp(N) 1

2
with adjoint and fundamental.

Sp(N) 1
2
with adjoint and fundamental. We start from (5.1) and turn on a real mass

for the flavor q. The operators MΦj and Tr(tqΦ2i+1q) are charged under the corresponding
U(1) symmetry, the operators Tr(Φ2k) are uncharged.

On the l.h.s., in the IR we are left with Sp(N) 1
2
with adjoint and fundamental p. On

the r.h.s., in the IR, we are left with a theory with the singlets σk ↔ Tr(Φ2k). No non-
trivial polynomial superpotential invariant under U(1)Φ × U(1)R exists, so the dual must
be free:

Sp(N) 1
2
w/ adjoint Φ

and fundamental p
W = Tr(pΦp)

⇐⇒ N free chirals
σk ↔ Tr(Φ2k), k = 1, . . . , N. (7.1)

This duality was conjectured in [21].

SO(2N)1 with adjoint. We start from (5.2) and turn on a real mass for the flavor
t. The operators MΦj , Tr(tΦ2it) and M−ΦN−1 are charged under the corresponding U(1)
symmetry, the operators Tr(Φ2k) and Pf(Φ) are uncharged.

On the l.h.s., in the IR we are left with SO(2N)1 with an adjoint Φ andW = 0. On the
r.h.s., in the IR, we are left with a theory with the singlets σk ↔ Tr(Φ2k) and B↔ Pf(Φ).
No non-trivial polynomial superpotential invariant under U(1)Φ×U(1)R exists, so the dual
must be free:

SO(2N)1 w/ adjoint Φ
W = 0 ⇐⇒

N free chirals
σk ↔ Tr(Φ2k), k = 1, . . . , N − 1

B↔ Baryon PfΦ .

(7.2)

This duality was conjectured in [19].

SO(2N + 1)1 with adjoint. We start from (5.3) and turn on a real mass for the flavor
t. The operators MΦj , Tr(tΦ2it), M−

tΦN−1 and the baryon ε · tΦN are charged under the
corresponding U(1) symmetry, the operators Tr(Φ2k) are uncharged. At the end of the
RG flow, the baryon-monopole M− transforms non-trivially under charge conjugation and
transforms non-trivially as a vector under the SO(2N + 1) gauge group, because of the
non-vanishing Chern-Simons level. The dressed monopole M−ΦN is however still gauge
invariant and belongs to the chiral ring. A way to check the presence of this particular
gauge-invariant baryon monopole is through the use of the supersymmetric index:

ISO(2N+1)1 w/Φ = 1 + φ2 x2RΦ + ω φ−1 x1−NRΦ + . . . , (7.3)

where φ is the fugacity for the U(1) global symmetry rotating the adjoint field and ω is
the fugacity for the magnetic symmetry. The charge conjugation symmetry has not been
refined in the index since it is not relevant in our discussion. The first non-trivial term
in (7.3) corresponds to the operator TrΦ2 while the second corresponds to a monopole,
given the non-trivial charge underM. The R-charge is consistent with the hypothesis that
the operator appearing in the index is M−ΦN as claimed.
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We flip this particular operator adding an extra flipping field ρ.
On the l.h.s., in the IR we are left with SO(2N + 1)1 with an adjoint Φ and W = 0.

On the r.h.s., in the IR, we are left with a theory with the singlets σk ↔ Tr(Φ2k). No
non-trivial polynomial superpotential invariant under U(1)Φ × U(1)R exists, so the dual
must be free:

SO(2N + 1)1 w/ adjoint Φ
W = ρM−ΦN

⇐⇒ N free chirals
σk ↔ Tr(Φ2k), k = 1, . . . , N .

(7.4)

Because of the non-trivial superpotential on l.h.s, in the case of SO(2N + 1)1 one does not
obtain a proper appetizer.
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A 3d supersymmetric index

All the dualities proposed in the main text have been checked computing the supersymmet-
ric index, which is an RG-invariant quantity that can be computed for different 3d N = 2
quiver theories and that must match across a duality. Its formal definition involves a trace
over the Hilbert space of the theory on S2 ×R [34–39], (we use the definitions of [11, 17]):

I(x,µ) = Tr
[
(−1)J3x∆+J3

∏
i

µqii

]
, (A.1)

where the various quantities in the formula represents

• ∆: is the energy whose scale is set by the radius of S2,

• J3: is the Cartan generator for the SO(3) isometry of the S2,

• µi, qi: respectively the fugacities and charges of the global non-R symmetries.

• R will denote the R-charge in the following.

