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1 Introduction

The accurate prediction and measurement of differential distributions is of primary impor-

tance for the LHC precision programme, especially in view of the absence of clear signals

of new physics in the data collected so far. In this context, a special role is played by

the kinematic distributions of a colour singlet produced in association with QCD radia-

tion. These observables are often measured by reconstructing the decay products of the

colour singlet (whenever possible), which are sensitive to the accompanying hadronic ac-

tivity only through kinematic recoil. As a consequence, measurements of transverse and

angular observables often lead to small experimental systematic uncertainties [1–8].

The implication of these precise measurements is twofold. On one hand, they can be

used to fit the parameters of the SM Lagrangian (e.g. strong coupling constant, or masses)

or to calibrate the models that typically enter the calculation of hadron-collider observables

(like for instance collinear parton distribution functions (PDFs) [9], or non-perturbative

corrections and transverse-momentum-dependent PDFs [10–12]). An example is given by

– 1 –



J
H
E
P
1
2
(
2
0
1
8
)
1
3
2

the differential distributions in Z- and W -boson production, that recently were exploited to

perform very precise extractions of the W -boson mass [13] and to constrain the behaviour

of some PDFs [14]. On the other hand, an excellent control over kinematic distributions is

a way to set compelling constraints on new-physics models that would lead to mild shape

distortions. An example is given by the sensitivity of the Higgs transverse-momentum (pt)

distribution to modification of the Yukawa couplings of the Higgs to quarks [15, 16].

In this article we present state-of-the-art predictions for a class of differential dis-

tributions both in Higgs boson (H) and Drell-Yan pair (DY) production. Specifically,

we combine fixed-order calculations at next-to-next-to-leading order (NNLO) with the

recently-obtained resummation of Sudakov logarithms to next-to-next-to-next-to-leading-

logarithmic order (N3LL), for the transverse-momentum spectrum of the colour singlet, as

well as for the angular variable φ∗η [17]. In the following, for simplicity, we will collectively

denote pt/M or φ∗η by v, with M representing the invariant mass of the colour singlet.

Inclusive and differential distributions for Higgs-boson production in gluon fusion are

nowadays known with very high precision. The inclusive cross section has been computed to

next-to-next-to-next-to-leading-order (N3LO) accuracy in QCD [18–24] in the heavy-top-

quark limit. The impact of all-order effects due to a combined resummation of threshold

and high-energy logarithms has been studied in detail, and at the current collider energies

the corrections amount to a few-percent of the total cross section [25], indicating that the

missing higher-order contributions are under good theoretical control. The state-of-the-art

results for the Higgs transverse-momentum spectrum in fixed-order perturbation theory are

the next-to-next-to-leading-order (NNLO) computations of refs. [26–29], which have been

obtained in the heavy-top-quark limit. The effect of finite quark masses on differential

distributions at next-to-leading order has been recently computed in refs. [30–35].

The state-of-the-art for the QCD corrections to differential distributions in DY pro-

duction is at a similar level of accuracy. The total cross section is known fully differentially

in the Born phase space up to NNLO [36–44], while differential distributions in transverse

momentum were recently computed up to NNLO both for Z- [45–50] and W -boson [51–53]

production. In the DY distributions, electroweak corrections become important especially

at large transverse momenta, and they have been computed to NLO in [54–57].

Although fixed-order results are crucial to obtain reliable theoretical predictions away

from the soft and collinear regions of the phase space (v ∼ 1), it is well known that regions

dominated by soft and collinear QCD radiation — which give rise to the bulk of the total

cross section — are affected by large logarithmic terms of the form αns lnk(1/v)/v, with

k ≤ 2n − 1, which spoil the convergence of the perturbative series at small v. In order to

have a finite and well-behaved calculation in this limit, the subtraction of the infrared and

collinear divergences requires an all-order resummation of the logarithmically divergent

terms. The logarithmic accuracy is commonly defined in terms of the perturbative series

of the logarithm of the cumulative cross section Σ as

ln Σ(v) ≡ ln

∫ v

0
dv′

dΣ(v′)

dv′

=
∑
n

{
O
(
αns lnn+1(1/v)

)
+O (αns lnn(1/v)) +O

(
αns lnn−1(1/v)

)
+ . . .

}
. (1.1)

– 2 –



J
H
E
P
1
2
(
2
0
1
8
)
1
3
2

One refers to the dominant terms αns lnn+1(1/v) as leading logarithmic (LL), to terms

αns lnn(1/v) as next-to-leading logarithmic (NLL), to αns lnn−1(1/v) as next-to-next-to-

leading logarithmic (NNLL), and so on.

The resummation of the pt spectrum of a heavy colour singlet is commonly performed

in impact-parameter (b) space [58, 59], where the observable completely factorises and the

resummed cross section takes an exponential form. Using the b-space formulation the Higgs

pt spectrum was resummed at NNLL accuracy in refs. [60–62], following either the conven-

tional approach of ref. [59], or a soft-collinear-effective-theory [63–66] (SCET) formulation

of refs. [67, 68]. A study of the related theory uncertainties in the SCET formulation was

presented in ref. [69]. In DY production, NNLL predictions for the transverse momentum

of the color singlet as well as for φ∗η were obtained in refs. [67, 70, 71]. The impact of

both threshold and high-energy resummation on the small-transverse-momentum region

was also studied in detail in refs. [72–80] and the effects were found to be quite moderate

at LHC energies.

The problem of the resummation of the transverse-momentum distribution in direct

(pt) space received substantial attention throughout the years [81–83], but remained un-

solved until recently. Due to the vectorial nature of pt (analogous considerations apply to

φ∗η), it is indeed not possible to define a resummed cross section at a given logarithmic

accuracy in direct space that is simultaneously free of both subleading-logarithmic con-

tributions and spurious singularities at finite, non-zero values of pt. A possible solution

to the problem was recently proposed in refs. [84, 85], in whose formalism the resumma-

tion is performed by generating the relevant QCD radiation by means of a Monte Carlo

(MC) algorithm. The resummation of the pt spectrum in momentum space has been also

studied in ref. [86] within a SCET framework, where the renormalisation-group evolution

is performed directly in pt space. An alternative technique to analytically transform the

impact-parameter-space result into momentum space was recently proposed in ref. [87].

All the necessary ingredients for the N3LL resummation of pt (and φ∗η) spectra in

color-singlet production have been computed in [88–93], and the four-loop cusp anomalous

dimension has been recently obtained numerically in refs. [94, 95]. This has paved the way

to more accurate theoretical results for transverse observables in the infrared region, like for

instance the computation of the Higgs-transverse-momentum spectrum at N3LL matched

to NNLO in refs. [85, 96]. In this manuscript, employing the direct-space resummation

at N3LL accuracy of ref. [85] matched to NNLO, we present results for Higgs pt both at

the inclusive level and with fiducial cuts on the decay products in the H → γγ channel.

We also consider Drell-Yan pair production and compute N3LL+NNLO predictions for the

transverse momentum of the lepton pair and for the φ∗η observable, comparing these results

to ATLAS measurements at 8 TeV.

The article is organised as follows. In section 2 we discuss the computation of the

NNLO differential distributions in DY and H production with the fixed-order parton-level

code NNLOjet. Section 3 contains a brief review of the resummation for the pt and

φ∗η distributions using a momentum-space approach as implemented in the computer code

RadISH, and in section 4 we discuss in detail the matching to fixed order together with

the validation of our calculation. Section 5 reports the results for H production, while
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the analogous results for DY production are reported in section 6. Section 7 contains our

conclusions. We report the relevant formulae used for the matching in appendix A, while

appendix B contains various quantities necessary for the resummation up to N3LL.

2 Fixed order

In this article we consider the production of either a Higgs boson or a leptonic Drell-

Yan pair. In particular, the main focus lies in the description of the transverse-momentum

spectrum and, in the case of DY production, of the closely related φ∗η observable. These

observables are studied in the context of matching the fixed-order calculation to a resummed

prediction, and consequently the low- to intermediate-pt regimes are of particular interest.

For the Higgs production process, we therefore restrict ourselves to the region with

pH
t . mt where the HEFT description is appropriate. In this effective-field-theory frame-

work, the top quark is integrated out in the large-top-mass limit (mt →∞), giving rise to

an effective operator that directly couples the Higgs field to the gluon field-strength tensor

via [97–99]

LHEFT = −λ
4
GµνGµνH. (2.1)

The Wilson coefficient λ is known to three-loop accuracy [100] and its renormalisation-

scale dependence was studied in [29]. We consider the pH
t spectrum for both the inclusive

production of an on-shell Higgs boson as well as including its decay into two photons. For

the latter, the production and decay are treated in the narrow-width approximation and

fiducial cuts, summarised in section 5, are applied on the photons in the final state.

For the DY process, we consider the full off-shell production of a charged lepton pair,

including both the Z-boson and photon exchange contributions. Fiducial cuts are applied

to the leptons in the final state and match the corresponding measurement performed by

ATLAS at 8 TeV [101], which are summarised in section 6. We consider both the pZ
t

spectrum as well as the φ∗η distribution, which are further studied multi-differentially for

different invariant-mass (M``) or rapidity (Y``) bins.

The differential distributions in v = pt/M, φ∗η for the production of a colour singlet

at hadron colliders are indirectly generated through the recoil of the colour singlet against

QCD radiation. The observables v are therefore closely related to the X + jet process with

X = H, Z, where the jet requirement is replaced by a restriction on v to be non-vanishing:

v ≥ vcut > 0. The state-of-the-art fixed-order QCD predictions for this class of processes

is at NNLO [26–29, 45–50]. Starting from the LO distributions, in which the colour singlet

recoils against a single parton, the NNLO predictions receive contributions from config-

urations (with respect to LO) with two extra partons (RR: double-real corrections for

H [102–104] and DY [105–109]), with one extra parton and one extra loop (RV: real-virtual

corrections for H [110–112] and DY [105, 106, 113–116]) and with no extra parton but

two extra loops (VV: double-virtual corrections for H [117] and DY [118–121]). Each of

the three contributions is separately infrared divergent either in an implicit manner from

phase-space regions where parton radiations become unresolved (soft and/or collinear) or

in a explicit manner from divergent poles in virtual loop corrections. Only the sum of the

three contributions is finite.
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Our calculation is performed using the parton-level event generator NNLOjet, which

implements the antenna subtraction method [122–124] to isolate infrared singularities and

to enable their cancellation between different contributions prior to the numerical phase-

space integration. The NNLO corrections for Higgs and DY production at finite v are

calculated using established implementations for pp → H + jet [29, 125] and pp → Z +

jet [45–48] at NNLO, and it takes the schematic form:

σNNLO
X+jet =

∫
ΦX+3

(
dσRRNNLO − dσSNNLO

)
+

∫
ΦX+2

(
dσRVNNLO − dσTNNLO

)
+

∫
ΦX+1

(
dσV VNNLO − dσUNNLO

)
. (2.2)

The antenna subtraction terms, dσS,T,UNNLO, for both Higgs and Drell-Yan related processes

are constructed from antenna functions [126–131] to cancel infrared singularities between

the contributions of different parton multiplicities. The integrals are performed over the

phase space ΦX+1,2,3 corresponding to the production of the colour singlet in association

with one, two or three partons in the final state. The integration of the final-state phase

space is fully differential such that any infrared-safe observable O can be studied through

differential distributions as dσNNLO
X+jet /dO.

