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In this paper, we investigate finite groups admitting an 
oriented regular representation and we give a partial answer 
to a 1980 question of Lazslo Babai: “Which [finite] groups 
admit an oriented graph as a DRR?” It is easy to see and 
well-understood that generalised dihedral groups do not admit 
ORRs. We prove that, apart from C2

3 and C3 × C3
2 , every 

finite group, which is neither a generalised dihedral group nor 
a 2-group, has an ORR. In particular, the classification of the 
finite groups admitting an ORR is reduced to the class of 
2-groups.
We also give strong structural conditions on finite 2-groups 
not admitting an ORR. Finally, based on these results and on 
some extensive computer computations, we state a conjecture 
aiming to give a complete classification of the finite groups 
admitting an ORR.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

All groups and graphs in this paper are finite. Let G be a group and let S be a subset 
of G. The Cayley digraph, denoted by Cay(G, S), over G with connection set S is the 
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digraph with vertex set G and with (x, y) being an arc if yx−1 ∈ S. (An arc is an ordered 
pair of adjacent vertices.) Since the group G acts faithfully as a group of automorphisms 
of Cay(G, S) via the right regular representation, Cayley digraphs represent groups ge-
ometrically and combinatorially as groups of automorphisms of digraphs. Naively, the 
closer G is to the full automorphism group of Cay(G, S), the closer this representation 
is from encoding G graphically.

Following this line of thoughts, it is natural to ask which groups G admit a subset S
with G being the automorphism group of Cay(G, S); that is, Aut(Cay(G, S)) = G. We 
say that G admits a digraphical regular representation (or DRR for short) if there exists 
a subset S of G with Aut(Cay(G, S)) = G. Babai [1, Theorem 2.1] has given a complete 
classification of the groups admitting a DRR: except for

Q8, C2
2 , C3

2 , C4
2 and C2

3 , (1)

every group admits a DRR.
In light of Babai’s result, it is natural to try to combinatorially represent groups 

as automorphism groups of special classes of Cayley digraphs. Observe that, if S is 
inverse-closed (that is, S = {s−1 | s ∈ S} := S−1), then Cay(G, S) is undirected. Now, 
we say that G admits a graphical regular representation (or GRR for short) if there exists 
an inverse-closed subset S of G with Aut(Cay(G, S)) = G. With a considerable amount of 
work culminating in [9,11], the groups admitting a GRR have been completely classified. 
(The pioneer work of Imrich [12–14] was an important step towards this classification.) It 
is interesting to observe that, although the classification of the groups admitting a DRR 
is easier than the classification of the groups admitting a GRR, research and interest first 
focused on finding GRRs. (In some sense this is natural, occasionally graphs draw more 
interest than digraphs.) It is also worth noting that various researchers have shown that, 
for certain families of groups, almost all Cayley graphs are GRRs, or almost all Cayley 
digraphs are DRRs [3,5,9]. The precise definition of “almost all” is slightly technical and 
it would take us too far astray to include it in this discussion.

We recall that a tournament is a digraph Γ = (V, A) with vertex set V and arc set A
such that, for every two distinct vertices x, y ∈ V , exactly one of (x, y) and (y, x) is in A. 
After the completion of the classification of DRRs and GRRs, Babai and Imrich [2] proved 
that every group of odd order except for C2

3 admits a tournament regular representation
(or TRR for short). That is, each finite odd-order group G different from C2

3 contains a 
subset S with Cay(G, S) being a tournament and with Aut(Cay(G, S)) = G. In terms 
of the connection set S, the Cayley digraph Cay(G, S) is a tournament if and only if 
S∩S−1 = ∅ and G \{1} = S∪S−1. This observation makes it clear that a Cayley digraph 
on G cannot be a tournament if G contains an element of order 2, so only groups of odd 
order can admit TRRs.

In [1, Problem 2.7], Babai observed that there is one class of Cayley digraphs that is 
rather interesting and that has not been investigated in the context of regular represen-
tations; that is, the class of oriented Cayley digraphs (or as Babai called them, oriented 
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Cayley graphs). An oriented Cayley digraph is in some sense a “proper” digraph. More 
formally, it is a Cayley digraph Cay(G, S) whose connection set S has the property that 
S ∩ S−1 = ∅. Equivalently, in graph-theoretic terms, it is a digraph with no digons.

Definition 1.1. The group G admits an oriented regular representation (or ORR for 
short) if there exists a subset S of G with S ∩ S−1 = ∅ and Aut(Cay(G, S)) = G.

Babai asked in [1] which (finite) groups admit an ORR. Since a TRR is a special type 
of ORR, and C2

3 is one of the five groups in Eq. (1) that do not admit a DRR (so cannot 
admit an ORR), the answer to this question for groups of odd order was already known 
when Babai published his question. In this paper we give another important contribution 
towards the classification of groups admitting an ORR.

Theorem 1.2. Let G be a finite group. Then one of the following holds:

(i): G admits an ORR;
(ii): G has an abelian 2-subgroup A, a normal subgroup N and two elements g ∈ G \N

and n ∈ N \ A with A < N < G, |G : N | = |N : A| = 2, g2 = 1, ng = n−1 and 
an = a−1 for each a ∈ A;

(iii): there exists a normal subgroup N of G and g ∈ G with |G : N | = 2, G = 〈N, g〉, 
g2 = 1, N is a 2-group and the action of g by conjugation on N inverts precisely 
half of the elements of N ; (Such groups N are classified by Hegarty and MacHale 
in [10].)

(iv): G is isomorphic to Q8, to C3 × C3 or to C3 × C3
2 ;

(v): G is generalised dihedral.

In [16], the authors prove that each non-solvable group admits an ORR. One of the 
main tools developed in [16] that will be crucial also in the arguments in this paper 
(including the proof of Theorem 1.2) is the following.

Theorem 1.3. [16, Theorem 1.8] Let G be a finite group that admits a five-product-
avoiding generating set {a1, . . . , a�} with the following properties:

(i): |ai| > 2 for every i ∈ {1, . . . , �}; and
(ii): |ai+1a

−1
i | > 2 for every i ∈ {1, . . . , � − 1}.

Then G admits an ORR if and only if G � Q8, G � C3 × C3
2 , and G � C2

3 .

We refer to [16, Definition 5.1] for the concept of a five-product-avoiding generating 
set. Here we observe that, in this paper, we do not need Theorem 1.3 in its full strength 
and generality, but we simply apply it to generating sets of minimum cardinality or 
to irredundant generating sets. Every generating set of minimum cardinality, or more 
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generally every irredundant generating set, is five-product-avoiding, see Theorem 2.1 for 
a version of Theorem 1.3 tailored to our needs.

The classification of Hegarty and MacHale of the 2-groups admitting an automor-
phism inverting half of their elements is very satisfactory. These groups fall into ten 
isoclinism classes and, for each class, the authors give a very explicit description of a 
stem group in the class. Nevertheless, with our current methods we were not able to use 
this information and deal with the groups in Theorem 1.2 (iii). (One major obstacle in 
using this classification is that it is conceivable that there are two non-isomorphic stem 
groups in the same isoclinism class, one admitting an ORR and the other not.)

We believe that no more major breakthrough can be obtained using the methods 
developed in [16] and in this paper; to obtain a complete classification of the groups 
admitting an ORR and hence dealing with the few families remaining, we believe that 
one has to use brute force, that is, analysing each family at the time. In fact, we plan 
in the near future to adapt the group-theoretic methods in [6,17] for dealing with the 
groups in Theorem 1.2 (ii).

