A variational formulation of network games
with random utility functions

Mauro Passacantando and Fabio Raciti

Abstract We consider a class of games played on networks in which the utility
functions consist of both deterministic and random terms. In order to find the Nash
equilibrium of the game we formulate the problem as a variational inequality in a
probabilistic Lebesgue space which is solved numerically to provide approxima-
tions for the mean value of the random equilibrium. We also numerically compare
the solution thus obtained, with the solution computed by solving the deterministic
variational inequality derived by taking the expectation of the pseudogradient of the
game with respect to the random parameters.

Key words: Network Game; Nash equilibrium; Random utility function; Varia-
tional inequality.

1 Introduction

Games played on networks, are a class of non-cooperative games where players
are considered as nodes of a graph, and direct connections between any two play-
ers are represented by arcs connecting them. A basic assumption is that the utility
function of a given, arbitrary, player depends on his/her strategy, as well as on the
strategies of his/her neighbors in the graph. Therefore, it seems natural that this
setting has proved to be very useful in describing social or economic interactions
among various types of agents. In this regard it is interesting to investigate the two
classes of games with strategic complements and substitutes. Roughly speaking, in

Mauro Passacantando
Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy,
e-mail: mauro.passacantando@unipi.it

Fabio Raciti
Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125
Catania, Italy, e-mail: fabio.racitiQunict.it



2 Mauro Passacantando and Fabio Raciti

the first case, the incentive for a player to take an action increases when the num-
ber of his/her social contacts who take the action increases, while in the second
case this monotonic relation in reversed. As is usual in game theory, equilibrium
concepts are considered of paramount importance, and in this context, the study
of Nash equilibria is investigated with respect to the algebraic or graph-theoretic
properties of the network structure. This line of research has been initiated with
the seminal paper by Ballester et al. [1], who also used some centrality measures
to assess the importance of the various players, along the same lines of Katz and
Bonacich (see, e.g., [3]). The interested reader can find in the beautiful survey by
Jackson and Zenou [7] an account of the main concepts about network games, along
with a wealth of social and economic applications. Most of the scholars dealing with
this topic tackle the corresponding problems with classic game-theoretical methods,
such as best response analysis and fixed point theory. However, quite recently some
authors utilized the variational inequality approach to provide a deep analysis of
many aspects of these games and the interesting paper by Parise and Ozdaglar [12]
provides a self-consistent treatment of many interesting developments. The fact that
Nash equilibrium problems admit, under suitable hypotheses, an equivalent varia-
tional inequality formulation was recognized long time ago by Gabay and Moulin
[6]. It seems, though, that this powerful tool has not been fully applied to the topic of
network games. In this note we allow for the possibility that the utility functions also
depend on a random parameter @ of an abstract sample space €2, and then derive
the corresponding parametric variational inequality. However, our objective here is
to compute the mean value of the equilibrium, hence, we wish that the solution ad-
mits finite first and (possibly) second moments. In this regard, an integral variational
inequality in the probabilistic Lebesgue space L*(£, P) fits our requirements. This
variational inequality is then transformed to the image space of the random variables
involved so as to be numerically approximated. The theory of random (or stochas-
tic) variational inequalities has been developed by various authors in the last fifteen
years, with different methodologies. We follow here the so called L? approach and
refer the interested reader to [5, 8, 9] for a detailed account of the theoretical frame-
work and for several applications. For a description of different approaches, as well
as for other interesting developments, the reader can see [15], where the authors
also describe the so called expected value approach which we compare with our
approach by means of a worked out example.

The paper is organized as follows. In the following Section 2 we introduce the no-
tation, and briefly outline the basic network game classes. Moreover, we define the
random Nash equilibrium, and the associated variational inequality. In Section 3, we
describe in detail the linear-quadratic model, investigate the monotonicity property
of the relevant operator, and introduce the associated integral variational inequality.
In Section 4, we numerically solve a test problem. A short concluding section ends
the paper.
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2 Network game classes and variational inequality approach

