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The emergence of (3+1)D expanding space-time in the Lorentzian type IIB matrix model is an
intriguing phenomenon that has been observed in Monte Carlo studies of this model. In particular,
this may be taken as support for the conjecture that the model is a nonperturbative formulation
of superstring theory in (9+1) dimensions. In this paper we investigate the space-time structure
of the matrices generated by simulating this model and its simplified versions, and find that the
expanding part of the space is described essentially by the Pauli matrices. We argue that this
is due to an approximation used in the simulation to avoid the sign problem, which actually
amounts to replacing eiSb by eβSb (β > 0) in the partition function, where Sb is the bosonic part
of the action. We also discuss the possibility of obtaining a regular space-time with the (3+1)D
expanding behavior in the original model with the correct eiSb factor.
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1. Introduction

Superstring theory is a promising candidate for a unified theory that includes quantum gravity con-
sistently. One of the striking consequences of this theory is that the space-time should have ten
dimensions. Therefore, in order to make the theory compatible with our (3+1)D world, the extra six
dimensions have to be compactified somehow. Depending on the structure of these compact extra
dimensions, one can obtain various quantum field theories in the (3+1)D space-time at low energy.
This issue has been investigated extensively at the perturbative level including D-branes configu-
rations as a background accounting for certain nonperturbative effects, and it led to tremendously
many consistent vacua, a situation that is called the landscape. However, it remains to be seen what
really happens if one formulates the theory in a fully nonperturbative manner as one does in the case
of quantum field theory using the lattice formulation.

The type IIB matrix model [1] was proposed as such a nonperturbative formulation of superstring
theory. Formally, the action of the model can be obtained by dimensionally reducing the action of 10D
N = 1 SYM theory to 0D, and it actually has maximal N = 2 supersymmetry in 10D. The space-
time does not exist a priori, and it is represented by the eigenvalue distribution of the ten bosonic
matrices Aμ (μ = 0, . . . , 9). This is manifested by the fact that translations in the supersymmetry
algebra turn out to be realized by the shifts Aμ �→ Aμ + αμ1 in the ten bosonic matrices. The
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model, therefore, has the potential to clarify a possible nonperturbative mechanism for dynamical
compactification in superstring theory. The Euclidean version of the model was investigated from this
viewpoint, and the spontaneous breaking of SO(10) rotational symmetry was suggested by various
approaches [2–7]. However, the latest calculations based on the Gaussian expansion method suggest
that the SO(10) symmetry is broken down to SO(3) instead of SO(4) [5].

This provided a strong motivation to consider the Lorentzian version of the model. Monte Carlo
simulation was performed in Ref. [8], and the results turned out to be intriguing. In the SU(N ) basis
that diagonalizes the temporal matrix A0, the spatial matrices Ai (i = 1, . . . , 9) have a band-diagonal
structure, which enabled the extraction of the real-time evolution. In this way, it was found that
only three out of nine directions start to expand at some critical time, which implies that the model
predicts the emergence of a (3+1)D expanding space-time from superstring theory in (9+1)D. The
expanding behavior for a longer time was investigated by simulating simplified models. The obtained
results suggested a scenario for the full model that the expansion is exponential at early times [9],
which is reminiscent of the inflation, and that it turns into a power law [10] at later times, which is
reminiscent of the Friedmann–Robertson–Walker universe in the radiation-dominated era. See also
Refs. [11–13] for closely related work.

Due to the expansion of space, it is expected that the dominant configurations can be well approx-
imated at late times by some classical solution of the Lorentzian type IIB matrix model. Indeed,
several types of classical solutions representing expanding space-time have been constructed [14–
21]. Also, matrix configurations with various structures in the extra dimensions are considered to
realize chiral fermions in the (3+1)D space-time. Earlier attempts used slightly modified models
obtained, for instance, by orbifolding [22,23] or by toroidal compactification with magnetic fluxes
[24]. More recently [25,26], it was shown that the original model can be used to realize the idea of
intersecting D-branes [27], which led to the proposal of matrix configurations that can give rise to
phenomenologically viable low-energy effective theories [28–30].

In this paper we investigate the space-time structure of the matrix configurations generated by
Monte Carlo simulation of the Lorentzian type IIB matrix model and the simplified models. In
particular, we calculate the eigenvalues of the submatrices of the spatial matrices Ai corresponding
to each time slice and find that only two eigenvalues grow in magnitude after the critical time. A more
detailed analysis shows that the expanding 3D space is described essentially by the Pauli matrices.
Namely, the space is actually more like a fuzzy sphere, although it has been called “3D” in the sense
that it has three extended directions. While we keep on using the word 3D in this sense in what
follows, we refer to the space with the Pauli-matrix structure as a “singular 3D space”. We observe
that the situation remains unaltered even at late times or in the continuum limit for the simplified
models, and it is shared by the original model with maximal supersymmetry as well. This raises the
important question of whether this model can generate a 3D space with continuum geometry, which
we refer to as a “regular 3D space”.

In fact, Monte Carlo simulation of the Lorentzian type IIB matrix model is not straightforward
due to the phase factor eiSb in the partition function, where Sb is the bosonic part of the action.
The importance sampling is not applicable as it is and one has to face the sign problem if one uses
reweighting for this factor. In this work as well as in the previous studies, this problem is avoided by
integrating out the scale factor of the bosonic matrices Aμ first and using a certain approximation.
Here we point out a subtlety in this approximation, and argue that it actually amounts to replacing
the phase factor eiSb by a positive weight eβSb (β > 0). This new interpretation of the simulations
naturally explains not only the emergence of the band-diagonal structure in the spatial matrices Ai,
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which is crucial in extracting the real-time evolution, but also the (3+1)D expanding behavior with
the Pauli-matrix structure. We also discuss the possibility of obtaining a regular space-time in the
original model with the phase factor eiSb without spoiling the (3+1)D expanding behavior. Some
results supporting this possibility are reported in a separate paper [31], where the sign problem is
overcome by using the complex Langevin method.

