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Abstract 24 

Calculating natural background levels (NBLs) in groundwater is vital for supporting a sustainable use of 25 

groundwater resources. Although NBLs are often assessed through a unique concentration value per groundwater body, 26 

where hydrogeochemical features are highly variable, spatial heterogeneity needs to be accounted for, leading to the 27 

calculation of so-called “local” NBLs. Despite much research devoted to the identification of the best performing 28 

techniques for local NBLs spatialization, a deep understanding of the link between local NBL values and their 29 

generating hydrogeochemical processes is often lacking and so is addressed here for the redox-sensitive species As, 30 

NH4, Fe and Mn in the groundwater bodies of Lombardy region, N Italy. 31 

Local NBLs were calculated by a tired approach involving the hybridization of preselection and probability 32 

plot methods. Since the spatial variability of the target species depends mainly on redox conditions, a redox zonation 33 

was performed using multivariate statistical analysis. A conceptual model was developed and improved combing factor 34 

and cluster analysis. Results showed that NBLs for arsenic were up to 291 µg/L, reached in groundwaters under 35 

methanogenesis, a condition related to the prolonged degradation of peat buried in aquifer sediments. Ammonium 36 

NBLs up to 6.62 mg/L were generated by the upwelling of fluids from deep sediments hosting petroleum systems; 37 

ammonium NBLs up to 4.48 mg/L were generated as the accumulation of by-products of peat degradation. Iron and 38 

manganese NBLs up to, respectively, 6.0 and 1.51 mg/L were generated by the oxidation of younger and less stable Mn 39 

and Fe oxides within river valleys, mostly the Po River valley. 40 

The evaluation of local NBLs, and their association to generating natural hydrogeochemical 41 

processes/conditions, achieves a step forward from the commonly used approach of a single NBL per groundwater 42 

body, improving decision-support tools for sustainable groundwater management and protection.   43 

 44 

Keywords: Multivariate analysis, arsenic, ammonium, iron, manganese, Lombardy region. 45 

 46 

 47 

1. Introduction 48 

 49 

A proper management and protection of groundwater quality is fundamental for a sustainable use of 50 

groundwater resources. It represents not only an environmental but also a significant societal challenge, requiring 51 

science and policy makers additional efforts and more intersectoral strategies. A groundwater quality characterization, 52 

which is fundamental for supporting a sustainable groundwater management, relies on a robust evaluation of the 53 
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hydrogeological and hydrogeochemical components of the studied groundwater body (GWB). In this view, discretizing 54 

the nature of dissolved undesired species is of high relevance for tracing a contamination that can eventually turn into a 55 

pollution, thus producing adverse effects on humans and ecosystems (Chapman, 2007). Disproportionately high 56 

concentration of dissolved chemical species can reflect lithological, geochemical and hydrogeological intrinsic GWB 57 

features rather than anthropogenic pressures. It is self-evident how a false estimation of natural contributions to 58 

groundwater contamination can inevitably lead to some drawbacks on groundwater management, e.g., an improper 59 

chemical status classification of a GWB (EC, 2000, 2006). Consequently, natural background levels (NBLs) are the 60 

mainstay for a proper groundwater management plan, especially when target chemicals naturally attain concentrations 61 

above regulatory limits. The EU BRIDGE project (Background Criteria for the Identification of Groundwater 62 

Threshold; Muller et al., 2006) set a methodological guidance, at the European level, for individual Member States to 63 

assess NBLs for dissolved chemicals in a specific GWB. According to EU regulations (EC, 2000, 2006), GWBs are 64 

defined as subdivisions of large regional aquifers so that they can be properly managed. The BRIDGE project proposed 65 

the estimation of NBLs based on the component separation or the preselection methods (Hinsby et al., 2008; Muller et 66 

al., 2006; Wendland et al., 2005). An alternative commonly used method is the probability plot (Sinclair, 1974). An 67 

ongoing EU project called HOVER (Hydrogeological processes and geological settings over Europe controlling 68 

dissolved geogenic and anthropogenic elements in groundwater of relevance to human health and the status of 69 

dependent ecosystems) is proposing a method for NBLs calculation based on lithological classification and land-use 70 

analysis (Lions et al., 2021; Voutchkova et al., 2021). Most of all these methods assess a single NBL value for the entire 71 

GWB. However, GWBs have frequently complex hydrogeology and hydrogeochemistry making a single NBL 72 

somewhat speculative (Reimann and Garrett, 2005). Many efforts on boosting more reliable NBLs have been 73 

documented by the scientific community with the aim of incorporating the intrinsic local heterogeneities characterizing 74 

an aquifer system (Biddau et al., 2017; Dalla Libera et al., 2017; Ducci et al., 2016; Filippini et al., 2021; Gao et al., 75 

2020; Guadagnini et al., 2020; Molinari et al., 2019), thus calculating variable NBLs within a GWB, that can be termed 76 

as “local NBLs” (Dalla Libera et al., 2018). Anyway, these research efforts were more dedicated toward identifying the 77 

best performing techniques for NBL spatialization rather than deeply understanding the link between NBLs values and 78 

natural hydrogeochemical processes determining them.    79 

This work presents the assessment of local NBLs on a regional scale through a tired approach which combines 80 

preselection and probability plot methods. This methodology was applied to naturally high groundwater concentrations 81 

of As, NH4, Fe and Mn in Lombardy region, N Italy. Since the spatial variability of these target species depends mainly 82 

on redox conditions, redox zonation was used as the main driver for local NBLs spatialization. The aim of this work is 83 
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to juxtapose a) the calculation of local NBLs with b) a thorough understanding of the natural processes which generated 84 

the NBLs.  85 

 86 

2. Materials and methods 87 

 88 

2.1. Preliminary conceptual model of the study area  89 

 90 

The study covers the entire Lombardy region (23,844 km2) in northern Italy (Fig. S1), in particular, its 30 91 

identified GWBs (Regione Lombardia, 2016), that span from Alpine valley aquifers (10 GWBs) to alluvial aquifers in 92 

the Po Plain (20 GWBs; Fig. S1 and S2). The latter are subdivided into shallow (13 GWBs), intermediate (6 GWBs) 93 

and deep (1 GWB) aquifer systems (Regione Lombardia, 2016; Fig. S1 and S2). Within the Po Plain alluvial system, 94 

each GWB can be considered as an open system, and thus groundwater (and solutes) exchanges can occur between 95 

laterally and vertically adjacent GWBs (Fig. S2). Main human uses of groundwater resources in the study area are 96 

related to drinking water supply, irrigation, animal husbandry, industry and domestic needs.  97 

The whole alluvial aquifer system of the Po Plain comprises Pleistocene sediments that prograded from W to 98 

E, overlain by Holocene fluvial sediments only within river valleys cut into the Pleistocene sediments (Garzanti et al., 99 

2011; Marchetti, 2002). The aquifers pass from a mono-layer structure mainly made of sands and gravels at north, i.e., 100 

the area called the higher plain, to a multi-layer structure at south, i.e., the lower plain, that is generated by the 101 

intercalation of silty-clayey into sandy layers (Giuliano, 1995; Ori, 1993; Perego et al., 2014). Silt and clay layers in the 102 

lower plain are frequently accompanied by buried peats (Amorosi et al., 2008; Miola et al., 2006). The transition from 103 

higher to lower plain is marked by numerous lowland springs, fed by groundwater outflows, that are called “springs 104 

belt” (Balestrini et al., 2021; Fumagalli et al., 2017; Fig. S1). The shallow aquifer system has a thickness >100 m at the 105 

foot of the Alps, passes to around 50 m in the higher plain and decreases to 20-30 m in the lower plain (Fig. S1). The 106 

shallow aquifers are unconfined in the higher plain and semiconfined/confined in the lower plain (Regione Lombardia, 107 

2016). Shallow groundwater generally flows from north to south in the higher plain and from north-west to south-east in 108 

the lower plain, however here, groundwater flow directions are altered by gaining rivers (Regione Lombardia, 2016; 109 

