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ABSTRACT
The interpretation of ligand–target interactions at atomistic resolution is central to most efforts in computational drug discovery and opti-
mization. However, the highly dynamic nature of protein targets, as well as possible induced fit effects, makes difficult to sample many
interactions effectively with docking studies or even with large-scale molecular dynamics (MD) simulations. We propose a novel application
of Self-Organizing Maps (SOMs) to address the sampling and dynamic mapping tasks, particularly in cases involving ligand flexibility and
induced fit. The SOM approach offers a data-driven strategy to create a map of the interaction process and pathways based on unbiased MD.
Furthermore, we show how the preliminary SOM mapping is complementary to kinetic analysis, with the employment of both network-based
approaches and Markov state models. We demonstrate the method by comprehensively mapping a large dataset of 640 μs of unbiased trajec-
tories sampling the recognition process between the phosphorylated YEEI peptide and its high-specificity target lck-SH2. The integration of
SOM into unbiased simulation protocols significantly advances our understanding of the ligand binding mechanism. This approach serves
as a potent tool for mapping intricate ligand–target interactions with unprecedented detail, thereby enhancing the characterization of kinetic
properties crucial to drug design.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0225183

INTRODUCTION

The elucidation of ligand–target interactions at the atomistic
level is central to pharmaceutical research and drug development.1
Despite the substantial progress achieved through conventional
computational approaches such as docking studies, the challenges
posed by the dynamic nature of protein targets and potential
induced fit effects continue to impede a reliable quantitative descrip-
tion of protein–ligand interactions, essential for drug discovery and
optimization.2 Molecular dynamics (MD) simulations, offering a
dynamic and realistic depiction of biomolecular interactions by con-
sidering the inherent flexibility and adaptability of protein targets,
have emerged as versatile tools to unravel the complexities associ-
ated with ligand binding.3,4 Classical all-atom MD approaches, for
example, model all the atoms in a system as particles interacting
via bonded and non-bonded potentials described by empirical force
fields.5 MD-based approaches overcome the limitations encountered

in rigid docking models, allowing for a more accurate represen-
tation of induced fit effects and capturing subtle changes in pro-
tein conformation during ligand binding events. However, despite
holding great promise, their effective utilization requires address-
ing challenges related to computational expense and the need for
extensive sampling to comprehensively explore the conformational
landscape.6,7 This is particularly crucial for achieving atomistic res-
olution in ligand–target interactions, a prerequisite for robust drug
discovery efforts.

Broadly speaking, MD-based methods can be divided into
biased (or enhanced) and unbiased sampling approaches. Enhanced
sampling methods address the issue of computational demands by
applying perturbations to the Hamiltonian of the system, enabling
the reconstruction of free-energy landscapes and other properties.6,7

Techniques such as alchemical free-energy perturbation,8 steered
MD,9,10 metadynamics,11–13 Gaussian-accelerated MD,14 supervised
MD,15 random acceleration MD,16 and many others17–21 have
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enjoyed remarkable success, with the drawback that they usually rely
on a choice of collective variables to be performed a priori and/or
they introduce a bias that can influence the natural dynamics of the
system. Recently, with the increase in computational power, long-
timescale processes have become computationally tractable with
unbiased simulations.4,22,23 In unbiased MD, the system evolves
only subject to force-field based potentials and thermostats, with-
out any external bias, providing in principle a faithful representation
of the system’s dynamics. This characteristic enables the extrac-
tion of kinetic information, such as transition rates and timescales,
directly from the trajectories. However, unbiased MD generates a
large amount of data that are not straightforward to analyze. The
calculation of kinetic properties in unbiased MD is facilitated by
employing advanced analysis techniques, with Markov State Models
(MSMs) being a prominent example.24–26 The construction of MSM,
while a powerful tool for capturing the kinetic aspects of molecular
processes, often encounters challenges. One notable difficulty arises
from the sheer complexity and dimensionality of the data, making
convergence a non-trivial task. The identification of suitable metrics
for validation purposes further adds to the intricacy.