For large values of v (v ∼ 1), the phase-space integral in each line of eq. (2.2) is well

defined and was calculated with high numerical precision in previous studies. Extending

these predictions to smaller, but finite v (∼ 0.01) becomes extremely challenging due to

the wider dynamical range that is probed in the integration. Both the matrix elements

and the subtraction terms grow rapidly in magnitude towards smaller values of v, thereby

resulting in large numerical cancellations between them and rendering both the numer-

ical precision and the stability of the results challenging. The finite remainder of such

cancellations needs to be numerically stable in order to be consistently combined with re-

summed logarithmic corrections and extrapolated to the limit v → 0. For this reason, the

integration is performed separately for each individual initial-state partonic channel. We

further split the integration region for each channel into multiple intervals in v, which are

partially overlapping with each other. By carefully checking the consistency of the distri-

butions in the overlapping region and using dedicated reweighting factors in each interval,

we use NNLOjet to produce fixed-order predictions up to NNLO for values in v down to

pt = 2 GeV and φ∗η = 0.004 [47].

The accuracy of the results obtained with the NNLOjet code for small v has been

systematically validated in ref. [96] by comparing fixed-order predictions of the Higgs bo-

son transverse momentum distribution dσNNLO/dp
H
t against the expansion of the N3LL

resummation (obtained in the framework of soft-collinear effective field theory, SCET) to

the respective order in the small pH
t region. This validation was performed for individual

initial-state partonic channels down to pH
t = 0.7 GeV.

As v → 0, the final-state phase space ΦX+1,2,3 is reduced to the phase space of

colour singlet production ΦX . The RR, RV, and VV contributions contain infrared di-
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vergences with one extra unresolved parton that cannot be cancelled by the subtraction

terms dσS,T,UNNLO. These extra logarithmic divergences are cancelled by combining the fixed-

order computation to a resummed calculation, where the logarithms in the fixed-order

prediction are subtracted and replaced by a summation of the corresponding enhanced

terms to all orders in perturbation theory. This operation is discussed in the next section,

and more details on the combination of the two results are reported in appendix A.

3 Resummation

The approach developed in refs. [84, 85] uses the factorisation properties of the QCD

squared amplitudes to devise a Monte Carlo formulation of the all-order calculation. In

this framework, large logarithms are resummed directly in momentum space by effectively

generating soft and/or collinear emissions in a fashion similar in spirit to an event generator.

To summarise the final result, we consider the cumulative distribution

Σ(v) ≡
∫ v

0
dv′

dΣ(v′)

dv′
(3.1)

for an observable v(′) = V (ΦB, k1, . . . , kn), being either pt/M or φ∗η, in the presence of n

real emissions with momenta k1, . . . , kn. Σ(v) can be expressed as

Σ(v) =

∫
dΦBV(ΦB)

∞∑
n=0

∫ n∏
i=1

[dki]|M(ΦB, k1, . . . , kn)|2 Θ (v − V (ΦB, k1, . . . , kn)) , (3.2)

where M is the matrix element for n real emissions and V(ΦB) denotes the resummed

form factor that encodes the purely virtual corrections [132]. The phase spaces of the i-th

emission ki and that of the Born configuration1 are denoted by [dki] and dΦB, respectively.

The recursive infrared and collinear (rIRC) safety [133] of the observable allows one

to establish a well defined logarithmic counting in the squared amplitude [133, 134], and

to systematically identify the contributions that enter at a given logarithmic order. In

particular, the squared amplitude can be decomposed in terms of n-particle-correlated

blocks, such that blocks with n particles start contributing one logarithmic order higher

than blocks with n− 1 particles.

Eq. (3.2) contains exponentiated divergences of virtual origin in the V(ΦB) factor, as

well as singularities in the real matrix elements, which appear at all perturbative orders. In

order to handle such divergences, one can introduce a resolution scale Q0 on the transverse

momentum of the radiation: thanks to rIRC safety, unresolved real radiation (i.e. softer

than Q0) does not contribute to the observable’s value, namely it can be neglected when

computing V (ΦB, k1, . . . , kn), thus it exponentiates and cancels the divergences contained

in V(ΦB) at all orders. The precise definition of the unresolved radiation requires a careful

clustering of momenta belonging to a given correlated block in order to be collinear safe. On

1In the context of resummation, the Born configuration denotes the production of the colour-singlet

state without any extra radiation. This should not be confused with the fixed-order counting of orders,

where LO denotes the production of the colour-singlet state recoiling against a parton at finite transverse

momentum.
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the other hand, the real radiation harder than the resolution scale (referred to as resolved)

must be generated exclusively since it is constrained by the Θ function in eq. (3.2). rIRC

safety also ensures that the dependence of the results upon Q0 is power-like, hence the

limit Q0 → 0 can be taken safely.

For observables which depend on the total transverse momentum of QCD radiation,

such as pt or φ∗η, it is particularly convenient to set the resolution scale to a small fraction

δ > 0 of the transverse momentum of the block with largest kt, hereby denoted by δkt1,

which allows for an efficient Monte Carlo implementation of the resulting resummed formula

that can be used to simultaneously compute both pt and φ∗η.

Including terms up to N3LL, the cumulative cross section in momentum space can be

recast in the following form [85]2

dΣ(v)

dΦB
=

∫ ∞
0

dkt1
kt1
J (kt1)

dφ1
2π

∂L̃

(
−e−R̃(kt1)L̃N3LL(kt1)

)∫
dZ[{R̃′, ki}]Θ (v − V (ΦB , k1, . . . , kn+1))

+

∫ ∞
0

dkt1
kt1
J (kt1)

dφ1
2π

e−R̃(kt1)

∫
dZ[{R̃′, ki}]

∫ 1

0

dζs
ζs

dφs
2π

{(
R̃′(kt1)L̃NNLL(kt1)− ∂L̃L̃NNLL(kt1)

)
×
(
R̃′′(kt1) ln

1

ζs
+

1

2
R̃′′′(kt1) ln2 1

ζs

)
− R̃′(kt1)

(
∂L̃L̃NNLL(kt1)− 2

β0
π
α2
s (kt1)P̂ (0) ⊗ L̃NLL(kt1) ln

1

ζs

)
+
α2
s (kt1)

π2
P̂ (0)⊗P̂ (0)⊗L̃NLL(kt1)

}{
Θ (v−V (ΦB , k1, . . . , kn+1, ks))−Θ (v−V (ΦB , k1, . . . , kn+1))

}
+

1

2

∫ ∞
0

dkt1
kt1
J (kt1)

dφ1
2π

e−R̃(kt1)

∫
dZ[{R̃′, ki}]

∫ 1

0

dζs1
ζs1

dφs1
2π

∫ 1

0

dζs2
ζs2

dφs2
2π

R̃′(kt1)

×

{
L̃NLL(kt1)

(
R̃′′(kt1)

)2
ln

1

ζs1
ln

1

ζs2
− ∂L̃L̃NLL(kt1)R̃′′(kt1)

(
ln

1

ζs1
+ ln

1

ζs2

)

+
α2
s (kt1)

π2
P̂ (0) ⊗ P̂ (0) ⊗ L̃NLL(kt1)

}

×
{

Θ (v − V (ΦB , k1, . . . , kn+1, ks1, ks2))−Θ (v − V (ΦB , k1, . . . , kn+1, ks1))−

Θ (v − V (ΦB , k1, . . . , kn+1, ks2)) + Θ (v − V (ΦB , k1, . . . , kn+1))

}
+O

(
αns ln2n−6 1

v

)
, (3.3)

where ζsi ≡ ktsi/kt1 and we introduced the notation dZ[{R̃′, ki}] to denote an ensemble

that describes the emission of n identical independent blocks [85]. The average of a function

G({p̃}, {ki}) over the measure dZ is defined as (ζi ≡ kti/kt1)∫
dZ[{R̃′, ki}]G({p̃}, {ki})

= e−R̃
′(kt1) ln 1

δ

∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

δ

dζi
ζi

∫ 2π

0

dφi
2π

R̃′(kt1)G({p̃}, k1, . . . , kn+1) .

(3.4)

2We have split the result into a sum of three terms. The first term contains the full NLL corrections.

The second term of eq. (3.3) (first set of curly brackets) starts contributing at NNLL accuracy, while the

third term (second set of curly brackets) is purely N3LL.
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The ln 1/δ divergence in the exponential prefactor of eq. (3.4) cancels exactly against that

contained in the resolved real radiation, encoded in the nested sums of products on the

right-hand side of the same equation. This ensures that the final result is therefore δ-

independent.

To obtain eq. (3.3) we used the fact that, for resolved radiation, ζi is a quantity of

O(1), which allows us to expand all ingredients in eq. (3.3) about kt1, retaining only terms

necessary for the desired logarithmic accuracy. We stress that this is allowed because of

rIRC safety, which ensures that blocks with kti � kt1 do not contribute to the value of the

observable and are therefore fully cancelled by the term exp{−R̃′(kt1) ln(1/δ)} of eq. (3.4).

Although not strictly necessary, this expansion allows for a more efficient numerical imple-

mentation. The expansion gives rise to the terms R̃(n) which denote the derivatives of the

radiator as

R̃′ = dR̃/dL̃, R̃′′ = dR̃′/dL̃, R̃′′′ = dR̃′′/dL̃, (3.5)

where R̃ takes the form

R̃(kt1) = −L̃g1(αsβ0L̃)− g2(αsβ0L̃)− αs

π
g3(αsβ0L̃)− α2

s

π2
g4(αsβ0L̃), (3.6)

and αs = αs(µR). We report the functions gi in appendix B, and we refer to ref. [85] for

further details. The function g4 involves a contribution from the recently determined [95]

four-loop cusp anomalous dimension Γ
(4)
cusp that we report in eq. (B.12).

In previous N3LL resummation studies, Γ
(4)
cusp was either neglected [85, 96] or extrap-

olated from its lower order contributions through a Padé approximation [135]. With the

new result of [95] at hand, we could now explicitly verify that the numerical impact of

Γ
(4)
cusp is indeed very small (not visibly noticeable in the distributions), and well below other

sources of parametric uncertainties that are discussed in the following.