Finally, we observe that based on some computer computations and on the work in this 
paper we are one step closer to prove Conjecture 1.5 in [16], which dares to list the groups 
not admitting an ORR. For the benefit of the reader, we include [16, Conjecture 1.5]
here.

Conjecture 1.4. Every finite group G admits an ORR, except when:

(i): G is generalised dihedral with |G| > 2;
(ii): G is isomorphic to one of the following eleven groups

Q8 (quaternion of order 8), C4 × C2, C4 × C2
2 , C4 × C3

2 , C4 × C4
2 ,

C3 × C3, C3 × C3
2 ,

〈a, b | a4 = b4 = (ab)2 = (ab−1)2 = 1〉,

〈a, b, c | a4 = b4 = c4 = (ba)2 = (ba−1)2 = (bc)2 = (bc−1)2 = 1,

a2 = c2, ac = a−1, a2 = b2〉,

〈a, b, c | a4 = b4 = c4 = (ab)2 = (ab−1)2 = 1,

(ac)2 = (ac−1)2 = (bc)2 = (bc−1)2 = a2b2c2 = 1〉,

〈a, b, c | a4 = b4 = c4 = (ba)2 = (ba−1)2 = (bc)2 = (bc−1)2 = 1,

a2 = c2, ac = a−1, a2 = b2〉.

Recently, combinatorial representations of groups has developed some new vitality 
and we refer to [6,7,17,19–21] for some recent work on similar problems.
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2. Preliminaries

2.1. Beautiful generating tuples

Let G be a finite group, as customary, we denote by d(G) the minimum number of 
generators for G. Moreover, given g ∈ G, we denote by o(g) the order of the element g.

A generating set {g1, . . . , gd} for G is said to be irredundant if, for each i ∈ {1, . . . , d}, 
the d − 1 elements

g1, g2, . . . , gi−1, gi+1, . . . , gd

do not generate G. Observe that each generating set for G of cardinality d(G) is irre-
dundant.

We say that the d-tuple (g1, . . . , gd) of elements of G is beautiful if the following 
conditions hold:

(i): {g1, . . . , gd} is an irredundant generating set for G,
(ii): o(gi) > 2 for every i ∈ {1, . . . , d},
(iii): o(gi+1g

−1
i ) > 2 for every i ∈ {1, . . . , d − 1}.

Observe that being beautiful is a property of ordered d-tuples and not of sets, that is, it 
depends upon the ordering of the generating set {g1, . . . , gd} for G.

An important connection between beautiful generating tuples and ORRs is given in 
the next theorem.

Theorem 2.1. Let G be a finite group admitting a beautiful generating tuple. Then G
admits an ORR if and only if G � Q8, G � C3 × C3

2 , and G � C3 × C3.

Proof. From Definition 5.1 in [16], each irredundant generating set for G is five-product-
avoiding. Hence every beautiful generating tuple satisfies the hypothesis of Theorem 1.3, 
and the proof follows. �

Let G be a finite group; we say that G is a generalised dihedral group (or more 
specifically, a generalised dihedral group on A) if G contains an abelian subgroup A
and ι ∈ G \ A with |G : A| = 2, ι2 = 1 and aι = a−1, for each a ∈ A. Clearly, G is 
the semidirect product G = A � 〈ι〉. We point out two straightforward facts that can 
possibly avoid some confusion in our definition of generalised dihedral groups. First, 
every elementary abelian 2-group of order at least 2 is a generalised dihedral group. 
Second, if G is a generalised dihedral group on A and A has exponent at least 3, then A
is characteristic in G, see [17, Lemma 3.2 (d)]; however, when A has exponent at most 2, 
G has itself exponent 2 and hence A is not characteristic in G (except when A = 1).
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We start by recalling the following basic fact.

Lemma 2.2. [16, Lemma 2.6] Let G be a finite group. Every generating set for G of 
cardinality d(G) contains at least one involution if and only if G is a generalised dihedral 
group.

Lemma 2.3. Let G be a finite soluble group and let N be a minimal normal proper subgroup 
of G. If G/N has a beautiful generating tuple, then either so does G, or G/N ∼= C4, 
N ∼= C2 and G ∼= C4 × C2.

Proof. By hypothesis, G/N has a beautiful generating tuple g′1N, . . . , g′�N . Among all 
elements of

N ×N × · · · ×N︸ ︷︷ ︸
� times

,

choose (n1, . . . , n�) such that H := 〈g′1n1, . . . , g′�n�〉 has cardinality as large as possible. 
Set g1 := g′1n1, g2 := g′2n2, . . . , g� := g′�n�.

If H = G, then g1, . . . , g� is a beautiful generating tuple for G. Assume then H < G. 
As G is generated by g1, . . . , g� modulo N , we get G = 〈H, N〉. As N � G and N is 
abelian, N ∩H is normal in both N and H, and hence in G. By the minimality of N , 
we get H ∩N = 1 and hence G = N �H. Let n ∈ N \ {1}.

We now divide the proof in two cases. First we suppose that � > 1.

Claim. The (� + 1)-tuple

g1, . . . , g�−1, g�, g�−1n

is a beautiful generating tuple for G.

(Observe that this generating tuple is well-defined because � > 1.) Set X :=
〈g1, . . . , g�−1, g�, g�−1n〉. Now,

X = 〈g1, . . . , g�−1, g�, g�−1n〉 = 〈g1, . . . , g�−1, g�, n〉 = 〈H,n〉.

In particular, X contains H and a non-identity element of N . As G = N �

H and H acts by conjugation irreducibly as a linear group on N , we deduce 
that X = G and g1, . . . , g�−1, g�, g�−1n is a generating set for G. For every i ∈
{1, . . . , � − 2}, the elements g1, g2, . . . , gi−1, gi+1, . . . , g�−1, g�, g�−1n do not generate 
G because g1N, g2N, . . . , gi−1N, gi+1N, . . . , g�−1N, g�N do not generate G/N being 
g1N = g′1N, . . . , g�N = g′�N an irredundant generating set for G/N . The same argument 
applies if we remove the generator g�; namely, g1, . . . , g�−1, g�−1n do not generate G
because they do not generate G modulo N . Now, if we remove the generator g�−1n, then 
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g1, . . . , g�−1, g� generate H, which by hypothesis is a proper subgroup of G. Finally, from 
the way that the subgroup H was defined, we get that, if we remove the generator g�−1, 
then g1, . . . , g�−2, g�, g�−1n generate a subgroup of G of cardinality at most |H| < |G|. 
Therefore the condition (i) in the definition of beautiful generating tuple is satisfied.

Using the fact that g1N = g′1N, . . . , g�N = g′�N is a beautiful generating tuple for 
G/N , we have o(gi) ≥ o(giN) > 2, for each i ∈ {1, . . . , �}. Moreover, o(g�−1n) ≥
o(g�−1N) > 2; hence the condition (ii) in the definition of beautiful generating tuple 
is satisfied.

Using the fact that g1N = g′1N, . . . , g�N = g′�N is a beautiful generating tuple for 
G/N , we get

o(gi+1g
−1
i ) ≥ o(gi+1g

−1
i N) = o((gi+1N)(giN)−1) = o((g′i+1N)(g′iN)−1) > 2,

for each i ∈ {1, . . . , � − 1}. Moreover, we also deduce

o((g�−1n)g−1
� ) = o(g�(g�−1n)−1) ≥ o(g�g−1

�−1N)

= o((g�N)(g�−1N)−1) = o((g′�N)(g�−1N)−1) > 2.