The rest of this paper is organized as follows. In Sect. 2 we briefly review the Lorentzian type IIB
matrix model. In Sect. 3 we discuss the space-time structure of the matrix configurations obtained by
simulation, and show that they are essentially described by the Pauli matrices. In Sect. 4 we provide
theoretical understanding of the obtained results, and discuss the possibility of obtaining a regular
space-time with the (3+1)D expanding behavior if the sign problem is treated correctly. Section 5 is
devoted to a summary and discussions.

2. Brief review of the Lorentzian type IIB matrix model

In this section, we define the Lorentzian type IIB matrix model and its simplified versions, and review
some results obtained by Monte Carlo simulations.

2.1. Definition of the Lorentzian type IIB matrix model

The action of the type IIB matrix model is given as [1]

S = Sb + Sf , (2.1)

Sb = −1

4
Tr
( [

Aμ, Aν

] [
Aμ, Aν

] )
, (2.2)

Sf = −1

2
Tr
(
�α

(C�μ
)
αβ

[
Aμ, �β

] )
, (2.3)

where Aμ (μ = 0, 1, . . . , 9) and �α (α = 1, . . . , 16) are bosonic and fermionic N × N trace-
less Hermitian matrices. The indices μ and ν are contracted with the Lorentzian metric ημν =
diag(−1, 1, . . . , 1). The 16 × 16 matrices �μ and C are the 10D gamma matrices and the charge
conjugation matrix, respectively, obtained after the Weyl projection. The action (2.1) has a man-
ifest SO(9,1) Lorentz symmetry, under which Aμ and �α transform as a Lorentz vector and a
Majorana–Weyl spinor, respectively.

The partition function of the Lorentzian type IIB matrix model is defined as [8]

Z =
∫

dA d� eiS[A,�] =
∫

dA PfM(A) eiSb , (2.4)

where the “i” in front of the action is motivated by the fact that the string worldsheet metric has a
Lorentzian signature. Note that the bosonic action Sb can be written as

Sb = 1

4
Tr
(
FμνFμν

) = 1

4

{
−2Tr (F0i)

2 + Tr
(
Fij
)2}, (2.5)

where we have introduced the Hermitian matrices Fμν = i
[
Aμ, Aν

]
. Hence Sb is not positive semi-

definite, unlike in the Euclidean case. Note also that, unlike in the Euclidean version [32,33], the
matrix integral in Eq. (2.4) is divergent because eiSb is a pure phase factor and the Pfaffian PfM(A)

obtained by integrating out the fermionic matrices is a polynomial in Aμ.
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In order to make the partition function (2.4) finite, we need to introduce IR cutoffs in both the
temporal and spatial directions, for instance, as

1

N
Tr
{
(A0)

2}p ≤ κp 1

N
Tr
{
(Ai)

2}p
, (2.6)

1

N
Tr
{
(Ai)

2}p ≤ L2p. (2.7)

The power p is a parameter that can be used to test how much the obtained results depend on the way
in which the IR cutoff is introduced [34]. While p = 1 would be a natural choice, it was proposed
that p should be chosen to be a slightly larger value in order to make the results almost independent
of p. Too large values of p lead to pathological behaviors, however.

The Pfaffian PfM(A) in Eq. (2.4) is real in the Lorentzian version, unlike in the Euclidean version,
where it becomes complex due to the replacement A0 = iA10. However, the phase factor eiSb causes
the sign problem when one tries to investigate the Lorentzian model by Monte Carlo methods. Here,
we avoid this problem1 following previous work [8–10] by rewriting the partition function (2.4) as

Z =
∫

dA PfM(A) δ
( 1

N
TrFμνFμν − C

)
δ
( 1

N
Tr{(Ai)

2}p − 1
)

θ
(
κp − 1

N
Tr{(A0)

2}p
)

, (2.8)

where θ(x) is the Heaviside step function. This can be obtained by integrating out the overall scale
factor of the bosonic matrices Aμ first and using a certain approximation as discussed in Sect. 4.
The parameter C should be set to zero according to the “derivation”, but we generalize the model by
choosing C �= 0, which allows us to obtain results for larger matrices in the original C = 0 model by
using smaller matrices [9,35]. See Appendix B of Ref. [9] for details of the Monte Carlo simulation
of the model (2.8).

2.2. SSB of rotational SO(9) symmetry

Next we discuss how one can extract the time evolution from a given matrix configuration generated
by Monte Carlo simulation [8]. Since the eigenvalues of the temporal matrix A0 represent time, we
work in an SU(N ) basis that diagonalizes A0 as

A0 = diag(α1, . . . , αN ), where α1 < · · · < αN . (2.9)

In this basis, the spatial matrices Ai turn out to have an approximate band-diagonal structure. By this,
we mean that there exists2 some integer n such that the elements of the spatial matrices (Ai)ab for
|a − b| > n are much smaller than those for |a − b| < n. Thanks to this structure, we can naturally
consider the n × n submatrices Āi: (

Āi
)

IJ (t) ≡ (Ai)ν+I ,ν+J , (2.10)

representing the state at time t defined by

t ≡ 1

n

n∑
I=1

αν+I , (2.11)

1 Strictly speaking, the model (2.8) is not completely free of the sign problem because the Pfaffian is real but
not positive semi-definite. However, configurations with a positive Pfaffian dominate the path integral (2.8) at
large N , and therefore one can safely replace the Pfaffian by its absolute value in the simulation.

