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Abstract

In this article we study the problem of learning from fuzzy labels (LFL), a
form of weakly supervised learning in which the supervision target is not pre-
cisely specified but is instead given in the form of possibility distributions,
that express the imprecise knowledge of the annotating agent. While several
approaches for LFL have been proposed in the literature, including general-
ized risk minimization (GRM), instance-based methods and pseudo label-based
learning, both their theoretical properties and their empirical performance have
scarcely been studied. We address this gap by: first, presenting a review of the
previous results relative to the sample complexity and generalization bounds
for GRM and instance-based methods; second, studying both their computa-
tional complexity, by proving in particular the impossibility of efficiently solving
LFL using GRM, as well as impossibility theorems. We then propose a novel
pseudo label-based learning method, called Random Resampling-based Learn-
ing (RRL), which directly draws from ensemble learning and possibility theory
and study its learning- and complexity-theoretic properties, showing that it
achieves guarantees similar to those for GRM while being computationally ef-
ficient. Finally, we study the empirical performance of several state-of-the-art
LFL algorithms on wide set of synthetic and real-world benchmark datasets, by
which we confirm the effectiveness of the proposed RRL method. Additionally,
we describe directions for future research, and highlight opportunities for further
interaction between machine learning and uncertainty representation theories.

Key words: Machine Learning, Weakly Supervised Learning, Fuzzy Labels,
Ensemble Learning, Statistical Learning Theory, Possibility Theory

1. Introduction

In recent years, applications of machine learning (ML) have spread into both
research and industry. Arguably, one of the major driving forces behind this
growth has been the increasing availability of successful and general-purpose
learning algorithms (such as deep neural networks, kernel methods or ensemble
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learning) for the task of supervised learning, i.e., the task of learning from sets
of fully labeled data, together with the wide availability of such labeled data
in a multitude of public repositories and for a variety of tasks, ranging from
computer vision to NLP, and from medicine to finance.

However, not all ML tasks fit neatly into the supervised learning category,
and restriction to this specific family of tasks could be too much of a limitation in
many natural settings. Indeed, in many contexts the need to collect fully labeled
data can represent a bottleneck, due to the costs and time which may be required
to produce such annotated data, that could in turn prevent the application of
standard supervised learning pipelines. To address this limitation, in recent
years, increasing attention has been given to the study of weakly supervised
learning settings [84]. Weakly supervised learning refers to machine learning
tasks situated in the spectrum between fully supervised and fully unsupervised
learning [66], and encompasses various tasks such as multiple-instance learning
[85], learning from aggregate data [19] and learning from imprecise data [46, 36].

In this latter case, in particular, the data and annotations can be imprecise or
partial. Some examples include semi-supervised learning, but also more general
tasks [36] such as evidential labels learning [30, 33, 67], in which partial labels
are represented through belief functions (or, equivalently, mass functions); learn-
ing from fuzzy labels [34, 46], in which partial labels are represented through
possibility distributions, and superset learning [11, 57], in which partial labels
are represented by exclusive sets of alternatives. In general, in learning from
imprecise data, one is typically interested in two different tasks [46], namely:
learning, i.e., finding a good model of the data, and disambiguation, i.e., finding
a good way to precisify the imprecise data. Thus, learning from imprecise data
represents an area of interaction between uncertainty representation, for the def-
inition of data representation and reasoning formalisms, and machine learning,
for the development of algorithms and techniques whose aim is to address the
two above-mentioned tasks. Despite the importance and practical relevance of
learning from imprecise data in a variety of settings, so far research has mainly
focused on specific tasks (in particular, semi-supervised learning and superset
learning), while research on more general representations has been more limited.
Furthermore, while several general-purpose algorithmic techniques (including
generalized risk minimization [22, 30, 43, 46, 49, 72], instance-based methods
[4, 7, 51, 79, 82] or pseudo label-based learning [52, 58, 80]) have been developed
to address these learning tasks, their theoretical and empirical properties have
not yet been widely studied [11, 15, 56, 59].

In this article, we address the above-mentioned gap by studying the problem
of learning from imprecise data, considering both the theoretical perspective as
well as the empirical one. We focus, in particular, on the problem of learning
from fuzzy labels (LFL), i.e., the setting in which imprecision only affects the
target and is represented using possibility distributions (i.e., epistemic fuzzy
sets) over the set of possible label values. The decision to focus on this problem
is due to multiple reasons, including:

– its wide applicability, indeed the LFL problem emerges naturally in several
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settings, such as learning from anonymized data [71], learning from multi-
rater data [19] or self-regularized learning [54];

– the relative easiness of acquiring fuzzy-labeled data in comparison with
other forms of imprecise data [23, 47];

– its generality, indeed the LFL problem arises as a natural generalization of
other common tasks in ML, such as semi-supervised and superset learn-
ing, by allowing to express the uncertainty about the labels in a more
general form, as well as by allowing some form of label noise (i.e., errors
in labeling).

We start our contribution by reviewing recent results on a theoretical char-
acterization of the LFL task for two popular learning strategies (i.e., generalized
risk minimization (GRM) and instance-based learning), which is grounded in
the theory of fuzzy random sets [26, 31]. We then show that the LFL problem
is computationally and learning-theoretically harder than standard supervised
learning, in particular we prove that:

1. learnability guarantees for both GRM and instance-based learning meth-
ods are, in general, distribution-dependent;

2. while GRM enjoys learnability guarantees that almost match those for
supervised learning, it is in general computationally hard to solve the
GRM problem;

3. instance-based learning methods, while being computationally efficient,
require exponentially larger sample sizes to meet the same learnability
guarantees as GRM.

To address these limitations, we propose a novel pseudo label-based algorithm,
called Random Resampling-based Learning (RRL), by which we show that a
simple combination of ideas drawn from possibility theory [39] and ensem-
ble learning achieves consistency (under weak assumptions about the data-
generating distribution) as well as learnability guarantees that almost match
those of GRM, while being computationally easy to train. This contribution,
to our knowledge, is the first theoretical analysis of pseudo label-based learning
for general learning from imprecise data tasks.