Therefore the condition (iii) in the definition of beautiful generating tuple is satisfied. �
The proof of this lemma immediately follows from the previous claim when � > 1.
Suppose then � = 1, that is, G/N ∼= H is cyclic. By definition, H = 〈g1〉 and hence 

o(g1) = |H|. Moreover, as G = N � H, we get |H| = |G/N | = o(g1N). As g1N is a 
beautiful generating tuple for G/N , we have o(g1) = |H| = o(g1N) > 2. Assume that 
o(g1) 
= 4. Now g−1

1 together with g1n generate G, o(g−1
1 ) > 2, o(g1n) ≥ o(g1N) =

o(g1) > 2 and o(g1n(g−1
1 )−1) = o(g2

1n
g1) ≥ o(g2

1N) = o(g2
1) > 2. Therefore g−1

1 , g1n

is a beautiful generating tuple for G. Assume that o(g1) = 4. Now, g1, n is a beautiful 
generating tuple for G unless o(n) = 2. Assume then o(n) = 2. Since H and N are both 
2-groups, so is G, and hence |N | = 2 because N is a minimal normal subgroup of G. Thus 
|G| = 8. Since G/N is cyclic of order 4, we get G/N ∼= C4, N ∼= C2 and G ∼= C4×C2. �
Proposition 2.4. Let G be a finite soluble group and let N be a normal proper subgroup 
of G. If G/N has a beautiful generating tuple, then either G has a beautiful generating 
tuple or G/N ∼= C4.

Proof. We argue by induction on |G|. When N = 1, there is nothing to prove. Suppose 
then that N 
= 1 and let N1 be a minimal normal subgroup of G contained in N . We have 
|G/N1| < |G| and (G/N1)/(N/N1) ∼= G/N has a beautiful generating tuple. Therefore 
we may apply the inductive hypothesis to G/N1 with proper normal subgroup N/N1: 
either G/N1 has a beautiful generating tuple or (G/N1)/(N/N1) ∼= C4. In the latter 
case, G/N ∼= C4 and the lemma is proven. In the former case, as N1 is a minimal normal 
subgroup of G, we are in the position to apply Lemma 2.3; we get that either G has a 
beautiful generating tuple, or N1 = N and G/N ∼= C4. �
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2.2. An auxiliary result

We denote by Fk
2 the k-dimensional vector space of row vectors over the finite field 

F2 of size 2. The F2-vector space Fk
2 is equipped with a non-degenerate scalar product: 

for each x := (x1, . . . , xk), y := (y1, . . . , yk) ∈ Fk
2 , the scalar product · : Fk

2 × Fk
2 → F2 is 

defined by x · y :=
∑k

i=1 xiyi.

Lemma 2.5. Let k be a positive integer with k ≥ 2 and let ε̄, η̄ ∈ Fk
2. There exist ε, η ∈ Fk

2
with ε · η = 1 and (ε̄ + ε) · (η̄ + η) = 1.

Proof. If ε̄ = η̄ = 0, it suffices to take ε := (1, 0, . . . , 0) and η := (1, 0, . . . , 0). Suppose 
that ε̄ and η̄ are not both the zero vector. Replacing ε̄ with η̄ if necessary, we may 
assume that η̄ 
= 0. Fix η ∈ Fk

2 \ {0, η̄} and observe that this is possible because k ≥ 2. 
Now, η⊥ and (η̄ + η)⊥ are both (k− 1)-dimensional subspaces of Fk

2 with η⊥ 
= (η̄ + η)⊥
because η 
= η̄ + η. Therefore, η⊥ and ε̄ + (η̄ + η)⊥ are affine hyperplanes of Fk

2 having 
a non-empty intersection; thus η⊥ ∪ (ε̄ + (η̄ + η)⊥) is a proper subset of Fk

2 . Fix ε ∈ Fk
2

with ε /∈ η⊥ ∪ (ε̄ + (η̄ + η)⊥). Thus ε · η = 1 because ε /∈ η⊥, and (ε̄ + ε) · (η̄ + η) = 1
because ε /∈ ε̄ + (η̄ + η)⊥. �
2.3. Reduction results

We begin with some notation we require from graph theory. For a graph Γ and a 
subset S of the vertices of Γ, Γ[S] denotes the induced subgraph of Γ on the vertices 
of S.

Nowitz and Watkins, in their work on the GRR problem, proved a lemma that is very 
useful in our context also.

Lemma 2.6 (Nowitz and Watkins [18]). Let G be a group, let S be a subset of G, let 
Γ = Cay(G, S) and let X be a subset of S. If ϕ fixes X point-wise for every ϕ ∈ Aut(Γ)1, 
then ϕ fixes 〈X〉 point-wise for every ϕ ∈ Aut(Γ)1. In particular, Aut(Γ)1 = 1 if G = 〈X〉
or if Γ[S] is asymmetric.

If Γ = Cay(G, S) and Aut(Γ)1 is the identity group, then Aut(Γ) = G so that Γ is an 
ORR for G. We will use this fact repeatedly when we cite the above lemma.

Lemma 2.7 and its proof are inspired by the work of Babai [1] on DRRs and of Babai 
and Imrich [2] on TRRs.

Lemma 2.7. Let G be a finite group, let N be a normal subgroup of G with G/N cyclic 
of order m ≥ 3, and let b ∈ G with G = 〈N, b〉. Suppose that G � C3 × C3 when m = 3, 
and

G � C4 × C2, G � C4 × C2 × C2, G � 〈a, b | a4 = b4 = (ab)2 = (ab−1)2 = 1〉

when m = 4. If N admits an ORR, then G admits an ORR.
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Proof. Let T be a subset of N with Cay(N, T ) an ORR for N . As T ∩ T−1 = ∅, we get 
|T | ≤ (|N | − 1)/2 and 1 /∈ T . Set

S := {b} ∪ T ∪
m−2⋃

i=�m+1
2 �

Nbi ∪ (Nbm−1 \ {b−1}).

(For m ∈ {3, 4}, we have (m + 1)/2� > m − 2 and the union ∪m−2
i=�(m+1)/2�Nbi has to be 

understood the empty set.)
Write Δ := Cay(N, T ), Γ := Cay(G, S) and m0 := m+1

2 �. Since Δ is an oriented 
Cayley graph, we have T ∩ T−1 = ∅; thus S ∩ T−1 = ∅. Since G/N is cyclic of order 
m ≥ 3, for every s ∈ S \ T , we have s−1 /∈ S \ T . Therefore Γ is an oriented Cayley 
graph.

For every s ∈ S, write

d(s) := |{(g, s) arc of Γ | g ∈ G \ S}|.

Observe that, if (g, s) is an arc of Γ, then by definition gs−1 ∈ S and hence g ∈ Ss. Thus 
d(s) = |Ss ∩ (G \ S)| = |Ss \ S|.

Let t ∈ T . We have

St = {bt} ∪ Tt ∪
m−2⋃
i=m0

Nbi ∪
(
Nbm−1 \ {b−1t}

)

and St \ S = {bt} ∪ (Tt \ T ) ∪ {b−1}. From this it follows that d(t) ≤ 2 + |T |.
We also have

Sb = {b2} ∪ Tb ∪
m−1⋃

i=m0+1
Nbi ∪ (N \ {1}).

For m ≥ 5, it follows that

Sb \ S = {b2} ∪ Tb ∪ (N \ ({1} ∪ T )) ∪ {b−1}

and hence d(b) = 1 + |Tb| + (|N | − 1 − |T |) + 1 = |N | + 1. When m = 4, with a similar 
computation, we get Sb = {b2} ∪ Tb ∪ (N \ {1}), Ss \ S = {b2} ∪ Tb ∪ (N \ ({1} ∪ T ))
and d(b) = |N |. When m = 3, we have Sb = {b2} ∪ Tb ∪ (N \ {1}), Ss \ S = Tb ∪ (N \
({1} ∪ T )) ∪ ({b2} \ (Nb−1 \ {b−1})), and d(b) = |N | when b2 = b−1 and d(b) = |N | − 1
when b2 
= b−1. In all cases, d(b) ≥ |N | − 1.