2 In practice, the integer n can be determined by observing the scaling behavior for
∑

i |(Ai)ab|2 with (a+b)/2
fixed to different values corresponding to different time slices. See Sect. 5 of Ref. [10] for details.
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where I , J = 1, . . . , n and ν = 0, 1, . . . , N − n. For example, we can define the extent of the 9D
space at time t using Āi(t) as

R2(t) =
〈

9∑
i=1

1

n
tr
(
Āi(t)

)2〉
, (2.12)

where the symbol “tr” represents a trace over the n × n submatrix. We can also define the “moment
of inertia tensor”

Tij(t) = 1

n
tr
(
Āi(t)Āj(t)

)
, (2.13)

which is a 9 × 9 real symmetric tensor. The eigenvalues of Tij(t) represent the spatial extent in each
of the nine directions at time t, and we denote them by λi(t) with the ordering

λ1(t) > λ2(t) > · · · > λ9(t). (2.14)

Note that R2(t) and λi(t) are related as

R2(t) = 〈tr T 〉 =
9∑

i=1

〈λi(t)〉 . (2.15)

The expectation values 〈λi(t)〉 can be used as the order parameters for the spontaneous breaking of
the rotational SO(9) symmetry of the model. If the nine eigenvalues do not approach a common value
in the large-N limit, we conclude that the SO(9) symmetry is spontaneously broken. From the Monte
Carlo simulations of the model (2.8), it was found [8] that the three eigenvalues 〈λi(t)〉 (i = 1, 2, 3)
start to grow with t after a critical time tc, which implies that the SO(9) symmetry is spontaneously
broken down to SO(3) for t > tc. (See Refs. [9,10] for a precise definition of the critical time tc,
which we use in this work.)

2.3. Expanding behaviors in the simplified models

It is interesting to investigate how the 3D space expands with time. For that, one clearly needs to
increase the matrix size, which is very time-consuming due to the existence of the Pfaffian in Eq.
(2.8). This led to the proposal of the simplified models, the VDM model [9] and the bosonic model
[10], which amounts to replacing the Pfaffian as

PfM(A) =⇒
{

�(α)16 for the VDM model,

1 for the bosonic model,
(2.16)

where �(α) ≡ ∏N
a>b(αa −αb) is the van der Monde (VDM) determinant. This replacement reduces

the computational cost from O(N 5) to O(N 3), which enables simulations with considerably large
matrix size. These two models are expected to describe the qualitative behaviors of the original
model at early times and at late times, respectively.

In both these models, the spontaneous breaking of the SO(9) rotational symmetry to SO(3) was
observed after some critical time as in the original model, and the rate of expansion at late times was
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investigated. In theVDM model, the extent of space R(t) defined in Eq. (2.12) exhibits an exponential
growth [9]

R(t) ∼ et , (2.17)

which is reminiscent of inflation3, and this behavior does not seem to change with increasing t. In
the bosonic model, on the other hand, the exponential expansion observed at early times changes
into a power-law expansion [10]

R(t) ∼ t1/2 (2.18)

at later times, which is reminiscent of the Friedmann–Robertson–Walker universe in the radiation-
dominated era. Based on these results, it has been speculated that the extent of space R(t) in the
original model shows an exponential growth at early times and a power-law expansion at later times.
If true, this implies that the e-folding or the duration of the cosmic inflation may be determined
dynamically in the original model.

3. Space-time structure of the matrix configurations

In this section, we investigate the space-time structure of the matrix configurations generated by the
Monte Carlo simulation of the model (2.8) and the simplified models (2.16).

3.1. Results for the bosonic model

In this subsection, we consider the bosonic model, which is a simplified model for the late-time
behaviors. Let us first look at the basic quantities such as the extent of space R2(t) and the eigenvalues
〈λi(t)〉 of Tij(t). In Fig. 1 we plot the extent of space R2(t)/R2(tc) (top-left) and the normalized
eigenvalues 〈λi(t)〉/R2(tc) of Tij(t) (top-right) against (t − tc)/R(tc) for N = 256, C = 100, κ = 1.0
with the block size n = 18 in Eq. (2.12). Here and for all the other plots in Fig. 1, we only present
the results in the t < 0 region since the results are symmetric4 under the time reflection t �→ −t. The
power p in the IR cutoff (2.6) and (2.7) is chosen to be p = 1.5, which is found to be large enough
to make the results almost independent of p (see Appendix A). Let us recall that R2(t) is related to
〈λi(t)〉 through Eq. (2.15). While the extent of space R2(t)/R2(tc) grows with t for t > tc, it is only
three out of nine eigenvalues of Tij(t) that grow with t, which suggests that the rotational SO(9)
symmetry is broken spontaneously to SO(3). These results are analogous to the previous results
obtained for p = 1 [10].

The simplest way to probe the space-time structure is to define an n × n matrix

Q(t) ≡
9∑

i=1

(Āi(t))
2, (3.1)

3 This behavior was also observed in the original model [36] although the matrix size used was not large
enough to confirm the long-time behavior.

4 This does not mean that the Big Crunch occurs in this model because the time difference between the
symmetric point t = 0 and the critical time t = tc seems to diverge in physical units in an appropriate large-N
limit. See Sect. 3.3.
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Fig. 1. The extent of space R2(t)/R2(tc) (top-left) and the normalized eigenvalues 〈λi(t)〉/R2(tc) of Tij(t)
(top-right) are plotted against time (t − tc)/R(tc) for the bosonic model with N = 256, C = 100, κ = 1,
p = 1.5, and the block size n = 18. Similarly, the eigenvalues of Q(t)/R2(tc) (middle-left), the eigenvalues of
Ā(1)(t)/R(tc) (middle-right, bottom-left, the latter being an enlarged version of the former), and the eigenvalues
of Ā(4)(t)/R(tc) (bottom-right) are plotted against time (t − tc)/R(tc).

which is invariant under SO(9) rotations. Let us denote its eigenvalues as qk(t) (k = 1, . . . , n) with
the ordering

q1(t) < · · · < qn(t). (3.2)

These eigenvalues tell us how the space spreads in the radial direction at each time t.
In Fig. 1 (middle-left), we plot the eigenvalues qk(t)/R2(tc) against (t − tc)/R(tc). We find that the

two largest eigenvalues grow with t, but not the others. Let us note that the eigenvalues of Q(t) are
related to the extent of space R2(t) as
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R2(t) =
〈

1

n
tr Q(t)

〉
=
〈

1

n

n∑
k=1

qk(t)

〉
. (3.3)

This implies that the time dependence of R2(t) seen in the top-left panel is caused only by the two
largest eigenvalues of Q(t).