The expression in eq. (3.3) would originally contain resummed logarithms of the form

ln(Q/kt1), where Q is the resummation scale, whose variation is used to probe the size

of subleading logarithmic corrections not included in our result. In order to ensure that

the resummation does not affect the hard region of the spectrum when matched to fixed

order (see section 4), the resummed logarithms are supplemented with power-suppressed

terms, negligible at small kt1, that ensure resummation effects to vanish for kt1 � Q.

Such modified logarithms L̃ are defined by constraining the rapidity integration of the

real radiation to vanish at large transverse momenta. This is done by mapping the limit

kt1 → Q onto kt1 → ∞ in all terms of eq. (3.3), with the exception of the observable’s

measurement function. A convenient choice of such a mapping is

ln
Q

kt1
→ L̃ =

1

p
ln

((
Q

kt1

)p
+ 1

)
, (3.7)

where p is a positive real parameter chosen in such a way that the resummed differential

distribution vanishes faster than the fixed-order one at large v, with slope (1/v)p+1. The

above prescription comes with the prefactor J , defined as

J (kt1) =

(
Q

kt1

)p(
1 +

(
Q

kt1

)p)−1

. (3.8)
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This corresponds to the Jacobian for the transformation (3.7), and ensures the absence of

fractional (although power suppressed) αs powers in the final distribution [85]. This factor,

once again, leaves the small kt1 region untouched, and only modifies the large pt region

by power-suppressed effects. Although this procedure seems a simple change of variables,

we stress that the observable’s measurement function (i.e. the Θ function in eq. (3.3)) is

not affected by this prescription. As a consequence, the final result will depend on the

parameter p through power-suppressed terms.

The factors L̃ contain the parton luminosities up to N3LL, multiplied by the Born-level

squared, and virtual amplitudes. They are defined as

L̃NLL(kt1) =
∑
c,c′

d|MB |2cc′
dΦB

fc

(
µF e−L̃, x1

)
fc′
(
µF e−L̃, x2

)
, (3.9)

L̃NNLL(kt1) =
∑
c,c′

d|MB |2cc′
dΦB

∑
i,j

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

fi

(
µF e−L̃,

x1
z1

)
fj

(
µF e−L̃,

x2
z2

)
(3.10)

×

{
δciδc′jδ(1− z1)δ(1− z2)

(
1 +

αs(µR)

2π
H̃(1)(µR, xQ)

)

+
αs(µR)

2π

1

1−2αs(µR)β0L̃

(
C̃

(1)
ci (z1, µF , xQ)δ(1−z2)δc′j + {z1↔z2; c, i↔c′j}

)}
,

L̃N3LL(kt1) =
∑
c,c′

d|MB |2cc′
dΦB

∑
i,j

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

fi

(
µF e−L̃,

x1
z1

)
fj

(
µF e−L̃,

x2
z2

)
(3.11)

×

{
δciδc′jδ(1− z1)δ(1− z2)

(
1 +

αs(µR)

2π
H̃(1)(µR, xQ) +

α2
s (µR)

(2π)2
H̃(2)(µR, xQ)

)

+
αs(µR)

2π

1

1−2αs(µR)β0L̃

1− αs(µR)
β1
β0

ln
(

1−2αs(µR)β0L̃
)

1− 2αs(µR)β0L̃


×
(
C̃

(1)
ci (z1, µF , xQ)δ(1−z2)δc′j + {z1 ↔ z2; c, i↔ c′, j}

)
+
α2
s (µR)

(2π)2
1

(1−2αs(µR)β0L̃)2

(
C̃

(2)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′, j}

)

+
α2
s (µR)

(2π)2
1

(1− 2αs(µR)β0L̃)2

(
C̃

(1)
ci (z1, µF , xQ)C̃

(1)
c′j (z2, µF , xQ) +G

(1)
ci (z1)G

(1)
c′j(z2)

)
+
α2
s (µR)

(2π)2
H̃(1)(µR, xQ)

1

1−2αs(µR)β0L̃

(
C̃

(1)
ci (z1, µF , xQ)δ(1−z2)δc′j + {z1↔z2; c, i↔c′, j}

)}
.

where

x1 =
M√
s

eY , x2 =
M√
s

e−Y , (3.12)

Y is the rapidity of the colour singlet in the centre-of-mass frame of the collision at the

Born-level, |MB|2cc′ is the Born-level squared matrix element, and xQ = Q/M . The above

luminosities contain the NLO and NNLO coefficient functions C̃
(n)
ci for Higgs and Drell-

Yan production [88–91], as well as the hard virtual corrections H̃(n). A precise definition

is given is section 4 of ref. [85], and the relevant formulae are also reported in appendix B.
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Finally, we define the convolution of a regularised splitting function P̂ [136, 137] with

the coefficient L̃NLL as

P̂ (0) ⊗ L̃NLL(kt1) ≡
∑
c,c′

d|MB|2cc′
dΦB

{(
P̂ (0) ⊗ f

)
c

(
µF e−L̃, x1

)
fc′
(
µF e−L̃, x2

)
+ fc

(
µF e−L̃, x1

)(
P̂ (0) ⊗ f

)
c′

(
µF e−L̃, x2

)}
. (3.13)

The term P̂ (0) ⊗ P̂ (0) ⊗ L̃NLL(kt1) is to be interpreted in the same way. Moreover, the

explicit factors of the strong coupling evaluated at kt1 in eq. (3.3) are defined as

αs(kt1) ≡ αs(µR)

1− 2αs(µR)β0L̃
. (3.14)

4 Matching to fixed order

In this section we discuss the matching of the resummed and the fixed-order results. Since

we work at the level of the cumulative distribution Σ, we define the analogue of eq. (3.1)

for the fixed-order prediction as

ΣN3LO(v) = σN3LO
tot −

∫ ∞
v

dv′
dΣNNLO(v′)

dv′
, (4.1)

where σN3LO
tot is the total cross section for the considered processes and dΣNNLO/dv′ denotes

the NNLO differential distribution.

For inclusive Higgs production, the transverse-momentum distribution at NNLO was

obtained in refs. [26–29], while the N3LO total cross section has been computed in

refs. [23, 24]. On the other hand, the N3LO cross section within fiducial cuts on the Born

kinematics is currently unknown. Since in this article we address differential distributions

for H → γγ with fiducial cuts, we approximate the N3LO correction to σN3LO
tot by rescaling

the NNLO fiducial cross section by the inclusive (i.e. without fiducial cuts) N3LO/NNLO

K factor. We stress that, at the level of the differential distributions we are interested in,

this approximation is formally a N4LL effect, and it lies beyond the accuracy considered

in this study.

For DY production, the differential distributions to NNLO were obtained in

refs. [47, 49]. We set to zero the unknown N3LO correction to the total cross section,

observing once again that its contribution to the distributions derived here is subleading.

In order to assess the uncertainty associated with the matching procedure, we consider

here two different matching schemes. The first scheme we introduce is the common additive

scheme defined as

ΣMAT
add (v) = ΣN3LL(v) + ΣN3LO(v)− ΣEXP(v), (4.2)

where ΣEXP denotes the expansion of the resummation formula ΣN3LL to N3LO.
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The second scheme we consider belongs to the class of multiplicative schemes similar

to those defined in refs. [138–140], and it is schematically defined as

ΣMAT
mult (v) = ΣN3LL(v)

[
ΣN3LO(v)

ΣEXP(v)

]
EXPANDED TO N3LO

, (4.3)

where the quantity in square brackets is expanded to N3LO. The two schemes (4.2), (4.3)

are equivalent at the perturbative order we are working at, and differ by N4LO and N4LL

terms. The main difference between the two schemes is that in the multiplicative approach,

unlike in the additive one, higher-order corrections are damped by the resummation factor

ΣN3LL at low v. Moreover, this damping occurs in the region where the fixed-order result

may be occasionally affected by numerical instabilities, hence allowing for a stable matched

distribution even with limited statistics for the NNLO component.

One advantage of the multiplicative solution is that the N3LO constant terms, of

formal N4LL accuracy, are automatically extracted from the fixed order in the matching

procedure, whenever the N3LO total cross section is known. We recall that eq. (3.3) resums

all towers of ln(1/v) up to N3LL, defined at the level of the logarithm of Σ (1.1). At this

order, one predicts correctly all logarithmic terms up to, and including, αns ln2n−5(1/v) in

the expanded formula for Σ, while terms of order αns ln2n−6(1/v) would be modified by

including N4LL corrections.

The inclusion of constant terms of order O(α3
s ) relative to Born level in the re-

summed formula, of formal N4LL accuracy, extends the prediction to all terms of order

αns ln2n−6(1/v) in the expanded formula for Σ. Indeed these terms, which contain the

N3LO collinear coefficient functions and three-loop virtual corrections, would multiply the

Sudakov e−R̃(kt1) in the resummed formula (3.3) starting at N4LL. Since they are currently

unknown analytically, in an additive matching these terms are simply added to the re-

summed cumulative result, and disappear at the level of the differential distribution. On

the other hand, in a multiplicative scheme, they multiply the resummed cross section and

hence correctly include a whole new tower of N4LL terms αns ln2n−6(1/v) in the expanded

formula for the matched cumulative cross section ΣMAT.3 We stress that this, as pointed

out above, requires the knowledge of the N3LO cross section in the considered fiducial

volume. This is currently only known in the case of fully inclusive Higgs production, whose

results are presented in section 5.1. In the remaining studies of fiducial distributions, both

for Higgs in section 5.2, and for DY in section 6, the N3LO cross sections are approxi-

mated, as described at the beginning of this section, and hence the tower of N4LL terms

αns ln2n−6(1/v) in Σ is not fully included.

However, there is a drawback in using eq. (4.3) as is. Indeed, in the limit L̃→ 0, ΣN3LL

tends to the integral of L̃N3LL(µF ) (defined in eq. (3.11)) over ΦB, evaluated at L̃ = 0.

Therefore, the fixed-order result ΣN3LO at large v receives a spurious correction of relative

order α4
s

ΣMAT
mult (v) ∼ ΣN3LO(v)

(
1 +O(α4

s )
)
. (4.4)

3Notice that this does not imply that the whole class of N4LL terms is included. This would instead

require all terms of the form αns lnn−3(1/v) in ln Σ, eq. (1.1), which would predict correctly all terms

αns ln2n−6(1/v) and αns ln2n−7(1/v) in the expanded Σ.
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Despite being formally of higher order, this effect can be moderately sizeable in processes

with large K factors, such as Higgs production. There are different possible solutions to

this problem. In ref. [85] the resummed component (as well as the relative expansion) was

modified by introducing a damping factor as

ΣN3LL →
(

ΣN3LL
)Z

, (4.5)

where Z is a v-dependent exponent that effectively acts as a smoothened Θ function that

tends to zero at large v. This solution, however, introduces new parameters that control

the scaling of the damping factor Z (see section 4.2 of ref. [85] for details). In this article we

adopt a simpler solution, which avoids the introduction of extra parameters in the matching

scheme. To this end, we define the multiplicative matching scheme by normalising the

resummed prefactor to its asymptotic L̃ → 0 value. This is simply given by the integral

over the Born phase space ΦB of the L̃→ 0 limit of L̃N3LL (that we report in eq. (A.5))

ΣN3LL
asym. =

∫
with cuts

dΦB

(
lim
L̃→0
L̃N3LL

)
, (4.6)

where the integration over ΦB is performed by taking into account the phase-space cuts of

the experimental analysis.