Fig. S2). The intermediate aquifer system has a thickness of around 50-100 m in the higher plain that progressively 110 

increases in the lower plain (Fig. S1) reaching 600 m in the south-east of the region, however here, only the first 250 m 111 

below ground surface (bgs) are tapped by water wells (Rotiroti et al., 2014b). The intermediate aquifers are 112 

semiconfined/confined in the higher plain and confined in the lower plain (Regione Lombardia, 2016). The deep aquifer 113 
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system is tapped by water wells only in the north-west part of the region where the thicknesses of the overlying 114 

intermediate and shallow aquifers are lesser (Fig. S1). The deep aquifer system is confined and its bottom is never 115 

reached by water wells (Regione Lombardia, 2016). Within the intermediate and deep aquifer systems, groundwater 116 

generally flows from north-west to south-east (Regione Lombardia, 2016; Fig. S2). The whole alluvial aquifer system 117 

of the Po Plain receives recharge waters (from local precipitation, losing rivers and irrigation) at the foot of the Alps and 118 

in the higher plain, whereas recharge from the surface is absent or very limited in the lower plain due to the widespread 119 

presence of surficial clay and silt layers (Rotiroti et al., 2019). Therefore, lower plain aquifers are mainly recharged by 120 

groundwater inflows from the upgradient higher plain aquifers. This configuration leads the higher plain aquifers to 121 

have (a) shorter groundwater flowpaths, and thus, shorter groundwater residence times, in the order of some tens of 122 

years (Musacchio et al., 2018), (b) higher vulnerability to anthropogenic activities (Azzellino et al., 2019; Stevenazzi et 123 

al., 2015) and (c) oxic groundwaters (Sacchi et al., 2013), where no contaminations by organic compounds occur. 124 

Conversely, the lower plain aquifers have longer groundwater flowpaths and residence times, up to 50k years 125 

(Martinelli et al., 2014; Zuppi and Sacchi, 2004). This promotes reducing conditions fueled by the degradation of the 126 

natural organic matter (OM) of the peat layers and the mobilization of its byproducts, such as NH4 (Böhlke et al., 127 

2006), and the byproducts of associated terminal electron accepting processes (TEAPs), such as Mn and Fe (Rotiroti et 128 

al., 2021). In this geochemical setting, As is mainly released to groundwater by the reductive dissolution mechanism 129 

(Ravenscroft et al., 2009; Rotiroti et al., 2021). Therefore, As, NH4, Fe and Mn in lower plain groundwaters have high 130 

concentrations of natural origin (exceeding the regulatory limits of 10, 500, 200 and 50 µg/L, respectively; D. Lgs. 131 

152/06, 2006; D. Lgs. 30/09, 2009). Anyway, some anthropogenic influences on their concentrations, generated by the 132 

degradation of anthropogenic organic compounds (e.g., organic leachate, hydrocarbons, etc.), were reported in some 133 

lower plain areas (Rotiroti et al., 2014a). Another important geochemical process operating in the lower plain and 134 

influencing its groundwater quality is the upwelling of the deep brines of the Po Plain (Conti et al., 2000) facilitated by 135 

some fault systems. Evidence of the operation of this process is reported for the south-west area of the region, the so 136 

called “Oltrepò Pavese” (Pilla et al., 2015, 2010), and for the south-east, the so called “Oltrepò Mantovano” (Bonori et 137 

al., 2000), in correspondence with, respectively, the fault systems named Emilia and Ferrara arcs (Castellarin et al., 138 

2006; Michetti et al., 2012; Scardia et al., 2015). 139 

The Alpine valley aquifers are alluvial, fluvioglacial and glacial aquifers that extend along and beneath main 140 

Alpine rivers, with a limited lateral extent (up to 1-2 km; Fig. S1). These aquifers are generally interconnected with the 141 

rivers and are unconfined, however, in some areas, they can have some local confinements generated by silt/clay lenses. 142 

The thickness of tapped aquifer by water wells is generally <100 m bgs. Groundwaters circulating in these aquifers are 143 
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mostly oxic, with very few exceptions where confining silt/clay lenses and buried OM promote reducing conditions, 144 

leading to high concentrations of reduced species (Fe, Mn and NH4). Within the GWBs of the Valtellina area (GWB 145 

IDs IT03GWBFITE, IT03GWBFMTE and IT03GWBFSTE in Fig. S2) hosting oxic groundwaters, As concentrations 146 

were reported to exceed the limit of 10 µg/L (Regione Lombardia, 2016). The As release mechanisms operating here 147 

are likely the alkali desorption and pyrite oxidation (Ravenscroft et al., 2009), as speculated by Peña Reyes et al. 148 

(2015). 149 

 150 

2.2. Available dataset  151 

  152 

Hydrochemical data were made available from the archive managed by the Regional Agency for 153 

Environmental Protection of Lombardy (ARPA), referring to the regional monitoring surveys performed between 2014 154 

and 2017. The regional monitoring network comprises 503 stations (wells and piezometers; Fig. S1), 451 of them tap 155 

groundwater from 27 out of 30 GWBs (3 Alpine GWBs have no monitoring stations; Fig. S1 and S2), whereas the 156 

remaining 52 monitoring stations tap local aquifers (Fig. S1), which are not defined as GWBs yet, and thus were then 157 

excluded from the NBLs calculation (see Sect. 2.3 for details). Lithologs for each station were available from ARPA 158 

and TANGRAM (Bonomi et al., 2014) databases. During the considered period (i.e., 2014-2017), 8 regional monitoring 159 

surveys were acquired from ARPA (one survey in 2014, two surveys in 2016 and 2017 and three surveys in 2015), 160 

leading to a total of 3383 samples for As, 3473 for Fe and Mn, and 3283 for NH4. In each sample, the analysis of target 161 

species (As, NH4, Fe and Mn; no metal speciation analyses were performed) was accompanied by the 162 

measurement/analysis of pH, water temperature (Temp), electrical conductivity (EC), dissolved O2 (DO), hardness as 163 

CaCO3, alkalinity as HCO3, Mg, Ca, Cl, K, Na, SO4, NO3 and PO4. Additional anthropogenic compounds 164 

(hydrocarbons, chlorinated solvents, pesticides, herbicides, etc.) were measured. The pH, temperature, EC and DO were 165 

measured in the field by ARPA. Samples for As, Fe and Mn analysis were treated in the field by 0.45 µm filtration and 166 

acidification. The chemical analyses were performed in the ARPA laboratories, which comply to ISO/IEC 17025, using 167 

standard procedures (ARPA Lombardia, 2021). Concerning the target species, the average analytical precision was ±2 168 

µg/L for As, ±138 µg/L for Fe, ±32 µg/L for Mn and ±146 µg/L for NH4. Data quality was evaluated verifying a charge 169 

balance error (CBE) for each sample below the threshold of 10%, according to European (Muller et al., 2006) and 170 

Italian (ISPRA, 2017) guidelines for estimating NBLs. Accordingly, samples with incomplete major ions analyses or 171 

having a CBE >|10|% were discarded. This operation led to retain a total of 2396 samples for As, 2506 for NH4 and 172 
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2508 for Fe and Mn. A summary of statistics for these samples is reported in Table S1. Censored data, i.e., 173 

concentrations below the limit of detection (LOD), were replaced with LOD/2. Although the percentage of censored 174 

data in the total dataset (58, 67, 58 and 55% for As, NH4, Fe and Mn, respectively; Table S1) exceeds the generic 175 

threshold of 15% recommended for the application of a simple substitution method (US EPA, 2006), it decreases (41, 176 

44, 28 and 18%, respectively) considering only the monitoring stations located in the lower plain (i.e., the area affected 177 

by naturally high concentrations of the target species; see Sect. 2.1) below the threshold of 50% recommended for the 178 

substitution method in the case, as the present case, of large dataset size (>20 samples) with highly skewed distribution 179 

(geometric standard deviation >3) and more than one LOD (Hewett and Ganser, 2007; Hornung and Reed, 1990). The 180 

adoption of different LODs among the eight monitoring surveys must be properly managed in the LOD/2 substitution to 181 

avoid the generation of trends at time and space scales that would be the result of a fictitious variability in 182 

concentrations. The strategy adopted here was to replace the <LOD concentrations with the half of the minimum LOD 183 

used for each parameter of interest (LODmin/2). In this way, concentrations <LOD were replaced with the value of 0.5 184 

μg/L for As, 5 μg/L for NH4, 2.5 μg/L for Fe and 0.5 μg/L for Mn.  185 

 186 

2.3. Methodology for deriving local NBLs 187 

 188 

The methodology used in this study to calculate local NBLs was consistent with recommendations of national 189 

guidelines (ISPRA, 2017; Parrone et al., 2021) and involved a tiered approach constituted by the following main steps 190 

(Fig. 1): 1) preliminary hydrochemical characterization 2) preselection, 3) redox zonation, 4) validation of hydrofacies 191 

identification, 5) outlier samples and temporal trends identification and treatment, 6) subpopulation identification by 192 

probability plot, 7) station outliers identification and treatment and 8) NBLs calculation. This approach can be viewed 193 

as a hybrid preselection-probability plot method. The preselection involves the use of indicator chemical species to 194 

discard samples with most likely anthropogenic influences and then the calculation of an upper limit (90th, 95th or 97th 195 

percentile) of the remaining dataset as NBL. The probability plot method is based on the identification of one or more 196 

inflection points on a probability graph, which separate different subpopulations representing background and human-197 

affected concentrations; the NBL is attributed as the concentration corresponding to one of the inflection points 198 

identified. The hybridization considered here is realized by, firstly, the use of the preselection (together with outliers 199 

and temporal trends identification and treatment) to extract a human impacts free dataset, secondly, the use of the 200 

probability plot to identify different subpopulations, which, at this point, are likely the expression of different natural 201 
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processes operating within a GWB and, thirdly, the calculation of an upper limit for each subpopulation identified (Fig. 202 