The only non trivial contributions to the index comes from states that are annihilated by
two supercharges and satisfy the relation

∆ = R+ J3. (A.2)

It is not so easy to employ the definition (A.1) to perform an explicit computation of the
index; here the localization techniques come at rescue. Indeed, the index can be computed
as the partition function on S2 × S1 given by the following expression

I(x) =
∑
m

1
|Wm|

∫
dz

2πizZcl Zvec Zmat, (A.3)
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where the integral is taken over the Cartan torus of the gauge group whose fugacities are z,
|Wm| is the dimension of the Weyl group that is left unbroken by the monopole background
specified by the GNO magnetic fluxes m. Localization implies that the only non trivial
contribution to (A.3) from non-exact term in the classical action and from 1-loop terms.
The various terms Zcl, Zvec, Zmat have the following expressions

• Zcl: the classical terms includes only CS couplings and, more generally, BF terms.
Take a gauge group whose rank is rkG. Denoting the fugacity for the topological
with ω and the associated flux as n, and given a level k CS term we have

Zcl =
rkG∏
i=1

ωmizkmi+n
i (A.4)

The topological symmetry is only present for U(N) gauge groups and for SO(N)
gauge groups. In the first former case, the topological symmetry is U(1), while in
the latter case the topological symmetry is a discrete Z2 group (implying that the
condition ω2 = 1 must be enforced).13

• Zvec: the contribution for an N = 2 vector multiplet reads

ZGvec(z) =
∏
α∈g

x−
|α(m)|

2 (1− (−1)α(m)zαx|α(m)|) , (A.5)

where we denoted by α the weights of the adjoint representation of the gauge group G.

• Zmat: the contribution of an N = 2 chiral multiplet with R-charge r transforming in
the representations R and RF under the gauge and flavour group, whose weights we
denote as ρ, ρF , is

Zchi(zR,µRF ) =
∏
ρ∈R

∏
ρF∈RF

(zρµρF xr−1)−
|ρ(m)+ρF (n)|

2 ×

× ((−1)ρ(m)+ρF (n)z−ρµ−ρF x2−r+|ρ(m)+ρF (n)|;x2)∞
((−1)ρ(m)+ρF (n)z−ρµ−ρF xr+|ρ(m)+ρF (n)|;x2)∞

. (A.6)

Explicit expressions for Zchi and Zvec for both ortho-symplectic groups and unitary
ones can be found in the appendices of [40, 41]. In particular, we want to notice that it is
possible to consistently introduce a fugacity σ for the charge conjugation symmetry ZC2 .

B Monopoles and dualities for orthogonal gauge groups

In this section we will review the current knowledge about the monopole operators in
theories involving orthogonal gauge groups and the related Seiberg-like dualities proposed
in [11, 13].

Let us start considering an SO(N) theory with F flavors Q. The global symmetry
group of this model is:

GN,F = (U(F )× ZC2 × ZM2 )/Z2 , (B.1)
13In the case of SO(2), the topological symmetry is still U(1), being SO(2) = U(1).
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where the Abelian factor in U(F ) is the U(1)Q axial symmetry acting on the chiral fields; the
discrete ZC2 factor is the charge conjugation symmetry, whose non-trivial element consists
of the orthogonal transformation (in O(N)) with determinant equal to −1, i.e. a reflection;
the magnetic discrete symmetry ZM2 , instead, acts on the Coulomb branch coordinates
charging −1 the fundamental monopole operators.14 As usual, on the Coulomb branch the
gauge group is broken to the Cartan U(1)rN with rN = bN/2c. Semi-classically, the basic
monopole operators can be written as:

V± ≈ e
±
(
α1
g2 +iφ1

)
, (B.2)

where we denoted with αi and φi the dual photon and adjoint scalar respectively for
the ith Abelian vector multiplet in U(1)rN . Charge conjugation acts non-trivially on the
two monopoles V± swapping them, so that it is useful to define the even and odd ZC2
combinations

M± = V+ ± V− . (B.3)

Observe that both the monopoles breaks the gauge group down to S (O(N − 2)×O(2)),
including the transformation with −1 determinant in both the O(N − 2) and the O(2)
factors. In particular, in order for the monopole to be gauge invariant, it must be invariant
under charge conjugation in the O(2) factor; following the previous discussion, only M+

has this property, while M− is not gauge invariant on its own.
However, we can still build a gauge invariant object dressing the monopole with an

operator that is odd with respect to the charge conjugation in SO(N − 2):

(M−)QN−2 ≈ M− · εii...iN−2Q
i1 · · ·QiN−2 (B.4)

where the chiral fields are contracted using the Levi-Civita symbol of the residual SO(N−2)
factor, ε. This monopole operator is usually called baryon monopole: let us observe that it
only exists for F ≥ N − 2, it has non-trivial charge under both ZC2 and ZM2 and transforms
in the rank-(N − 2) antisymmetric representation of SU(F ).