Our theoretical contributions are accompanied by an empirical validation,
by which we evaluate several algorithms for the LFL task on a large set of
benchmark datasets that encompasses both synthetic data as well as real-world
problems. Through our empirical analysis we confirm the effectiveness of the
proposed RRL algorithm, as well as of other state-of-the-art algorithm based ei-
ther on GRM or regularized instance-based learning. More generally, we confirm
the results of our theoretical analysis and, in particular, we show that:

1. while GRM achieves accuracy comparable with RRL, it does so at the cost
of a much higher execution time;
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2. while instance-based learning methods report lower accuracy than other
state-of-the-art methods, their combination with dimensionality-reduction
techniques achieves competitive performance.

Finally, we discuss directions for future research, emphasizing the need for bet-
ter cross-fertilization between uncertainty representation theory and machine
learning as a way to address more general weakly supervised learning tasks.

2. Background

The LFL problem is based on the use of fuzzy sets as a way to represent
imprecise information about a target variable of interest. For this reason, in
this section, we provide a basic overview on possibility theory and probability
theory on fuzzy sets (through random fuzzy sets).

2.1. Possibility Theory and Random Fuzzy Sets

As described in the Introduction, LFL is the task of learning from impre-
cise information that is represented in the form of a possibility distribution
(or, equivalently, a fuzzy set) over a given set of interest. These uncertainty
representation models can be defined as follows:

Definition 2.1. A possibility measure [38] is a function Π : 2X 7→ [0, 1] satis-
fying the following three properties:

Π(∅) = 0; (1)

Π(X) = 1; (2)

∀A,B ⊆ X,Π(A ∪B) = max{Π(A),Π(B)}. (3)

If X is countable, Π can be equivalently represented by a possibility distribution
π, i.e., a function π : X 7→ [0, 1], s.t. Π(A) = supx∈A π(x). For any given
x ∈ X, we call the value π(x) the possibility degree of x.

Intuitively, a possibility distribution can be understood as a fuzzy set over
X [81], whereas the membership degrees denote the plausibility of the elements.
In this article we will focus on possibility measures defined on a finite set X:
thus, without loss of generality, we will represent any possibility measure Π only
in terms of the corresponding possibility distribution π.

A possibility distribution π is normalized if ∃x ∈ X s.t. π(x) = 1. We
denote with F(X) the collection of normalized possibility distributions over X.
Given α ∈ L we denote with πα = {x : π(x) ≥ α} the α-cut of π, and with
πα+ = {x : π(x) > α} the corresponding strong α-cut.

We note that possibility distributions can be associated with two different
semantics: an ontic and an epistemic one. In this article, we only consider the
epistemic semantics [26] of such distributions: thus, the possibility degree π(x)
is taken to represent the plausibility of value x compared with other elements
y ∈ X. In particular, if π(x) ≥ π(y) then x is considered to be at least as
plausible as y, and, if π(x) > π(y) then x is more plausible than y.
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The LFL setting (defined formally in Section 3.1) assumes that the data is
generated i.i.d. from a joint distribution on fuzzy sets. Such distributions can
be represented in terms of random fuzzy sets, which arise as the main object of
study in the generalization of random set theory to the case of fuzzy sets. Thus,
we first recall some basic notions from random set theory [26, 61].

Definition 2.2. Given a set X, a random set (also, mass function) is defined as
a probability distribution over 2X , that is m : 2X 7→ [0, 1] s.t.

∑
A⊆X m(A) = 1.

From any mass function, we define three set functions, namely the belief (Bel),
plausibility (Pl) and commonality (Q) functions:

Bel(A) =
∑

B∈2X :B⊆A

m(B); (4)

Pl(A) =
∑

B∈2X :A∩B ̸=∅

m(B); (5)

Q(A) =
∑

B∈2X :A⊆B

m(B). (6)

Each of the functions given in Definition 2.2 (i.e., m, Bel, Pl and Q) can
be considered an equivalent representation of a random set, in the sense that,
starting from any of them, the others can be easily computed. In particular, it
is easy to observe that Bel and Pl are dual of each other, that is, for any set
A ∈ 2X , it holds that:

Bel(A) = 1−m(∅)− Pl(Ac),

P l(A) = 1−m(∅)−Bel(Ac),

where, for any set A ∈ 2X , Ac denotes the set complement of A. With each
mass function m, one can associate a collection of focal sets, which is formally
equivalent to the support1 of m, that is

S(m) = {A ∈ 2X : m(A) > 0}.

When the focal sets of m are nested (i.e., for each A,B ∈ S(m), either A ⊆ B
or B ⊆ A), then the plausibility function Pl is a possibility measure. More
generally, with each mass function m we can associate a possibility distribution
pl : X 7→ [0, 1], called the contour function of m and defined as:

pl(x) = Pl({x}) = Q({x}).

We refer the reader to [28, 32, 61, 74] for extensive discussions on the mathe-
matical formalism and semantics of random sets.

Finally, we recall some basic notions about the generalization of random set
theory to the case of fuzzy events [26, 31].

1We recall that the support of a probability distribution P : X → [0, 1] is the set of elements
that have probability greater than 0, i.e. supp(P ) = {x ∈ X : P (x) > 0}.

5



Definition 2.3. Let X be a set. A fuzzy random set m̃ is defined as a probability
distribution over the collection of fuzzy sets on X. That is, m̃ : F(X) 7→ [0, 1]
and

∫
F(X)

m̃(π) = 1. When the support of m̃ is finite, that is when:

|{π ∈ F(X) : m̃(π) > 0}| <∞,

the normalization requirement above can equivalently be expressed as:∑
π∈F(X):m̃(π)>0

m̃(π) = 1.

Belief, plausibility and commonality functions can be generalized to the set-
ting of random fuzzy sets by using notions from generalized measure theory
(i.e., the Choquet integral [42]): in such a setting, the belief, plausibility and
commonality functions assign a value to each possible fuzzy event π ∈ F(X).
As in this paper we only focus on singleton events, we only provide a restricted
version of the above-mentioned definitions, and we refer the reader to [31] for a
general definition that can be applied to any fuzzy set.