We thus obtain

ΣMAT
mult (v) =

ΣN3LL(v)

ΣN3LL
asym.

[
ΣN3LL

asym.

ΣN3LO(v)

ΣEXP(v)

]
EXPANDED TO N3LO

, (4.7)

where

ΣN3LL(v) −−−−−→
v�Q/M

ΣN3LL
asym., (4.8)

and the whole squared bracket in eq. (4.7) is expanded to N3LO. This ensures that, in the

v � Q/M limit, eq. (4.7) reproduces by construction the fixed-order result, and no large

spurious higher-order corrections arise in this region. The detailed matching formulae for

the two schemes considered in our analysis are reported in appendix A.

In order to estimate the systematic uncertainty associated with the choice of the match-

ing scheme, a consistent comparison between the two will be performed in the next section

considering inclusive Higgs production as a case study.

Before we proceed with the results, we stress that in the remainder of this article we

will only focus on differential distributions rather than on cumulative ones. Therefore, at

the level of the spectrum, in our notation we will drop one order in the fixed-order counting,

so that the derivative of ΣN3LO will be referred to as a NNLO distribution, and analogously

for the lower-order cases.

In the next two subsections we perform some validation studies both for Higgs (sec-

tion 4.1) and DY (section 4.2) production, where we compare the fixed-order calculation

in the deep infrared regime to the expansion of the resummed result. Moreover, we discuss

the uncertainty associated with the choice of the matching scheme, and estimate it through

a comparison of the two prescriptions defined above for a case study.
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4.1 Validation of the expansion and matching uncertainty for Higgs produc-

tion

To perform the matching to fixed order, the resummation formula (3.3) is expanded up to

the third order in the strong coupling. To obtain the expanded results, one can directly

set the resolution scale δ to zero, since the cancellation of IRC divergences is manifest.

In figure 1 we show the comparison between the expansion of the N3LL resummed cross

section and the fixed order for the differential distribution of pH
t both at NLO (left plot) and

at NNLO (right plot). We remind the reader that at the level of the differential distribution

NNLO denotes the derivative of the N3LO cumulant, and similarly for lower orders.

In figure 1 we see that below pH
t ∼ 10 GeV the fixed-order and the expansion of the

resummation are in excellent agreement, and that the size of non-logarithmic terms in the

perturbative series remains moderate up to pH
t ∼ 50 GeV.

It is instructive to further investigate the difference between the fixed order and the

expansion of the resummation formula in the region of very small pH
t . In particular, we

consider the differential distribution

dΣ(pH
t )

d ln(pH
t /GeV)

, (4.9)

in order to highlight potential logarithmic differences in the pH
t → 0 region. A similar

validation of the NNLO pH
t distribution has been performed in ref. [96]. The result of our

comparison is displayed in the left panel of figure 2. The dashed green line shows the differ-

ence between the NNLO distribution and the O(α3
s ) expansion of the NNLL resummation.

As one expects, at small pH
t the two predictions for the cumulative distribution differ by a

double-logarithmic term (due to the absence of the NNLO coefficient functions and of the

two-loop virtual corrections in the NNLL result), which induces a linear slope at the level

of the differential distribution (4.9). When we include the N3LL corrections (solid red line),

the difference between the two curves tends to zero, hence proving the consistency between

the two predictions. For comparison, the difference between the NLO and NNLL (cyan

dot-dashed line) is also reported. The right panel of figure 2 shows the difference between

the NNLO coefficient and the corresponding expansion of the N3LL resummation at the

same order. The lower inset of the same figure shows the ratio of the above difference to

the NNLO coefficient, which helps quantify the relative difference.

As a check on the theoretical setup that will be used in the next sections, it is interesting

to compare the predictions for the pH
t spectrum obtained with the two matching schemes

defined in eqs. (4.2) and (4.7). In order to compare the multiplicative and additive schemes

on an equal footing, hence including the same ingredients for both schemes, in this section

we consider a matching to NNLO at the level of the cumulative cross section that will

allow us to estimate the systematic uncertainty associated with the choice of the matching

scheme. In this case the resummed cross section is defined as in eqs. (4.2) and (4.7) with

the obvious replacement of N3LO by NNLO. The result of the comparison is reported in

figure 3. We observe a very good agreement between the two matching schemes, which

is a sign of robustness of the predictions shown below. The lower panel of figure 3 shows

the relative uncertainty bands obtained within the two schemes, where each prediction is
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Figure 1. Comparison between the fixed-order transverse momentum distribution for Higgs boson

production at
√
s = 13 TeV at NLO (left) and NNLO (right) and the expansion of the N3LL

resummation formula given in eq. (3.3) to the corresponding order, i.e. O(α4
s ) and O(α5

s ) (namely

O(α2
s ) and O(α3

s ) relative to Born), respectively.
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Figure 2. Left: difference between the full NLO and NNLO pHt distribution and the expansion of

the NNLL and N3LL resummation formulae (3.3) to the respective perturbative order. Right: dif-

ference between the fixed-order NNLO coefficient, i.e. the O
(
α5
s

)
term alone, and the corresponding

coefficient obtained from the expansion of the N3LL resummation.

divided by its own central value. The theory uncertainties have a very similar pattern.

Given that the difference between the two schemes is always quite moderate with respect

to the scale uncertainty, in the following we decide to proceed with the multiplicative

prescription (4.7) as our default. We find analogous conclusions for DY production, and

therefore we choose not to report this further comparison here.

4.2 Validation of the expansion for Drell-Yan pair production

Similarly to the validation performed for inclusive Higgs production, in this section we

consider the difference between the NNLO differential distribution and the corresponding

expansion of the N3LL resummed calculation. In particular, we focus on the differential
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Figure 3. Comparison between additive and multiplicative matching schemes at N3LL+NLO for

the transverse momentum distribution for Higgs boson production at
√
s = 13 TeV. The lower

panel shows the relative uncertainty bands obtained within the two schemes.

distribution
dΣ(pZ

t )

d ln(pZ
t /GeV)

, (4.10)

in order to highlight potential logarithmic differences in the pZ
t → 0 region.

To perform the validation we consider 8 TeV pp collisions with NNPDF3.0 parton den-

sities [141], and we work within an inclusive setup requiring

80 GeV < M`` < 100 GeV, (4.11)

and setting the scales to µR = µF = MZ with xQ = Q/M`` = 1. This inclusive setup

is chosen as to avoid any potential complications due to the use of fiducial cuts, as well

as dynamical scales, that act differently on the fixed-order and resummed calculations.

Indeed, at variance with the case of the fixed-order calculation, in the resummation both

fiducial cuts and dynamical scales are always defined at level of the Born (i.e. Z + 0 jet)

phase space, which differs from the definition used in the fixed-order calculation unless

the extra QCD radiation is extremely soft or collinear to the beam. As a consequence,

employing fiducial cuts and/or dynamical scales may necessitate going to smaller values of

pZ
t in order to see a convergence of the fixed-order to the expansion of the resummation.

The results of the comparison are shown in figure 4. The left panel displays the

difference between the NLO distribution and the expansion of the NNLL resummation to

second order (cyan dot-dashed line), and between the NNLO distribution and the expansion

of the N3LL resummation to third order (solid red line). In both cases one expects the

differences to approach zero at small pZ
t , which is well confirmed by the plot. In addition,

we report on the difference between the NNLO distribution and the expansion of the

NNLL resummation to third order given by the dashed green line. Due to missing double-

logarithmic terms in the NNLL expansion, a non-vanishing slope is expected in the low-pZ
t

region, which is suggested by the green curve within statical uncertainties. In order to

single out the contribution of the NNLO correction, in the right panel of figure 4 we show
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Figure 4. Left: difference between the full NLO and NNLO pZt distribution and the expansion of

the NNLL and N3LL resummation formulae (3.3) to the respective perturbative order. Right: dif-

ference between the fixed-order NNLO coefficient, i.e. the O
(
α3
s

)
term alone, and the corresponding

coefficient obtained from the expansion of the N3LL resummation.

the difference between the NNLO coefficient alone, and the corresponding coefficient in the

expansion of the N3LL resummation. As expected, such a difference asymptotically tends

to zero for small pZ
t values.

In addition to the validation of the full pZ
t spectrum shown in figure 4, we have further

performed the analogous checks for the individual partonic channels which are summarised

in figure 5. To this end, we have computed the fixed-order NNLO contribution to the pZ
t

distribution down to pZ
t ∼ 0.5 GeV with uncertainties at the 10% level. We can clearly

observe that the fixed-order prediction is in excellent agreement with the prediction from

the resummed calculation for all partonic configurations. The respective bottom panels

in each figure show the difference between the two predictions, which for all channels

approach zero in the limit pZ
t → 0. This is an excellent cross-check of the two calculations,

which proves the good numerical stability of the NNLO distributions down to the deep

infrared regime.

5 Results for Higgs production in HEFT

In this section we present our predictions for the pH
t spectrum both in inclusive pp → H

production, and in the pp → H → γγ channel with fiducial cuts. The computational

setup is the same for both analyses, and all results presented below are obtained in the

heavy-top-quark limit. We consider collisions at 13 TeV, and use parton densities from the

PDF4LHC15 nnlo mc set [141–146]. The value of the parameter p appearing in the definition

of the modified logarithms L̃ is chosen considering the scaling of the spectrum in the hard

region, so as to make the matching to the fixed order smooth there. We set p = 4 as our

reference value, but nevertheless have checked that a variation of p by one unit does not

induce any significant differences.
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Figure 5. Validation between the fixed-oder coefficients (at NLO and NNLO) and the corre-

sponding expansion of the resummed prediction (at NNLL and N3LL) for the individual partonic

channels, with L = ln(pZt /GeV). Note that in contrast to figure 4, the curves labelled as “NNLL”

only comprises term of O
(
α2
s

)
and does not include higher-order O

(
α3
s

)
terms.

We set the central renormalisation and factorisation scales as µR = µF = mH/2, with

mH = 125 GeV, while the resummation scale is chosen to be xQ = Q/mH = 1/2. We

estimate the perturbative uncertainty by performing a seven-scale variation of µR, µF by a

factor of two in either direction, while keeping 1/2 < µR/µF < 2 and xQ = 1/2; Moreover,
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for central µR and µF scales, xQ is varied around its central value by a factor of two. The

quoted theoretical error is defined as the envelope of all the above variations. We discuss

the results for inclusive production in section 5.1, and then present the predictions for the

fiducial distributions in section 5.2.