Let y ∈
⋃m−2

i=m0
Nbi and write y := nbj , with n ∈ N and j ∈ {m0, . . . , m −2}. Observe 

that m ≥ 5: otherwise the set 
⋃m−2

i=m0
Nbi is empty. We have

Sy = {bnbj} ∪ Tnbj ∪
m−2⋃

Nbi+j ∪ (Nbj−1 \ {b−1nbj}).

i=m0
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We see that m0+j ≡ k (mod m), with 1 ≤ k ≤ m/2. Thus Nbm0+j = Nbk, Sy\S ⊆ Nbk

and d(y) ≥ |N |.
Let y ∈ Nbm−1 \ {b−1}. As Nbm−1 = Nb−1, we may write y = nb−1, for some 

n ∈ N \ {1}. We have

Sy = {bnb−1} ∪ Tnb−1 ∪
m−3⋃

i=m0−1
Nbi ∪Nbm−2 \ {b−1nb−1}.

If m ≥ 5, then 2 < m0 ≤ m − 2 and hence Sy \ S ⊇ Nbm0−1. Thus d(y) ≥ |N |. When 
m = 4, we see that Sy \ S ⊇ Nb2 \ {b−1nb−1} and hence d(y) ≥ |N | − 1. When m = 3, 
we see that Sy \ S ⊇ Nb \ {b, b−1nb−1} and hence d(y) ≥ |N | − 2.

For the time being, assume

|N | ≥

⎧⎪⎪⎨
⎪⎪⎩

4 when m ≥ 5,
6 when m = 4,
8 when m = 3.

Summing up, we have shown that,

(i): if m ≥ 5, then d(t) ≤ 2 + |T | for every t ∈ T , and d(y) ≥ |N | for every y ∈ S \ T ,
(ii): if m = 4, then d(t) ≤ 2 + |T | for every t ∈ T , and d(y) ≥ |N | −1 for every y ∈ S \T ,
(iii): if m = 3, then d(t) ≤ 2 + |T | for every t ∈ T , and d(y) ≥ |N | −2 for every y ∈ S \T .

Recall that |T | ≤ (|N | − 1)/2. As |N | ≥ 4 when m ≥ 5, we get d(t) < d(y) for every 
t ∈ T and for every y ∈ S \ T . Similarly, as |N | ≥ 6 when m = 4, we get d(t) < d(y)
for every t ∈ T and for every y ∈ S \ T . Analogously, as |N | ≥ 8 when m = 3, we get 
d(t) < d(y) for every t ∈ T and for every y ∈ S \ T .

Let A be the automorphism group of Γ. The definition of d(s) gives that d(s) is 
constant on the A1-orbits on S, that is, d(s) = d(s′) whenever s and s′ are in the same 
A1-orbit. Now, from above, we deduce that A1 leaves the sets T and S \ T invariant. 
Thus N = 〈T 〉 is also A1-invariant and hence A1 acts as a group of automorphisms of 
Δ. As Δ is an ORR, we obtain that A1 fixes point-wise T and hence A1 fixes point-wise 
N = 〈T 〉 by Lemma 2.6.

As A1 fixes point-wise N , from [2, Corollary 3.6], we get that A1 permutes the N -cosets 
of G, that is, ϕ(Nbk) = Nϕ(bk) for every ϕ ∈ A1 and k ∈ N. Now, Nb is the only N -coset 
having exactly one element in common with S. Thus A1 fixes setwise the N -coset Nb. 
Therefore A1 fixes S ∩Nb = {b}. Since G = 〈N, b〉, the group A1 fixes point-wise G by 
Lemma 2.6. Therefore A1 = 1 and Γ is an ORR.

Assume now that m ≥ 5 and |N | ≤ 3, or m = 3 and |N | ≤ 7. Then N is a proper 
normal subgroup of G, G/N admits a beautiful generating tuple and G/N � C4; hence 
G admits a beautiful generating tuple by Proposition 2.4. Thus, by Theorem 2.1, either 
G admits an ORR or G ∼= C3 × C3. Finally, assume that m = 4 and |N | ≤ 5. A careful 
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computer computation with the invaluable help of the computer algebra system magma [4]
on the finite groups G of order 4κ, with κ ∈ {1, 2, 3, 4, 5}, yields that G admits a beautiful 
generating tuple, unless G is isomorphic to

C4 × C2, C4 × C2 × C2, or 〈a, b | a4 = b4 = (ab)2 = (ab−1)2 = 1〉.

In the former case, G admits an ORR by Theorem 2.1; the remaining three groups are 
exceptions listed in the statement of the lemma. �

Lemma 2.7 offers (or better, seems to offer) the opportunity to classify groups admit-
ting an ORR by induction on |G|; however Lemma 2.7 and its proof give no information 
in the case that a group G contains a subgroup N with |G : N | = 2 and with N
admitting an ORR. This makes the classification of groups admitting an ORR rather 
difficult.

Moreover, the careful reader might have observed that most of the proof of Lemma 2.7
is unnecessarily long; indeed, when m 
= 4, Lemma 2.7 can be proved more easily com-
bining Proposition 2.4 with Theorem 2.1. However, because of the lack of information 
in Proposition 2.4 when m = 4, this method does not work when m = 4. Hence we have 
preferred to include a slightly longer proof which deals with each m ≥ 3 and which does 
not rely upon the rather difficult Theorem 2.1.

Proposition 2.8. Let G be a finite soluble group with no beautiful generating tuple. Then 
there exist a subgroup N of G, g ∈ G \N and n0 ∈ N with

(i): N � G,
(ii): g2 = 1,
(iii): G = 〈N, g〉, and
(iv): N = H ∪ n0H, where H = {n ∈ N | ng = n−1}.

Proof. If G is generalised dihedral then the statement is clear, there exists a normal 
(abelian) subgroup N of G having index 2 and an involution g ∈ G \ N inverting each 
element of N : thus the conclusion of the proposition holds with H = N and n0 = 1. 
Assume then that G is not generalised dihedral and let d := d(G). In view of Lemma 2.2, 
among all generating tuples g1, . . . , gd for G with o(gi) > 2 for each i ∈ {1, . . . , d}, choose 
one such that � ∈ N is maximum with the property that

o(g2g
−1
1 ), o(g3g

−1
2 ), . . . , o(g�g−1

�−1) > 2.

Observe that � < d otherwise g1, . . . , gd is a beautiful generating tuple: against our 
assumption.
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Consider N := 〈g1, . . . , g�, g�+2, g�+3, . . . , gd〉. As both g1, . . . , g�, g�+1, g�+2, . . . , gd and 
g1, . . . , g�, g

−1
�+1, g�+2, . . . , gd are generating sets for G, from the maximality of �, we deduce 

that o(g�+1g
−1
� ) = 2 and o(g−1

�+1g
−1
� ) = 2. Now, we infer

g�+1g
−1
� = g�g

−1
�+1, g�g�+1 = g−1

�+1g
−1
� , (2)

and hence (g2
� )g�+1 = g−2

� and (g2
�+1)g� = g−2

�+1.
For each h ∈ N , g1, . . . , g�, hg�+1, g�+2, . . . , gd is a generating set for G and hence, 

from the maximality of �, we deduce that either o(hg�+1) = 2 or o(hg�+1g
−1
� ) = 2. Write 

K := {h ∈ N | o(hg�+1) = 2} and H := {h ∈ N | o(hg�+1g
−1
� ) = 2}. So far we have 

observed that

N = K ∪H.