1). In this way, local NBLs are assessed.    203 

 204 

2.3.1. Preliminary hydrochemical characterization 205 

 206 

The preliminary hydrochemical characterization consisted in a first elaboration of the whole dataset 207 

(concentrations of target species and major ions) in order to improve the preliminary conceptual model (Fig. 1), 208 

addressing a) main hydrogeochemical features, b) spatial patterns and c) likely anthropogenic influences. The 209 

preliminary hydrochemical characterization was done using multivariate statistical analysis, more specifically, 210 

combining a factor analysis (FA) and a hierarchical cluster analysis (CA), i.e., the CA was applied to the extracted 211 

factors from an initial FA (Azzellino et al., 2019; Liu et al., 2019; Masiol et al., 2010; Wang et al., 2017). The 212 

advantage of a FA-CA combination is the dimensional (i.e., no. of variables) reduction of the CA input matrix. The FA 213 

was based on the calculation of the correlation matrix and was made on standardized data (i.e., mean = 0 and standard 214 

deviation = 1; Judd, 1980), then a Varimax rotation was applied (Kaiser, 1958). The selection of the significant factors 215 

was done on the basis of the eigenvalues matrix: only those factors with eigenvalues ≥1 were considered as significant 216 

factors (Kaiser, 1958). The FA was applied on an input matrix made of the 18 original variables (pH, Temp, EC, DO, 217 

hardness, alkalinity, Mg, Ca, Cl, K, Na, SO4, NO3, PO4, NH4, As, Fe, Mn) and 503 samples (all monitoring stations). 218 

Matrix values were calculated as mean values, for each variable, of the time series of each monitoring station 219 

(monitoring station time series averaging). Calculation of mean values was done to prevent missing data, which must be 220 

avoided in the FA input matrix. The mean, instead of the median, was preferred since it is more sensitive to extreme 221 

values, which can represent contaminations (an important information to be registered in the preliminary 222 

characterization). The CA was done by means of the Ward method (Ward, 1963) using the Euclidean distance (Cloutier 223 

et al., 2008). Similarly to the FA, a standardization of data was applied in the CA to guarantee an equal weight for each 224 

variable in calculating the Euclidean distance matrix. The CA was applied on an input matrix made of 5 variables (the 5 225 

significant factors obtained from the FA; see Sect. 3.1) and 503 samples. 226 

 227 

2.3.2. Preselection 228 

 229 

The preselection was applied to discard from the working dataset the samples likely affected by anthropogenic 230 

influences on the target species, identified by the exceedance of threshold concentrations for selected indicator species 231 
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of anthropogenic impact (Hinsby et al., 2008; Muller et al., 2006). The following indicator species and threshold 232 

concentrations were used: a) NO3 >37.5 mg/L, b) total hydrocarbons (THC, computed as an n-hexane equivalent) >50 233 

µg/L, c) sum of tetrachloroethene and trichloroethylene (PCE+TCE) >7.5 µg/L, d) Cl >45 mg/L and e) K >10 mg/L. 234 

These indicator species were analyzed in all samples, except for THC which was analyzed only in stations located 235 

where possible hydrocarbons spills can likely occur (e.g., urban and industrial areas). The lower number of analysis for 236 

THC is not considered to be able to bias the preselection results, since the probability to have detectable hydrocarbons 237 

in stations where THC was not measured (areas far from potential source of hydrocarbon spills) is very low. Nitrate was 238 

used as indicator of generic anthropogenic impacts, as recommended by national and European guidelines (ISPRA, 239 

2017; Muller et al., 2006), however, since it is non-conservative under reducing conditions (due to denitrification), it 240 

played an insignificant role in the identification of anthropogenic alterations in the highly reducing groundwaters 241 

affected by the target species (As, NH4, Fe and Mn). Obviously, the reduced aqueous species of nitrogen (i.e., NH4) 242 

cannot be used in the present work as indicator since it is one of the target species of the NBL calculation. The threshold 243 

concentration of NO3 (37.5 mg/L) was calculated as the 75% of the regulatory limit (50 mg/L), as recommended by 244 

national guidelines (ISPRA, 2017). The THC was used as specific indicator of anthropogenic influences on As, Fe and 245 

Mn concentrations, since the degradation of anthropogenic organic compounds can stimulate the reductive dissolution 246 

of Mn and Fe oxyhydroxides, releasing Mn, Fe and As to groundwater (Baedecker et al., 1993; Burgess and Pinto, 247 

2005). The threshold of 50 µg/L corresponds to the minimum detected concentration from the ARPA regional 248 

monitoring. Similarly to THC, the PCE+TCE was used as specific indicator of anthropogenic organic contamination. 249 

Although the reductive dechlorination process implies the use of PCE and TCE before Mn and Fe oxyhydroxides within 250 

the ecological succession of TEAPs (McMahon and Chapelle, 2008), thus inhibiting the release of Mn and Fe to 251 

groundwater, its final product (ethene) can be then oxidated boosting the reductive dissolution of Mn and Fe 252 

oxyhydroxides. Accordingly, high Mn and Fe concentrations were reported in PCE/TCE contaminated sites (e.g., Palau 253 

et al., 2014). The threshold concentration (7.5 µg/L) was calculated as the 75% of the national regulatory limit (10 254 

µg/L). Chloride was used as semi-specific indicator of anthropogenic influences on the target species, since it can trace 255 

generic anthropogenic impacts on groundwaters, but it is also a proxy of specific organic contaminations originated 256 

from sewage pipes, septic tanks, animal manure spreading and municipal solid waste landfill (MSWL). The use of Cl as 257 

indicator species was excluded for the samples with the brackish natural hydrofacies (see Sect. 3.2). The threshold 258 

concentration of Cl (45 mg/L) was calculated from measured Cl data (excluding the brackish natural hydrofacies), 259 

applying the interquartile range (75th percentile + 1.5 × (75th percentile − 25th percentile); result of 45.3 mg/L) and the 260 

mean+2σ (mean + 2 × standard deviation; result of 45.6 mg/L) methods (Parrone et al., 2019). Potassium was used as 261 
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specific indicator of MSWL leachate contamination due to its release from vegetal wastes (Naveen et al., 2017; Stefania 262 

et al., 2019). The threshold concentration of 10 mg/L was chosen according to the previous work by Rotiroti et al. 263 

(2015) on the calculation of groundwaters NBLs in the Aosta Valley region of Italy. As done for Cl, the use of K as 264 

indicator species was excluded for the samples with the brackish natural hydrofacies. 265 

 266 

2.3.3. Redox zonation and validation of hydrofacies identification 267 

 268 

Performing a redox zonation after the exclusion of likely human-impacted samples (Fig. 1) means the 269 

segregation of natural redox states. A zonation of natural redox conditions is extremely important in the NBL 270 

calculation for redox-sensitive species (reduced species, in the present study), since it allows to separate the dataset into 271 

likely affected (reduced) and unaffected (oxidized) samples, in terms of naturally high concentrations of target species 272 

(ISPRA, 2017; Muller et al., 2006). The redox zonation was performed by means of a CA, using the same methodology 273 

reported in Sect. 2.3.1. This CA considered the following 8 variables (redox-sensitive species) in the input matrix: DO, 274 

NO3, Mn, Fe, SO4, NH4, As, PO4. A multivariate approach, with respect to the typical approach based on algorithms 275 

combining threshold concentrations of various redox-sensitive species (e.g., Lions et al., 2021; McMahon and Chapelle, 276 

2008; Mendizabal and Stuyfzand, 2011), has the following main advantage: the definition of a priori absolute threshold 277 

concentrations is not needed, but instead, the segregation of the different redox zones is based on relative variations of 278 

the redox-sensitive species within the dataset. This could be particularly useful when the general quality of available 279 

data is not so high, e.g., due to different sampling or analytical techniques applied over time and space. However, the 280 

main disadvantage is the need to obtain necessarily clusters characterized by only redox processes. Another 281 

disadvantage is that a single cluster could represent more than one TEAP. Additionally, some limitations can emerge in 282 

the case of high concentrations of some redox-sensitive species, such as SO4, NH4, PO4, originated from human 283 

influences, rather than linked to the operation of redox processes (e.g., high NH4 indicates prolonged organic matter 284 

oxidation). However, these limitations can be overcome by a validation of obtained results (Fig. 1), as discussed below. 285 