5.1 Matched predictions for inclusive Higgs

We start by quantifying the size of the N3LL effects compared to NNLL resummation.

In the left plot of figure 6 we compare the differential distributions at N3LL+NLO and

NNLL+NLO in the small-pH
t region. The lower panel of the plot shows the ratio of both

predictions to the central line of the N3LL+NLO band, which corresponds to central scales

in our setup. We observe that N3LL corrections are very moderate in size, with effects

of order 2% on the central prediction in most of the displayed range, growing up to at

most 5% only in the region of extremely low pH
t . The central N3LL+NLO result is entirely

contained in the NNLL+NLO uncertainty band. On the other hand, the inclusion of the

N3LL corrections reduces the perturbative uncertainty for pH
t . 5 GeV.

The right plot of figure 6 shows the same comparison for the matching to NNLO.

The effect of the N3LL corrections is consistent with the previous order, with a percent-

level correction in most of the range, growing up to 5% at very small pH
t . Similarly,

the perturbative uncertainty is significantly reduced below 10 GeV with respect to the

NNLL+NNLO case. It is important to stress that in the NNLL+NNLO matching the fixed

order and the expansion of the resummation differ by a divergent term ∼ 1/pH
t at small pH

t .

The fact that the divergence is not visible in the distribution reported in the upper panel

of figure 6 is entirely due to the nature of the multiplicative scheme, which ensures that the

distribution follows the resummation scaling at small pH
t , therefore damping the divergence.

A multiplicative matching of N3LL resummation to NNLO was already shown in ref. [85],

where however no significant reduction in the uncertainty band at small pH
t was observed

in that case. This feature was due to the limited statistics of the fixed-order distributions

used in that analysis at small pH
t , whose fluctuations dominated the uncertainty band at

very small transverse momentum. An additive matching of N3LL to NNLO was recently

performed in ref. [96].

Next, we consider the comparison between the matched prediction and the fixed-order

one. Figure 7 shows this comparison for two different central scales. The left plot is

obtained with central µF = µR = mH/2, while the right plot is obtained with µF =

µR = mH . The rest of the setup is kept as described above. We observe that at µF =

µR = mH/2 the uncertainty band is affected by cancellations in the scale variation, which

accidentally lead to a small perturbative uncertainty. Choosing mH as a central scale (right

plot of figure 7) leads to a broader uncertainty band resulting in a more robust estimate of

the perturbative error. This is particularly the case for predictions above 50 GeV, where

resummation effects are progressively less important. We notice indeed that in both cases

the effect of resummation starts to be increasingly relevant for pH
t . 40 GeV.

In the following we choose mH/2 as a central scale. Nevertheless, we stress that a

comparison to data (not performed here for Higgs boson production) will require a study

of different central-scale choices.
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Figure 6. Comparison between different combinations of fixed-order (NLO and NNLO) and resum-

mation (NNLL and N3LL) for the transverse momentum distribution for Higgs boson production

at
√
s = 13 TeV. Left: NLO and Right: NNLO. The lower panel shows the ratio of predictions to

that obtained with N3LL resummation.
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Figure 7. Comparison of the transverse momentum distribution for Higgs boson production at

NNLO and N3LL+NNLO for a central scale choice of µR = µF = mH/2 (left) and µR = µF = mH

(right). In both cases, Q = mH/2. The lower panel shows the ratio to the N3LL+NNLO prediction.

To conclude, figure 8 reports the comparison between our best prediction

(N3LL+NNLO), the NNLL+NLO, and the NNLO distributions. The plot shows a very

good convergence of the predictions at different perturbative orders, with a significant

reduction of the scale uncertainty in the whole kinematic range considered here.

5.2 Matched predictions for fiducial H → γγ

Experimental measurements are performed within a fiducial phase-space volume, defined

in order to comply with the detector geometry and to enhance signal sensitivity. On the

theoretical side it is therefore highly desirable to provide predictions that exactly match

the experimental setup. The availability of matched predictions that are fully differential in
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Figure 8. Comparison of the transverse momentum distribution for Higgs boson production be-

tween N3LL+NNLO, NNLL+NLO, and NNLO at central scale choice of µR = µF = mH/2. The

lower panel shows the ratio to the N3LL+NNLO prediction.

the Born phase space also allows for a direct comparison to data without relying on Monte

Carlo modeling of acceptances. In this section we consider the process pp→ H → γγ and,

in particular, we focus on the transverse momentum of the γγ system in the presence of

fiducial cuts.

The fiducial volume is defined by the set of cuts detailed below [7]

min(pγ1t , p
γ2
t ) > 31.25 GeV, max(pγ1t , p

γ2
t ) > 43.75 GeV,

0 < |ηγ1,2 | < 1.37 or 1.52 < |ηγ1,2 | < 2.37, |Yγγ | < 2.37 , (5.1)

where pγ1t , pγ2t are the transverse momenta of the two photons, ηγi are their pseudo-

rapidities in the hadronic centre-of-mass frame, and Yγγ is the photon-pair rapidity. In

the definition of the fiducial volume we do not include the photon-isolation requirement,

since this would introduce additional logarithmic corrections of non-global nature in the

problem, spoiling the formal N3LL+NNLO accuracy of the differential distributions.4 We

consider on-shell Higgs boson production followed by a decay into two photons under the

narrow-width approximation with a branching ratio of 2.35× 10−3.

In figure 9 we show the comparison of the matched and the fixed-order predictions for

the transverse momentum of the photon pair in the fiducial volume, at different perturba-

tive accuracies: N3LL+NLO vs. NLO in the left panel, and N3LL+NNLO vs. NNLO in

the right one.

By comparing the two panels of figure 9 we notice a substantial reduction in the the-

oretical uncertainty in the medium-high-pγγt region, driven by the increase in perturbative

accuracy of the fixed-order computation; at very low pγγt , the prediction is dominated by

resummation, which is common to both panels. The pattern observed in the right panel

is very similar to what we obtained in the inclusive case in the left panel of figure 7. We

4However, we point out that photon-isolation criteria in this case are not aggressive, and therefore they

could be safely included at fixed order.
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Figure 9. Comparison of the transverse momentum distribution for Higgs boson production at√
s = 13 TeV in the fiducial volume defined by eq. (5.1) at N3LL+NLO and NLO (left) and

N3LL+NNLO and NNLO (right). The lower panel shows the ratio to the N3LL+NNLO prediction.

stress again that the particularly small uncertainty of the matched prediction is to a certain

extent due to the choice of central scales we adopt, namely µR = µF = mH/2, which suffers

from large accidental cancellations.

6 Results for Drell-Yan production

We now turn to the study of Drell-Yan pair production at the LHC. In this section we

present the results for the differential distributions of the transverse momentum of the DY

pair, as well as for the angular observable φ∗η.

We consider 8 TeV proton-proton collisions, and compare the resulting calculation for

the differential spectra with ATLAS data from ref. [101]. The fiducial phase-space volume

is defined as follows:

p`
±
t > 20 GeV, |η`± | < 2.4, |Y``| < 2.4, 46 GeV < M`` < 150 GeV, (6.1)

where p`
±
t are the transverse momenta of the two leptons, η`

±
are their pseudo-rapidities,

while Y`` and M`` are the rapidity and invariant mass of the di-lepton system, respectively.

All rapidities and pseudo-rapidities are evaluated in the hadronic centre-of-mass frame.

For our results, we use parton densities as obtained from the NNPDF3.0 set. The

reference value we set for the parameter p appearing in the modified logarithms is p = 4,

but we have checked that a variation of p by one unit does not induce any significant

differences.

We set the central scales as µR = µF = MT =
√
M2
`` + (pZ

t )2, while the central

resummation scale is chosen to be xQ = Q/M`` = 1/2. The theoretical uncertainty is

estimated through the same set of variations as for Higgs boson production.

The results for pZ
t and φ∗η are shown in the following two subsections. All plots have the

same pattern: the main panels display the comparison of normalised differential distribu-
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Figure 10. Comparison of the normalised transverse momentum distribution for Drell-Yan pair

production at NNLO (green), NNLL+NLO (blue) and N3LL+NNLO (red) at
√
s = 8 TeV in-

tegrated over the full lepton-pair rapidity range (0 < |Y``| < 2.4), in three different lepton-pair

invariant-mass windows. For reference, the ATLAS data is also shown, and the lower panel shows

the ratio of each prediction to data.

tions at NNLO (green), NNLL+NLO (blue), and N3LL+NNLO (red), respectively, overlaid

on ATLAS data points (black). Correspondingly, the lower insets of each panel show the

ratio of the theoretical curves to data, with the same colour code as in the main panels.

6.1 Matched predictions for fiducial pZ
t distributions

In figure 10 we display the normalised pZ
t distributions in which, in addition to the fiducial

cuts reported above, we consider three different lepton-pair invariant-mass windows:

low invariant mass : 46 GeV < M`` < 66 GeV,

medium invariant mass : 66 GeV < M`` < 116 GeV,

high invariant mass : 116 GeV < M`` < 150 GeV. (6.2)
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A comparison of the most accurate matched prediction with the fixed-order one

shows that the N3LL+NNLO prediction starts differing significantly from the NNLO for

pZ
t . 15 GeV, while for pZ

t > 20 GeV the NNLO is sufficient to provide a reliable de-

scription. Comparing matched predictions with different formal accuracy, we note that

the N3LL+NNLO curve has a significantly reduced theoretical systematics with respect to

that for NNLL+NLO, in the whole pZ
t range and for all considered invariant-mass windows.

The perturbative error is reduced by more than a factor of two at very low pZ
t , where the

prediction is dominated by resummation, and the leftover uncertainty in that region is

as small as 3–5%, and almost comparable with the excellent experimental precision. The

shape of the pZ
t distributions is also significantly distorted by the inclusion of higher or-

ders: the spectrum is harder than the NNLL+NLO result for pZ
t & 10 GeV, and the peak

is lower, with the N3LL+NNLO curves in much better agreement with data with respect

to NNLL+NLO in the whole kinematic range. Among the three considered windows, the

most accurately described at N3LL+NNLO are the ones at intermediate and high invariant

mass; the accuracy very slightly degrades for smaller invariant masses, however the theory

uncertainty never gets larger than 5–7% over the whole displayed pZ
t range.

In figure 11 we focus our analysis on the central lepton-pair invariant-mass window

defined in eq. (6.2) and show predictions for the normalised pZ
t distribution in six different

lepton-pair rapidity slices:

(a) 0.0 < |Y``| < 0.4, (b) 0.4 < |Y``| < 0.8, (c) 0.8 < |Y``| < 1.2,

(d) 1.2 < |Y``| < 1.6, (e) 1.6 < |Y``| < 2.0, (f) 2.0 < |Y``| < 2.4. (6.3)

The comments relevant to figure 10 by far and large apply in this case as well, with

our best prediction at N3LL+NNLO affected by an uncertainty that is of order 3–5% in

the whole pZ
t range, regardless of the considered rapidity slice. It is moreover in very

good agreement with the experimental data, hence significantly improving on both the

NNLL+NLO, in the whole pZ
t range, and the pure NNLO, in the pZ

t . 20 GeV region.