Another type of operator is relevant for us, having non-trivial magnetic fluxes with
respect to two different Abelian factors in U(1)r. Semi-classically, it can be written as:

M÷ ≈ exp
(
α1 − α2
g2 + i(φ1 − φ2)

)
. (B.5)

where the two lined up bullets denote the fact that two different fluxes are turned on. Such
monopole breaks the SO(N) gauge group down to S(O(N − 4) × O(4)),15 and it is not
gauge invariant unless dressed with a conjugation-odd operator in SO(N − 4). This can
be done defining the gauge invariant operator εM÷

QN−4 ,16 existing only for F ≥ N − 4. In

14The two discrete factors ZC,M2 and the element eiπ of U(1)Q are not really independent but they actually
satisfy the relation eiπQ · CN ·MF = 1 [11]; this is the reason why a common Z2 factor is mod out in (B.1).

15Actually, the SO(4) factors is further broken to U(2).
16The N − 4 chiral fields dressing the monopoles are contracted with the Levi-Civita symbol of the

SO(N − 4) residual group.
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theories with only one gauge group factor, M÷ is not really a chiral operator; however, it
plays a crucial role in dualities between orthogonal quiver theories discussed in this paper.

In the theory under consideration, the last operator that deserve to be mentioned is
the usual baryon:

B = εi1...iN Q
i1 · · ·QiN . (B.6)

In the main text, different baryon-like operators can appear; in that case, we will denote
them by an ε followed by the fields contracted with the Levi-Civita symbol: for instance,
the baryon in (B.6) could be also denoted by εQN .

Once we have understood which kind of operators can be part of the chiral ring in 3d
SQCD with orthogonal groups, we can easily discuss the Seiberg-like duality proposed by
Aharony, Razamat, Seiberg and Willett (ARSW) in [11]. The theory dual of TA, SO(N)
SQCD with F flavors Q, WTA = 0, is TB, SO(F − N + 2) gauge theory with F flavors
q, F (F + 1)/2 singlets Mij transforming in the symmetric representation of SU(F ) and
superpotential:

WTB = σM+ + MijTr(qiqj) . (B.7)

The map of the chiral ring generators is the following:

TA TB
Tr(QiQj) Mij

M+ σ

(M−)QN−2 εqN−F+2

εQN (M−)qN−F

(B.8)

Observe that baryons and baryon-monopoles are mapped to each other.

B.1 O(N)± , Pin(N) and Spin(N)

Different gaugings of charge conjugation and the magnetic ZM2 discrete symmetry leads to
different gauge groups, enjoying the same algebra as SO(N) but differing in their global
properties; in particular, the spectrum of chiral operators will be different.

• The gauge group O(N)+ is obtained gauging ZC2 , i.e. the orthogonal reflection. Such
O(N) group is the most common in literature: the gauging of charge conjugation
makes the baryon and the baryon-monopole not gauge invariant and they are not
part of the chiral ring anymore.

• If we gauge the diagonal combination (ZC2 ×ZM2 )/Z2, the less common O(N)− group
is obtained; in this theory, only operators which are even (odd) under both charge
conjugation and ZM2 symmetry are gauge invariant: for this reason the monopole
M+ and the baryon B are both projected out, while the baryon-monopole (M−)QN−2

survives. However, the monopole usually denoted as M+
Spin, having twice the minimal

flux, survives.

• Spin(N) theories are built gauging ZM2 . The (baryon-)monopole is projected out but
the monopoles with double fluxes, M+

Spin and (M−Spin)QN−2 , are still chiral operators
on the Coulomb branch.
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• Finally, Pin(N) theories17 are obtained gauging both the discrete global symmetries;
the Coulomb branch is parametrized by M+

Spin while all baryonic-like operators (in-
cluding monopoles) are projected out.

All such theories enjoy Seiberg-Like duality similar to the ARSW duality [11, 13].
O(N)+ SQCD with F flavors is dual to O(F−N+2)+ SQCD with F flavors, N(N+1)/2Mij

singlets duals of the meson TrQiQj , the singlet σ dual of M+ and the usual superpotential
W = σM+ + Tr(qiMijq

j); an analogous duality holds for Pin(N) SQCD. Finally, O(N)−
SQCD is dual to Spin(F − N + 2) SQCD (with singlets and appropriate superpotential):
further details about the chiral ring mapping can be found in [11].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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