Definition 2.4. A singleton event is a (normalized) possibility distribution that
assigns possibility greater than 0 to a single element x ∈ X. That is, given
x ∈ X, the singleton event x̃ ∈ F(X) is defined by:

x̃(x) = 1; (7)

∀x′ ̸= x ∈ X, it holds that x̃(x′) = 0. (8)

Definition 2.5. Let m̃ be a random fuzzy set and x̃ a singleton event. Then,
we define the belief, plausibility and commonality of x̃ as:

belm̃(x̃) = m̃(x̃), (9)

plm̃(x̃) =
∑

π∈F(X):π(x)>0

m̃(π), (10)

qm̃(x̃) =
∑

π∈F(X):π(x)=1

m̃(π). (11)

We note that in the case of fuzzy random sets belm̃(x̃) ≤ qm̃(x̃) ≤ plm̃(x̃).

2.2. Supervised Learning and Learning Theory
In the framework of statistical learning theory [75] the starting point is the

definition of a set Z, which is assumed to collect the features of interest of the
objects to be studied. In supervised learning, Z is a product space X × Y with
X being a vector space (i.e., the set of feature vectors) and Y being the target
space: we will focus on the case of classification, whereas Y is finite.

Definition 2.6. Let Z = X × Y . A learning problem is a pair (Z,D), where
D, called data-generating distribution, is a probability measure2 over Z.

2Formally, if Z is not countable, we need to assume the existence of a σ-algebra B of Z and
D is a probability measure defined over B. In the article we leave the σ-algebra B implicit,
assuming a natural one can be defined over the domain of interest.
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Intuitively, the data-generating distribution D, and in particular the corre-
sponding conditional distribution D(y|x), encodes a (not necessarily determin-
istic) dependency between input features and target labels.

Having fixed a learning problem (encoded by the pair (Z,D)), the goal of
Machine Learning is to find a mapping f (or, more generally, a conditional
density function) that provides a good approximation of D(y|x), based only on
a finite sample S drawn from3 D. To formalize this notion, we introduce the
concept of a hypothesis space H, where each h ∈ H is a function h : X → R

Y ,
which represents the collection of functions from which a learning algorithm is
allowed to select. The goodness of a hypothesis h is measured by means of a loss
function l : H ×X × Y → R, that associates to each triple (h, x, y) a number
that represents the cost of predicting label h(x) when the true label is y. The
most common example of a loss function is the so-called 0-1 loss function (also,
accuracy), defined as:

l0−1(h, x, y) =

{
0 y = argmaxy∈Y hy(x)

1 y ̸= argmaxy∈Y hy(x)
. (12)

However, for computational complexity reasons, additional constraints are typ-
ically assumed on the loss function l.

Definition 2.7. We say that a loss function l is convex, if it is convex in its
first argument, i.e., it satisfies l(αh1 + (1 − α)h2, x, y) ≤ αl(h1, x, y) + (1 −
α)l(h2, x, y). Similarly, we say that l is L-Lipschitz if, ∀x, y ∈ X × Y , it holds
that |l(h1, x, y)− l(h2, x, y)| ≤ L|h1(x)− h2(x)|.

Intuitively, convexity and Lipschitzness encode the notion that the loss func-
tion does not vary too rapidly and is sufficiently well-behaved.

Based on a loss function l, we can quantify the goodness of a hypothesis
h ∈ H w.r.t. D, by means of the true risk, that is the expected value of l w.r.t.
D. Formally, the true risk is defined as follows:

Definition 2.8 (True Risk). Let D be a data-generating distribution and l a
loss function. Let f be a measurable function f : X → R

Y . The true risk of f
is defined as :

LD(f) =

∫
X×Y

l(f, x, y)dD(x, y). (13)

Given a loss function l and a distribution D, a natural requirement would
be to find a function whose true risk is as small as possible. This notion is
formalized through the following definitions:

Definition 2.9. Let D be a data-generating distribution and l a loss function.
The Bayes classifier is defined as:

f̂ = arg min
f measurable

LD(f). (14)

3Thus, D is assumed to be a randomized mechanism that can be queried in order to obtain
samples from Z.
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Given an hypothesis space H, the H-relative Bayes classifier is defined as:

ĥ = argmin
h∈H

LD(h), (15)

We say that the learning problem (Z,D) is realizable w.r.t. H if LD(ĥ) = 0.

Intuitively, the Bayes classifier is the function (among all possible measurable
functions) that minimizes the true risk. Similarly, the H-relative Bayes classifier
is the minimizer of the true risk within the hypothesis class H.

Usually, D is assumed to be unknown, which means that the true risk of
any hypothesis h cannot be directly computed. Instead, only a finite sample of
data can be accessed: that is, we assume that any learning algorithm is given
only a finite training set S sampled i.i.d. from D. Then, the true risk of h can
be estimated in terms of the corresponding empirical risk w.r.t. S, that is the
average loss of h over S. Formally, the empirical risk is defined as follows:

Definition 2.10. Let (Z,D) be a learning problem, H a hypothesis space and
l a loss function. Let m ∈ N. Then, given h ∈ H and a finite training set
S = ⟨(x1, y1), ..., (xm, ym)⟩ ∼ Dm, the empirical risk of h w.r.t. S is defined as:

LS(h) =
1

m

m∑
i=1

l(h, xi, yi). (16)

We define Empirical Risk Minimization (ERM) to be any learning algorithm
that, given a finite sample S, returns as output an hypothesis h ∈ H that
minimizes the empirical risk. That is, formally:

Definition 2.11. Let H be an hypothesis space, l a loss function. Then, an
algorithm ERMH : Zω 7→ H is called an empirical risk minimization (ERM)
algorithm if it satisfies:

ERMH(S) ∈ argmin
h∈H

LS(h),

where Zω denotes the collection of finite multi-sets over Z.

Aside from its intuitive appeal, ERM can be given a formal justification.
Indeed, even though the true risk cannot be computed, the fundamental theorem
of multi-class learning [27, 63] provides a way to bound the true risk of an
ERM classifier in terms of its empirical risk and a measure of complexity of the
hypothesis space H. In the classification setting, the two most natural measures
of complexity are the Natarajan dimension [63] (d(H)) and the Rademacher
complexity [5] (R(H)) of H.

Definition 2.12 (Shattering). Let C ⊆ X be a subset of the feature space, and
f0, f1 : C → Y be two functions, s.t. ∀x ∈ C, f0(x) ̸= f1(x): f0, f1 represent a
partition of the instances in C into two different classes. We say that H shatters
C ⊆ X if it holds that, ∀B ⊆ C, ∃h ∈ H s.t.:
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– ∀x ∈ B, h(x) = f0(x);

– ∀x /∈ B, h(x) = f1(x).