The CA of redox sensitive species was applied on 417 samples, that represent the monitoring stations (initially 503) 286 

resulted from the preselection (437; see Sect. 3.2) from which it was subtracted the 11 stations with natural brackish 287 

hydrofacies (see Sect. 3.2), not considered in the redox zonation, and other 9 stations which resulted with no samples 288 

for PO4 (8 stations) and As (1 station) after the preselection (the CA input matrix cannot have missing data). 289 

The validation of hydrofacies identification consisted in checking the compliance of obtained redox 290 

hydrofacies (oxidized or reduced facies) from the redox zonation with a) the actual chemical composition of monitoring 291 
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stations and b) the conceptual model. The verification of the compliance of redox hydrofacies with the actual chemical 292 

composition of stations was needed in those (few) cases in which the belonging to a specific CA cluster was unrelated 293 

to main redox processes operating in the aquifers. Some practical cases are discussed in Sect. 3.2. The consideration of 294 

the conceptual model, in terms of aquifer types or presence of local-scale processes, such as groundwater/surface water 295 

interactions, or additional anthropogenic influences undetected by the preselection helped in this verification (Fig. 1). In 296 

broad terms, results from a mere data-driven technique (CA) were validated with the soft knowledge (conceptual 297 

model). This was needed to overcome the limitations related to the application of a CA for performing a redox zonation, 298 

as discussed above. 299 

The attribution of the natural hydrofacies was done for all the 503 monitoring stations, including also the 300 

stations discarded from the redox zonation (see above), to support the subsequent assessment of the chemical status of 301 

the GWBs (not presented in this work), according to European regulations (EC, 2006, 2000). The attribution of a 302 

reduced or oxidated facies to the discarded stations was done on the basis of the conceptual model evaluating station 303 

lithologs, type of anthropogenic contamination affecting the stations and station groundwater compositions; for 304 

example, natural oxidized facies were attributed to stations located in the higher plain with highly-permeable and 305 

unconfined aquifers but affected by organic compound contaminations which led to anoxic groundwaters.      306 

   307 

2.3.4. Outlier samples and temporal trends identification and treatment 308 

 309 

Differently to the previous steps which comprised all available parameters (target species and major ions), the 310 

identification and treatment of outlier samples and temporal trends were applied singularly to each target species dataset 311 

(Fig. 1). In general, this operation was done with the aim of eliminating samples and/or stations likely affected by 312 

human interferences not detected by the preselection. The idea is that impulsive anthropogenic influences may generate 313 

one or more outlier samples and/or a temporal trend within the time series of a monitoring station, whereas constantly 314 

impacted monitoring stations may constitute an outlier with respect to the surrounding monitoring points (outlier 315 

stations, treated in Sect. 2.3.5). The present step was performed on each monitoring station time series by means of the 316 

a) outlier samples identification and treatment, b) temporal trend identification and treatment, c) data distribution 317 

identification, d) upper limit calculation. 318 

Outlier samples were identified through the interquartile range approach (Wang et al., 2018). The small sample 319 

size for time series (8 surveys, Sect. 2.2) did not allow the application of statistical tests (e.g., Rosner, Dixon, Huber, 320 
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etc.). According to the interquartile range approach, upper (UO) and lower (LO) outliers were defined as follows 321 

(Tukey, 1972):   322 

- UO > 75th percentile + 1.5 × (75th percentile − 25th percentile), 323 

- LO < 25th percentile − 1.5 × (75th percentile − 25th percentile). 324 

 Once identified, a decision on retaining or discarding the outlier was made (outlier treatment). False outliers, 325 

considered as part of the natural background (i.e., hot spots), were retained whereas true outliers, such as data errors or 326 

samples likely affected by some inhomogeneity of sampling methods or human influences, were discarded. As a rule, 327 

outliers with target species concentrations below half of the national regulatory limit (i.e., <5, <250, <100 and <25 µg/L 328 

for As, NH4, Fe and Mn, respectively), were considered as false outliers. The presence of human influences, not 329 

detected by the indicator species used in the preselection, was evaluated on the basis of the station information available 330 

from the conceptual model (i.e., known human impacts on the station), whereas likely inhomogeneities of sampling 331 

methods were assessed through the co-presence of outliers for other parameters (target species and major ions) in the 332 

same sample. After true outliers exclusion, the presence of a temporal trend within monitoring station time series was 333 

evaluated by the Mann-Kendall test (Kendall, 1955; Mann, 1945). The test is applicable to time series with sample size 334 

≥3. However, considering our small sample size (≤8), which is below the recommended minimum of 10 to obtain a 335 

statistically acceptable trend identification with the Mann-Kendall test (Hu et al., 2020; Şen, 2017), inaccurate results 336 

may be obtained. To overcome this limitation, identified trends were checked against the conceptual model of the 337 

monitoring station (i.e., presence of known human impacts, co-variability of other target species or major ions, etc.). 338 

Where the temporal trend was likely related to anthropogenic influences, the whole monitoring station was discarded 339 

from the working dataset.  340 

Afterwards, a data distribution identification through the Shapiro-Wilk test (Shapiro and Wilk, 1965) was 341 

performed for each monitoring station. The test is applicable to sample size ≥3. Results of this test were related to the 342 

upper limit calculation of each station time series: if the time series consisted of a normal population, the maximum 343 

value was chosen as upper limit, if a non-normal population was identified, the 95th percentile was used as upper limit 344 

(Parrone et al., 2019). For populations with size <3, the maximum was used as upper limit. The choice of an upper limit 345 

as value representative of a monitoring station disagrees with European and national guidelines which recommend the 346 

use of the median (ISPRA, 2017; Muller et al., 2006). Anyway, we believe that the use of the median may lead to an 347 

underestimation of NBLs when the peak values of station time series are unequivocally related to natural processes, as it 348 

should be at this point of the methodology (i.e., after preselection and outlier samples treatment).    349 

 350 
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2.3.5. Subpopulation identification, outlier stations treatment and local NBLs calculation 351 

 352 

The subpopulation identification was applied on datasets made of the representative values of each monitoring 353 

stations (Fig. 1), calculated as described in Sect. 2.3.4. Only stations tapping GWBs were considered (Sect. 2.2). These 354 

datasets were built for each target species (As, NH4, Fe and Mn), aquifer type (Po Plain and Alpine valley aquifers; 355 

Sect. 2.1) and natural hydrofacies (oxidized, reduced and brackish, the last is present only in the Po Plain aquifers; Sect. 356 

3.2). Therefore, for each target species, five input datasets to the subpopulation identification were considered: 1) Po 357 

Plain oxidized, 2) Po Plain reduced, 3) Po Plain brackish, 4) Alpine valley oxidized and 5) Alpine valley reduced 358 

groundwaters. The subpopulation identification was made through probability plots, identifying inflection points which 359 

separate different subpopulations (Preziosi et al., 2014; Sinclair, 1974). At this point of the methodology (i.e., after 360 

preselection and outlier samples treatment; Fig. 1), these subpopulations reflect natural background. Different 361 

subpopulations can be considered as the expression of different natural processes operating in the aquifer to which 362 

different NBLs can be assessed. Considering that each point of these datasets represents a monitoring station (Fig. 1), 363 

identifying different data subpopulations means to detect a spatial variability of the NBLs, complying the concept of 364 

local NBL (Dalla Libera et al., 2017; Ducci et al., 2016; Molinari et al., 2019). The use of the probability plot method 365 

introduces a degree of subjectivity into the whole methodology for deriving the NBLs, since the choice of the inflection 366 

points is dependent on “the eyes of the investigator” (Kim et al. 2015; Preziosi et al., 2014). Anyway, probability plots 367 

are recommended when dealing with multimodal distributions (Kim et al. 2015; Nakic et al. 2020). Supporting the 368 

choice of the inflection points by the soft knowledge (conceptual model), the uncertainty on resulted NBLs introduced 369 

by the subjective interpretation of probability plots can be constrained (Preziosi et al., 2014).            370 

The probability plot can also identify some outliers, which here represent outlier stations. When identified, 371 

these outliers were evaluated through the conceptual model for their exclusion (true outliers) or retention (false 372 

outliers). This represented the last check for discarding likely human-affected data from the working dataset (Fig. 1). 373 

When the outlier station was generated by a single sample outlier in the time series, only this sample was discarded to 374 

avoid the exclusion of the entire monitoring station. Once true station outliers were discarded, the NBLs were calculated 375 

for each subpopulation identified using the following criteria (Parrone et al., 2019): 376 

- NBL = maximum of the subpopulation, when a normal distribution was identified (by the Shapiro-Wilk test), 377 