We begin this section by recalling a few concepts and definitions of graph theory that
will be used in the sequel. We warn the reader that the terminology is not uniform
in the related literature. Formally, a graph g is a pair of sets (V,E), where V is the
set of nodes and E is the set of arcs, formed by pairs of nodes (v,w). Arcs which
have the same end nodes are called parallel, while arcs of the form (v,v) are called
loops. We consider here simple graphs, that is graphs with no parallel arcs or loops.
In our setting, the players will be represented by the n nodes in the graph. Moreover,
we consider here indirect graphs: the arcs (v,w) and (w,v) are the same. Two nodes
v and w are adjacent if they are connected by an arc, i.e., if (v,w) is an arc. The
information about the adjacency of nodes can be stored in the adjacency matrix
G whose elements g;; are equal to 1 if (v;,v;) is an arc, O otherwise. G is thus a
symmetric and zero diagonal matrix. Given a node v, the nodes connected to v with
an arc are called the neighbors of v and are grouped in the set N, (g). The number of
elements of N, (g) is the degree of v.

We now proceed to specify the game that we will consider. For simplicity, the
set of players will be denoted by {1,2,...,n} instead of {v,vs,...,v,}. We denote
with A; C R the action space of player i, while A = A; X --- X A,, and the notation
a = (a;,a—;) will be used when we want to distinguish the action of player i from
the action of all the other players. Let (€2, P) be a probability space. Each player i
is endowed with a payoff function

ui: 2 xA—>R

that he/she wishes to maximize for almost every elementary event @ € €, that is
P-almost surely.

The notation u;(®,a, g) is often utilized when one wants to emphasize the influ-
ence of the graph structure. The solution concept that we consider here is the Nash
equilibrium of the game, that is, we seek a random vector a¢* :  — A such that for
eachie {1,...,n}, and, P-as.:

*

u;(a;

(w),a" ;(®)) > ui(a;,a” ;(w)), Va; €A, €))
A peculiarity of network games is that the vector a_; is only made up of components
a;j such that j € Nj(g), that is, j is a neighbor of i.

We mentioned in the introduction that it is convenient to consider two specific
classes of games which allow a deeper investigation of the patterns of interactions
among players. For any given player i it is interesting to distinguish how variations
of the actions of player’s i neighbors affect his/her marginal utility. In the case where
the utility functions are twice continuously differentiable the following definitions
clarify this point.

Definition 1 We say that the network game has the property of strategic substitutes
if for each player i and P-a.s. the following condition holds:
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82u,~(w a; a,,')
— =<0, V(i,j): gij=1, VacA.
aajaal_ (l .]) gl/ a
Definition 2 We say that the network game has the property of strategic comple-
ments if for each player i and P-a.s. the following condition holds:

%ui(w,a;,a_; o
lcga;Qlail)>0’ V(i,j): gij=1,YacA.

Let us notice that we are requiring that each of the two properties specified above
holds for almost every @ € €2, i.e., we assume that the game class does not change
according to the random variable.

For the subsequent development it is important to recall that if the u; are contin-
uously differentiable functions on A, the Nash equilibrium problem is equivalent to
the variational inequality VI(F,A): find a* € A such that, P-a.s.

F(w,a"(@))" (a—a*()) >0, YacA, (2)
where

[F(w,a)]" := - (32:(0),61),...7322(60,61)) 3)

is also called the pseudo-gradient of the game, according to the terminology intro-
duced by Rosen [14]. For an account of variational inequalities the interested reader
can refer to [4, 10, 11]. We recall here some useful monotonicity properties.

Definition 3 F : 2 x R" — R" is said to be monotone on A iff:

[F(w,x) —F(@,y)] (x—=y) >0, VxyeA VoecQ.
If the equality holds only when x =y, F' is said to be strictly monotone.
A stronger type of monotonicity is given by the following

Definition 4 F : Q x R" — R" is said to be $-strongly monotone on A iff, for every
o, we can find §(w) > 0:

[F(0,x)—F(0.y)] (x—y) > B(o)|x—y|>,  Vxy€eA.

If we can find a B which does not depend on @ in the above definition, we say that
F is strongly monotone, uniformly with respect to .

For linear operators on R” the two concepts of strict and strong monotonicity
coincide and are equivalent to the positive definiteness of the Jacobian matrix of the
operator.