Let us next discuss the space-time structure in the three extended directions and the six shrunken
directions separately. Since we are dealing with spontaneous symmetry breaking, we need to choose
the frame properly in order to distinguish these directions. Suppose that v(i)

j (t) (j = 1, . . . , 9) are the
normalized eigenvectors of the “moment of inertia tensor” (2.13) corresponding to the eigenvalues
λi(t) with the ordering (2.14). Then, we can define the n × n matrix corresponding to the spatial
direction with the extent λi as

Ā(i)(t) =
9∑

j=1

v(i)
j (t) Āj(t) (3.4)

and its eigenvalues a(i)
k (t) (k = 1, . . . , n) with the ordering

a(i)
1 (t) < · · · < a(i)

n (t). (3.5)

In Fig. 1 (middle-right), we plot the eigenvalues a(1)
k (t)/R(tc) against (t − tc)/R(tc). We find that

only two eigenvalues a(1)
1 (t) and a(1)

n (t) grow in magnitude with time t, and all the others remain
close to zero. Similar behaviors are also seen for the eigenvalues a(2)

k (t) and a(3)
k (t) obtained for

the other extended directions. In Fig. 1 (bottom-left), we enlarge the same plot to make visible the
eigenvalues close to zero. In Fig. 1 (bottom-right), we plot the eigenvalues a(4)

k (t)/R(tc) against
(t − tc)/R(tc). We find that all the eigenvalues remain close to zero. Similar behaviors are also seen
for the eigenvalues a(5)

k (t), . . . , a(9)
k (t) obtained for the other shrunken directions. Comparing the

two plots at the bottom of Fig. 1, we notice that the eigenvalue distribution of Ā(i) is almost identical
for the extended directions and the shrunken directions except for the two eigenvalues with large
magnitude.

Similarly to Eq. (3.3), the eigenvalues of Ā(i)(t) are related to the extent of space λi(t) in the ith
direction as

λi(t) = 1

n

n∑
k=1

(
a(i)

k (t)
)2

. (3.6)

Our observation implies that the spontaneous symmetry breaking of the SO(9) rotational symmetry
seen in the top-right panel is caused only by the two eigenvalues of Ā(i)(t) with large magnitude.

3.2. Including fermionic contributions

In order to seek the possibility of obtaining a regular space-time, we repeat the analysis in the previous
subsection in the case of the original model (2.8) including fermionic contributions. Since the cost
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Fig. 2. The extent of space R2(t)/R2(tc) (top-left) and the normalized eigenvalues 〈λi(t)〉/R2(tc) of Tij(t) (top-
right) are plotted against time (t − tc)/R(tc) for the original model with N = 16, C = 3.91, κ = 0.38,
p = 1.6, and the block size n = 6. Similarly, the eigenvalues of Q(t)/R2(tc) (middle-left), the eigenvalues of
A(1)(t)/R(tc) (middle-right), and the eigenvalues of A(4)(t)/R(tc) (bottom) are plotted against time (t−tc)/R(tc).

of Monte Carlo simulations increases from O(N 3) to O(N 5), here we restrict ourselves to a rather
small matrix size N = 16.

In Fig. 2 we plot the same quantities as in Fig. 1 for the original model with N = 16, C = 3.91,
κ = 0.38, and the block size n = 6. The power p in the IR cutoff (2.6) and (2.7) is chosen to
be p = 1.6, which is found to be large enough to make the results almost independent of p (see
Appendix A). These results are qualitatively the same as those obtained for the bosonic model.
While the fermionic matrices are expected to play an important role in the properties of the model
such as the expanding behavior, they do not seem to affect the singular space-time structure.
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Table 1. The parameter sets (N , C, κ) used for the simulation of the VDM model are listed. We also present
the block size n, the “volume” �, and the “lattice spacing” ε determined from the data for each parameter set.

N C κ n � ε

64 8.81 0.14 24 1.0990(16) 0.0550(1)
96 0 2.00 14 1.3811(41) 0.1151(3)
64 0 2.00 10 1.2726(63) 0.1591(8)
64 0 4.00 7 1.3762(87) 0.2752(17)

3.3. Taking the continuum limit

As yet another possibility to obtain a regular space-time, let us consider taking the continuum limit.
Here we use the VDM model, which is a simplified model for the early-time behaviors. In Fig. 3
(top-left), we plot the extent of space R2(t)/R2(tc) against time (t − tc)/R(tc) for various N , C, and κ

with the block size n listed in Table 1. The power p in the IR cutoff (2.6) and (2.7) is chosen as p = 1.4
following Ref. [34]. From this plot, we observe a clear scaling behavior for (t − tc)/R(tc) � 0.40.

In Fig. 3 (top-right), we plot the normalized eigenvalues 〈λi(t)〉/R2(tc) of Tij(t) for theVDM model
with N = 96, C = 0, and κ = 2. Similar behaviors are obtained for the other parameter sets. We find
that three out of nine eigenvalues of Tij(t) grow with time, which suggests that the rotational SO(9)
symmetry is broken spontaneously to SO(3) for t > tc. These results are similar to those obtained
in Refs. [9,34].