Definition 2.13 (Natarajan Dimension). Let H be a hypothesis space. We say
that H has Natarajan dimension d, denoted with d(H) = d, if:

– ∃C ⊆ X, |C| = d s.t. H shatters C;

– ∄, C ⊆ X, with |C| > d, s.t. H shatters C.

If for all n ∈ N, ∃C ⊆ X, with |C| = n, s.t. H shatters C, we say that
d(H) =∞.

Intuitively, the fact thatH shatters a subset C ⊂ X means that the hypothe-
ses in H are sufficiently rich to be able to represent all possible (two-)partitions
of C: thus, the Natarajan dimension naturally represents a measure of the
richness of a hypothesis class H, defined in terms of the ability of H to arbi-
trarily discriminate between pairs of classes from Y , for all sets of data whose
cardinality is smaller than d(H).

In regard to the Rademacher complexity4, this can be defined as follows:

Definition 2.14. Let S a finite dataset, H a hypothesis class and l a loss
function. The (empirical) Rademacher complexity of H, w.r.t. S, is defined as:

R(H, S) = 1

|S|
Eσ∼{±1}m

[
sup
h∈H

m∑
i=1

σil(h, xi, yi)

]
(17)

Intuitively, the Rademacher complexity measures the ability of H to fit ran-
dom noise over any given training set S, where the random noise is modeled by
means of the Rademacher distribution (i.e., the distribution that selects value 1
with probability 1

2 , and value −1 with probability 1
2 ). We note that, in contrast

to the Natarajan dimension, the Rademacher complexity of an hypothesis class
H is defined relative to a training set: this implies that, in principle, it would be
possible to compute the Rademacher complexity of any hypothesis class when
given a fixed training set S. However, it can be shown that the problem of
computing the Rademacher complexity is computationally hard (see, e.g.,[75]).

As briefly hinted at, the Natarajan dimension and the Rademacher com-
plexity can be used to bound the value of the true risk of a learning algorithm,
based on its empirical risk. Theorems 2.1 and 2.2, thus, provide an intuitive
justification for the ERM algorithm.

4In the literature, the term Rademacher complexity can be used to denote either the
empirical Rademacher complexity, as defined in Eq. (17), or its expectation R(H) =
ES∼Dm [R(H, S)]. The two versions of the Rademacher complexity are, obviously, related
to each other: in particular, the expectation version can be bounded, with high probability,
by the empirical one. In this article we will only refer to the empirical Rademacher com-
plexity as it provides stronger bounds that, in contrast with the expectation version, are
data-dependent: thus, when we state Rademacher complexity we always mean the empirical
version of this complexity measure.
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Theorem 2.1 (Natarajan Dimension-based Generalization Bound [27]). Let H
be an hypothesis class with Natarajan dimension d. Let l be the 0-1 loss. For
each ϵ, δ ∈ (0, 1) and any distribution D, then, with probability greater than 1−δ,
if ERMH is given a dataset S of size m ≥ n0 with

n0 = O(
d · ln(|Y |) + ln( 1δ )

ϵ2
),

it holds that |LD(ERMH(S))− LS(ERMH(S))| ≤ ϵ.

Theorem 2.2 (Rademacher complexity-based Generalization Bound). Let l be
a loss function, and H be an hypothesis class. For each δ ∈ (0, 1) and any
distribution D, then, with probability greater than 1 − δ, if ERMH is given a
dataset S of size m, it holds that

|LD(ERMH(S))− LS(ERMH(S))| ≤ 2R(H, S) +O(

√
ln(1/δ)

m
),

where R(H, S) is the Rademacher complexity of H w.r.t. S, and the constants
in the O(·) term depend only on l.

We notice that the bound provided by Theorem 2.1 is non-vacuous only if H
has finite Natarajan dimension: this excludes many non-parameteric models, for
which, in general, d(H) = ∞. While, in principle, Theorem 2.2 can be applied
to any hypothesis class, in practice it can be difficult to estimate or bound the
Rademacher complexity of H. However, similar bounds can also be derived for
non-parametric approaches that satisfy some smoothness regularities, such as
nearest neighbors methods:

Theorem 2.3 (Generalization Bound for Instance-based Models [75]). Let X
be a d-dimensional vector space, Y = {0, 1}, ηy(x) = D(y = 1|x) and assume
that ∀y, ηy is L-Lipschitz. Let S ∼ Dm be a training set, and, for each x ∈ X, let
N(x, S) be the collection of nearest neighbors of x in S. Let kNN(S) : X → Y
be the hypothesis defined by

kNN(S)(x) = argmax
y∈Y

∑
(xi,yi)∈S

1yi=y.

Then it holds that:

E(LD(kNN(S))) = (1 +

√
8

k
)LBayes
D

+ (6c
√
d+ k)m

−1
d+1 ,

where the expectation is w.r.t. the sampling of a training set S of size m from
D and LBayes

D = LD(f̂), where f̂ is the Bayes classifier.
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2.3. Superset Learning and Learning Theory

All the results presented in Section 2.2 only apply in the setting of supervised
learning: in Section 3 we provide a generalization of these results to a weakly
supervised learning setting, namely the LFL setting. As we will show, one fun-
damental difference between the two settings relates to the fact that Theorems
2.1 and 2.2 are distribution-free: that is, the given bounds on the generalization
error do not depend on the data-generating distribution D, but only on the
hypothesis class H (and the loss function l). By contrast, the results we will
prove in Section 3 will have distribution-dependent terms: we emphasize that
this property is typical of settings that generalize supervised learning. To illus-
trate this phenomenon, we briefly focus on a restricted case of the LFL problem,
called superset learning, which has been previously studied in the literature.

In superset learning, the data-generating distribution D is defined over the
set X × Y × 2Y : hence, instances are triples of the form (x, y, C). The inter-
pretation of such an instance is that the set C represents the partial knowledge
of the annotator about the true class label y: in general, one assumes that the
superset condition holds, that is, it is assumed that y ∈ C. Thus, superset
learning can be seen as a generalization of semi-supervised learning (in which
case, for every instance (x, y,A) either C = {y} or C = Y ).