In response to these challenges, this paper proposes an appli-
cation of Self-Organizing Maps (SOMs)27,28 as a novel strategy
to account for the complexities associated with ligand flexibil-
ity and induced fit phenomena. We demonstrate the approach in
a particularly challenging scenario, namely a flexible tetrapeptide
ligand (pYEEI), in a high-specificity target (p56lck Src homol-
ogy 2 domain). Src homology 2 (SH2) domains provide phospho
rylation-dependent signaling receptor domains that recognize short
peptides with very high sequence specificity and affinity.29 The sig-
naling function is of high physiological interest: at least one hundred
human proteins contain an SH2 domain (InterPro), and phos-
phopeptide mimetics targeting SH2 have been explored to reduce
proliferation in in vitro breast cancer models, e.g., inhibiting the
STAT3 pathway.30

The SH2:pYEEI association occurs within a dynamic landscape
on both interacting sides, making it very challenging to map out
systematically. SOM offers unique clarity in understanding these
complexities, providing a natural map of the interactive process
and a robust means of verifying the outcomes. We demonstrate the
method on a large dataset of 640 μs of unbiased trajectories, mani-
fold extending the ones used in previous studies.23 Furthermore, we
show how SOM mapping is highly suitable for kinetic analysis, facil-
itating an in-depth investigation of the temporal dynamics of the
process. The method provides opportunities for several systematic
kinetic analysis strategies, including both network-based commu-
nities and MSM. Of particular interest is the integration of SOM
with MSM as an alternative to the initial clustering stage, thus offer-
ing the potential for a seamless integration of these two analytical
paradigms. This integrative methodology enhances our understand-
ing of ligand binding mechanisms and holds significant promise for
optimizing the drug discovery process.

METHODS
Self-organizing maps

A Self-Organizing Map (SOM) is an unsupervised learning
approach that facilitates the projection of high-dimensional data

into a lower-dimensional space.27,31 This technique has been widely
used in biomolecular simulation analyses, with applications that
include clustering of conformations32–35 for the analysis of pathways
in enhanced sampling MD simulations.36–38 For these purposes, we
previously released PathDetect-SOM,39,40 a tool based on SOMs, that
was here applied to a set of unbiased simulations of the SH2:pYEEI
complex.23 The SOM algorithm starts with the choice of a set of
features that describes each data point (here a set of distances for
each frame). Then, the map is initialized and trained with the input
vectors containing the values of the selected features for all the simu-
lation frames. Each frame is considered as a data point and assigned
to the neuron with most similar feature values. During the training
process, the feature values of a neuron and its neighbors are adjusted
toward the values of the input vector assigned to that neuron. This
process continues over multiple cycles to achieve an accurate low-
dimensional representation of the data. The final prototype vector
of each output neuron summarizes the conformations associated
with the neuron, and groups of similar conformations are mapped
to neighboring neurons. In this work, the training was performed
over 5000 cycles using a 20 × 20 sheet-shaped SOM with a hexago-
nal lattice shape and without periodicity across the boundaries. After
training, each frame of the simulation set is assigned to a neuron
on the map (hexagons), and each neuron represents a geometric
microstate of the complex. In a second step, the neurons are further
grouped in an optimal number of clusters by agglomerative hierar-
chical clustering, using Euclidean distances and complete linkage.
The optimal number of clusters was selected according to the first
maximum in the silhouette profile ranging in a reasonable inter-
val (5–20 clusters). Properties such as the ligand RMSD from the
x-ray structure41 were displayed assigning to the neuron a color
code proportional to the average value of the property for the frames
belonging to that neuron.

Network and connectivity analysis

An approximate transition matrix was estimated by counting
the transitions between each pair of neurons in all the simulations.
A graph was then built with nodes represented by neurons, and
edges were set to the negative logarithm of the transition probability
between the corresponding neurons. For the sake of representation,
transitions with fewer than ten counts were not represented in the
graph. For the analysis that makes use of the transition probability
matrix, the whole data were instead used. The distance between two
nodes in the graph was calculated along the shortest path connect-
ing them as the negative logarithm of the product of the pairwise
transition probabilities between neurons along the path. A commit-
tor analysis was also performed computing the probability of hitting
a set of states A before set B, starting from different initial states.
In this case, the two extremes were the bound and unbound states,
as detailed in the Results section. To validate the obtained results,
we employed a progressive bootstrap analysis to estimate the aver-
age standard deviation on the computed committor, as a function of
the number of replicas used. We randomly selected subsets of repli-
cates of increasing size. For each subset, we performed 100 bootstrap
resamples re-computing the transition matrix and estimating the
average standard deviation of the committor computed on each neu-
ron. Moreover, a bootstrap analysis was performed using 2/3 of the
replicas, and the committor probability values were then obtained.
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This process was repeated 250 times, allowing the calculation of the
average and the standard deviation on the obtained values. This was
used to show the average value of the committor probability for each
neuron and the standard deviation obtained from the bootstrap. All
the analyses were performed in the R statistical environment using
the kohonen,42,43 igraph,44 and markovchain45 packages.