Write g := g�+1g
−1
� and n0 := g−1

� , and notice that g ∈ G \N , g2 = 1 and G = 〈N, g〉. 
Let h ∈ H. Then 2 = o(hg�+1g

−1
� ) = o(hg) and, as o(g) = 2, we get hg = h−1. Therefore 

H ⊆ {h ∈ N | hg = h−1}. As the inclusion {h ∈ N | hg = h−1} ⊆ H is clear, we get 
H = {h ∈ N | hg = h−1}. Let h ∈ K. Then 2 = o(hg�+1) = o(hg�+1g

−1
� g�) = o(hgn−1

0 ), 
that is, hgn−1

0 hgn−1
0 = 1 and (n−1

0 h)g = (n−1
0 h)−1 because o(g) = 2. Thus n−1

0 h ∈ H

and h ∈ n0H. This shows that K ⊆ n0H and hence N = n0H ∪H.
Observe that, from N = H ∪ n0H, we deduce |H| ≥ |N |/2. Assume that H is not 

a subgroup of N . Then N = 〈H〉. Moreover, since H is g-invariant by conjugation, we 
obtain that N is normalised by g. As G = 〈N, g〉, we get N�G and hence the proposition 
is proven.

Assume that H is a subgroup of N . As |H| ≥ |N |/2, we have |N : H| ≤ 2. If N = H, 
then g acts by conjugation inverting each element of N and hence G = 〈N, g〉 is a dihedral 
group, contrary to our assumption.

Assume that H is a subgroup of N with |N : H| = 2. In particular, H �N and hence 
H � 〈N, g〉 = G because g acts by conjugation inverting each element of H. Moreover, 
H is abelian. Observe that N = 〈H, g�〉 (because N = H ∪ n0H and n0 = g−1

� ) and 
G = 〈g, g�, H〉. We write Ḡ := G/H and adopt the “bar notation”, that is, for x ∈ G, 
we denote by x̄ the element xH. Now, ḡ� has order 2 because |N̄ | = |N : H| = 2, and ḡ
has also order 2 because g2 = 1. Therefore Ḡ = 〈ḡ�, ̄g〉 is a dihedral group. Now g acts 
by conjugation inverting each element of H and hence so does gg� = g−1

� g�+1. Therefore 
g−1
� g�+1g = g−1

� g2
�+1g

−1
� centralises H. From Eq. (2), we obtain g−1

� g2
�+1g

−1
� = g−2

�+1g
−2
�

and hence g2
�+1 centralises H.

Write A := 〈H, g2
�+1〉. As Ḡ = 〈ḡ, ̄g�〉 is dihedral and o(ḡ) = o(ḡ�) = 2, we deduce that 

〈ḡḡḡ�〉 has index 4 in Ḡ. As 〈ḡḡḡ�〉 = 〈ḡ2
�+1〉 = Ā, we deduce |G : A| = 4.

Observe that A is abelian and that g acts by conjugation inverting each element 
of A (recall that (g2

�+1)g� = g−2
�+1 and hence (g2

�+1)g = g−2
�+1). Now, G = 〈A, g�+1, g〉, 

|G : A| = 4, and D1 := 〈A, g〉, D2 := 〈A, g�+1〉 and D3 := 〈A, g�〉 are the three subgroups 
of G containing A and having index 2 in G. Now, D2 � G, G = 〈D2, g〉, g2 = 1 and 
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D2 = A ∪ g�+1A and g acts by conjugation inverting each element of A; thus the proof 
follows by taking N := D2 and n0 := g�+1. �

We conclude this section with our first main reduction.

Theorem 2.9. Let G be a finite soluble group with no beautiful generating tuple. Then one 
of the following holds.

(A) There exist two subgroups A and N of G and two elements g ∈ G \N and n ∈ N \A
with
(i): |G : N | = |N : A| = 2,
(ii): g2 = 1,
(iii): ng = n−1 and ag = a−1 for each a ∈ A. (In particular A is abelian.)

(B): There exists a 2-subgroup N of G and g ∈ G with |G : N | = 2, G = 〈N, g〉 and 
g2 = 1. Moreover, the action of g by conjugation on N inverts precisely half of the 
elements of N . The isomorphism class of N is determined in [10].

Proof. From Proposition 2.8, there exist a subgroup N of G, g ∈ G \ N and n0 ∈ N

with N � G, g2 = 1, G = 〈N, g〉 and N = H ∪ n0H where H = {n ∈ N | ng = n−1}. In 
particular, |H| ≥ |N |/2 and the element g acts by conjugation on N as an automorphism 
inverting at least half of its elements.

Finite groups admitting an automorphism inverting at least half of their elements have 
been classified in [8,10,15]. We use this classification to pin down further the algebraic 
structure of G. We recall that finite groups admitting an automorphism inverting more 
than half of their elements are classified by Liebeck and MacHale in [15, Structure The-
orem 4.13]; these are divided into three types: Type I∗, Type II∗ and Type III∗. Then, 
Fitzpatrick [8] considered the finite groups, not having order a power of 2, admitting an 
automorphism inverting exactly half of their elements. Then, the complete classification 
was achieved by Hegarty and MacHale [10] who classified the finite 2-groups admitting 
an automorphism inverting exactly half of their elements. We use these three papers in 
what follows.

Suppose first that |H| > |N |/2. Hence N admits an automorphism (conjugation via 
the element g) which inverts more than half of its elements. As we mentioned above, the 
structure of N and the automorphism g are described in [15, Structure Theorem 4.13]. 
Suppose that N is of Type I∗ as defined in [15, Structure Theorem 4.13]. Then N has 
an abelian normal subgroup A and an element n ∈ N with |N : A| = 2, N = A ∪ nA, 
ng = n−1 and ag = a−1 for each a ∈ A. In particular, in this case G satisfies the 
conclusion (A) of this theorem.

Suppose next that N is of Type II∗. According to [15], we have a fairly explicit 
description of N and of the action of g on N by conjugation. Here, N is a finite nilpotent 
group of nilpotency class 2, the commutator subgroup 〈z〉 of N has order 2, and the 
centre Z of N has index 22k in N (for some k ∈ N with k ≥ 2). Moreover, N/Z is an 
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elementary abelian 2-group generated by x1Z, x2Z, . . . , xkZ, a1Z, a2Z, . . . , akZ subject 
to the following defining relations:

[xi, xj ] = [ai, aj ] = 1 for every i, j ∈ {1, . . . , k},

[ai, xj ] = 1 for every i, j ∈ {1, . . . , k} with i 
= j,

[ai, xi] = z for every i ∈ {1, . . . , k}.

Observe that each element of N can be written as a product axε1
1 · · ·xεk

k , for some 
a ∈ 〈a1, . . . , ak, Z〉 and for some ε1, . . . , εk ∈ {0, 1}.

Fix εi ∈ {0, 1} for each i ∈ {1, . . . , k} and let ϕ : N → N be the automorphism 
(depending on ε1, . . . , εk) of N defined by the mapping

axε1
1 · · ·xεk

k �→ a−1x−ε1
1 · · ·x−εk

k .

From [15], we have ng = nϕ for each n ∈ N , for some automorphism ϕ of N as 
above. We determine the set H := {n ∈ N | ng = n−1} explicitly. Let h ∈ H and write 
h = aε11 aε22 · · · aεkk txη1

1 xη2
2 · · ·xηk

k , with ε1, ε2, . . . , εk, η1, η2, . . . , ηk ∈ {0, 1} and t ∈ Z. 
Using the relations defining N and the definition of ϕ, we obtain

h−1 = x−η1
1 x−η2

2 · · ·x−ηk

k a−ε1
1 a−ε2

2 · · · a−εk
k t−1,

hg = a−ε1
1 a−ε2

2 · · · a−εk
k t−1x−η1

1 x−η2
2 · · ·x−ηk

k

= x−η1
1 x−η2

2 · · ·x−ηk

k a−ε1
1 a−ε2

2 · · · a−εk
k zε1η1+ε2η2+···+εkηkt−1.