The definition of true risk in superset learning is the same as in supervised
learning (see Eq. (13)). However, any learning algorithm has access only to
a finite sample of the form S = {(x1, C1), . . . , (xm, Cm)}, sampled from the
marginal distribution D ↓ (X × 2Y ) defined by:

D ↓ (X × 2Y )(x,C) =
∑
y∈Y
D(x, y, C).

A way to extend the empirical risk minimization to this setting is to lift the
definition of empirical risk to the superset learning setting. For simplicity, we
refer here to the optimistic risk formulation considered in [56] (as the only the-
oretical results for superset learning apply to this formulation), while a general
discussion of learning criteria for superset learning (as a special case of LFL) is
given in Section 3.1. In the setting of superset learning, the optimistic risk is
defined as:

LO
S (h) =

1

m

m∑
i=1

min
y∈Ci

l(h, xi, y)

Based on this extension of the empirical risk, the authors of [56] generalized
Theorem 2.1 to the setting of superset learning as follows:

Theorem 2.4 (Generalization Bound for Superset Learning [56]). Let H be an
hypothesis class with Natarajan dimension d. Let D be a distribution, and let α
be defined as:

α = sup(x,y)∈X×Y {D(C|x, y) : D ↓ (X × Y )(x, y) > 0, l ̸= y)}.

Assume that (Z,D) is realizable w.r.t. H. For each ϵ, δ ∈ (0, 1) if any learning
algorithm A : (X×2Y )ω → H that minimizes the optimistic risk LS(O) is given
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a dataset S of size m ≥ n0 with:

n0 = O

 1

ln
(

2
1+α∗

)
ϵ

d · ln

 d|Y |2

ln
(

2
1+α∗

)
ϵ

+ ln
1

δ

 ,

then with probability greater than 1− δ, it holds that LD(A(S)) ≤ ϵ.

As can be seen, the bound given in Theorem 2.4 is similar to the one given in
2.1: the main difference among the two bounds is the presence (in Theorem 2.4)
of an additional distribution-dependent parameter α. Intuitively, the closer α is
to 1, the harder the corresponding learning problem is: indeed, α represents the
degree of ambiguity of the data-generating distribution D, that is the probability
that an incorrect label l ̸= y would always be included in the superset label C.
This is in contrast with Theorem 2.1 which provides a distribution-free bound:
indeed, the learnability guarantee given in Theorem 2.4 only holds conditionally,
under the assumption that the degree of ambiguity α is sufficiently close to 0. As
we will show in Section 3, distribution-conditionality is an inherent limitation
in learning from imprecise data.

3. Learning from Fuzzy Labels

In this section we study the LFL problem from a theoretical perspective,
based on statistical learning theory and computational complexity. First, in
Section 3.1 we provide an introduction to the LFL problem from a formal per-
spective, as well as illustrate connections with other learning problems and
potential applications. In Sections 3.2 and 3.3 we review some previous results
on the learnability of the LFL problem as well as provide new positive results in
this sense. We focus, in particular, on two specific learning algorithms, namely
generalized risk minimization (in Section 3.2) and generalized nearest neighbors
(in Section 3.3). We also prove negative results related to the LFL problem, by
first providing a No Free Lunch Theorem and then studying the computational
complexity of generalized risk minimization. To address the above-mentioned
limitations, in Section 3.4 we propose a novel pseudo label-based learning al-
gorithm and study its learning-theoretic and complexity-theoretic properties,
providing promising results.

3.1. Learning from Fuzzy Labels: Background

As mentioned in the Introduction, the LFL problem is a form of weakly su-
pervised learning, and particularly a generalization of the problem of supervised
learning, in which the true label associated with each instance x is not observed,
but only an imprecise version of it is available, represented as a possibility dis-
tribution πx over the class labels. Formally:

Definition 3.1. Let Z = X × Y be the sample space, then a LFL problem is
defined as a pair (Z, m̃), where the data-generating distribution m̃ is a random
fuzzy set defined over Z × F(Y ). We denote with m̃(·|x, y) the conditional
probability distribution of fuzzy labels given a precise instance (x, y).
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The value m̃(x, yx, πx) denotes the probability of observing the imprecisely
labeled pair (x, πx) when yx is the true label associated with x. Thus, m̃ can
be understood as a distribution that governs the sampling of data triples and
specifies, for each precise instance (x, yx) and (imprecise) fuzzy label πx, the
probability of observing (x, yx, πx). The data-generating distribution m̃ is as-
sumed to satisfy the following condition, called weak superset assumption:

Definition 3.2 (Weak Superset Assumption). Let m̃ be a data-generating dis-
tribution. Then, we assume that :

m̃(πx(yx) > 0|x, yx) = pl(ỹx) = 1, (18)

where ỹx denotes the fuzzy (singleton) event ỹx(ŷ) =

{
1 ŷ = y

0 otherwise.
.

Intuitively, the weak superset assumption asserts that the correct label yx is
never considered impossible. If m̃ also satisfies the stronger condition:

m̃(πx(yx) = 1|x, yx) = q(ỹx) = 1, (19)

then m̃ is said to satisfy the strong superset assumption5, which intuitively
states that the correct label yx is always considered to be fully possible. The
definition of an LFL problem is illustrated in Example 3.1.

Example 3.1. Let us consider a simple binary classification problem from an
hypothetical medical setting. Let X = [−1, 1] be the measurement value for a
certain analyte in a blood sample and Y = {−1, 1}, where 1 means that a certain
disease is present. Assume that there exists a linear function g(x) = w · x such
that, for each x ∈ X, the corresponding target label is deterministically defined
by a function f : X × [0, 1] → Y , defined as f(x) = sign(g(x)). Furthermore,
assume, for simplicity, that each possible value of x is equally probable.

Assume, however, that the function g is unknown. Thus, the true tar-
get label f(x) is not available: given a patient, a doctor can only examine
the features x to provide a diagnosis for the patient. In particular the doc-
tor describes its confidence about whether any given patient has or not the
disease using a possibility distribution π: given x, with probability 1 − ϵ, it
holds that πx(f(x)) = 1, πx(−f(x)) = η; while, with probability ϵ, it holds
πx(−f(x)) = 1, πx(f(x)) = η, where η ∈ [0, 1) is the confidence the doctor
assigns to the diagnosis of which he or she is least confident about, whereas
1− ϵ ∈ [0, 1) is the accuracy of the doctor.