- NBL = 95th percentile of the subpopulation, when a non-normal distribution was identified.    378 

When the subpopulation size was <15, the NBL was calculated a) as the 90th percentile of the dataset formed by the 379 

aggregation of the single samples of all the monitoring stations constituting the subpopulation, or alternatively, b) 380 
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joining the subpopulation with another one with larger size (>15) and representing similar hydrogeochemical processes 381 

(ISPRA, 2017). 382 

 383 

3. Results  384 

 385 

3.1. Improved conceptual model 386 

 387 

The FA of the preliminary hydrochemical characterization identified 5 significant factors (FAC1-5) explaining 388 

a total cumulative variance of 74.2% (Table S2). FAC1 explained 27.7% of the total variance. The original variables 389 

representing FAC1 (i.e., loading value >|0.6|) were hardness, Ca, alkalinity, EC, Mg and SO4, thus FAC1 expresses 390 

major ions chemistry, which determines groundwater salinity (intended as the total amount of ions dissolved in 391 

groundwater). FAC2 explained 14.2% of the variance and was represented by Na and Cl, identifying brackish 392 

groundwaters. FAC3 explained 12.7% and was represented by As, PO4 and NH4. Since these three species can dominate 393 

after prolonged OM degradation (As is mainly released by the reductive dissolution mechanism; Rotiroti et al., 2021), 394 

FAC3 identifies groundwaters with highly reducing conditions. FAC4 explained 11.7% and was represented by Mn and 395 

Fe, thus identifying groundwaters with Mn- and Fe-reducing conditions. FAC5 explained 7.9% and was represented by 396 

Temp and DO, negatively correlated with each other, thus FAC5 identifies oxic groundwaters (please note the negative 397 

loading value for DO implying more oxic conditions with lower FAC5 scores). 398 

The combined CA showed that monitoring stations can be grouped into eight clusters (C1-8). The histogram of 399 

centroids for the eight clusters is shown in Fig. S3; average values of the 18 original variables for each cluster are shows 400 

in Table S3. Cluster C1 (136 monitoring stations) was mainly characterized by negative Z-scores of FAC5 and FAC1, 401 

therefore stations forming C1 tap groundwaters with oxic conditions and low salinity (average EC and DO of 386 402 

µS/cm and 8.1 mg/L; Table S3). Cluster C2 (148 stations) was characterized by negative Z-scores of FAC5 and positive 403 

Z-scores of FAC1, thus it groups stations tapping groundwaters with oxic conditions and higher salinity, generated by 404 

stronger anthropogenic influences (average EC, DO and NO3 of 616 µS/cm, 7.7 and 33.5 mg/L, respectively; Table S3). 405 

Cluster C3 (124 stations) is characterized by positive Z-scores of FAC5 and FAC4 (although low) and negative Z-406 

scores of FAC1, thus it groups stations tapping groundwaters with Mn-/Fe-reducing conditions and low salinity 407 

(average EC, Mn and Fe of 376 µS/cm, 63 and 178 µg/L, respectively; Table S3). Cluster C4 (31 stations) is 408 

characterized by positive and high Z-scores of FAC3, thus it groups stations tapping groundwaters with highly reducing 409 

conditions (average As and NH4 of 41 and 2034 µg/L; Table S3). Cluster C5 (13 stations) is characterized by positive 410 
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Z-scores of FAC2, thus it groups stations tapping brackish groundwaters (average EC and Cl of 1000 µS/cm and 114 411 

mg/L; Table S3). Cluster C6 (41 stations) is characterized by positive Z-scores of FAC5, FAC4 and FAC1, thus it 412 

groups stations tapping groundwaters with Mn-/Fe-reducing conditions and higher salinity, likely generated by 413 

anthropogenic influences (average Mn, Fe and Cl of 251, 876 µg/L and 23 mg/L, respectively; Table S3). Cluster C7 414 

groups only 8 stations and it is similar to C6 but having higher Mn and Fe (average of 750 and 4265 µg/L, respectively; 415 

Table S3). Cluster C8 groups only 2 stations and it is similar to C5 (brackish water) but having higher EC, Cl and, in 416 

addition, NH4 (average of 1889 µS/cm, 401 mg/L and 3539 µg/L, respectively; Table S3). In summary, three main 417 

hydrofacies can be identified: a) oxidized (C1 and C2), b) reduced (C3-4 and C6-7) and c) brackish (C5 and C8) 418 

groundwaters.  419 

Analyzing the spatial distribution of these clusters (Fig. S4) and integrating the information available from the 420 

preliminary conceptual model, an improved conceptual model, presented below, can be drawn (Fig. 1). The higher plain 421 

aquifers are generally oxic (C1 and C2). Less (or non) human-impacted groundwaters (C1) are limited to the north and 422 

north-west areas in the shallow aquifers, are prevalent in the intermediate aquifers and dominate the deep aquifers. By 423 

contrast, human-impacted groundwaters (C2), mainly affected by nitrate pollution (Martinelli et al., 2018), dominates 424 

the shallow aquifers, are less present in the intermediate aquifers and are sporadic in the deep aquifers. A few stations 425 

with reduced groundwaters (C3-4 and C6) were found in the higher plain in the shallow aquifers. This can be likely 426 

related to the presence of anthropogenic impacts rather than natural conditions (as confirmed by the preselection, see 427 

Sect. 3.2). The lower plain aquifers are generally anoxic (C3-4 and C6-7) with a trend from Mn-/Fe-reducing conditions 428 

(C3 and C6-7) at north-west to highly reducing conditions (C4) at south-east. Human-impacted groundwaters (C6-7) are 429 

conspicuous in the shallow, rare in the intermediate and absent in the deep aquifers. A few stations with oxic 430 

groundwaters (C2) were found in the lower plain in the shallow aquifers. This can be related to the presence of surficial 431 

windows of coarser deposits, as revealed by the analysis of station lithologs, allowing, locally, some recharge of oxic 432 

water from the surface. Stations with brackish groundwaters (C5 and C8) are mainly located in the southern area with 433 

only a few exceptions spread over the entire region. The 11 southern stations near the fault systems called Emilia and 434 

Ferrara arcs (Sect. 2.1, Fig. S5) were considered to tap natural brackish groundwater (see Sect. 2.1) whereas the 4 435 

northern stations far from these tectonic structures were considered affected by human impacts, generating 436 

anthropogenic brackish groundwater. In two stations (IDs PO098012NR0011 and PO017029NR0001; Fig. S5), the 437 

human impact was confirmed by the exceedance of regulatory limit for Cr(VI) and many anthropogenic compounds 438 

(PCE+TCE, trichloromethane, atrazine and bentazon). 439 

 440 
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3.2. Natural redox zones and hydrofacies 441 

 442 

The preselection led to discard a total number of 520 samples, more specifically, 318 samples were discarded 443 

for exceeding the threshold of NO3, 11 for THC, 167 for PCE+TCE, 98 for Cl and 7 for K (the sum of these samples is 444 

greater than the total number of excluded samples since some samples had multiple exceedances). Locations and 445 

number of discarded samples (total and partial for each indicator species) for each monitoring stations are shown in Fig. 446 

S6a-f. The monitoring stations with all samples discarded (discarded stations; Fig. S6g) were 66. Most of the discarded 447 

samples were in the higher plain. This agrees with the conceptual model which underlined the greater vulnerability to 448 

anthropogenic impacts of the higher plain aquifers due to their higher permeability and recharge rates. The number of 449 

samples resulted from the preselection (preselected samples) for each target species were 2655 for As, 2604 for NH4 450 

and 2739 for Fe and Mn (Table S1). 451 

The CA of the redox zonation identified six clusters of monitoring stations (C1redox-6redox). The histogram of 452 

centroids for the six clusters is shown in Fig. S7 whereas average values of the 8 original variables for each cluster are 453 

shows in Table S4. Cluster C1redox (221 monitoring stations) was characterized by positive Z-scores of DO and NO3, 454 

thus it groups stations tapping oxic groundwaters (average DO and NO3 of 8.0 and 18.4 mg/L; Table S4). Cluster C2redox 455 

(32 monitoring stations) was characterized by positive Z-scores of NO3, Mn, Fe and SO4; it can be considered to group 456 

stations tapping groundwaters ranging between denitrification and Mn-/Fe-reducing conditions (average NO3, Mn and 457 