Thus hg = h−1 if and only if ε1η1 + ε2η2 + · · · + εkηk ≡ 0 (mod 2). This proves that

H = {aε11 aε22 · · · aεkk txη1
1 xη2

2 · · ·xηk

k |
k∑

i=1
εiηi ≡ 0 (mod 2)}.

Write n0 = aε̄11 aε̄22 · · · aε̄kk t̄xη̄1
1 xη̄2

2 · · ·xη̄k

k , for some ε̄1, ̄ε2, . . . , ̄εk, η̄1, η̄2, . . . , η̄k ∈ {0, 1}
and t̄ ∈ Z. (Recall that we have N = H ∪ n0H.) From Lemma 2.5, there exist 
ε1, ε2, . . . , εk η1, η2, . . . , ηk ∈ {0, 1} such that 

∑k
i=1 εiηi ≡ 1 (mod 2) and 

∑i
i=1(ε̄i +

εi)(η̄i + ηi) = 1. Consider now n := aε11 aε22 · · · aεkk xη1
1 xη2

2 · · ·xηk

k ∈ N . As 
∑k

i=1 εiηi ≡ 1
(mod 2), we have n /∈ H; as 

∑k
i=1(ε̄i + εi)(η̄i + ηi) = 1, we also have n /∈ n0H. However 

this contradicts N = H ∪ n0H.
Suppose next that N is of Type III∗. According to [15], we have again a fairly explicit 

description of N and of the action of g on N by conjugation. Here, N is a finite nilpotent 
group of nilpotency class 2, the commutator subgroup 〈z1, z2〉 of N has order 4, and 
the centre Z of N has index 16 in N . Moreover, N/Z is an elementary abelian 2-group 
generated by x1Z, x2Z, a1Z, a2Z subject to the following defining relations:
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[x1, x2] = [a1, a2] = [x1, a2] = [x2, a1] = 1,

[a1, x1] = z1,

[a2, x2] = z2.

Observe that each element of N can be written as a product axε1
1 xε2

2 , for some a ∈
〈a1, a2, Z〉 and for some ε1, ε2 ∈ {0, 1}.

Fix εi ∈ {0, 1} for each i ∈ {1, 2} and let ε : N → N be the automorphism (depending 
on ε1, ε2) of N defined by the map

axε1
1 xε2

2 �→ a−1x−ε1
1 x−ε2

2 .

From [15], we have ng = nε for each n ∈ N , for some automorphism ε of N as 
above. We determine the set H := {n ∈ N | ng = n−1} explicitly. Let h ∈ H and write 
h = aε11 aε22 xη1

1 xη2
2 z, with ε1, ε2, η1, η2 ∈ {0, 1} and z ∈ Z. Using the relations defining N , 

we obtain

h−1 = x−η1
1 x−η2

2 a−ε1
1 a−ε2

2 z−1,

hg = a−ε1
1 a−ε2

2 x−η1
1 x−η2

2 z−1

= x−η1
1 x−η2

2 a−ε1
1 a−ε2

2 zε1η1
1 zε2η2

2 z−1.

Thus hg = h−1 if and only if ε1η1 = 0 and ε2η2 = 0. This proves

H = {aε11 aε22 xη1
1 xη2

2 z ∈ N | ε1η1 = 0 and ε2η2 = 0}.

Write n0 = aε̄11 aε̄22 xη̄1
1 xη̄2

2 z̄, for some ε̄1, ̄ε2, η̄1, η̄2 ∈ {0, 1} and z̄ ∈ Z. (Recall that we 
have N = H ∪ n0H.) Consider n := a1a

ε̄2+1
2 x1x

η̄2+1
2 ∈ N . From the characterisation of 

the elements of H, n /∈ H and hence n0n
−1 ∈ H. However,

n0n
−1 = aε̄1−1

1 a−1
2 xη̄1−1

1 x−1
2 zη̄1+1

1 zε̄2+1
2 z̄−1 /∈ H,

and this is a contradiction.
This concludes the proof when |H| > |N |/2, that is, N admits an automorphism 

inverting more than half of its elements. For the rest of the proof we assume then that 
|H| = |N |/2. Here, the structure of N is described in [8] when N is not a 2-group and 
in [10] when N is a 2-group.

We start our analysis with a basic observation on N/Z(N) (the argument here is 
potentially much more general, but we only need its application to N/Z(N) in what 
follows). Consider, for a moment, the action of g by conjugation on N/Z(N) and 
assume that g inverts x elements of N/Z(N). Let n1Z(N), . . . , nxZ(N) be the ele-
ments of N/Z(N) inverted by g by conjugation. If n ∈ H, that is, ng = n−1, then 
(nZ(N))g = n−1Z(N) = (nZ(N))−1 and hence n ∈ niZ(N), for some i ∈ {1, . . . , x}. 
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Therefore, H ⊆ ∪iniZ(N), |N |/2 = |H| ≤ | ∪i niZ(N)| = x|Z(N)| and x ≥ |N/Z(N)|/2. 
This shows that the action of g by conjugation on N/Z(N) inverts at least half of its 
elements. Of course, the action of g by conjugation on N/Z(N) may (in principal) invert 
more than half of its elements.

Assume that N is not a 2-group. Suppose that N is of Type I, as defined in [8]. (De-
spite the detailed description of N in [8], we only need some partial information on the 
algebraic structure of N .) Here N/Z(N) ∼= Alt(4), where Alt(4) is the alternating group 
on 4 symbols. A computation in Alt(4) reveals that an automorphism of Alt(4) that in-
verts at least half of its elements is the conjugation by a transposition of Sym(4) and that 
this automorphism actually inverts precisely half of the elements of Alt(4). In particular, 
we may think that the action of g by conjugation on N/Z(N) is induced by conjuga-
tion via the transposition (1, 2). Therefore G/Z(N) ∼= Sym(4). Now H modulo Z(N)
is the set H̄ = {1, (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 2)(3 4)}. A computation in Sym(4) re-
veals that there exists no n̄0 ∈ Alt(4) with Alt(4) = H̄ ∪ n̄0H̄, however this contradicts 
N = H∪n0H. Suppose that N is of Type II, as defined in [8]: here the argument requires 
some careful computations and much more care. We have N = K×Z, where K is a finite 
group which is not a 2-group and Z is abelian. Moreover, K/Z(K) ∼= C2 ×C2 × Sym(3)
and K is generated modulo Z(K) by w, v, u, t satisfying the conditions:

[w, u] = [v, u] = [w, t] = [v, t] = t3 = 1, [t, u] = t, [v, w] 
= 1, (3)

[v, w], u2, v2, w2 ∈ Z(K).