This problem can modeled as a LFL problem. Indeed, we can define the

5The strong superset assumption corresponds to the superset assumption from the superset
learning setting, introduced in Section 2.3. Superset learning can be expressed as a special case
of LFL in which m̃ is actually a random set, i.e., m̃(x, yx, πx) > 0 iff ∀y ∈ Y, πx(y) ∈ {0, 1},
which also satisfies the strong superset assumption.
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data-generating distribution m̃ as the probability density

m̃(x, y, π) =


1−ϵ
2 if y = f(x) ∧ π(y) = 1

ϵ
2 if y = f(x) ∧ π(y) = η

0 otherwise

.

Then, m̃ satisfies the weak superset assumption iff η > 0 or ϵ = 0: in particular
if ϵ = 0 it also satisfies the strong superset assumption.

Given a data-generating distribution m̃, we define the following relevant
distribution parameters (see also Example 3.2):

Definition 3.3. Let m̃ be a data-generating distribution. Let qx,y(ũ) = qm̃(·|x,y)(ũ),
plx,y(ũ) = plm̃(·|x,y)(ũ). Then, we define the following parameters:

– Ambiguity, α = sup(x,y)∈X×Y {qx,y(ũ) : m̃ ↓ (X × Y )(x, y) > 0, u ̸= y};

– Lower Knowledge, k∗ = inf(x,y)∈X×Y {qx,y(ỹ) : m̃ ↓ (X × Y )(x, y) > 0};

– Upper Knowledge, k∗ = sup(x,y)∈X×Y {qx,y(ỹ) : m̃ ↓ (X × Y )(x, y) > 0};

– Falsifiability, ϕ = sup(x,y)∈X×Y {plx,y(ũ) : m̃ ↓ (X × Y )(x, y) > 0, u ̸= y}.

where m̃ ↓ (X × Y ) is the marginal of m̃ over X × Y , defined pointwise by:

m̃(x, y) =

∫
F(Y )

m̃(x, y, π)dm̃.

Intuitively, similarly to the case of superset learning, the parameters α, k∗, k
∗

and ϕ implicitly represent the hardness of (learning from) m̃. The value of α
represents a bound on the probability that an incorrect label u would be consid-
ered as maximally plausible: in particular, α = 1 only when, with probability
1 over the sampling of instance (x, y, π) ∼ m̃, it exists y′ ∈ Y with y′ ̸= y and
π(y′) = 1. k∗ (resp., k

∗) represents a lower (resp., upper) bound on the proba-
bility with which the correct label y could be correctly identified: in particular,
we note that, by the weak superset assumption, it holds that 0 < k∗ ≤ k∗ and
k∗ = 1 iff the strong superset assumption holds. Finally, ϕ represents a bound
on the probability that any hypothesis h would be able to correctly discrimi-
nate the correct label y from an incorrect one: indeed, ϕ = 0 only when, with
probability 1 over (x, y, π) ∼ m̃, it holds that π(y′) > 0 iff y′ = y .

Example 3.2. Let m̃ be the data-generating distribution defined in Example

3.1. Then, it holds that: α = ϵ, k∗ = k∗ = 1− ϵ and ϕ =

{
1 if η > 0

ϵ otherwise
.

Based on the definition of data-generating distribution, we generalize the
definition of the true risk of a hypothesis, which, equivalently to the fully su-
pervised setting, can be defined as:

Lm̃(h) =

∫
l(h, x, yx)dm̃.
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As in the supervised setting, however, any learning algorithm A : (X ×
F(Y ))ω 7→ H is unable to access the full data-generating distribution m̃, but
rather only a finite sample S generated from it. Furthermore, and in contrast
with supervised learning, we note that S is not sampled directly from m̃, as A
does not have access to the true label yx for a triple (x, yx, πx), but rather from
the marginal imprecise data-generating distribution:

Definition 3.4. Let m̃ be a data-generating distribution. Then, the correspond-
ing imprecise data-generating distribution is defined as the marginal distribution
m̃ ↓ (X ×F), s.t.:

m̃ ↓ (X ×F(Y ))(x, π) =
∑
y∈Y

m̃(x, y, π). (20)

The precise data-generating distribution is defined as the marginal distribution
m̃ ↓ (X × Y ), s.t.:

m̃ ↓ (X × Y )(x, y) =

∫
π∈F(Y )

m̃(x, y, π)dm̃. (21)

Example 3.3. Let m̃ be the data-generating distribution defined in Example
3.1. The imprecise data-generating distribution m̃ ↓ (X × F(Y )) derived from
m̃ can be defined as the probability density:

m̃ ↓ (X ×F(Y ))(x, π) = m̃(x, f(x), π),

while the corresponding precise data-generating distribution m̃ ↓ (X×Y ) can be
defined as the probability density:

m̃ ↓ (X × Y )(x, y) =

{
1
2 if y = f(x)

0 otherwise

A learning algorithm A can only access an imprecise training set S̃ ∈ (X ×
F(Y ))ω, drawn from m̃ ↓ (X × F(Y )). This implies that the empirical risk
cannot be directly computed based on S̃ and, therefore, no straightforward gen-
eralization of the ERM principle exists. To address this shortcoming, several
approaches have thus been proposed in the literature: in this paper we focus on
three main approaches, namely generalized risk minimization (GRM), general-
ized nearest neighbors (GNN) and pseudo label-based learning, whose properties
are studied, respectively in Sections 3.2, 3.3 and 3.4.

Before getting to the theoretical analysis of the above-mentioned methods,
we briefly discuss the relevance of LFL problems for practical applications. LFL
represents a general but natural setting that extends other previously studied
weakly supervised learning settings, including semi-supervised learning and su-
perset learning, and allows to flexibly represent a wider variety of learning prob-
lems. In particular, semi-supervised learning corresponds to the case where:

m̃(πx(yx) ∈ {0, 1} ∧ |π0
x| ∈ {1, |Y |}|x, yx) = 1,
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that is, either only the correct label or the full set of possible labels is observed.
By contrast, superset learning (already introduced in Section 2.3) can be for-
mulated as the special case of LFL in which:

m̃(πx(yx) ∈ {0, 1}|x, yx) = 1,

and m̃ satisfies the strong superset property: intuitively, in superset learning
only a set of labels is observed, and this set is always assumed to contain the
true, unknown label (see also Section 2.3).