6.2 Matched predictions for fiducial φ∗η distributions

Figure 12 shows the φ∗η distribution for three different lepton-pair invariant-mass windows

as defined in eq. (6.2).

The pattern of comparisons among theoretical predictions is qualitatively similar to

what discussed for the pZ
t distribution. Resummation effects at N3LL+NNLO start be-

ing important with respect to the pure NNLO in the region φ∗η . 0.2; the shape of the

N3LL+NNLO distribution is significantly distorted with respect to the NNLL+NLO one

in a similar fashion as for the pZ
t case, and the uncertainty band is reduced by a factor of

two or more over the whole range and for all invariant-mass windows, down to the level of

3–5% (except at low invariant mass, where the uncertainty is 5–7%).

At variance with the pZ
t case, however, for φ∗η we note that the N3LL+NNLO prediction

describes data appropriately only in the central- and high- invariant-mass windows. In the

low-invariant-mass one, the prediction undershoots data in the medium-hard region, by

up to 5–7%. This tension was already observed in the fixed-order NNLO comparison [47].
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Figure 11. Comparison of the normalised transverse momentum distribution for Drell-Yan pair

production at NNLO (green), NNLL+NLO (blue) and N3LL+NNLO (red) at
√
s = 8 TeV in the

central lepton-pair invariant-mass window (66 GeV < M`` < 116 GeV) for six different lepton-pair

rapidity slices. For reference, the ATLAS data is also shown, and the lower panel shows the ratio

of each prediction to data.
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Figure 12. Comparison of the normalised φ∗η distribution for Drell-Yan pair production at NNLO

(green), NNLL+NLO (blue) and N3LL+NNLO (red) at
√
s = 8 TeV integrated over the full lepton-

pair rapidity range (0 < |Y``| < 2.4), in three different lepton-pair invariant-mass windows. For

reference, the ATLAS data is also shown, and the lower panel shows the ratio of each prediction

to data.

However, given the large statistical uncertainty of the data in this invariant-mass range, the

theory still provides a reasonable description of the measurement, and the N3LL+NNLO

prediction is in much better agreement with data than the NNLL+NLO in the whole range

of φ∗η, especially at low φ∗η.

In figure 13 we show the results for the φ∗η distributions in the central invariant-mass

window, see eq. (6.2), split into the six lepton-pair rapidity slices described in eq. (6.3).

Moreover, given the availability of experimental measurements, in figures 14 and 15 we also

provide predictions sliced in Y`` for the low- and high- di-lepton invariant-mass windows,

respectively. The three rapidity slices we focus on correspond to regions (a+b), (c+d), and

(e+f) of eq. (6.3).
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Figure 13. Comparison of the normalised φ∗η distribution for Drell-Yan pair production at NNLO

(green), NNLL+NLO (blue) and N3LL+NNLO (red) at
√
s = 8 TeV in the central lepton-pair

invariant-mass window (66 GeV < M`` < 116 GeV) for three different lepton-pair rapidity slices.

For reference, the ATLAS data is also shown, and the lower panel shows the ratio of each prediction

to data.
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Figure 14. Comparison of the normalised φ∗η distribution for Drell-Yan pair production at NNLO

(green), NNLL+NLO (blue) and N3LL+NNLO (red) at
√
s = 8 TeV in the low lepton-pair

invariant-mass window (46 GeV < M`` < 66 GeV) for three different lepton-pair rapidity slices.

For reference, the ATLAS data is also shown, and the lower panel shows the ratio of each predic-

tion to data.

The prediction subdivided in rapidity slices largely shares the same features as that

integrated over rapidity, which has been detailed in figure 12. In the central invariant-mass

window, data is accurately reproduced by the N3LL+NNLO prediction, regardless of the

considered rapidity slice, with a theoretical systematics in the 5% range or smaller. The

quality of the description slightly degrades at low invariant mass, and to a lesser extent

also at high invariant mass, mainly in the hard region, with a pattern similar to that

displayed by the rapidity-integrated spectrum. Overall, the uncertainty associated with

the N3LL+NNLO is of order of 5% or better, with a significant improvement both in the

shape and in the systematics with respect to NNLL+NLO.
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Figure 15. Comparison of the normalised φ∗η distribution for Drell-Yan pair production at NNLO

(green), NNLL+NLO (blue) and N3LL+NNLO (red) at
√
s = 8 TeV in the high lepton-pair

invariant-mass window (116 GeV < M`` < 150 GeV) for three different lepton-pair rapidity slices.

For reference, the ATLAS data is also shown, and the lower panel shows the ratio of each prediction

to data.

7 Conclusions

In this work we have presented precise predictions for differential distributions in Higgs

boson and Drell-Yan pair production at the LHC at N3LL+NNLO.

The resummation is performed in momentum space and is fully exclusive in the Born

phase space. For the matching to NNLO we adopted a multiplicative scheme, which al-

lows for the inclusion of the N3LO constant terms to the cumulative cross section. These

are currently unknown analytically, but can be included numerically once the total N3LO

cross section has been obtained. The uncertainty associated with the choice of the match-

ing scheme was estimated at NLO accuracy, for which an additive matching with the

same ingredients can be also performed. At this order the predictions obtained with the

two prescriptions are in very good agreement with each other, and the matching-scheme

uncertainty is under control within the perturbative error.
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For Higgs boson production in gluon fusion, we have considered the transverse-

momentum spectrum both at the inclusive level and in the H → γγ channel within ATLAS

fiducial cuts. In both cases, we observe that the resummation reduces the theoretical un-

certainties and stabilises the fixed-order result below pH
t ∼ 40 GeV. The effects of the

N3LL corrections with respect to NNLL+NNLO distributions are moderate in size, with

a percent-level correction in most of the range, growing up to 5% at very small pH
t . How-

ever, the perturbative uncertainty is reduced significantly below 10 GeV with respect to

the NNLL+NNLO case.

For Drell-Yan pair production, we have presented resummed predictions within ATLAS

fiducial cuts [101] both for the normalised pZ
t distributions and for the normalised φ∗η

distributions, and we have compared them to experimental data. In the case of transverse-

momentum distributions, the difference between the fixed-order and the N3LL+NNLO

result becomes significant for pZ
t < 10–15 GeV, while for pZ

t > 20 GeV the NNLO prediction

is sufficient to provide a reliable description of the experimental data. Comparing matched

results with different formal accuracy, we note that the N3LL+NNLO prediction has a

significantly reduced theoretical uncertainty with respect to that for NNLL+NLO, in the

whole pZ
t range and for all invariant-mass windows considered in our study.

For the φ∗η distribution, resummation effects start being important with respect to pure

NNLO in the region φ∗η . 0.2. At N3LL+NNLO the shape of the distribution is significantly

distorted with respect to that for NNLL+NLO (the spectrum is hardened in the tail, and

the height of the peak is lowered), and the uncertainty band is reduced by a factor of two

or more over the whole range of φ∗η and for most invariant-mass windows, down to the level

of 3–5%. An exception is at low invariant mass, where the uncertainty remains in the 5–7%

range. Unlike the pZ
t case, for φ∗η we note that the N3LL+NNLO prediction describes data

appropriately only in the central- and high-invariant-mass windows, while at low invariant

mass the prediction undershoots the data in the medium-hard region. The difference

between the central values of the data and theory here can be of the order of 10%, however

no significant tension with the data is observed, due to the sizeable statistical uncertainty

in the measurement. The agreement in these invariant-mass bins is much improved by the

inclusion of the N3LL+NNLO corrections with respect to the NNLL+NLO distribution.

Our results are an important step in the LHC precision programme, where accurate

predictions have become necessary for an appropriate interpretation and exploitation of

data. In order to improve on the predictions presented here, several effects must be con-

sidered.

For Higgs boson production via gluon fusion, the impact of other heavy quarks, no-

tably the bottom quark, becomes relevant at this level of accuracy and therefore must be

taken into account. Recent studies show that the effect of the top-bottom interference

at NNLL+NLO [31, 34] could lead to distortions of the transverse-momentum spectrum

that are as large as ∼ 5% with respect to the HEFT approximation, and the theory un-

certainties associated with this contribution are of O(20%). These effects are therefore of

the same order as the perturbative uncertainties presented here, and must be included for

a consistent prediction of the spectrum with 5–10% perturbative accuracy in the region

pH
t . mH .
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In the DY case, the situation is more involved given the smaller perturbative uncer-

tainty. At this level of precision, it is necessary to supplement the predictions obtained in

this work at small pZ
t and φ∗η with QED corrections and with an estimate of various sources

of non-perturbative effects that could be as large as a few % in this region. Similarly, the in-

clusion of quark masses may have a few-percent effect on the spectrum [147, 148], and more

precise studies are necessary in order to assess their impact precisely. Recent analyses [148]

suggest that the inclusion of these effects may have a non-negligible impact on observables

of current phenomenological interest, such as the determination of the W -boson mass [13].

Given that the size of these effects is of the order of the perturbative uncertainty of the

N3LL+NNLO prediction, a careful assessment will be necessary to improve further on the

results presented in this work.
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A Formulae for the matching schemes

In this appendix we report the necessary formulae to implement the matching schemes

defined in eqs. (4.2) and (4.7) and used in our study. We start by introducing a convenient

notation for the perturbative expansion of the various ingredients. We define

σN3LO
tot =

3∑
i=0

σ(i), ΣN3LO(v) = σ(0) +

3∑
i=1

Σ(i)(v), (A.1)

where

Σ(i)(v) = σ(i) + Σ̄(i)(v), Σ̄(i)(v) ≡ −
∫ ∞
v

dv′
dΣ(i)(v′)

dv′
. (A.2)

Moreover, we denote the perturbative expansion of the resummed cross section ΣNkLL as

ΣEXP(v) = σ(0) +

3∑
i=1

Σ
(i)

NkLL
(v). (A.3)
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With this notation, the additive scheme of eq. (4.2) becomes (for simplicity we drop the

explicit dependence on v in the following)

ΣMAT
add =ΣNkLL +

{
σ(1)+ Σ̄(1) − Σ

(1)

NkLL

}
+
{
σ(2)+ Σ̄(2) − Σ

(2)

NkLL

}
+
{
σ(3)+ Σ̄(3) − Σ

(3)

NkLL

}
,

(A.4)

where the three terms in curly brackets denote the NLO, NNLO and N3LO contributions

to the matching, respectively.