Fe of 14.1 mg/L, 140 and 677 µg/L; Table S4). The increase of average SO4 from C1redox (26 mg/L) to C2redox (74 mg/L) 458 

can be due to the operation of denitrification coupled to iron sulfides oxidation (Schwientek et al., 2008; Vaclavkova et 459 

al., 2014; Zhang et al., 2009). Cluster C3redox (9 stations) is characterized by positive and high Z-scores of Mn and Fe, 460 

thus it can be considered to group stations tapping groundwaters with strong Mn-/Fe-reducing conditions (average Mn 461 

and Fe of 817 and 3256 µg/L; Table S4). Cluster C4redox (122 stations) is characterized by negative Z-scores of SO4; it 462 

can be considered to group stations tapping groundwaters dominated by SO4-reducing conditions due to the following 463 

reasons: a) average SO4 and Fe in C4redox (17 mg/L and 230 µg/L) are lower than C2redox (74 mg/L and 677 µg/L), 464 

marking the reduction of sulfate with the precipitation of iron sulfides (Rotiroti et al., 2021); b) average NH4 in C4redox 465 

(294 µg/L) is higher than C1redox and C2redox (19 and 128 µg/L, respectively) marking the progression of OM degradation 466 

and, accordingly, the hierarchical succession of TEAPs (i.e., from Mn-/Fe-reducing to SO4-reducing conditions); c) 467 

average As is still relatively low (5.7 µg/L), likely due to its coprecipitation in iron sulfides (Rotiroti et al., 2021).  468 

Cluster C5redox (31 stations) is characterized by positive Z-scores of NH4, As, PO4 and Fe; it can be considered to group 469 

stations tapping groundwaters dominated by methanogenesis since, under this process, a co-occurrence of these four 470 
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species (average NH4, As, PO4 and Fe of 2002, 22.7, 780 µg/L and 1.23 mg/L; Table S4) is expected (Rotiroti et al., 471 

2021). Cluster C6redox groups only 2 stations and it is similar to C5redox but having higher NH4, As, PO4 and Fe (average 472 

of 3392, 236, 1374 µg/L and 2.53 mg/L, respectively; Table S4). The spatial distribution of the clusters is shown in Fig. 473 

2. According to the conceptual model, oxic waters (C1redox,) dominated the higher plain aquifer whereas a progression to 474 

lower redox states (from C2redox to C6redox) can be seen in the lower plain groundwaters moving towards south-east and 475 

over depth, corresponding to increasing groundwater ages (Sect. 2.1). In summary, the CA attributed an oxidized 476 

natural hydrofacies (C1redox) to 221 stations and a reduced natural hydrofacies (C2-6redox) to 196 stations. 477 

The validation of hydrofacies identification led to change the hydrofacies attributed from the CA for 27 out of 478 

417 stations. In broader terms, this can be viewed as the error estimation of the redox zonation, that corresponds to the 479 

acceptable value of 6.5%. Stations which experienced the hydrofacies change are shown in Fig. 2. The change was from 480 

oxidized to reduced hydrofacies for 10 stations and from reduced to oxidized for 17 stations. In most cases, the change 481 

from reduced to oxidized facies was needed when the falling in C2redox (characterized by higher SO4) for a station with 482 

an actual oxidized groundwater composition (i.e., high DO, low Fe and Mn) was due to a relatively high SO4 of likely 483 

anthropogenic origin. On the other hand, most changes from oxidized to reduced facies were done when the falling in 484 

C1redox for a station with an actual reduced groundwater composition (i.e., high Fe and Mn) was due to an inaccurate 485 

DO measurement (e.g., without using a flow cell under low flow conditions) resulting in relatively high DO. 486 

After validation and attribution of natural hydrofacies to discarded stations (see Sect. 2.3.3 for details), the 487 

final hydrofacies attribution resulted in 293 stations with a natural oxidized hydrofacies, 199 stations with a natural 488 

reduced hydrofacies and 11 stations with a natural brackish hydrofacies. The spatial distribution of natural hydrofacies 489 

for stations tapping GWBs is shown in Fig. S8.         490 

 491 

3.3. Subpopulations and local NBLs 492 

 493 

Results of sample outlier and temporal trend identification are reported in Table S1. A few sample outliers (7 494 

out of 60 for As, 22 out of 79 for NH4, 13 out of 75 for Fe and 13 out of 71 for Mn) were considered as true outliers 495 

(errors or likely affected by human influences; according to criteria discussed in Sect. 2.3.4) and thus were discarded 496 

from the working dataset. A few stations were identified to have a temporal trend (4 for As and NH4, 3 for Fe and 13 for 497 

Mn) and a small portion of these (1 for As and Fe, 2 for NH4 and 3 for Mn) was considered as affected by human 498 

influences and discarded. Results of data distribution identification are reported in Table S1; it is noted that many 499 
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stations (207 out of 436 for As, 228 out of 435 for NH4, 198 out of 436 for Fe and 203 out of 434 for Mn) had an 500 

unidentifiable distribution due to a sample size <3. 501 

Probability plots, after station outlier treatment (Table S1), for stations tapping Po Plain reduced groundwaters 502 

are shown in Fig. 3. The plots for Po Plain oxidized and brackish and Alpine valley oxidized groundwaters are reported 503 

in Fig. S9-11; no plots were done for Alpine valley reduced groundwaters due to the small sample size (3; Table S1). 504 

Fig. 3 shows that three inflection points, identifying four subpopulations (Red1-4), can be observed for As, NH4 and Fe, 505 

whereas four inflection points (5 subpopulations; Red1-5) were observed for Mn. Table S5 shows the results of 506 

subpopulation identification for all the datasets. Two subpopulations were identified for Po Plain oxidized (Ox1-2) and 507 

brackish (Brck1-2) groundwaters, except for the former for As and NH4, for which three subpopulations were identified 508 

(Ox1-3). Concerning the Alpine valley aquifers, a unique population for each dataset was identified, except for As for 509 

oxidized groundwaters (2 subpopulations; Ox1-2) and Fe for reduced groundwaters (2 subpopulations; Red1-2). The 510 

subpopulation Ox2 for As in the Alpine valley aquifers is related to As mobilization mechanisms operating under 511 

oxidizing conditions, as previously reported by Peña Reyes et al. (2015). Table S5 reports also results of data 512 

distribution identification through the Shapiro-Wilk test and criteria used for calculating the NBL, depending on 513 

distribution type and subpopulation size (Sect. 2.3.5). Finally, Table S5 shows the resulted NBLs for each 514 

subpopulation. Spatial distributions of NBLs for As, NH4, Fe and Mn are shown in Fig. 4, 5, 6 and 7, respectively. 515 

 516 

4. Discussion 517 

 518 

4.1. Linking NBLs to redox evolution in Po Plain groundwaters  519 

 520 

The evolution of redox processes in lower Po Plain groundwaters along regional flowpaths can be inferred by 521 

combining results of redox zonation CA (Fig. 2) and regional groundwater flow (Fig. S2). In the shallow aquifers, 522 

denitrification/Mn-/Fe-reducing conditions (C2redox) dominate in upstream areas (i.e., just downstream of the springs 523 

belt and the piedmont of the Apennines) and pass to sulfate reducing (C4redox) along groundwater flow (Fig 2a); 524 

methanogenesis (C5redox) is found largely in the south-east area which is the terminal part of regional groundwater 525 

flowpaths (Fig 2a and S2). Strong Mn-/Fe-reducing conditions (C3redox) are mostly found in the shallow aquifers in the 526 

south-east and south-west areas, corresponding to Holocene river valleys, mostly the Po River valley (Fig 2a). This may 527 

indicate that strong Mn and Fe reduction can operate where younger, less stable and more reactive oxides are present. 528 

These oxides may be originated from the weathering of serpentinites and peridotites coming from the Apennines and/or 529 
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transported by the Po River (Pettine et al., 1994; Sacchi et al., 2020). In the underlying intermediate aquifers, sulfate 530 

reducing conditions (C4redox) dominate in upstream areas and pass to methanogenesis (C5redox) in the south-east area 531 

(Fig 2b). Interestingly, strong methanogenesis (C6redox) is not found in the far south-east, at the terminal part of the 532 

regional groundwater flowpath, but, instead, it is found in the middle of it (Fig. 2b), probably due to a higher content of 533 

peat in this area.  534 

The link between redox zonation and obtained NBLs is shown in Fig. 8a which plots the average NBL 535 

corresponding to each cluster of the redox zonation. Since the transition from C1redox to C6redox represents the succession 536 

from higher to lower redox states, as discussed in Sect. 3.2, Fig. 8a marks the variation of NBLs along the evolution of 537 

redox processes in Po Plain groundwaters. Average NBLs of NH4 progressively increase from 52 µg/L in C1redox, 538 

representing oxic conditions, to 3785 µg/L in C6redox, representing strong methanogenesis. The increase agrees with the 539 

accumulation of by-products of OM (in this case, peat) degradation (e.g., NH4) over decreasing redox states (Böhlke et 540 

al., 2006; Rotiroti et al., 2021). This interpretation helps also to decipher the spatial distribution of NH4 NBLs (Fig. 5), 541 

which increase towards the south-east according to the spatial distribution of redox states discussed above. It is noted 542 

that the highest NH4 NBL (6620 µg/L) is not related to a reduced hydrofacies but, instead, to a brackish hydrofacies. 543 