By way of this additional flexibility, the LFL setting can be understood as a
way to formalize different natural learning settings. Here we briefly recall some
of these settings to illustrate the wide applicability of the problem studied in this
paper. Obviously, LFL can be understood as a natural setting to model learn-
ing problems in which the annotating agent lacks complete knowledge about the
task under consideration and instead only has a partial and imprecise concep-
tualization of it. Moreover, the LFL setting has been applied to model learning
from crowdsourced labels [19] problems, as well as learning with noisy labels
[54, 55] problems. In the case of learning from crowdsourced labels, for each
instance x multiple annotating agents o1, . . . , ok provide each a label y1x, . . . , y

k
x,

where the yix can potentially be distinct. A possibility distribution over Y is
then obtained as:

πx(y) =
|{oi : yix = y}|

maxy′∈Y |{oi : yix = y′}|
.

In this setting, the weak superset property corresponds to the assumption that,
for each instance x, at least one of the agents oi provides the correct label yx:
when k is large, or Y is small, this assumption is not too strong. In the learning
from noisy labels setting, by contrast, it is assumed that the observed samples
(x, yc) may be affected by labeling errors: that is, the annotating agent may err
in the annotation process and hence it may happen that yc ̸= yx. This problem,
which has been widely studied in the machine learning literature [1, 10, 53, 64],
can be recast in the LFL setting by converting the precise, but possibly incorrect,
label yc into a possibility distribution πτ

x [54, 55] defined as:

πτ
x(y) =

{
1 y = yc

τ otherwise
.

3.2. Learning from Fuzzy Labels: Generalized Risk Minimization

In this section we study a popular approach for solving LFL problems, that
in Section 3.1 we called GRM. The GRM method [46] is based on the idea of
extending a loss function l : H ×X × Y → R to a surrogate loss function over
fuzzy labels l̃ : H ×X × F(Y ) → R. Such a transformation can be performed
by means of the following definition:

Definition 3.5 (Imprecise Loss). Let l be a loss function. Then, we define the
imprecise loss l̃ based on l as:

l̃(h, x, π) =

∫ 1

0

A({l(h, x, y′) : y′ ∈ πα})dα, (22)
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where πα = {y′ ∈ Y : π(y) ≥ α} is the α-cut of the fuzzy label π and A is an
aggregation function specifying how to aggregate different loss function values.
The true risk and empirical risk of an hypothesis h ∈ H, can be defined as:

Lm̃(h) =

∫
l(h, x, y)dm̃, (23)

LS̃(h) =
1

m

∑
(xi,πi)∈S̃

l̃(h, xi, πi). (24)

Example 3.4. Let l(h, x, y′) = (h(x) − y′)2, where ∀x ∈ X,h(x) ∈ R, y′ ∈
{−1, 1}. Assume that the imprecisely labelled instances (x, π) are generated from
the imprecise data-generating distribution defined in Example 3.3. Then, with
probability 1−ϵ, it holds that l̃(h, x, π) = (1−η)(h(x)−f(x))2+η(h(x)+f(x))2.
Similarly, with probability ϵ, it holds that l̃(h, x, π) = (1 − η)(h(x) + f(x))2 +
η(h(x)− f(x))2.

Then, GRM is implemented by simply applying the ERM rule for H on the
imprecise training set S̃ by considering the imprecise loss l̃. Formally, the GRM
learning algorithm can be defined as follows:

Definition 3.6 (Generalized Risk Minimization). Let l be a loss function, A
an aggregation operator and l̃ be the imprecise loss based on l and A. Then, an
algorithm GRMH,A : (X×F(Y ))ω → H is called a generalized risk minimization
(GRM) algorithm if it satisfies:

GRMf
H(S̃) ∈ argmin

h∈H
LS̃(h).

Several versions of GRM have been proposed in the literature [36], based
on different ways to select an appropriate aggregation function: popular alter-
natives include the average [22, 30, 49], the maximum [43, 44], the minimum
[11, 46] or variants thereof [48]. While different choices of aggregation function
correspond to different properties of the derived GRM rule [25, 24], in this article
we will focus on the case of the minimum aggregation operator (usually called
optimistic risk minimization [46] or minimin optimization [65]). We decided
to focus on this setting, in particular, as it has been the focus of most previ-
ous investigations of GRM (in the superset learning setting) [11, 15, 24, 56].
Nonetheless, we believe that future work should also evaluate the theoretical
properties of other variants of GRM, with particular reference to the so-called
pessimistic risk minimization approach (also called minimax optimization, and
based on the maximum aggregation operator), due to the importance of this
method in robust learning and estimation [43].

3.2.1. Learning-theoretic Properties

As a first result concerning the learning-theoretic properties of GRM (and,
specifically, of optimistic risk minimization) we provide a bound on the true
risk of optimistic risk minimization, obtained by applying a technique similar
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to Theorem 2.1. To this aim, consider the 0-1 loss: the corresponding imprecise
loss can be shown to be equivalent to l̃0−1(h, x, π) = 1 − π(argmaxy∈Y hy(x))
[15]. Then, the following result holds:

Theorem 3.1 (LFL Generalization Bound for GRM [15]). Let H be an hypoth-
esis class with Natarajan dimension d. Let m̃ be a data-generating distribution
satisfying the weak superset property. Let θm̃ = log2(

2
1+max{ϕ,1−k∗} ), where

ϕ, k∗ are the respective Falsifiability and (Lower) Knowledge parameters. For

each ϵ, δ ∈ (0, 1), then, with probability greater than 1− δ, if GRMf
H is given an

imprecise dataset S̃ of size m ≥ n0 with

n0 = O

(
1

(ϵθm̃)2
(d · ln(d · |Y |

2

(ϵθm̃)2
) + ln(

1

δ
))

)
,

it holds that |Lm̃(GRMf
H(S̃))− Lf

S̃
(GRMf

H(S̃))| ≤ ϵ.