In order to discuss the continuum limit, let us define the “volume” and the “lattice spacing” in the
temporal direction as [9]

� ≡ tpeak − tc
R (tc)

, ε ≡ �

ν
, (3.7)

where tpeak represents the position of the peak in R2(t) and ν is the number of data points of R2(t)
contained within tc < t ≤ tpeak. Roughly speaking, the lattice spacing ε represents the average
horizontal spacing between the adjacent data points of R2(t)/R2(tc). In Table 1, we present the
volume � and the lattice spacing ε obtained for each parameter set (N , C, κ) used in Fig. 3. The
deviation from the scaling behavior for (t − tc)/R(tc) > 0.40 seen in Fig. 3 can be understood either
as the finite volume effects or as the finite lattice spacing effects depending on the parameter set.

In what follows, we focus on the point (t − tc)/R(tc) ∼ 0.40, at which the results for R2(t)/R2(tc)
with the four parameter sets agree with each other. In Fig. 3 (middle-left), we plot the normalized
eigenvalues 〈qk(t)〉/R2(tc) (k = 1, . . . , n) of Q(t) against their label (k − 1)/(n − 1) for the four
parameter sets. This reveals a clear scaling behavior except for the two largest eigenvalues, which
grow as the lattice spacing ε decreases. This scaling behavior is consistent with the scaling of the ratio
R2(t)/R2(tc) in the continuum limit [9,10] seen in the top-left panel considering the relation (3.3).
Note, however, that the time dependence of R2(t)/R2(tc) is caused by the two largest eigenvalues
of Q(t) as we have seen in the previous subsections. Therefore, the scaling of R2(t)/R2(tc) implies
that the two largest eigenvalues of Q(t) should grow linearly in n in the continuum limit. This is
confirmed numerically in Fig. 4 (left) assuming the presence of 1/n corrections.

Let us next consider the space-time structure in the extended directions and the shrunken direc-
tions separately. In Fig. 3 (middle-right), we plot the eigenvalues of Ā(1)(t)/R(tc) obtained at
(t − tc)/R(tc) ≈ 0.40 against the label (k − 1)/(n − 1). Here again we observe a clear scaling

10/21

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2019/9/093B03/5560148 by guest on 08 N

ovem
ber 2023



PTEP 2019, 093B03 T. Aoki et al.

Fig. 3. (Top-left) The extent of space R2(t)/R2(tc) is plotted against time (t − tc)/R(tc) for the VDM model
with the parameter sets (N , C, κ) and the block size n listed in Table 1. The power p in the IR cutoff (2.6) and
(2.7) is chosen as p = 1.4. (Top-right) The normalized eigenvalues 〈λi(t)〉/R2(tc) of Tij(t) are plotted against
time (t − tc)/R(tc) for N = 96, C = 0, κ = 2. The eigenvalues of Q(t)/R2(tc) (middle-left), the eigenvalues
of Ā(1)(t)/R(tc) (middle-right), and the eigenvalues of Ā(4)(t)/R(tc) (bottom) obtained at (t − tc)/R(tc) ∼ 0.40
are plotted against their labels (k − 1)/(n − 1) for the four parameter sets listed in Table 1.

behavior except for the ones at both ends of the spectrum. Similar behaviors are obtained for the
other extended directions. According to the same argument as in the previous paragraph, we can
deduce that the normalized eigenvalues at both ends of the spectrum grow in magnitude as O(

√
n) in

the continuum limit, which is confirmed in Fig. 4 (right) assuming the presence of 1/n corrections.
In Fig. 3 (bottom), we plot the eigenvalues of Ā(4)(t)/R(tc) obtained at (t−tc)/R(tc) ≈ 0.40 against

the label (k − 1)/(n − 1). We observe a clear scaling behavior here as well. In fact, the eigenvalues
are almost the same as those for the extended directions except for the ones at both ends. Similar
behaviors are obtained for the other shrunken directions.
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Fig. 4. (Left) The largest eigenvalue qn(t) of the matrix Q(t) obtained at (t − tc)/R(tc) ∼ 0.40 and normalized
by R2(tc) and n is plotted against 1/n. (Right) The largest eigenvalue a(1)

n (t) of the matrix Ā(1)(t) obtained at
(t − tc)/R(tc) ∼ 0.40 and normalized by R(tc) and

√
n is plotted against 1/n.

Thus we find in the VDM model that the singular space-time structure becomes even more pro-
nounced in the continuum limit instead of getting milder. It is surprising that the two eigenvalues of
Ā(i)(t)/R(tc) (i = 1, 2, 3 ) actually diverge in the continuum limit although the extent of space defined
by R2(t)/R2(tc) remains finite. It is these two eigenvalues that cause the spontaneous breaking of
the SO(9) rotational symmetry and the expansion of space. All the other eigenvalues of Ā(i)(t)/R(tc)
remain finite and contribute only to the time-independent SO(9) symmetric part of the “moment of
inertia tensor” Tij(t).

3.4. The Pauli-matrix structure

In this subsection, we provide deeper understanding of the singular space-time structure observed in
the previous subsections. Let us work in the SU(n) basis that diagonalizes Q(t) at each time t with
the ordering (3.2), and consider the 2 × 2 submatrix Xi(t) in the bottom-right corner of

Ā(i)(t) =
(

∗ ∗
∗ Xi(t)

)
(3.8)

for the extended directions i = 1, 2, 3. Here we use the VDM model with the parameter sets given
in Table 1 and take the continuum limit focusing on the time (t − tc)/R(tc) ≈ 0.40 as we did in
Sect. 3.3.

We show below that the three matrices Xi in Eq. (3.8) tend to satisfy the SU(2) Lie algebra

[Xi, Xj] = icεijkXk (3.9)

for some real constant c in the continuum limit. In order to determine the optimal value of c, we
consider a quantity

S(c) ≡ tr(iεijk [Xi, Xj] + 2cXk)
2, (3.10)

which represents the violation of the relation (3.9). The value of c that minimizes S(c) can be readily
obtained as

c̃ = − iεijk tr(Xk [Xi, Xj])
2tr(X 2

l )
. (3.11)
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Using c = c̃ as the optimal value for each configuration, we investigate to what extent the relation
(3.9) is satisfied.