Estimation of binding kinetics on-rates
from trajectories

The kinetics of the SH2:pYEEI association can be obtained
from the distribution of times taken to reach the bound state. As
a first approximation, one can model the process as a two-state
irreversible transition between the unbound and bound states; this
model enables the estimation of the binding rate, assumed constant
in time, from the ratio of binding events over the time sampled
in the unbound state, after normalizing by the effective concentra-
tion.23 Confidence intervals for the incidence rate (also known as
Poisson rate exact confidence intervals) are then provided by Ulm’s
formula46 (see the supplementary material).

MSM models of molecular systems rely on partitioning the con-
formational space into distinct states and estimate the transition
probabilities between these states from simulated trajectories.47–49

Unbiased MD generates the necessary data for constructing a MSM,
enabling a detailed understanding of the underlying kinetics of
ligand–target interactions. The transition probability matrix can
then be used to estimate thermodynamic (e.g., asymptotic state
probabilities) and kinetic (e.g., rates) properties. The success of a
Markovian description is sensitive to the precise partitioning of the
state space: different partitions will be closer or further from Marko-
vianity,50 thus providing better or worse extrapolations on the long
timescales. We therefore built a set of Markov models based on
the states and communities identified by the SOM mapping proce-
dure using the transition count estimators provided by the Deeptime
Python library.51

The SH2–phosphopeptide system as a high-specificity
recognition model

The crystallographic structure of SH2 has been first reported
by Waksman,52 who showed (albeit in a static structure) a complex
two-pronged binding mechanism, likely occurring as a consequence
of electrostatic steering at the N end of the peptide (namely pTyr),
as well as induced fit in a hydrophobic region holding the C end. In
a previous study, some of us23 analyzed the dynamics of the two-
pronged binding mechanism of the pYEEI peptide to the p56lck
SH2 domain through multiple parallel unbiased MD simulations,
from which only five spontaneous binding events could be recov-
ered.23 The system has been modeled based on the crystal structure
of human p56lck tyrosine kinase SH2 in complex with the pYEEI
phosphopeptide at 1 Å resolution by Tong et al. (PDB: 1LKK41),
where ligand was displaced by 40 Å to obtain an unbound starting
conformation. The system was parameterized with the CHARMM27
force field. Water molecules present in the crystal structure were
retained, and the system was solvated in TIP3P explicit water and
150 mM NaCl, leaving a buffer of 52 Å of water around the protein
in the direction of the ligand, and at least 12 Å in the other directions.
Equilibration included 10 ns of simulation in the constant-pressure

ensemble (Berendsen thermostat) followed by 20 ns in the constant-
volume ensemble. The ligand was prevented from diffusing during
equilibration by 1 kcal/mol/Å2 harmonic restraints applied to its Cα
atoms.53 The resulting simulation box was 60 × 66 × 98 Å3, with a
smaller 40 × 40 × 60 Å3 flat-bottom box restraining the center of
mass of the ligand to a 20 mM effective concentration. The equi-
librated systems were finally simulated with the ACEMD software
on the GPUGRID.net distributed simulation network53 in multiple
replicas at 295 K, with the particle-mesh Ewald treatment of long-
range electrostatics. Further details of the simulation protocol are
as previously reported.23 In this work, to build a statistically rele-
vant structural decomposition of the process, we produced a dataset
widely extending the previous analysis; the extended dataset built
for this paper consists of 772 unbiased SH2:pYEEI MD trajectories,
almost all 800 ns long (distribution in the supplementary material),
with snapshots taken every 1 ns. The new dataset contains a total of
640 μs, extending the previous sampling over fourfold and enabling
the use of statistical and graph-theoretical methods over the SOM
map. The extended dataset is publicly available in full in Zenodo
(see “Data Availability”).