As v2, [v, w] ∈ Z(N), we get

1 = [v2, w] = [v, w]v[v, w] = [v, w]2,

that is, [v, w] has order 2. As usual, G = 〈N, g〉, where g2 = 1, g normalises N and 
the action of g by conjugation on N induces an automorphism inverting at least half 
of its elements. We prove that G has a beautiful generating tuple: here, we argue by 
induction on the order |G| of G (for all groups G = 〈N, g〉 where N is of Type II, that 
is, it satisfies all the conditions mentioned above including Eq. (3)). If |Z| > 1, then 
|G/Z| < |G| and N/Z is still of Type II. Hence, by induction, G/Z has a beautiful 
generating tuple, and so does G by Proposition 2.4. We may thus assume that Z = 1
and hence N = K. Assume that Z(N) contains a minimal normal subgroup C with 
[v, w] /∈ C. Then |G/C| < |G|, N/C is still of Type II and gN acts by conjugation on 
N/C inverting at least half of its elements. Therefore, by induction, G/C has a beautiful 
generating tuple, and so does G again by Proposition 2.4. Thus, we may assume that 
〈[v, w]〉 is the unique minimal normal subgroup of Z(N). This yields that Z(N) is cyclic of 
order 2�, for some � ∈ N with � ≥ 1, and [v, w] is the unique involution of Z(N). If � = 1, 
then |N | = |N : Z(N)||Z(N)| = 24 · 2 = 48. Routine computations with the invaluable 
help of the computer algebra system magma [4] yield that there are four isomorphism 
classes for the group N . Another computation reveals that each N is contained in a 
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unique (up to isomorphism) group G of order 2|N | = 96 and admitting an element g
with g2 = 1 and with g inverting at least half of the elements of N . We check, again 
with magma, that each of these four groups has a beautiful generating tuple. Suppose 
next that � ≥ 2.

Let z be a generator of Z(N). Using the relations in Eq. (3) and the fact that Z(N) is 
cyclic, it is not difficult to see that, when � ≥ 2, N is isomorphic to one of the following 
four groups (this is indeed not difficult, but it requires some detailed computations and 
the classification of the 2-groups containing a maximal cyclic subgroup):

N1 := 〈t, u, v, w, z | [w, u] = [v, u] = [w, t] = [v, t] = t3 = u2 = v2 = w2 = (vw)4 = 1,

[t, u] = t, [t, z] = [u, z] = [v, z] = [w, z] = 1, z2�−1
= [v, w]〉,

N2 := 〈t, u, v, w | [w, u] = [v, u] = [w, t] = [v, t] = t3 = u2 = v2�+1
= w2 = 1,

[t, u] = t, vw = v1+2�〉,

N3 := 〈t, u, v, w | [w, u] = [v, u] = [w, t] = [v, t] = t3 = u2�+1
= v2 = w2 = (vw)4 = 1,

[t, u] = t, u2�

= [v, w]〉,

N4 := 〈t, u, v, w | [w, u] = [v, u] = [w, t] = [v, t] = t3 = v2�+1
= w2 = 1,

[t, u] = t, vw = v1+2�

, u2 = v2〉.

(The group N1 is isomorphic to Sym(3) × (D4 ◦C2�) where the central product D4 ◦C2�

is amalgamated over the centre of the dihedral group D4, the group N2 is isomorphic to 
Sym(3) × 〈v, w | v2�+1 = w2 = 1, vw = v1+2�〉. Observe that Z(N1) = 〈z〉, Z(N2) = 〈v2〉, 
Z(N3) = 〈u2〉 and Z(N4) = 〈v2〉 = 〈u2〉.)

The group N1 has, up to conjugacy in Aut(N1), two automorphisms ϕ1,1 and ϕ1,2
inverting at least half of its elements. These two automorphisms are defined on the 
generators t, u, v, w, z of N1 by:

ϕ1,1(t) = t, ϕ1,1(u) = u, ϕ1,1(v) = v, ϕ1,1(w) = w, ϕ1,1(z) = z−1,

ϕ1,2(t) = t−1, ϕ1,2(u) = u, ϕ1,2(v) = v, ϕ1,2(w) = w, ϕ1,2(z) = z−1.

Observe that the mapping

t �→ t, u �→ u, v �→ v, w �→ w, z �→ z, ϕ1,1 �→ ϕ1,2u

induces a group isomorphism from N1�〈ϕ1,1〉 to N1�〈ϕ1,2〉. This means that (although 
we have two Aut(N1)-conjugacy classes of automorphisms of N1 inverting at least half 
of the elements of N1) we have only one isomorphism class for G when N ∼= N1. Thus, 
we may think that G = N1 � 〈ϕ1,1〉 where g acts on N as the automorphism ϕ1,1 of N1. 
Now, it can be checked directly that

tv, tw, z, gvw, uz
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is a beautiful generating tuple for G. The argument for the remaining groups is similar 
and requires only a few adjustments.

The group N2 has, up to conjugacy in Aut(N2), four automorphisms ϕ2,1, ϕ2,2, ϕ2,3

and ϕ2,4 inverting at least half of its elements. These four automorphisms are defined on 
the generators t, u, v, w of N2 by:

ϕ2,1(t) = t, ϕ2,1(u) = u, ϕ2,1(v) = v−1+2�

, ϕ2,1(w) = w,

ϕ2,2(t) = t−1, ϕ2,2(u) = u, ϕ2,2(v) = v−1+2�

, ϕ2,2(w) = w,

ϕ2,3(t) = t, ϕ2,3(u) = u, ϕ2,3(v) = v−1, ϕ2,3(w) = v2�

w,

ϕ2,4(t) = t−1, ϕ2,4(u) = u, ϕ2,4(v) = v−1, ϕ2,4(w) = v2�

w.

Observe that the mapping

t �→ t, u �→ u, v �→ v, w �→ w, ϕ2,1 �→ ϕ2,2u

induces a group isomorphism from N2 � 〈ϕ2,1〉 to N2 � 〈ϕ2,2〉. Similarly, the mapping

t �→ t, u �→ u, v �→ v, w �→ w, ϕ2,3 �→ ϕ2,4u

induces a group isomorphism from N2�〈ϕ2,3〉 to N2�〈ϕ2,4〉. Analogously, the mapping

t �→ t, u �→ u, v �→ vw, w �→ v2�

w, ϕ2,1 �→ ϕ2,3

induces a group isomorphism from N2 � 〈ϕ2,1〉 to N2 � 〈ϕ2,3〉. Therefore N2 � 〈ϕ2,1〉 ∼=
N2 � 〈ϕ2,2〉 ∼= N2 � 〈ϕ2,3〉 ∼= N2 � 〈ϕ2,4〉. This means that (although we have four 
Aut(N2)-conjugacy classes of automorphisms of N2 inverting at least half of its elements) 
we have only one isomorphism class for G when N ∼= N2. Thus, we may think that 
G = N2 � 〈ϕ2,1〉 where g acts on N as the automorphism ϕ2,1 of N2. Now, it can be 
checked directly that

gv, tv, t−1w, uv−1

is a beautiful generating tuple for G.
The group N3 has, up to conjugacy in Aut(N3), two automorphisms ϕ3,1 and ϕ3,2

inverting at least half of its elements. These two automorphisms are defined on the 
generators t, u, v, w of N3 by:

ϕ3,1(t) = t, ϕ3,1(u) = u−1, ϕ3,1(v) = v−1, ϕ3,1(w) = w,

ϕ3,2(t) = t−1, ϕ3,2(u) = u−1, ϕ3,2(v) = v−1, ϕ3,2(w) = w.
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Observe that the mapping

t �→ t, u �→ u, v �→ v, w �→ w, ϕ3,1 �→ ϕ3,2u

induces a group isomorphism from N3�〈ϕ3,1〉 to N3�〈ϕ3,2〉. This means that (although 
we have two Aut(N3)-conjugacy classes of automorphisms of N3 inverting at least half 
of its elements) we have only one isomorphism class for G when N ∼= N3. Thus, we may 
think that G = N3 � 〈ϕ3,1〉 where g acts on N as the automorphism ϕ3,1 of N3. Now, it 
can be checked directly that

gt, vw, u, u−1v

is a beautiful generating tuple for G.
The group N4 has, up to conjugacy in Aut(N4), four automorphisms ϕ4,1, ϕ4,2, ϕ4,3

and ϕ4,4 inverting at least half of its elements. These four automorphisms are defined on 
the generators t, u, v, w of N4 by:

ϕ4,1(t) = t, ϕ4,1(u) = u−1, ϕ4,1(v) = v−1+2�

, ϕ4,1(w) = w,

ϕ4,2(t) = t−1, ϕ4,2(u) = u−1, ϕ4,2(v) = v−1+2�

, ϕ4,2(w) = w,

ϕ4,3(t) = t, ϕ4,3(u) = u−1, ϕ4,3(v) = v−1, ϕ4,3(w) = v2�

w,

ϕ4,4(t) = t−1, ϕ4,4(u) = u−1, ϕ4,4(v) = v−1, ϕ4,4(w) = v2�

w.