In Fig. 5, we show a scatter plot for the real part (left) and the imaginary part (right) of each side of
Eq. (3.9). The quantities on both sides are normalized by tr(X 2

l ) so that they become invariant under
the scale transformation Xi �→ const.Xi. We observe that the data points tend to converge to the line
y = x as one goes from the top to the bottom, corresponding to decreasing the lattice spacing ε (see
Table 1). This shows that the 2 × 2 matrices Xi (i = 1, 2, 3) tend to satisfy Eq. (3.9) in the continuum
limit.

Thus we conclude that the singular space-time structure observed for the matrix configurations
generated by simulations is essentially associated with the Pauli matrices. The Pauli matrices may be
regarded as the simplest matrix configuration that has SO(3) symmetry in the sense that their SO(3)
rotation can be absorbed by an appropriate SU(N ) transformation. Given the situation characterized
by the two large eigenvalues of Q(t), the appearance of the Pauli-matrix structure may not be that
surprising.

4. A new interpretation of the simulation

In this section, we attribute the observed Pauli-matrix structure to the approximation involved in
deriving the partition function (2.8), which was used in the Monte Carlo simulation. We point out a
subtlety in the approximation, and argue that the approximation amounts to replacing eiSb by eβSb

in the original partition function (2.4). This new interpretation of the simulation provides us with a
natural understanding of the (3+1)D expanding behavior with the Pauli-matrix structure discussed
in Sect. 3. We also speculate on a possible scenario for the original model with the correct eiSb factor.

4.1. The “derivation” of the partition function (2.8)

Let us first review how one can obtain the partition function (2.8) used in the Monte Carlo simulation
from the original partition function (2.4). (This was done in Appendix A of Ref. [9] for p = 1, but
here we generalize it to arbitrary p.)

Note that the integrand of the partition function (2.4) involves a phase factor eiSb . As is commonly
done in integrating oscillating functions, we introduce the convergence factor e−ε|Sb| and take the
ε → 0 limit after the integration.

The partition function can then be rewritten as

Z =
∫

dA
∫ L2p

0
d(rp) δ

(
1

N
Tr
{
(Ai)

2}p − rp
)

θ

(
κprp − 1

N
Tr (A0)

2p
)

eiSb−ε|Sb| PfM, (4.1)

where κ and L are the cutoff parameters introduced in Eqs. (2.6) and (2.7), respectively. Rescaling
the variables Aμ �→ r1/2Aμ in the integrand, we get

Z =
∫

dA PfM(A) f (Sb) δ

(
1

N
Tr {(Ai)

2}p − 1
)

θ

(
κp − 1

N
Tr (A0)

2p
)

. (4.2)

Here we have defined the function f (Sb) by

f (Sb) ≡
∫ L2p

0
d(rp) r9(N 2−1)−1er2(iSb−ε|Sb|), (4.3)

which is a complex-valued function with the property f (−Sb) = f (Sb)
∗.
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Fig. 5. (Left) A scatter plot for the real part x = Re(ic̃εijk(Xk)ab)/tr(X 2
l ) and y = Re([Xi, Xj]ab)/tr(X 2

l ) of
each side of Eq. (3.9) with Eq. (3.11) is shown for (i, j) = (1, 2), (2, 3), (3, 1) and (a, b) = (1, 1), (1, 2), (2, 2)

using ten configurations obtained by simulating the VDM model with the parameter sets given in Table 1.
The solid line represents y = x. (Right) A scatter plot for the imaginary part x = Im(ic̃εijk(Xk)ab)/tr(X 2

l ) and
y = Im([Xi, Xj]ab)/tr(X 2

l ) of each side of Eq. (3.9) with Eq. (3.11) is shown in the same way.
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For |Sb| � 1
L4 , the function can be well approximated by

f (Sb) ≈ p

9(N 2 − 1) + p − 1
(L2)9(N 2−1)+p−1. (4.4)

For |Sb| � 1
L4 , on the other hand, the phase of the integrand in Eq. (4.3) starts to oscillate violently

in the region r � 1/
√|Sb|, and hence the integral decreases rapidly in magnitude for increasing |Sb|.

In particular, the asymptotic behavior of f (Sb) for Sb � 1
L4 can be estimated as

|f (Sb)|
f (0)

= �

(
9(N 2 − 1) + p + 1

2

) (
1

L4|Sb|
) 9(N2−1)+p−1

2 + O(e−εL4|Sb|) (4.5)

by deforming the integration contour in Eq. (4.3).
Recalling Eq. (2.5), the condition |Sb| � 1

L4 for Eq. (4.4) can be rewritten as

∣∣∣∣ 1

N
Tr (FμνFμν)

∣∣∣∣ � 4

NL4 . (4.6)

Therefore, assuming that the right-hand side 4
NL4 of Eq. (4.6) becomes small at large N , we may

make a replacement

f (Sb) =⇒ δ

(
1

N
Tr (FμνFμν)

)
(4.7)

up to a normalization constant. For the bosonic model and the VDM model, one simply has to replace
the Pfaffian in Eqs. (4.1) and (4.2) with Eq. (2.16).

4.2. Subtlety in the derivation and the new interpretation

The only step in the derivation that may go wrong is the replacement (4.7). The subtlety in this
replacement can be seen as follows. Note that the phase factor eiSb in the partition function (2.4)
favors configurations at which the bosonic action Sb is stationary. On the other hand, the above
approximation essentially replaces the phase factor eiSb by the delta function δ(Sb), which amounts
to picking up configurations at which Sb is stationary only under rescaling Aμ �→ const.Aμ. While
it is true that |f (Sb)| is sharply peaked at Sb = 0, the function f (Sb) is actually a complex-valued
function, whose phase rotates violently around Sb = 0. This effect of the phase should be responsible
for favoring the configurations at which Sb is stationary. The approximation ignores this effect
completely, and hence it cannot be justified.