RESULTS
SOM clustering of unbiased trajectories

The trained SOM is represented in Fig. 1, where each neuron
(hexagon) corresponds to a configurational microstate, i.e., a pep-
tide binding mode defined by specific values of the intermolecular
distances used as input features. Neurons close to each other repre-
sent similar configurations. The map depicts a distribution of states
ranging from the unbound state (bottom left of the map) to the
crystallographic-like bound state (top center) or alternative bound
states (top right). This is due to the sampling of the binding process,
providing sufficient representation to the macroscopically mean-
ingful states, which are then captured during the training process.
Hierarchical clustering grouped the 400 neurons into 11 clusters
(represented with different colors on the map and labeled as A–K)
that coarsely represent the binding geometries explored by the
system during the simulations (Fig. 1); one representative confor-
mation from each cluster is shown to provide an overview of the
corresponding macrostate. It is possible to identify a cluster repre-
sentative of the unbound state, namely cluster A (blue in Fig. 1);
a series of clusters (B, C, D, F, G, H, J, K) describing the possible
pre-bound states in which the peptide begins the first contacts with
the protein; and two different bound states contained in clusters
E and I (purple and yellow in Fig. 1, respectively). Cluster E is char-
acterized by conformations in which the ligand binds like in the
crystallographic geometry, while cluster I represents an alternative
bound state in which the ligand is rotated by 180○ with respect to
the x-ray geometry.41

Binding pathway analysis

Tracing the pathway followed by each trajectory on the SOM
reveals a remarkable heterogeneity as each of them evolves follow-
ing a different sequence of clusters. This is expected because, unlike
simulations performed with MD methods in which a bias guides the
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FIG. 1. SOM clustering of unbiased simulations of pYEEI binding to the SH2 domain. The representative conformation of each cluster is depicted in cartoons with ligand in
sticks.

FIG. 2. SOM colored according to ligand average RMSD with respect to the bound state (values increasing from blue to red). States 272, 291, and 311 (circled) have RMSD
≤ 3 Å.
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system along a selected collective variable (CV), unbiased simula-
tions evolve without following a specific direction and, in general,
explore transient pockets and kinetic traps.4,47

All simulations start from the unbound state (cluster A), but
only a minority reaches (or ends in) the crystallographic-like bound
state (cluster E) within the sampled time. Plotting the average ligand
RMSD values from the x-ray structure of the frames belonging to
each neuron on the SOM (Fig. 2), the lowest values are found for
neurons 311, 291, and 272 (purple circle in Fig. 2), within cluster E,
which we hence assume as the proper bound state. Twenty-two out
of the 772 trajectories (2.8%) end in one of the three states. Using
the three states as the definition of the bound state yields a kon of
3.5 × 106 s−1 M−1 (95% CI: 2.5–4.8 × 106 s−1 M−1).

The binding process as a transition network

The transition network analysis allowed us to summarize all the
sampled pathways in a graph (Fig. 3). All the simulations start from
the unbound state (nodes in blue). Reading the transition network

from the top, in yellow one finds nodes that lead to the alternative
bound state in which the ligand is rotated 180○ with respect to the
x-ray geometry. Moving downward from the unbound state toward
the right side of the graph, it is possible to observe the pathways that
lead to the crystallographic-like bound state (purple nodes) and, in
particular, toward the three neurons (311, 291, and 272) with the
lowest ligand RMSD values from the x-ray structure.

Community detection identifies kinetically connected
and transition states

From the transition network, by analyzing the number of tran-
sitions between nodes, it is possible to detect “highly connected
communities.”54 Community analysis can be interpreted as a form of
kinetic clustering, independent of any information about the bound
and unbound states.

While geometric clustering yields information about confor-
mational similarities by grouping together neurons having resem-
bling features, community detection provides an overview of the
kinetic relationships of the system. Community-based clustering

FIG. 3. Transition network analysis: transition network with nodes colored according to the SOM clusters. Representative conformations of neurons that characterize the
unbound, crystallographic-like bound, and alternative bound states are represented within circles using blue, magenta, and yellow, respectively, for the cartoons and the
ligand carbon atoms; the cartoons and the ligand carbon atoms of the experimental structure (PDB ID 1LKK41) are shown in gray.
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FIG. 4. Transition network colored according to the detected communities.
Community detection identifies nodes (neurons) corresponding to the bound
(272, 291, and 311) and transition (233) states, highlighted in steel blue. Nodes
with insufficient transitions to be correctly assigned to a community are grayed
out.

based on the Walktrap algorithm was able to separate the nodes
(neurons) belonging to the bound state from the surrounding
ones, which the geometric clustering instead clumps together. This
is evident by comparing the purple region (cluster E) in Fig. 1,
with the one highlighted in Fig. 4, both corresponding to the
crystallographic-like bound state in the two different clustering.