The maximum NH4 NBL found in the brackish groundwater is attributed to a high NH4 content featuring the upwelling 544 

fluids from deep (>1 km of depth) Po Basin sediments, hosting petroleum systems (Lindquist, 1999), as NH4 is excreted 545 

during hydrocarbon formation and maturation (Williams et al., 1992). Average NBLs of Fe (Fig. 8a) have a peak (4190 546 

µg/L) with strong Mn-/Fe- reducing conditions, then decrease (872 µg/L) during sulfate reduction and finally increase 547 

again (up to 1927 µg/L) during methanogenesis. This profile agrees with the evolution of groundwater Fe over 548 

decreasing redox states (Appelo and Postma, 2005; Rotiroti et al., 2021), more specifically, the decrease during sulfate 549 

reduction is attributed to the precipitation of iron sulfides whereas the increase with methanogenesis is related to the 550 

likely co-operation of Fe-oxides reduction and methanogenesis (Rotiroti et al., 2021). The spatial distribution of Fe 551 

NBLs (Fig. 6) reflects these hydrogeochemical features, leading to have the highest Fe NBLs (3200 and 6000 µg/L) in 552 

the shallow aquifers in the south-east and south-west areas, where Fe-oxide reduction is supposed to be stronger due to 553 

the likely presence of younger and less-stable oxides, as discussed above. Average NBLs of Mn (Fig. 8a) have a peak 554 

(1009 µg/L) with strong Mn-/Fe- reducing conditions, decrease (205 µg/L) during sulfate reduction and then remain 555 

quite stable (216 and 238 µg/L) during methanogenesis. This profile is consistent with the conceptual model developed 556 

for groundwater Mn in the Po Plain aquifer systems (Rotiroti et al., 2021): the peak of groundwater Mn generated by 557 

Mn-oxides reduction is then attenuated by the precipitation of rhodochrosite (MnCO3) which then reaches an 558 

equilibrium condition for precipitation/dissolution, leading to quite constant concentrations in groundwater. 559 
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Accordingly, the spatial distribution of Mn NBLs (Fig. 7) reflects that of Fe, with the highest NBLs (912 and 1514 560 

µg/L) reached in the shallow aquifers in the south-east and south-west areas. Average NBLs of As (Fig. 8a) have a first 561 

(smaller) peak (21 µg/L) with strong Mn-/Fe-reducing conditions, then decrease (16 µg/L) due to sulfate reduction and 562 

finally increase obtaining a second (higher) peak (up to 291 µg/L) during methanogenesis. This profile is consistent 563 

with the “two-peaks” conceptual model explaining the evolution of groundwater As during ongoing degradation of peat 564 

in the Po Plain aquifers (Rotiroti et al., 2021): the first peak is generated by As release from reductive dissolution of Fe-565 

oxides after prolonged Fe-oxide reduction and it is diminished by sulfate reduction with co-precipitation in iron 566 

sulfides; the second peak occurs with concomitant Fe-reduction and methanogenesis, during which process As is 567 

released with no or little attenuation, so it can reach the highest concentrations. The spatial distribution of As NBLs 568 

(Fig. 4) reflects the redox zonation resulting in the highest As NBLs (71 and 291 µg/L) in the south-east areas where 569 

methanogenesis dominates. 570 

  571 

4.2. Deciphering the subpopulations 572 

 573 

The approach used in this work is based on the assumption that the different data subpopulations identified 574 

through the probability plot method represent different processes, to which different NBLs can be assessed. Below, we 575 

try to decipher which redox process (or processes) each subpopulation can represent. Fig. 8b shows, for Po Plain 576 

reduced groundwaters, a histogram representing, for each subpopulation, the number of monitoring stations (%) per 577 

cluster of the redox zonation (C1-6redox) over the entire cluster size. Fig. 8b for As tells us that the subpopulation Red1 578 

groups As concentrations mainly obtained under denitrification, Mn-/Fe-oxides reduction (both represented by C2redox) 579 

or sulfate reduction (C4redox). In other words, Red1 groups lower As concentrations which can be generated by, at least, 580 

three different processes: a) the inhibition of As release (via reductive dissolution) due to the fact that denitrification 581 

outcompetes Mn-/Fe-oxides reduction; b) the re-sorption onto residual oxides, during Mn-/Fe-oxides reduction 582 

(McArthur et al., 2004; Welch et al., 2000); c) the co-precipitation into iron sulfides, during sulfate reduction. Red2 583 

represents As concentrations obtained with methanogenesis (C5redox) or strong Mn-/Fe- reducing conditions (C4redox), 584 

the latter can be related to the first As peak discussed in Sect. 4.1. Red3 groups As concentrations with methanogenesis 585 

(C5redox) and Red4 represents those concentrations obtained under strong methanogenesis (C5redox), the second As peak 586 

discussed in Sect. 4.1. Concerning NH4, Red1 groups NH4 concentrations obtained as the product of OM (peat) 587 

oxidation coupled to reduction reactions ranging from denitrification to sulfate reduction (C2-4redox). Red2 collects NH4 588 

concentrations reached with methanogenesis (C5redox), whereas Red3 and Red4 group those concentrations obtained 589 
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with strong methanogenesis (C6redox). Concerning Fe, Red1 groups lower Fe concentrations mainly generated under 590 

sulfate reduction (via iron sulfides precipitation; C4redox), Red2 collects Fe concentrations obtained with Fe-oxides 591 

reduction (C2redox) or methanogenesis (C5redox). Red3 groups Fe concentrations related to strong methanogenesis 592 

(C6redox) whereas Red4 collects those concentrations obtained under strong Fe-oxides reduction (C3redox). Concerning 593 

Mn, Red1 represents lower Mn concentrations obtained during denitrification, early stages of Mn-oxides reduction 594 

(both represented by C2redox) or precipitation of rhodochrosite that can take place under sulfate reduction (C4redox), 595 

although there is no causal relationship between them. Red2 collects Mn concentrations related to the 596 

precipitation/dissolution equilibrium of rhodochrosite occurring under strong methanogenesis (C6redox), methanogenesis 597 

(C5redox) or sulfate reduction (C4redox). Red3 groups Mn concentrations generated by Mn-oxides reduction (C2redox), 598 

whereas Red4 and Red5 collect those concentrations related to strong Mn-oxides reduction (C3redox). 599 

In summary, it emerges that, with such complex hydrogeochemical reactions involved, a single concentration 600 

subpopulation, identified through the probability plot method, can be the expression of different processes, all 601 

contributing to a specific concentration range of the target species. In other cases, mostly for high concentrations of the 602 

target species, a subpopulation can represent a single main process.   603 

 604 

4.3. To interpolate or not to interpolate 605 

 606 

The ideal final step of this work would be the spatial interpolation of obtained discrete (point) NBLs to produce a 607 

continuous distribution of NBLs over the entire aquifer system, taking full advantage of the concept of local NBL 608 

within a GWB. A continuous NBL distribution would be of great importance within the scope of contaminated site 609 

management and remediation because a NBL can substitute the reference level established by law for the identification 610 

of anthropogenic contaminations and/or remediation goals. Several spatial interpolation methods exist, falling into three 611 

main categories (Li and Heap, 2014): non-geostatistical interpolators (e.g., spline, nearest neighbor, etc.), geostatistical 612 

interpolators (e.g., ordinary kriging, cokriging, stratified kriging, etc.) and combined methods (e.g., regression kriging, 613 

etc.). Some methods can assist the interpolation of target (primary) variable with auxiliary information, in the form of, 614 

for example, secondary variables (e.g., cokriging method) or strata (i.e., stratified kriging). The choice of the most 615 

suitable method depends on the assumption and properties of each method, sample size or sample density and 616 

distribution of the primary variable, the availability of secondary information, etc. (Li and Heap, 2014). Beyond the 617 

choice of any method, one should be firstly questioning on the meaningfulness of expected results of the interpolation, 618 

on the basis of the characteristics of available data (e.g., sample quality, density and size of primary and secondary 619 
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variables) with respect to the nature and spatial structure of the processes driving the spatial variability of the target 620 

variable. Many previous studies addressed the interpolation of NBL within a GWB using different methods. Ducci et al. 621 