Observe that the mapping

t �→ t, u �→ u, v �→ v, w �→ w, ϕ4,1 �→ ϕ4,2u

induces a group isomorphism from N4 � 〈ϕ4,1〉 to N4 � 〈ϕ4,2〉. Similarly, the mapping

t �→ t, u �→ u, v �→ v, w �→ w, ϕ4,3 �→ ϕ4,4u

induces a group isomorphism from N4�〈ϕ4,3〉 to N4�〈ϕ4,4〉. Analogously, the mapping

t �→ t, u �→ u, v �→ v1−2�−1
w, w �→ v2�

w, ϕ4,1 �→ ϕ4,3

induces a group isomorphism from N4 � 〈ϕ4,1〉 to N4 � 〈ϕ4,3〉. Therefore N4 � 〈ϕ4,1〉 ∼=
N4 � 〈ϕ4,2〉 ∼= N4 � 〈ϕ4,3〉 ∼= N4 � 〈ϕ4,4〉 ∼=. This means that (although we have four 
Aut(N4)-conjugacy classes of automorphisms of N4 inverting at least half of its elements) 
we have only one isomorphism class for G when N ∼= N4. Thus, we may think that 
G = N4 � 〈ϕ4,1〉 where g acts on N as the automorphism ϕ4,1 of N4. Now, it can be 
checked directly that

gt, vw, u, vu

is a beautiful generating tuple for G. This concludes the proof of this case.
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Now the proof of Theorem 2.9 is completed: we have shown that |H| = |N |/2, that 
is, the action of g by conjugation on N inverts precisely half of its elements, and that N
is one of the 2-groups classified in [10]. �
3. Proof of Theorem 1.2

3.1. Dealing with the groups in Theorem 2.9 part (A)

We set some notation that we use throughout the whole of this section. Let G be a 
finite group, let A and N be subgroups of G and let g ∈ G and n ∈ N with

(i): |G : N | = |N : A| = 2,
(ii): g2 = 1, N = A ∪ nA,
(iii): ng = n−1 and ag = a−1 for each a ∈ A.

Lemma 3.1. If CA(n) = A (that is, N is abelian), or o(n) = 2 and an = a−1 for each 
a ∈ A, then G is a generalised dihedral group on N or on 〈A, gn〉. In particular, G has 
no ORR.

Proof. If CA(n) = A, then 〈A, n〉 = N is abelian and g acts by conjugation inverting 
each element of N . Thus G is generalised dihedral on N .

If an = a−1 for each a ∈ A, then 〈A, gn〉 is abelian. Moreover, if o(n) = 2, then g
acts by conjugation inverting each element of 〈A, gn〉. Thus G is generalised dihedral on 
〈A, gn〉. �

In view of Lemma 3.1, we also assume:

(iv): CA(n) < A, and either o(n) > 2 or an0 
= a−1
0 for some a0 ∈ A.

Proposition 3.2. If |A| is odd, then G admits a beautiful generating tuple. In particular, 
G has a ORR.

Proof. We argue by induction on |A|. Since |G : A| = 4 and |A| is odd, replacing n by a 
suitable G-conjugate, we may assume that 〈g, n〉 is a Sylow 2-subgroup of G. Therefore 
G = A � 〈g, n〉 and |〈g, n〉| = |G/A| = 4.

Assume first that 〈g, n〉 is cyclic, that is, G/A is cyclic of order 4. We prove that G has 
a beautiful generating tuple by induction on |A|. Suppose that A is a minimal normal 
subgroup of G. Then, by Lemma 2.3, G has a beautiful generating tuple. Suppose that 
A is not a minimal normal subgroup of G and let B be a minimal normal subgroup 
of G with B ≤ A. By induction, G/B has a beautiful generating tuple and hence, by 
Lemma 2.3, so does G.

Assume then that 〈g, n〉 is an elementary abelian 2-group. In particular, o(n) = 2. 
From the coprime action, A = CA(n) × [n, A] and, as o(n) = 2, the element n acts by 
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conjugation on [n, A] inverting each of its elements. Observe that (iv) is equivalent to 
CA(n) 
= 1 and [n, A] 
= 1.

Let C be a minimal normal subgroup of CA(n) and adopt the “bar notation” for 
the projection of G onto G/C. Clearly, (i), (ii), (iii) are satisfied by Ḡ, N̄ , Ā and ḡ, ̄n. 
Moreover, if C < CA(n), then Ā = CA(n) × [n,A] = CĀ(n̄) × [n̄, Ā] and CĀ(n̄) 
=
1 
= [n̄, Ā], that is, (iv) is also satisfied by Ḡ. Therefore, by induction, Ḡ has a beautiful 
generating tuple, that hence so does G by Proposition 2.4. This shows that we may 
assume that CA(n) is a minimal normal subgroup of G, that is, CA(n) = 〈c〉 is cyclic of 
prime order.

Let D be a minimal normal subgroup of [n, A] and adopt the “bar notation” for 
the projection of G onto G/D. Clearly, (i), (ii), (iii) are satisfied by Ḡ, N̄ , Ā and ḡ, ̄n. 
Moreover, if D < [n, A], then Ā = CA(n) × [n,A] = CĀ(n̄) × [n̄, Ā] and CĀ(n̄) 
= 1 
=
[n̄, Ā], that is, (iv) is also satisfied by Ḡ. Therefore, by induction, Ḡ has a beautiful 
generating tuple, that hence so does G by Proposition 2.4. This shows that we may 
assume that [n, A] is a minimal normal subgroup of G, that is, [n, A] = 〈d〉 is cyclic of 
prime order and dn = d−1.

A direct computation shows that gnd, c−1, nc is a beautiful generating tuple for G. �
3.2. Proof of Theorem 1.2

Let G be a finite group and suppose that G admits no ORR, that is, part (i) of 
Theorem 1.2 is not satisfied. In particular, the group G is solvable by the main result 
in [16].

Suppose that G admits a beautiful generating tuple. Then, by Theorem 2.1, part (iv)
of Theorem 1.2 holds. Suppose that G has no beautiful generating tuple. In particular, 
we may now apply Theorem 2.9. If part (B) of Theorem 2.9 holds, then part (iii) of 
Theorem 1.2 holds. Suppose that part (A) of Theorem 2.9 holds. If the hypothesis of 
Lemma 3.1 are satisfied, then G is generalised dihedral and part (v) of Theorem 1.2
holds. Suppose then that the hypothesis of Lemma 3.1 are not satisfied and let B be 
the Sylow 2-subgroup of A. If B < A, then, combining Proposition 3.2 (applied to G/B) 
with Lemma 2.3, we get that part (ii) of Theorem 1.2 holds. If B = A, then A is a 
2-group and part (i) of Theorem 1.2 holds.
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