Cluster E is significantly larger, including many more neurons than
the community indicated in steel blue in Fig. 4, which encompasses
a group of only six nodes. In addition, community analysis identifies
the transition state (neuron 233) and places it in the same commu-
nity as the bound state. Notably, a committor analysis (discussed in
more detail later in the text) confirms that neuron 233 is the closest
to the iso-committor surface (committor value of 0.43) and, there-
fore, a likely representative of the transition state. The presence of a
single node in the transition state may lead to the interpretation that
this binding process can be indeed modeled as a two-state process
with a downhill pathway after a single transition saddle point.

Shortest-path analysis shows the prototypical
binding pathway

To better understand the steps involved in the pYEEI peptide
binding to the SH2 domain, we computed the sub-optimal (yellow
in Fig. 5) and the shortest (orange in Fig. 5) pathways linking the
unbound state (neuron 1) with the crystallographic-like bound state
(neuron 291). The shortest path is defined as the one that minimizes
the cumulative sum of edge weights between the starting node and
the ending node.

Furthermore, we compared the previously proposed mecha-
nism23 for peptide binding with the present proposal based on the
analysis of the shortest path. As shown in Fig. 6, initially the peptide
is in the bulk [panel (a)]. The first step is characterized by the ini-
tial contact of the pY group of the peptide with the protein, which
involves the formation of two salt bridges with residues R154 and
K182 [panel (b)]. This interaction is further stabilized in the sub-
sequent step by the formation of a hydrogen-bond network with
residues S156, S158, and A160, which traps pY in the bound state
[panel (c)]. The following step involves the contact of the second
E residue through a salt bridge with R184 [panel (d)]. Next, the

FIG. 5. Pathway analysis on the SOM and in the transition network. All sub-optimal pathways are plotted in the transition network with nodes colored in yellow. The shortest
path is mapped on the graph with orange nodes and marked on the SOM with white circles. The representative conformations of neurons that characterize the shortest path
are depicted in cartoons with the ligand in sticks.
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FIG. 6. Insight into the peptide binding mechanism: schematic representation of the different steps: (a) unbound, (b) initial contact, (c) anchoring of pTyr, (d) salt bridge of the
second Glu residue with R184, (e) positioning of the second Glu residue, and (f) positioning of the C-terminal residue of the peptide between the EF and BG loops. Cartoon
and gray sticks represent the protein and the residues involved in the interaction with the pYEEI peptide, represented in green stick. Yellow dashes represent the salt bridges,
blue dashes represent the hydrogen bonds, and dark gray dashes represent the hydrophobic interactions.

first E residue of the peptide stabilizes in the bound position, form-
ing a hydrophobic interaction with both K179 and Y181 [panel
(e)]. The final step for peptide binding involves positioning of the
I residue between the EF and BG loops, favored by a network of
hydrophobic interactions with residues I193, Y209, and L216 [panel
(f)]. Based on the above discussion, the two mechanisms appear to be
consistent.

Bound-state heterogeneity

All simulations reaching the bound state showed that the
bound geometry is characterized by different conformations well
represented by neurons 291 and 311, which exhibit similar and
very low ligand RMSD values to the x-ray structure. Interaction
characteristics of the two microstates are slightly different: neuron
311 shows a salt bridge with K179, that is lacking in neuron 291, and
neuron 291 presents a more extended network of hydrophobic inter-
actions involving the EF and BG loops (as shown in Fig. S2). The fact
that different simulations reach bound states with slightly different
conformations is expected, as individual replicas may explore dis-
tinct, yet closely related, conformational states that, however, share
the same key interactions. Upon plotting the number of simula-
tions that ended in each neuron on the SOM (left-hand panel of
Fig. 7), we observed that, after neuron 1 (representing the unbound
state), neuron 311 exhibited the highest occurrence, capturing the
largest number of replicas. This analysis also revealed that neurons

381 and 400 (at the top left and right vertices of the SOM), neuron
351 (just above neuron 311), and neuron 55 (at the bottom right
corner) have 8 to 10 simulations ending in them, suggesting that
they could be kinetic traps. The section on “Markovian modeling of
the binding process” will provide estimates of the asymptotic (equi-
librium) probabilities of each state computed through Markov state
models.