For the multiplicative scheme we need to introduce the asymptotic expansion ΣNkLL
asym.,

defined in eq. (4.6) (the definition for k 6= 3 is analogous with obvious replacements) in

terms of the L̃→ 0 limit of the coefficients L̃NkLL of eqs. (3.9), (3.10), (3.11), which read

L̃L̃→0
NLL =

∑
c,c′

d|MB|2cc′
dΦB

fc(µF , x1) fc′(µF , x2) ,

L̃L̃→0
NNLL =

∑
c,c′

d|MB|2cc′
dΦB

∑
i,j

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
fi

(
µF ,

x1

z1

)
fj

(
µF ,

x2

z2

)

×

{
δciδc′jδ(1− z1)δ(1− z2)

(
1 +

αs(µR)

2π
H̃(1)(µR, xQ)

)

+
αs(µR)

2π

(
C̃

(1)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′j}

)}
,

L̃L̃→0
N3LL =

∑
c,c′

d|MB|2cc′
dΦB

∑
i,j

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
fi

(
µF ,

x1

z1

)
fj

(
µF ,

x2

z2

)

×

{
δciδc′jδ(1− z1)δ(1− z2)

(
1 +

αs(µR)

2π
H̃(1)(µR, xQ) +

α2
s (µR)

(2π)2
H̃(2)(µR, xQ)

)
+
αs(µR)

2π

(
C̃

(1)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′, j}

)
+
α2

s (µR)

(2π)2

(
C̃

(2)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′, j}

)
+
α2

s (µR)

(2π)2

(
C̃

(1)
ci (z1, µF , xQ)C̃

(1)
c′j (z2, µF , xQ) +G

(1)
ci (z1)G

(1)
c′j (z2)

)
+
α2

s (µR)

(2π)2
H̃(1)(µR, xQ)

(
C̃

(1)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′, j}

)}
.

(A.5)

In the following formula the perturbative expansion of ΣNkLL
asym. is denoted as follows

ΣNkLL
asym. = σ(0) +

k−1∑
i=1

Σ(i)
asym.. (A.6)
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With this notation the matching formula (4.7) reads

ΣMAT
mult (v) =

ΣNkLL

ΣNkLL
asym.

[
σ(0) +

{
σ(1) + Σ̄(1) + Σ(1)

asym. − Σ
(1)

NkLL

}
(A.7)

+

{
σ(2) + Σ̄(2) + Σ(2)

asym. − Σ
(2)

NkLL
+

Σ
(1)
asym.

σ(0)

(
σ(1) + Σ̄(1)

)
+

(Σ
(1)

NkLL
)2

σ(0)
−

Σ
(1)

NkLL

σ(0)

(
σ(1) + Σ̄(1) + Σ(1)

asym.

)}

+

{
σ(3) + Σ̄(3) − Σ

(3)

NkLL
−

(Σ
(1)

NkLL
)3

(σ(0))2
+

(Σ
(1)

NkLL
)2

(σ(0))2

(
σ(1) + Σ̄(1) + Σ(1)

asym.

)
+

1

σ0

(
(σ(1) + Σ̄(1))(Σ(2)

asym. − Σ
(2)

NkLL
) + Σ(1)

asym.(σ
(2) + Σ̄(2) − Σ

(2)

NkLL
)
)

− 1

(σ(0))2
Σ

(1)

NkLL

(
Σ(1)

asym.(σ
(1) + Σ̄(1))+σ(0)(σ(2)+Σ̄(2)+Σ(2)

asym.−2Σ
(2)

NkLL
)
)}]

,

where, as above, we grouped the terms entering at NLO, NNLO, and N3LO within curly

brackets.

B Formulae for N3LL resummation

In this section we report the expressions for quantities needed for N3LL resummation of

transverse observables, that we have used throughout this article.

First of all we report our convention for the RG equation of the strong coupling

which reads

dαs(µ)

d lnµ2
= β(αs) ≡ −αs

(
β0αs + β1α

2
s + β2α

3
s + β3α

4
s + . . .

)
, (B.1)

where the coefficients of the β-function are

β0 =
11CA − 2nf

12π
, β1 =

17C2
A − 5CAnf − 3CFnf

24π2
, (B.2)

β2 =
2857C3

A + (54C2
F − 615CFCA − 1415C2

A)nf + (66CF + 79CA)n2
f

3456π3
, (B.3)

β3 =
1

(4π)4

{
CACFn

2
f

1

4

(
17152

243
+

448

9
ζ3

)
+ CAC

2
Fnf

1

2

(
−4204

27
+

352

9
ζ3

)
+

53

243
CAn

3
f + C2

ACFnf
1

2

(
7073

243
− 656

9
ζ3

)
+ C2

An
2
f

1

4

(
7930

81
+

224

9
ζ3

)
+

154

243
CFn

3
f + C3

Anf
1

2

(
−39143

81
+

136

3
ζ3

)
+ C4

A

(
150653

486
− 44

9
ζ3

)
+C2

Fn
2
f

1

4

(
1352

27
− 704

9
ζ3

)
+ 23C3

Fnf + nf
dabcdF dabcdA

NA

(
512

9
− 1664

3
ζ3

)
+n2

f

dabcdF dabcdF

NA

(
−704

9
+

512

3
ζ3

)
+
dabcdA dabcdA

NA

(
−80

9
+

704

3
ζ3

)}
, (B.4)
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with

dabcdF dabcdF

NA
=
N4
c − 6N2

c + 18

96N2
c

,
dabcdF dabcdA

NA
=
Nc(N

2
c + 6)

48
,

dabcdA dabcdA

NA
=
N2
c (N2

c + 36)

24
,

and CA = Nc, CF = N2
c−1

2Nc
, and Nc = 3.

We also provide expressions for the functions gi(λ) entering in the N3LL Sudakov

radiator eq. (3.6) and its derivative. We define

λ = αs(µR)β0L̃ . (B.5)

We have:

g1(λ) =
A(1)

πβ0

2λ+ ln(1− 2λ)

2λ
, (B.6)

g2(λ) =
1

2πβ0
ln(1− 2λ)

(
A(1) ln

1

x2
Q

+B(1)

)
− A(2)

4π2β2
0

2λ+ (1− 2λ) ln(1− 2λ)

1− 2λ

+A(1)

(
− β1

4πβ3
0

ln(1− 2λ)((2λ− 1) ln(1− 2λ)− 2)− 4λ

1− 2λ

− 1

2πβ0

(2λ(1− ln(1− 2λ)) + ln(1− 2λ))

1− 2λ
ln

µ2
R

x2
QM

2

)
, (B.7)

g3(λ) =

(
A(1) ln

1

x2
Q

+B(1)

)(
− λ

1− 2λ
ln

µ2
R

x2
QM

2
+

β1

2β2
0

2λ+ ln(1− 2λ)

1− 2λ

)

− 1

2πβ0

λ

1− 2λ

(
A(2) ln

1

x2
Q

+B(2)

)
− A(3)

4π2β2
0

λ2

(1− 2λ)2

+A(2)

(
β1

4πβ3
0

2λ(3λ− 1) + (4λ− 1) ln(1− 2λ)

(1− 2λ)2
− 1

πβ0

λ2

(1− 2λ)2
ln

µ2
R

x2
QM

2

)
+A(1)

(
λ
(
β0β2(1− 3λ) + β2

1λ
)

β4
0(1− 2λ)2

+
(1− 2λ) ln(1− 2λ)

(
β0β2(1− 2λ) + 2β2

1λ
)

2β4
0(1− 2λ)2

+
β2

1

4β4
0

(1− 4λ) ln2(1− 2λ)

(1− 2λ)2
− λ2

(1− 2λ)2
ln2 µ2

R

x2
QM

2

− β1

2β2
0

(2λ(1− 2λ) + (1− 4λ) ln(1− 2λ))

(1− 2λ)2
ln

µ2
R

x2
QM

2

)
, (B.8)

g4(λ) =
A(4)(3− 2λ)λ2

24π2β2
0(2λ− 1)3

+
A(3)

48πβ3
0(2λ− 1)3

{
3β1(1− 6λ) ln(1− 2λ) + 2λ

(
β1(5λ(2λ− 3) + 3)

+ 6β2
0(3− 2λ)λ ln

µ2
R

x2
QM

2

)
+ 12β2

0(λ− 1)λ(2λ− 1) ln
1

x2
Q

}
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+
A(2)

24β4
0(2λ− 1)3

{
32β0β2λ

3 − 2β2
1λ(λ(22λ− 9) + 3)

+ 12β4
0(3− 2λ)λ2 ln2 µ2

R

x2
QM

2
+ 6β2

0 ln
µ2
R

x2
QM

2
×(

β1(1− 6λ) ln(1− 2λ) + 2(λ− 1)λ(2λ− 1)

(
β1 + 2β2

0 ln
1

x2
Q

))

+ 3β1

(
β1 ln(1− 2λ)(2λ+ (6λ− 1) ln(1− 2λ)− 1)

− 2β2
0(2λ− 1)(2(λ− 1)λ− ln(1− 2λ)) ln

1

x2
Q

)}

+
πA(1)

12β5
0(2λ− 1)3

{
β3

1(1− 6λ) ln3(1− 2λ) + 3 ln(1− 2λ)

(
β2

0β3(2λ− 1)3

+ β0β1β2

(
1− 2λ

(
8λ2 − 4λ+ 3

))
+ 4β3

1λ
2(2λ+ 1)

+ β2
0β1 ln

µ2
R

x2
QM

2

(
β2

0(1− 6λ) ln
µ2
R

x2
QM

2
− 4β1λ

))

+ 3β2
1 ln2(1− 2λ)

(
2β1λ+ β2

0(6λ− 1) ln
µ2
R

x2
QM

2

)

+ 3β2
0(2λ− 1) ln

1

x2
Q

(
− β2

1 ln2(1− 2λ) + 2β2
0β1 ln(1− 2λ) ln

µ2
R

x2
QM

2

+ 4λ

(
λ
(
β2

1 − β0β2

)
+ β4

0(λ− 1) ln2 µ2
R

x2
QM

2

))

+ 2λ

(
β2

0β3((15− 14λ)λ− 3) + β0β1β2(5λ(2λ− 3) + 3)

+ 4β3
1λ

2 + 2β6
0(3− 2λ)λ ln3 µ2

R

x2
QM

2
+ 3β4

0β1 ln2 µ2
R

x2
QM

2

+ 6β2
0λ(2λ+ 1)

(
β0β2 − β2

1

)
ln

µ2
R

x2
QM

2
− 8β6

0

(
4λ2 − 6λ+ 3

)
ζ3

)}

+
B(3)(λ− 1)λ

4πβ0(1− 2λ)2
+

B(2)

(
β1 ln(1− 2λ)− 2(λ− 1)λ

(
β1 − 2β2

0 ln
µ2R

x2QM
2

))
4β2

0(1− 2λ)2

+
πB(1)

4β3
0(1− 2λ)2

{
4λ

(
λ
(
β2

1 − β0β2

)
+ β4

0(λ− 1) ln2 µ2
R

x2
QM

2

)