Conditions that ensure the unique solvability of a variational inequality problem
are given by the following theorem (see, e.g., [4, 10, 11]), which can be applied to
our framework for each (or almost each) fixed @.
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Theorem 1 If K C R" is a compact convex set and F : R" — R" is continuous on
K, then the variational inequality problem VI(F,K) admits at least one solution. In
the case that K is unbounded, existence of a solution may be established under the
following coercivity condition:

- [F(x) —F(xo)]" (x—xo)
][ —+eo [[x = xo|

= —|—00’

for x € K and some xy € K. Furtheremore, if F is strictly monotone on K, then the
solution is unique.

3 The random linear-quadratic model

In what follows A; can be either Ry for any i € {1,...,n}, or [0,L;], hence A = R,
or [0,L;] X ... x [0,L,]. The payoff of player i is given by:

1 n n
ui(®,a,g) = a(®)a; — Eaiz +o(0)a; ) gijaj—vai) aj, (4)
i=1 i=1

where o/(), (@) > 0, P-a.s. and ¥ is a positive real number. The term involving the
adjacency matrix describes the local complementarities (¢(®) > 0), which means
that the neighbors of each player contribute to positively enhance his/her strategy.
On the other hand, the term involving 7y has opposite sign, thus describing strategic

substitutes and it is of global nature.
The pseudo-gradient’s components of this game are easily computed as:

n

F(w,a,8) =(1+7)ai—o(®) Y gijaj—7Y aj—a(w) ic{l,...,n},
=1 =

which can be written in compact form as:
F(o,a,8) = [(1+7) - ¢(0)G+YW]a—a(w)l, )

where U is the n X n matrix whose entries are all equal to one and
1=(1,....,1)T eR™,

We will seek random Nash equilibrium points by solving the following varia-
tional inequality: for each , find a*(w) € A, such that for all @ € A and P-a.s. we
have:

[(1+7)a* () — 9(0)Ga" ()] (a —a" (@) + [Wa"(0)] (a—a*(w))

> a(w)1' (a—a(w)). ©

For the subsequent developments it is important to study the monotonicity properties
of the operator F in the above variational inequality.
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Lemma 1 Let F as in (5) and p(G) be the spectral radius of G. For all ® such
that (@) < (1+7v)/p(G), F is strictly monotone. Moreover, if @ is a real number
such that 0 <@ < (147)/p(G), then F is strongly monotone uniformly in the set
{w:0< @(w) <@}, in the sense that it exists 3 > 0 such that

[F(@,a) —F(0,d)] (a—d") > Blla—d|?
forall a,a’ € R" and for all © such that () € (0,9].

Proof 1t is sufficient to study the linear part of F. Thus, let us consider the expres-
sion:

(1+y)a—@(®0)Ga+yUa

and notice that for every ¥y > 0 the matrix YU is positive semidefinite, thus defin-
ing a monotone operator. Because the sum of a strongly (strictly) monotone and a
monotone operator gives a strongly (strictly) monotone operator, we seek conditions
which ensure the strong monotonicity of (14 y)I — ¢(®)G. To this end, let us no-
tice that G is a zero trace matrix, hence its largest eigenvalue is positive. Moreover,
it can be proved that the largest eigenvalue of G coincides with its spectral radius
p(G). It follows that, for each o, the minimum eigenvalue of (14 ¥)I — ¢(®)G is
given by 1+ 7y — ¢(@)p(G), which is positive whenever @(®)p(G) < 1+ 7. Thus,
for each w such that () € (0,(1+7y)/p(G)], we get:

a' [+ - (@)Gla>[1+y-(@)p(G)] |a]*.

Furthermore, let @ be a real number such that 0 < @ < (14 7)/p(G), and
B =1+7—0p(G). We then obtain that:

a'[(1+7)I - ¢(w)Gla > B|lal

holds for any @ such that 0 < (@) < @. O

We now proceed to provide an integral formulation of the variational inequal-
ity (6). Thus, we make the additional assumptions that the random variable «
has finite second order moment, that is, o € LZ(.Q,P), while ¢ € L*(Q,P), with
0< ¢ < ¢(w) <®. We can now consider the variational inequality problem of

finding a* € L2(Q, P), such that a* (@) € A, and Va € L>(Q, P) such that a(®) € A:

[ {11491 (@) - p(0)6a* (@) (a-a"(@))
Q
)
+ [yUa*(co)]T(a — a*(a)))}dP(a)) > /Q a(w)1' (a—a*(0))dP(o).
Remark 1 The theoretical investigation of the above variational inequality requires
tools from infinite dimensional functional analysis that are beyond the scope of this
paper. The interested reader can see [10] or the papers cited in the introduction for
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more details. Here, we only mention that under the relevant assumption of uniform
strong monotonicity of F' we get the existence and uniqueness of the solution a*.