Committor analysis identifies the transition state

We conducted a committor analysis (right-hand panel of Fig. 7)
to calculate the probability of the system to access the bound con-
formation (neuron 311) before reaching the unbound conformation
(neuron 1), starting from each neuron. The convergence of the cal-
culation was assessed by evaluating the average standard deviation of
the computed committors through a progressive bootstrap analysis
(see the Methods section for further details and Fig. S3). The
analysis revealed that once the number of replicas reaches ∼500, the
average standard deviation of the committor probabilities stabilizes,
confirming the convergence of the calculation. As the transition
matrix was constructed from unbiased simulations, conformations
with a committor of around 0.50 can be considered in proximity of
the transition states. In this case, the energy barrier appears to be
located around neuron 233 (committor value 0.43), in the conforma-
tions of which the pY group of the peptide is fixed to the protein and
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FIG. 7. On the left, SOM is annotated with the number of simulations ending in each neuron (values increasing from blue to red); on the right, graph network with nodes
colored according to the committor probability analysis (increasing values from blue to green). The representative conformation of neuron 233 is depicted in cartoons with the
ligand and the residues involved in the interactions in green and gray sticks, respectively. To verify the robustness of our model and validate the previously discussed results,
we conducted a bootstrap analysis (see the Methods section and Fig. S4).

a salt bridge is formed between the second E residue of the peptide
and R184.

The barrier appears to be due to the probability that the colli-
sion between the two molecules occurs with the correct orientation,
allowing the first salt-bridge to form properly and aligning the rest
of the molecule correctly to form the second salt-bridge. For the
pYEEI peptide binding to the SH2 domain, the initial encounter
must position the tyrosine-phosphate (pY) group to form the first
salt bridge with residues R154 and K182 on the protein surface. This
initial contact is crucial, as it stabilizes the initial complex and ori-
ents the peptide for subsequent binding steps. If the peptide collides
in an incorrect orientation, the necessary interactions will not form,
and the peptide may dissociate or bind in a less favorable mode.
This requirement for precise orientation introduces an entropic cost.
The system must overcome the disorder associated with the numer-
ous possible orientations during the peptide’s diffusion. The correct
alignment is less probable, contributing to the observed transition
state at neuron 233, identified by a committor analysis. This state
marks a critical point where the probability of progressing to the
bound state equals that of returning to the unbound state, indicating
a significant entropic barrier.

Communities provide a robust basis to compute
the binding kinetics

The computation of the binding kinetics based on atomistic
data is sensitive to the precise definition of what microstates con-
stitute “the bound state.” In this respect, the community analysis
graph provides a very robust approach for the computation of kinet-
ics. First, we assume a threshold of ε = 0.5 for the committor value
c, and we consider all the states whose committor is ci ≥ ε as the
bound state (otherwise being unbound). This yields 52 binding
events and therefore a kon rate of 4.4 (95% CI: 3.3–5.8)× 106 s−1 M−1.
Taking the transition state at c = 0.5 is a common assumption;

however, it is interesting to do a sensitivity analysis to study how
strongly kon depends on the precise value of the threshold. We again
computed kon as the event rate, i.e., the ratio of the number of bind-
ing events observed to the total unbound sampled time, now as a
function of ε (Fig. 8). The rates are insensitive to the precise choice
of ε, being essentially constant as for the canonical ε = 0.5 in a wide
range of values, thus again confirming that the community analysis
projects the complex process into a good reaction coordinate (albeit
discretized) with two attraction basins separated by a well-defined
transition region.

This contrasts, for example, with an RMSD-based definition
computing the similarity of the configuration of the ligand in the
final frame of each simulation to the (assumed known) x-ray struc-
ture. Such a definition would imply that, for example, 24 simulations
(≈3%) end in a frame with RMSD ≤ 2 Å, while 143 simulations
(≈18%) end in a state with RMSD ≤ 5 Å. By taking an RMSD thresh-
old between 1.8 and 3.0 Å as a definition of the bound state, the
sensitivity analysis of kon identifies binding rates that are relatively
constant (Fig. S5 of the supplementary material). Using the larger
plateau region between 1.8 and 2.4 Å, one obtains a kon rate of
2.0 (95% CI: 1.3–3.0) × 106 s−1 M−1. The RMSD-based approach
to the definition of the bound state, however, has the drawback
that the kon value depends strongly on both (1) the precise knowl-
edge of the bound structure and (2) the RMSD threshold chosen.
Other geometric observables could, in principle, be similarly used
to define the kinetics, e.g., the fraction of native contacts provides
a similar value for kon—albeit with a plateau too narrow to iden-
tify reliably (Fig. S6 of the supplementary material). To assess the
impact of the simulation size on the estimated kon, we calculated
kon as a function of replica length (Fig. S7, top) and the number
of replicas (Fig. S7, bottom). The results show that after ∼350 ns
per replica (total aggregate simulation time of 280 μs), the esti-
mated kon reaches a plateau, indicating the convergence of the
calculation.
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FIG. 8. Sensitivity analysis of the on-rate of the SH2:pYEEI binding process as a
function of the committor value used to define the bound state. The community-
based projection makes the kon rate remarkably robust to the definition of the
bound state (committor threshold, on the horizontal axis; the iso-committor value
of 0.5 is highlighted).