− β2
1 ln2(1− 2λ) + 2β2

0β1 ln(1− 2λ) ln
µ2
R

x2
QM

2

}
. (B.9)
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For Higgs boson production in gluon fusion, the coefficients A(i) and B(i) which enter the

formulae above are (in units of αs/(2π))

A
(1)
ggH = 2CA,

A
(2)
ggH =

(
67

9
− π2

3

)
C2
A −

10

9
CAnf ,

A
(3)
ggH =

(
−22ζ3 −

67π2

27
+

11π4

90
+

15503

324

)
C3
A +

(
10π2

27
− 2051

162

)
C2
Anf

+

(
4ζ3 −

55

12

)
CACFnf +

50

81
CAn

2
f ,

A
(4)
ggH =

(
121

3
ζ3ζ2 −

8789ζ2
162

− 19093ζ3
54

− 847ζ4
24

+ 132ζ5 +
3761815

11664

)
C4
A +

(
−4ζ3

9
− 232

729

)
CAn

3
f

+

(
−22

3
ζ3ζ2 +

2731ζ2
162

+
4955ζ3

54
+

11ζ4
6
− 24ζ5 −

31186

243

)
C3
Anf

+

(
−38ζ3

9
− 2ζ4 +

215

24

)
CACFn

2
f +

(
272ζ3

9
+ 11ζ4 −

7351

144

)
C2
ACFnf

+

(
−103ζ2

81
− 47ζ3

27
+

5ζ4
6

+
13819

972

)
C2
An

2
f + Γ

(4)
cusp,ggH + CA∆A(4),

B
(1)
ggH =− 11

3
CA +

2

3
nf ,

B
(2)
ggH =

(
11ζ2

6
− 6ζ3 −

16

3

)
C2
A +

(
4

3
− ζ2

3

)
CAnf + nfCF ,

B
(3)
ggH =

(
22ζ3ζ2

3
− 799ζ2

81
− 5π2ζ3

9
− 2533ζ3

54
− 77ζ4

12
+ 20ζ5 −

319π4

1080
+

6109π2

1944
+

34219

1944

)
C3
A

+

(
103ζ2

81
+

202ζ3
27

− 5ζ4
6

+
41π4

540
− 599π2

972
− 10637

1944

)
C2
Anf

+

(
−2ζ3

27
+

5π2

162
+

529

1944

)
CAn

2
f +

(
2ζ4 −

π4

45
− π2

12
+

241

72

)
CACFnf

− 1

4
C2
Fnf −

11

36
CAn

2
f + CA∆B(3). (B.10)

For Drell-Yan production, the coefficients read

A
(1)
DY =2CF ,

A
(2)
DY =

(
67

9
− π2

3

)
CACF −

10

9
CFnf ,

A
(3)
DY =

(
15503

324
− 67π2

27
+

11π4

90
− 22ζ3

)
C2
ACF +

(
−2051

162
+

10π2

27

)
CACFnf

+

(
−55

12
+ 4ζ3

)
C2
Fnf +

50

81
CFn

2
f ,

A
(4)
DY =

(
3761815

11664
− 8789ζ2

162
− 19093ζ3

54
+

121ζ2ζ3
3

− 847ζ4
24

+ 132ζ5

)
C3
ACF

+

(
−232

729
− 4ζ3

9

)
CFn

3
f +

(
215

24
− 38ζ3

9
− 2ζ4

)
C2
Fn

2
f

– 35 –



J
H
E
P
1
2
(
2
0
1
8
)
1
3
2

+

(
−31186

243
+

2731ζ2
162

+
4955ζ3

54
− 22ζ2ζ3

3
+

11ζ4
6
− 24ζ5

)
C2
ACFnf

+

(
−7351

144
+

272ζ3
9

+ 11ζ4

)
CAC

2
Fnf +

(
13819

972
− 103ζ2

81
− 47ζ3

27
+

5ζ4
4

)
CACFn

2
f

+ Γ
(4)
cusp,DY + CF∆A(4),

B
(1)
DY =− 3CF ,

B
(2)
DY =

(
−17

12
− 11π2

12
+ 6ζ3

)
CACF +

(
−3

4
+ π2 − 12ζ3

)
C2
F +

(
1

6
+
π2

6

)
CFnf ,

B
(3)
DY =

(
22ζ3ζ2

3
− 799ζ2

81
− 11π2ζ3

9
+

2207ζ3
54

− 77ζ4
12
− 10ζ5 −

83π4

360
− 7163π2

1944
+

151571

3888

)
C2
ACF

+

(
4π2 − 51

3
ζ3 + 60ζ5 −

2π4

5
− 3π2

4
− 29

8

)
C3
F +

(
34ζ3

3
+ 2ζ4 −

7π4

54
− 13π2

36
+

23

4

)
C2
Fnf

+

(
−2

3
π2ζ3 −

211ζ3
3
− 30ζ5 +

247π4

540
+

205π2

36
− 151

16

)
CAC

2
F

+

(
103ζ2

81
− 128ζ3

27
− 5ζ4

6
+

11π4

180
+

1297π2

972
− 3331

243

)
CACFnf

+

(
10ζ3
27
− 5π2

54
+

1115

972

)
CFn

2
f + CF∆B(3). (B.11)

The expressions for the coefficients A(i) and B(i) are extracted from refs. [62, 92, 93, 149] for

Higgs boson production and refs. [67, 92, 93, 150] for DY production. The N3LL anomalous

dimension A(4) receives a contribution from the four-loop cusp anomalous dimension Γ
(4)
cusp,

that has recently been computed numerically in ref. [95], and is given by

Γ
(4)
cusp,ggH ' 2555− 732.125nf + 27.5031n2

f + 0.460173n3
f ,

Γ
(4)
cusp,DY ' 1293.88− 323.244nf + 12.2236n2

f + 0.204522n3
f . (B.12)

The extra terms

∆A(4) = −64π3β3
0ζ3, ∆B(3) = −32π2β2

0ζ3, ∆H(2) =
16

3
πβ0ζ3, (B.13)

are a feature of performing the resummation in momentum space, and do not appear in

the anomalous dimensions in b space (see ref. [85] for details). The term ∆H(2) will appear

in the H̃ functions defined below.

We also present the expansion of hard-virtual coefficient function H in powers of the

strong coupling

H(M) = 1 +

2∑
n=1

(
αs(M)

2π

)n
H(n)(M), (B.14)

with

H
(1)
ggH(M) =CA

(
5 +

7

6
π2

)
− 3CF ,

H
(2)
ggH(M) =

5359

54
+

137

6
ln
m2
H

m2
t

+
1679

24
π2 +

37

8
π4 − 499

6
ζ3 + CA∆H(2) , nf = 5, (B.15)
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and

H
(1)
DY(M) =CF

(
5 +

7

6
π2

)
,

H
(2)
DY(M) =− 57433

972
+

281

162
π2 +

22

27
π4 +

1178

27
ζ3 + CF∆H(2) , nf = 5. (B.16)

The factors H̃ that appear in the luminosity prefactors (eqs. (3.9), (3.10), (3.11)) are

defined as

H̃(1)(µR, xQ) = H(1)(µR) +

(
−1

2
A(1) lnx2

Q +B(1)

)
lnx2

Q,

H̃(2)(µR, xQ) = H(2)(µR) +
(A(1))2

8
ln4 x2

Q −

(
A(1)B(1)

2
+
A(1)

3
πβ0

)
ln3 x2

Q

+

(
−A(2) + (B(1))2

2
+ πβ0

(
B(1) +A(1) ln

x2
QM

2

µ2
R

))
ln2 x2

Q

−

(
−B(2) +B(1)2πβ0 ln

x2
QM

2

µ2
R

)
lnx2

Q +H(1)(µR) lnx2
Q

(
−1

2
A(1) lnx2

Q +B(1)

)
.

(B.17)

Finally we report the expansion of the collinear coefficient functions Cab

Cab(z) =δ(1− z)δab +

2∑
n=1

(
αs(µ)

2π

)n
C

(n)
ab (z), (B.18)

where µ is the same scale that enters parton densities. The first-order expansion has been

known for a long time and reads

C
(1)
ab (z) = −P̂ (0),ε

ab (z)− δabδ(1− z)
π2

12
, (B.19)

where P̂
(0),ε
ab (z) is the O(ε) part of the leading-order regularised splitting functions P̂

(0)
ab (z)

P̂ (0)
qq (z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
, P̂ (0),ε

qq (z) = −CF (1− z),

P̂ (0)
qg (z) =

1

2

[
z2 + (1− z)2

]
, P̂ (0),ε

qg (z) = −z(1− z),

P̂ (0)
gq (z) = CF

1 + (1− z)2

z
, P̂ (0),ε

gq (z) = −CF z,

P̂ (0)
gg (z) = 2CA

[
z

(1−z)+
+

1−z
z

+ z(1−z)

]
+ 2πβ0δ(1−z), P̂ (0),ε

gg (z) = 0. (B.20)

The second-order collinear coefficient functions C
(2)
ab (z), as well as the G coefficients (see

eqs. (3.9), (3.10), (3.11)) for gluon-fusion processes are obtained in refs. [88, 90, 91], while

for quark-induced processes they are derived in ref. [89]. In the present work we extract

their expressions using the results of refs. [88, 89]. For gluon-fusion processes, the C
(2)
gq
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and C
(2)
gg coefficients normalised as in eq. (B.19) are extracted from eqs. (30) and (32) of

ref. [88], respectively, where we use the hard coefficients of eqs. (B.15) without the new term

∆H(2) in the H
(2)
g (M) coefficient.5 The coefficient G(1) is taken from eq. (13) of ref. [88].

Similarly, for quark-initiated processes, we extract C
(2)
qg and C

(2)
qq from eqs. (32) and (34)

of ref. [89], respectively, where we use the hard coefficients from eqs. (B.16) without the

new term ∆H(2) in the H
(2)
q (M) coefficient. The remaining quark coefficient function C

(2)
qq̄ ,

C
(2)
qq̄′ and C

(2)
qq′ are extracted from eq. (35) of the same article.

The coefficients C̃ in eqs. (3.9), (3.10), (3.11) are defined as

C̃
(1)
ab (z, µF , xQ) =C

(1)
ab (z) + P̂

(0)
ab (z) ln

x2
QM

2

µ2
F

,

C̃
(2)
ab (z, µF , xQ) =C

(2)
ab (z) + πβ0P̂

(0)
ab (z)

(
ln2

x2
QM

2

µ2
F

− 2 ln
x2
QM

2

µ2
F

ln
x2
QM

2

µ2
R

)

+ P̂
(1)
ab (z) ln

x2
QM

2

µ2
F

+
1

2
(P̂ (0) ⊗ P̂ (0))ab(z) ln2

x2
QM

2

µ2
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