We now transform the variational inequality (7) in the image space of the two
random variables involved. To this end, let y = a(w), z = ¢(®), and PP the proba-
bility induced by P on the image space of the two random variables. We thus have
to consider the variational inequality problem of finding a* € LZ(RZ,P) such that
a*(y,z) € A, and for each a € L*>(R?,P) with a(y,z) € A, we get:

[ [ {10+ a9~ 260 0,90 ) - 3:2)
e 0,9)] lal3) — " (22)] J dP(3,2) ®)
> [ ) —a 2] P,

We denote by Epla*(y,z)] the expected value of the solution with respect to the
probability measure PP on the image space of the random variables. The L? theory
of random variational inequalities provides an approximation procedure for the ex-
pected values and we refer again the interested reader to the references mentioned
in the introduction for a thorough treatment of this matter. In the subsequent sec-
tion we apply this approximation procedure to a worked out example. Moreover, we
compare our results with the ones obtained by solving the deterministic variational
inequality obtained by taking the expectation Ep[F (y,z)] of the pseudogradient with
respect to the random variables involved. This second solution concept is know as
the expected value approach and, in this case, leads in a straightforward manner
to solving a finite dimensional variational inequality, since the expectation of the
pseudogradient can be computed exactly. Nevertheless, as it will be illustrated by
the numerical examples of the following section, the two approaches can give quite
different results for certain parameter ranges.

4 Numerical experiments

In this section, we show some preliminary numerical experiments for the random
linear-quadratic network game described in Section 3.

Example 1. We consider the network shown in Fig. 1 (see also [2]) with 8 nodes
(players). The spectral radius of the adjacency matrix G is p(G) ~ 3.1019. We
set the congestion parameter ¥ = 0.1 and the upper bounds L; = 5 for any player
i=1,...,8. We assume that the random variable y = a.(®) varies in the interval
[1,10] with either uniform distribution (denoted by y ~ % (1,10)) or truncated nor-
mal distribution with mean 5.5 and standard deviation 0.9 (y ~ .47(5.5,0.9)), while
the random variable z = @(w) varies in the interval [0.01,0.34] with either uniform
distribution (z ~ % (0.01,0.34)) or truncated normal distribution with mean 0.175
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Fig. 1 Network topology of
Example 1.

Table 1 Convergence of the mean values of the approximate solution (col. 2-6) for y ~ %/ (1, 10)
and z ~ %/(0.01,0.34) and comparison with the solution given by the expected value approach
(col. 7-8).

N Expected value
Variables 32 64 128 256 512 approach sol. Diff.
X1 3.651 3.697 3.720 3.732 3.737 4.264 —12.34%
X 3.651 3.697 3.720 3.732 3.737 4.264 —12.34%
X3 3.651 3.697 3.720 3.732 3.737 4.264 —12.34%
X4 3.788 3.835 3.858 3.869 3.875 4.744 —18.33%
X5 3.270 3.311 3.332 3.342 3.348 3.504 —4.45%
X6 3.368 3.409 3.429 3.439 3.444 3.750 —8.14%
X7 3.140 3.179 3.198 3.208 3.213 3.269 —1.71%
Xg 3.140 3.179 3.198 3.208 3.213 3.269 —1.71%

and standard deviation 0.033 (z ~ .4#7(0.175,0.033)). Notice that (1 +7)/p(G) ~
0.3546, hence the assumption of Lemma 1 is satisfied and the operator F is uni-
formly strongly monotone.

The approximation procedure considers a uniform partition of both intervals
[1,10] and [0.01,0.34] into N subintervals and solves N finite dimensional vari-
ational inequalities for each N.