Markovian modeling of the binding process

The SOM-based discretization lends itself to be a basis for a
Markovian modeling of the association process. An MSM analysis
can be conducted either discretizing the state space according to the
SOM neurons, or according to the communities previously identi-
fied by the community analysis; in both cases, the implied timescales
are quite similar (Fig. S8), pointing to relaxation processes on the

FIG. 9. Standard free energy of each SOM neuron, obtained by Boltzmann
inversion of the equilibrium probabilities estimated Markov-modeling the binding
process at a lag time of 350 ns. Neurons of the bound state (272, 291, and 311)
have the lowest free energy values with a total equilibrium probability of 0.54; neu-
rons not belonging to any community are left blank. The zero of the free energy
is assigned to the state unbound at 1M; it was set applying the concentration
correction (−2.4 kcal/mol) to state 1, namely unbound at simulation concentration.

order of 10 and 2 μs, respectively, around a lag time of 300 ns. MSM
defined based on communities displays convergence at slightly lower
lag times, despite the coarser states.

We used the MSMs to extrapolate the asymptotic (equilib-
rium) state probabilities. Equilibrium probabilities have a distinct
peak in the 272, 291, and 311 neuron triplet, clearly identifying
the bound state. The three states collectively account for 54% of
the equilibrium probability distribution. Boltzmann inversion of the
equilibrium probabilities provides free energy values. Minor free
energy minima are at neuron 400 (reverse-bound, cluster I), neu-
ron 381 (“vertically bound,” cluster G), neuron 392 (“L-shaped,”
cluster F), and few other likely metastable configurations previously
identified and discussed in the SOM.

Finally, even though this is not the main objective of the anal-
ysis, equilibrium probabilities can be converted into standard free
energies of binding by Boltzmann inversion and accounting for the
ligand concentration vs the standard state. Figure 9 shows a free
energy landscape of the binding process mapped on the SOM neu-
rons, reconstructed by building a MSM on the whole set of unbiased
trajectories, which clearly identifies the bound triplet.

CONCLUSIONS

In this work, for the first time, we applied SOM to an extensive
dataset of SH2–pYEEI binding trajectories obtained from unbiased
MD simulations. This approach provides valuable insights into the
evolution of the system by revealing geometric clusters. Modeling
the binding process as a transition network enabled the identifica-
tion of key kinetic stages such as the transition state, the bound state,
and potential kinetic traps. A simple two-state treatment of the reac-
tion process projected on the SOM discretization yields association
rates in agreement with the experimental values. The combination
of Markov models with SOM discretization yielded a robust free
energy landscape, clearly pinpointing the bound state as the most
energetically favorable configuration. This combined framework
provides an accurate description of complex processes characterized
by heterogeneous pathways. The results of this method are espe-
cially notable as they account for the remarkable flexibility of the
tetrapeptide and the proper accounting of induced fit effects on the
receptor.

A key advantage of using SOM is its ability to preserve the
topological relationships between microstates, which enhances the
interpretability of the conformational landscape compared to other
traditional clustering methods. Other dimensionality reduction
methods, however, exist, such as Principal Component Analysis
(PCA). PCA reduces dimensionality by focusing on the variance
captured by the first few principal components, but it can overlook
subtle yet important features of the data. In contrast, SOMs cre-
ate a map where, at the same time, data are grouped in microstates
and similar data are spatially close, providing a more intuitive and
detailed representation. This allows for the detection of geometric
patterns and the subsequent construction of a transition network
that accurately captures the kinetics of the binding process. The
SOM-based approach not only facilitates the identification of key
states but also offers a versatile platform for further analysis, such as
mapping external properties or performing kinetic clustering, which
PCA alone does not inherently provide. Other approaches for path-
way detection in MD simulations exist such as the one presented in
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Ref. 55. However, these methods are not intended to cluster frames
and obtain microstates that form the unique platform offered by
SOM for the subsequent analysis.