(2016) and Dalla Libera et al. (2018) used, respectively, indicator kriging and indicator cokriging to spatialize the 622 

probability of exceeding the NBL of target species. Dalla Libera et al. (2017) used collocated cokriging to obtain a 623 

piecewise distribution of As NBL. Molinari et al. (2019) used ordinary kriging with a stochastic approach, varying 624 

variogram models, to obtain a continuous distribution of As and NH4 NBLs. Anyway, in the preset work, we decided 625 

not to perform an interpolation of our point NBLs, the motivation is discussed below. Essentially, we think that the 626 

spatial density of our point NBLs is not sufficiently high to obtain meaningful results, particularly in the areas with high 627 

hydrogeological heterogeneity (i.e., springs belt and surficial higher-permeability windows in the lower plain) that 628 

produces steep or sharp spatial changes of redox states, and thus steep or sharp variations of our target redox-sensitive 629 

species. An accurate prediction of target species in these areas would require a very high data density (Li and Heap, 630 

2014), that is currently not available. The risk of obtaining inaccurate and meaningless results in the area surrounding 631 

the springs belt, where NBLs steeply pass from below the current regulatory limits (10, 500, 200 and 50 µg/L for As, 632 

NH4, Fe and Mn, respectively) in the higher plain to above it in the lower plain (Fig. 4-7), would be very high, 633 

complicating (rather than facilitating) the management of potentially anthropogenic contaminated sites: high (higher 634 

than regulatory limits) predicted NBLs in the higher plain hosting oxic groundwaters would underestimate 635 

anthropogenic contaminated sites, leading to environmental drawbacks, whereas low (lower than regulatory limits) 636 

predicted NBLs in the lower plain hosting reduced groundwaters would overestimate anthropogenic contaminated sites, 637 

overcommitting in vain public offices in charge of contaminated sites management and generating unnecessary costs for 638 

site holders. A strategy to overcome this issue would be the use of the cokriging method considering secondary 639 

variable(s) with sample density high enough to catch the steep variability in the springs belt area. Possible secondary 640 

variables for the interpolation of As and NH4 NBLs would be the hydraulic conductivity of shallow layers (e.g., first 5 641 

m of depth) and/or the content of OM (peat) in the subsurface, that can be derived from lithologs, that, importantly, are 642 

likely better sampled than the primary variables. Theoretically, these two secondary variables would be able to catch the 643 

spatial structure of As and NH4 NBLs, i.e., the difference between higher (high-conductive shallow layers) and lower 644 

(low-conductive shallow layers) plains and, within the lower plain, the trend of increasing NBLs with increasing peat 645 

content. Anyway, these secondary variables would not be able to represent the other important process affecting As and 646 

NH4 NBLs, that is the upwelling of deep brine leading to brackish groundwaters with higher (than surrounding lower 647 

plain areas) NH4 NBLs (as discussed in Sect. 4.1) and lower As NBLs (Fig. 4). So, this prevents an accurate 648 

interpolation of the NBLs over the entire study area. The spatial variability of Fe and Mn NBLs is governed by different 649 
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processes (highest NBLs with strong Mn-/Fe- reducing conditions mainly occurring within river valley sediments, as 650 

discussed in Sect. 4.1), so stratified kriging (considering Holocene river valleys as a stratum) rather than cokriging 651 

would be more suitable. Anyway, a stratified kriging may not be able to properly address the issue of low sample 652 

density in the highly variable area surrounding the springs belt, as discussed above. So, in conclusion, none of the 653 

methods considered above seem suitable for the interpolation of our point NBLs (for the reasons discussed above), so 654 

the interpolation on a regional scale was not performed in this study. This choice agrees with the previous work of 655 

Biddau et al. (2017) that calculated point NBL at regional scale (Sardinia region, Italy). Future works will be addressed 656 

on the interpolation of NBLs of these target species in smaller pilot areas with suitable characteristics (sufficient sample 657 

density of primary and secondary viarable(s) with respect to the nature and spatial structure of processes governing the 658 

spatial variability of the primary variable) for a meaningful interpolation.             659 

 660 

5. Conclusions 661 

 662 

 The present work assessed local NBLs within 27 GWBs in Lombardy region, N Italy, for groundwater As, 663 

NH4, Fe and Mn. These NBLs were then associated to corresponding natural hydrogeochemical processes/conditions 664 

that generated/favored them. More specifically, for the lower Po Plain aquifers, we found that: 665 

• natural concentrations of As up to ~300 µg/L can be reached in groundwaters under methanogenesis, a 666 

condition related to the prolonged degradation of peat buried in sediments of the lower plain; 667 

• natural concentrations of NH4 up to ~6.6 mg/L can be generated by the upwelling of fluids from deep 668 

sediments hosting petroleum systems; natural concentrations of NH4 up to ~4.4 mg/L can be generated as the 669 

accumulation of by-products of peat degradation; 670 

• natural concentrations of Fe and Mn up to, respectively, ~6 and ~1.5 mg/L can be generated by the oxidation 671 

of younger (Holocene) and less stable Mn and Fe oxides within river valleys.   672 

Concerning methodological aspects, the following key points were highlighted: 673 

• cluster analysis of redox-sensitive species seems a valid alternative to algorithms combining threshold 674 

concentrations for performing redox zonation – advantages: segregation of redox zones based on relative 675 

variations of the redox-sensitive species, without using a priori absolute threshold concentrations; 676 

disadvantages: a single cluster could represent more than one TEAP; a validation of obtained results is needed. 677 

• hybridization of preselection and probability plot methods leads to calculate local NBLs – probability plots of 678 

human impact free datasets, obtained through preselection (together with outliers and temporal trends 679 
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treatment), lead to identify different natural background subpopulations, linked to different natural processes 680 

operating within a GWB, so leading to different (local) NBLs within a GWB; 681 

• spatial interpolation of local point NBLs is recommended only when available data characteristics (sample 682 

quality, density and size of primary and secondary variables), nature and spatial structure of processes driving 683 

the spatial variability of the target variable, and assumption/properties of the suitable interpolation method 684 

allow to obtain meaningful results; 685 

• conceptual model has a fundamental role in calculating NBLs and interpreting/explaining them – the 686 

understanding of the main processes driving mobilization and spatial variability of the target species is key for 687 

accurately assessing NBLs; the conceptual model should be viewed as an evolving object along the 688 

methodological flow: a preliminary conceptual model, derived from literature data/info, should be developed 689 

through data-driven techniques (e.g., multivariate analysis) to improve the knowledge of factors/processes 690 

driving target species in the specific study area; finally, a robust conceptual model can support the 691 

interpretation of each calculated NBL, possibly leading to attributing to each NBL the likely natural generating 692 

processes. 693 

In conclusion, this work underlined that the evaluation of site- and redox- specific NBLs achieves a step forward from 694 

the commonly used approach of a single NBL per GWB, helping to improve decision-support tools for integrated 695 

groundwater resources management and protection. 696 
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 980 

Figure 1. Flowchart of the tired approach composing the hybrid preselection-probability plot method for assessing local 981 

NBLs. 982 

 983 
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 984 

Figure 2. Results of CA of the redox zonation and stations which experienced the hydrofacies change during validation 985 

for a) shallow Po Plain aquifers (SPPA), b) intermediate Po Plain aquifers (IPPA), c) deep Po Plain aquifers (DPPA) and 986 

d) Alpine valley aquifers (AVA). 987 
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 989 

Figure 3. Probability plot for stations tapping Po Plain reduced groundwaters for a) As, b) NH4, c) Fe and d) Mn; inflection 990 

points are marked by dotted line; labels indicate subpopulation names. 991 
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 993 

Figure 4. NBLs for As for a) shallow Po Plain aquifers (SPPA), b) intermediate Po Plain aquifers (IPPA), c) deep Po 994 

Plain aquifers (DPPA) and d) Alpine valley aquifers (AVA). 995 
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 997 

Figure 5. NBLs for NH4 for a) shallow Po Plain aquifers (SPPA), b) intermediate Po Plain aquifers (IPPA), c) deep Po 998 

Plain aquifers (DPPA) and d) Alpine valley aquifers (AVA). 999 
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 1001 

Figure 6. NBLs for Fe for a) shallow Po Plain aquifers (SPPA), b) intermediate Po Plain aquifers (IPPA), c) deep Po Plain 1002 

aquifers (DPPA) and d) Alpine valley aquifers (AVA). 1003 
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 1005 

Figure 7. NBLs for Mn for a) shallow Po Plain aquifers (SPPA), b) intermediate Po Plain aquifers (IPPA), c) deep Po 1006 

Plain aquifers (DPPA) and d) Alpine valley aquifers (AVA). 1007 
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 1009 

Figure 8. a) Average NBLs for each cluster of the redox zonation (C1-6redox). b) Percentage of monitoring stations per 1010 

cluster of the redox zonation over the entire cluster size for the subpopulations identified for Po Plain reduced 1011 

groundwaters. 1012 
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