Table 1 reports in columns 2—-6 the convergence of the mean values of the approx-
imate solution obtained for different values of N, when the random variables y and
z vary in the corresponding intervals with uniform distribution. Moreover, column
7 shows the solution given by the expected value approach, while the last column
shows the percentage difference between columns 6 and 7. Notice that the difference
between the approximate solution found by the L? approach and the solution given
by the expected value approach is significant, especially for the first 4 components.

Tables 2, 3 and 4 reports the convergence of the mean values of the approximate
solution and its comparison with the solution given by the expected value approach
when y and z vary with different distributions. We remark that the difference be-
tween the approximate solution found by the L” approach and the solution given
by the expected value approach is rather small when both random variables y and z
vary with truncated normal distribution.
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Table 2 Convergence of the mean values of the approximate solution (col. 2-6) for
y ~ A4(5.5,0.9) and z ~ % (0.01,0.34) and comparison with the solution given by the expected
value approach (col. 7-8).

N Expected value
Variables 32 64 128 256 512 approach sol. Diff.
X 4.035 4.085 4.110 4.122 4.128 4.264 —3.18%
X2 4.035 4.085 4.110 4.122 4.128 4.264 —3.18%
X3 4.035 4.085 4.110 4.122 4.128 4.264 —-3.18%
X4 4.220 4.267 4.289 4.300 4.305 4.744 —-9.25%
X5 3.457 3.513 3.540 3.554 3.561 3.504 1.65%
X6 3.678 3.739 3.770 3.785 3.792 3.750 1.14%
X7 3.278 3.337 3.366 3.381 3.389 3.269 3.67%
X3 3.278 3.337 3.366 3.381 3.389 3.269 3.67%

Table 3 Convergence of the mean values of the approximate solution (col. 2-6) for y ~ % (1, 10)
and z ~ .#7(0.175,0.033) and comparison with the solution given by the expected value approach
(col. 7-8).

N expected value
Variables 32 64 128 256 512 approach sol. Diff.
X1 3.628 3.675 3.698 3.710 3.715 4.264 —12.86%
X 3.628 3.675 3.698 3.710 3.715 4.264 —12.86%
X3 3.628 3.675 3.698 3.710 3.715 4.264 —12.86%
X4 3.803 3.850 3.873 3.884 3.890 4.744 —18.01%
X5 3.259 3.301 3.322 3.333 3.338 3.504 —4.72%
X6 3.408 3.450 3.470 3.480 3.485 3.750 —7.05%
X7 3.156 3.195 3.215 3.225 3.230 3.269 —1.19%
Xg 3.156 3.195 3.215 3.225 3.230 3.269 —1.19%

Table 4 Convergence of the mean values of the approximate solution (col. 2-6) for y ~
A(5.5,0.9) and z ~ .#(0.175,0.033) and comparison with the solution given by the expected
value approach (col. 7-8).

N expected value
Variables 32 64 128 256 512 approach sol. Diff.
x| 4.062 4.132 4.167 4.184 4.192 4.264 —1.68%
X2 4.062 4.132 4.167 4.184 4.192 4.264 —1.68%
X3 4.062 4.132 4.167 4.184 4.192 4.264 —1.68%
X4 4.385 4.448 4478 4.493 4.500 4.744 —5.15%
X5 3.395 3.452 3.480 3.494 3.501 3.504 —0.07%
X6 3.648 3.710 3.741 3.757 3.765 3.750 0.41%
X7 3.207 3.259 3.286 3.299 3.306 3.269 1.15%

Xg 3.207 3.259 3.286 3.299 3.306 3.269 1.15%
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5 Conclusions and future research directions

In this chapter we investigated a model of network games with random utility
functions by means of its reformulation as a variational inequality in a probabilis-
tic Lebesgue space. We illustrated our methodology through a worked out exam-
ple which was numerically solved in order to approximate the mean value of the
unique random Nash equilibrium of the game. Furthermore the approximated mean
value thus computed was compared with the Nash equilibrium which is obtained
by solving a deterministic variational inequality derived by taking the expectation
of the pseudogradient of the game. Future research work could be performed with
nonlinear random utility functions. Another promising research perspective is the
variational inequality formulation of generalized network games (with shared con-
straints), which has been initiated in [13] and offers a wealth of potential theoretical
developments and possible applications.
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