Despite the significant advantages of SOM, it is not without
limitations. In this particularly challenging case, one major restric-
tion is that—due to the inherent flexibility of both the protein and
peptide, combined with the limited number of simulations reach-
ing the bound state—we employed a set of “non-blind” distances
to enhance the description of the correct bound state. While SOM
can operate in a “blind” mode using all intermolecular distances,
this approach tends to treat all sampled states equally. However, for
this complex scenario, a more selective approach was necessary. In
addition, a careful interpretation of the free energy values obtained
from the MSM analysis is needed for two key reasons. First, each
neuron in the model represents a subset of the phase space of dif-
ferent volume. Second, the equilibrium probabilities identified by
MSM are likely underestimated due to insufficient sampling near
the bound state, which can be addressed through adaptive sampling
schemes.

An additional limitation of the approach presented is the
extensive sampling required to obtain reliable statistics on the bind-
ing process. While unbiased MD simulations are straightforward,
requiring no collective variable definitions and avoiding external
biases that could alter the physics of the process, they demand a sub-
stantial amount of simulation time, which may be prohibitive for
large-scale drug design campaigns. However, the continuous opti-
mization of MD software and the increasing computational power
have led to orders-of-magnitude increases in the feasible simula-
tion lengths over the past decade. This trend is expected to continue
with advancements in artificial intelligence and quantum comput-
ing, making studies like the one presented here more routine in
the future. In the context of a drug design campaign, it remains
challenging to study a large number of ligands using this approach
due to its high computational cost. Nevertheless, analyzing one or
a few highly promising ligands could be valuable in identifying the
key characteristics that make a ligand attractive or in uncovering
potential barriers during the binding process that could be mitigated
through proper functionalization, ultimately enhancing the ligand’s
efficacy.

Finally, while the data-driven approach we presented here has
promising implications in drug design and optimization tasks, for
pharmaceutical purposes, one may want to investigate the off-rate,
which has an important correlation with the biological activity.56–58

Sampling koff (or residence times) with purely unbiased approaches
like the one presented in this paper is much more challenging than
kon because of the far longer timescales involved. While feasible
for shorter residence times (hundreds of microseconds are becom-
ing accessible),59,60 biased sampling approaches such as (infrequent)
metadynamics,61 adaptive sampling Markov models,62 weighted
ensemble,63 and similar may still be approaches of preference for this
task. Future work will focus on characterizing and reducing the sen-
sitivity of the method to the a priori knowledge of the bound pose,
thereby broadening its applicability to even more challenging “blind
pathway reconstruction” tasks able to simultaneously recover pose,
binding paths, and kinetics. This could be achieved, for example,
through the integration of SOM with an adaptive seeding technique
to enrich the number of transitions between neurons to improve the
robustness and accuracy of the analysis.

SUPPLEMENTARY MATERIAL

The supplementary material contains additional information
and analyses supporting the main text. It includes figures detailing
the selected atoms for interatomic distance calculation and used for
SOM training (Fig. S1), the three-dimensional structures of repre-
sentative conformations for neurons 291 and 311 with annotated
interactions (Fig. S2), the value of the average standard deviation
of the computed committors in a progressive bootstrap analysis
(Fig. S3), and the average values and standard deviation for commit-
tor probabilities obtained from bootstrap analysis (Fig. S4). Sensitiv-
ity analyses of the on-rate of the SH2 binding process are provided,
examining the influence of the RMSD threshold value (Fig. S5) and
the fraction of crystallographic native contacts (Fig. S6). Analysis
of the on rate of the SH2:pYEEI binding process as a function of
the simulation time and the number of replicas (Fig. S7). Implied
timescales for a Markov state model built on SOM neurons and com-
munities, showing convergence and relaxation processes, are also
included (Fig. S8). The supplementary material details the Poisson
rate and confidence interval calculations, providing the formula for
estimating incidence rates in a two-state irreversible model, along
with the corresponding confidence intervals using Ulm’s formula
(Poisson rate confidence interval).
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