If the model (2.8) is not equivalent to the original model (2.4), what kind of model does it actually
correspond to? Here we point out that the constraint on Sb that appears in Eq. (2.8) may be regarded
as the constraint that one uses in defining a microcanonical ensemble. From this viewpoint, we
consider that the model (2.8) is actually equivalent to the corresponding canonical ensemble with
the Boltzmann weight eβSb . The real parameter β depends on the parameter C in the constraint5. As
we will see below, we consider that the model (2.8) corresponds essentially to replacing eiSb by eβSb

with β > 0.

5 This connection also provides clear justification of the renormalization-group-like method [9,35], which
amounts to tuning the parameter C in order to obtain the late-time behaviors with smaller matrix size.
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For β > 0, the first term in Eq. (2.5) that appears in eβSb favors configurations in which A0 and Ai

commute. This means that the spatial matrices Ai tend to become diagonal in the SU(N ) basis that
diagonalizes A0. On the other hand, the second term in Eq. (2.5) favors configurations in which the
noncommutativity among the spatial matrices Ai is large. The band-diagonal structure, which plays a
crucial role in extracting the real-time evolution as in Sect. 2.2, can be understood as a consequence
of the balance of these two effects.

We can also understand the reason for the (3+1)D expanding behavior with the Pauli-matrix
structure. Here we assume that the first term in Eq. (2.5) is not important except in realizing the
band-diagonal structure and focus on the effect of the second term in Eq. (2.5), which favors large
Tr
(
Fij
)2, where Fij = i

[
Ai, Aj

]
. We also have to take into account the constraint 1

N Tr
{
(Ai)

2}p = 1,
where we set p = 1 in what follows.

Simplifying the band-diagonal structure of the spatial matrices Ai (i = 1, . . . , 9), we consider the
block-diagonal structure given as

Ai =

⎛
⎜⎜⎜⎜⎝

Ā(1)
i

Ā(2)
i

. . .

Ā(B)
i

⎞
⎟⎟⎟⎟⎠, (4.8)

where n is the common block size and B is the number of blocks satisfying N = nB. Within this
ansatz, we would like to maximize Tr (Fij)

2 under the constraint 1
N Tr (Ai)

2 = 1. Note that we have

1

N
Tr (Ai)

2 = 1

B

B∑
b=1

1

n
Tr (Ā(b)

i )2, (4.9)

1

N
Tr (Fij)

2 = 1

B

B∑
b=1

1

n
Tr (F̄ (b)

ij )2, (4.10)

where we have defined F̄ (b)
ij = i[Ā(b)

i , Ā(b)
j ] for each block b.

Let us solve the maximization problem in two steps. First we fix

1

n
Tr (Ā(b)

i )2 = (rb)
2, (4.11)

1

B

B∑
b=1

(rb)
2 = 1, (4.12)

and maximize Tr (Fij)
2 under this constraint. Following the discussion given in Ref. [8], the solution

to this first maximization problem can be written in terms of the Pauli matrices σi as

Ā(b)
i = 1√

6
rb(σi ⊕ 0n−2), (4.13)

for i = 1, 2, 3 and Ā(b)
i = 0 otherwise, up to the symmetries of the problem such as the SO(9)

rotational symmetry and the SU(n) symmetry within each block. The value of Tr (Fij)
2 for Eq. (4.13)

is given as

Tr (Fij)
2 = 2

3

B∑
b=1

(rb)
4. (4.14)
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As the second step of the maximization, we maximize Eq. (4.14) under the constraint (4.12). The
maximum is given when all but one of the rb are zero.

In reality, one should also take into account the entropic factor due to quantum fluctuations, which
is expected to favor a certain distribution of rb. Due to the time-reversal symmetry A0 �→ −A0 of
the model, the most natural distribution would be that rb is large around t = 0 and decreases with
|t|. Thus we can understand the appearance of the (3+1)D expanding behavior with the Pauli-matrix
structure.

4.3. A possible scenario for the original model

In the previous subsections, we have argued that the model (2.8) used for the Monte Carlo simulation
actually corresponds to a model with eβSb instead of eiSb in Eq. (2.4). This new interpretation explains
naturally the (3+1)D expanding behavior with the Pauli-matrix structure. The crucial question then
is what happens for the model with the correct eiSb factor. It is not easy to answer this question
due to the sign problem, which occurs because eiSb is a pure phase factor and one cannot regard
the integrand of the partition function (2.4) as the probability distribution. Here we speculate on a
possible scenario based on the results obtained so far.

For that purpose, let us consider a generalized model with a factor eβ(cos θ+i sin θ)Sb (0 ≤ θ ≤ π/2),
which interpolates the two models. At θ = 0, we obtain the model with the positive definite factor
eβSb that we have been studying, whereas at θ = π/2, we obtain the model with eiβSb that we are
aiming at. The scale parameter β can be absorbed, if one wishes, by the redefinition Aμ �→ β−1/4Aμ

and the replacement L �→ β1/4L in Eq. (2.7).
As far as θ < π/2, the real part of the coefficient of Sb is positive. Therefore, certain effects

favoring the band-diagonal structure and the Pauli-matrix structure in Ai are at work. Note also that
the classical equation of motion is common to all values of θ . In fact, the classical equation of motion
becomes valid at late times if the expansion of space occurs because each term in the bosonic action
becomes large [14,15]. Therefore, if some classical solution dominates for θ = 0, the same solution
may well also dominate for other θ less than some value θ0. From this argument, we speculate that
the models with 0 ≤ θ ≤ θ0 are qualitatively the same.

As one approaches θ = π/2, the real part of the coefficient of Sb becomes small, and different
classical solutions may dominate. Note that the matrix configurations with the Pauli-matrix structure
are obtained essentially by maximizing Sb, but the classical solutions that can be obtained by extrem-
izing Sb instead of maximizing it should have more variety. Indeed, we have generated numerically
many classical solutions that have (3+1)D expanding behavior and find for all of them that the matrix
Q(t) defined in Eq. (3.1) has a smooth eigenvalue distribution (K. Hatakeyama et al., manuscript
in preparation). This is understandable since the configurations with the Pauli-matrix structure are
actually disfavored entropically. Recall, for instance, that only two eigenvalues of the matrix Q(t)
are large, meaning that the entropy for such configurations must be small. It should be mentioned,
however, that from the above classical analysis alone, one cannot single out the (3+1)D expanding
space-time because there are also other solutions with different dimensionality. Whether the (3+1)D
expanding behavior remains even for θ ∼ π/2 is therefore a highly nontrivial question.

5. Summary and discussions

In this paper we have investigated the space-time structure of the matrix configurations obtained in
Monte Carlo studies of the Lorentzian type IIB matrix model and the simplified models. In these
models, the time evolution can be extracted from the matrix configurations by working in the SU(N )
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basis that diagonalizes the temporal matrix A0. The n × n spatial submatrices Āi(t) (i = 1, . . . , 9) at
each time t show that only three out of nine directions expand after some critical time, suggesting
the SSB of rotational SO(9) symmetry to SO(3). By calculating the eigenvalues of Āi(t) at each t,
however, we have found that only two of them increase in magnitude with t in the extended directions,
while the rest are independent of t and SO(9) symmetric. This implies that the SSB is caused only
by the two eigenvalues. In the continuum limit, the magnitude of the two eigenvalues diverges in
physical units and the spatial matrices Āi(t) approach a configuration that is essentially described by
the Pauli matrices.

We have attributed this problem to the approximation used in Monte Carlo simulation to avoid the
sign problem, which actually amounts to replacing eiSb by eβSb in the partition function (2.4) of the
Lorentzian type IIB matrix model. This new interpretation of the Monte Carlo simulation enables us
to understand interesting aspects of the obtained results such as the band-diagonal structure of the
spatial matrices Ai as well as the appearance of the (3+1)D expanding behavior with the Pauli-matrix
structure.

In order to discuss what happens in the original model, we have considered a model with a factor
eβ(cos θ+i sin θ)Sb , which interpolates the model that we have been studying (θ = 0) and the model that
we are aiming at (θ = π/2). Using some arguments based on the classical equation of motion, which
is common to all θ , we have speculated that it is possible to obtain a regular space-time structure
with the (3+1)D expanding behavior by approaching θ = π/2 in the large-N limit. The crucial point
is that the Pauli-matrix structure is obtained by maximizing the action at the expense of reducing the
entropy. By approaching θ = π/2, one may obtain classical solutions that only extremize the action
that have larger entropy due to a smooth eigenvalue distribution of the matrix Q(t). The existence
of such classical solutions with the (3+1)D expanding behavior has been confirmed numerically
(K. Hatakeyama et al., manuscript in preparation). Whether such classical solutions appear from the
full quantum theory by approaching θ = π/2 remains to be seen.

Monte Carlo simulation of the interpolating model for θ �= 0 is difficult since the complex weight
eβ(cos θ+i sin θ)Sb causes the sign problem. As a promising approach to overcome this problem, we
may use the complex Langevin method [37,38], which has attracted much attention recently [39–45].
It has also been successful in investigating the SSB of rotational symmetry in the 6D Euclidean type
IIB matrix model [7]. Preliminary results [31] for the bosonic Lorentzian model suggest that by
approaching θ = π/2, one obtains clear deviations from the Pauli-matrix structure without losing
the (3+1)D expanding behavior. We hope to see whether a regular (3+1)D expanding space-time
emerges or not in the near future.
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Fig.A.1. (Left) The extent of space R2(t)/R2(tc) obtained for the bosonic model is plotted against x = (t −
tc)/R(tc) for various values of p with N = 256, C = 100, κ = 1.0. The block size is chosen as n = 32, 24, 20, 18
for p = 1.0, 1.3, 1.4, 1.5, respectively. The solid line represents a fit to the p = 1.4 data with R2(t)/R2(tc) =
a + (1 − a) exp(bx), which gives a = 0.92(5), b = 7.3(6). (Right) The extent of space R2(t)/R2(tc) obtained
for the original model is plotted against x = (t − tc)/R(tc) for various values of p with N = 16, C = 5,
κ = 0.46. The block size is chosen as n = 7, 6, 6 for p = 1.4, 1.5, 1.6, respectively. The solid line represents a
fit to the p = 1.6 data with R2(t)/R2(tc) = a + (1 − a) exp(bx), which gives a = 0.83(4), b = 5.3(7).

Appendix A. The determination of the parameter p

In this appendix, we explain how we determine the parameter p in the IR cutoff (2.6) and (2.7).
While a naive choice would be p = 1, it was proposed in Ref. [34] that one should choose a slightly
larger value so that the results become almost independent of p. There it was found in the VDM
model that the results for the extent of space R2(t) become independent of p when p is larger6 than
pc = 1.2–1.3. Based on this observation, we use p = 1.4 when we simulate the VDM model in
Sect. 3.3.

Here we repeat the same analysis in the case of the bosonic model and the original model. In
Fig. A.1, we plot the extent of space R2(t)/R2(tc) against time (t − tc)/R(tc) for the bosonic model
(left) and the original model (right), respectively, with various values of p. For all values of p, we find
that only three directions start to expand at some critical time tc. In the bosonic model, the results
scale for p = 1.3, 1.4, 1.5 except for the data around the peak of R2(t). Similar scaling behavior is
observed for the original model for p = 1.4, 1.5, 1.6. Based on these results, we use p = 1.5 for the
bosonic model and p = 1.6 for the original model in Sects. 3.1 and 3.2, respectively.
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