Corollary 3.1. Let H be a hypothesis class with Natarajan dimension d. Let m̃
be the data-generating distribution and θm̃ = log2(

2
1+max{ϕ,1−k∗} ), where ϕ, k∗

are the respective Falsifiability and (Lower) Knowledge parameters. Let h∗ be
the classifier with minimal risk in H, then with probability greater than 1 − δ,
when given an imprecise training set S̃ of size m, it holds that:

|Lm̃(GRMf
H(S̃))− Lm̃(h∗)| ≤ ϵ(m, δ, θm̃), (25)

where ϵ(m, δ, θm̃) ∈ O
(
poly( 1

m , 1
δ ,

1
θm̃

)
)
.

Proof. By summing and subtracting the empirical risk of the result of GRM
(i.e., , it holds that |Lm̃(GRMf

H(S̃)) − Lm̃(h∗)| (i.e., the gap between the true
risk of the result of GRM and the true error of the H-relative Bayes classifier)
can be upper bounded by :

|Lm̃(GRMf
H(S̃))− Lf

S̃
(GRMf

H(S̃)) + Lf

S̃
(GRMf

H(S̃))− Lm̃(h∗)|,

which, by noting that Lf

S̃
(GRMf

H(S̃)) ≤ Lf

S̃
(h∗) (since, by definition of GRM,

the empirical risk of the GRM hypothesis is minimal among all hypothesis in
H)) in turn can be upper bounded by:

|Lm̃(GRMf
H(S̃))− Lf

S̃
(GRMf

H(S̃)) + Lf

S̃
(h∗)− Lm̃(h∗)|.

By the triangle inequality, this last term above can be upper bounded by :

|Lm̃(GRMf
H(S̃))− Lf

S̃
(GRMf

H(S̃))|+ |Lm̃(h∗)− Lf

S̃
(h∗)|.

Finally, by Theorem 3.1, the result follows, since we can show that the last
term above can be upper bounded by ϵ(m, δ, θm̃), where, following Theorem 3.1,

ϵ(m, δ, θm̃) = O(

√
d ln(

d|Y |2

mθ2
m̃

)+ln( 1
δ )

mθ2
m̃

).
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Thus, the previous result shows that, if we assume the weak superset prop-
erty holds and the distribution parameter θm̃ is not too small for the learning
problem at hand, then, by using the optimistic risk minimization algorithm the
risk can be made arbitrarily close to that of the H-relative Bayes classifier. In-
tuitively, the parameter θm̃ directly represents the hardness of the problem of
learning from the data-generating distribution m̃. Indeed, θm̃ will be small when
either ϕ is close to 1, or k∗ is close to 0. In the first case, there exists at least one
incorrect label y′ which is always associated with a possibility degree strictly
greater than 0. Uence, under the weak superset assumption, no learning algo-
rithm that has access only to the fuzzy labels could ever detect a classification
error whereby an incorrect label y′ is predicted instead of the correct one y. In
the second case, by contrast, the correct label y is never associated with a pos-
sibility degree equal to 1: since the fuzzy labels are assumed to be normalized,
this implies that there exists an incorrect label y′ that is always associated with
a possibility degree equal to 1. Thus, any learning algorithm that favors labels
with higher possibility degrees (such as GRM) will be tricked into an incorrect
disambiguation. We note that the previous result is weaker than Theorem 2.1,
due to the dependence on the θm̃ parameter, which is distribution-conditional.
One natural question, thus, is whether a distribution-free guarantee on the true
risk could, in principle, be found. Theorem 3.2 provides a negative result, by
showing that, without any assumption on θm̃, it is impossible to solve the LFL
problem with GRM.

Theorem 3.2. Let H be a hypothesis class with Natarajan dimension d defined
on a countable sample space Z = X × {0, 1}. Let δ ∈ [0, 1] and let ϵ ∈ [0, 1].
Then, there exists distributions m̃1, m̃2 over Z s.t.

m̃1 ↓ (X × Y ) = m̃2 ↓ (X × Y ),

but it holds, with probability greater than δ over the sampling of an imprecise
training set S̃, that:

|Lm̃1(GRMf
H(S̃))− Lf

S̃
(GRMf

H(S̃))| ≤ ϵ; (26)

|Lm̃2
(GRMf

H(S̃))− Lf

S̃
(GRMf

H(S̃))| > ϵ. (27)

Proof. We actually prove a stronger result, by assuming that the learning prob-
lem is realizable, i.e., we start from a distribution D over X × Y s.t. it ∃h ∈ H
with LD(h) = 0. Intuitively, the proof relies on the fact that, based on D, we
can easily construct two data-generating distributions m̃1 and m̃2 by requiring
that m̃1 ↓ (X × Y ) = m̃2 ↓ (X × Y ) = D, and then setting the distributional
parameters θm̃1

and θm̃2
, such that:√√√√d ln( d|Y |2

mθ2
m̃1

) + ln( 1δ )

mθ2m̃1

≤ ϵ <

√√√√d ln( d|Y |2
mθ2

m̃2

) + ln( 1δ )

mθ2m̃2

. (28)
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To formalize this intuition, for m̃1, we set m̃1(π|x, y) = 1 iff π = ỹ (i.e., π is the
singleton event ỹ corresponding to the true label y): this implies that k∗ = 1
and ϕ = 0, hence θm̃1

= 1. By contrast, for m̃2, fix an hypothesis h ∈ H s.t.,

for all x ∈ X, it holds that D(x, h(x)) = 0. Then, we set m̃2( ˜h(x)|x, y) = 1:

this implies that k∗ = 0 and ϕ = 1, hence θm̃2
= 0. Furthermore, Lf

S̃
(h) = 0, by

definition, hence h = GRMf
H(S̃). However, by construction, Lm̃2

(h) = 1. The
result follows by noting that the problem of learning from m̃1 is equivalent to a
supervised learning problem, hence Theorem 2.1 can be applied.

Thus, Theorem 3.2 asserts that the learnability of LFL is strongly distribution-
conditional: if the parameter θm̃ is too small, then we cannot guarantee that the
problem is solvable from finite samples (not even asymptotically). Furthermore,
the situation where θm̃ is small cannot be detected from an imprecise training set
alone: indeed, by definition, without access to the true labels, it is impossible to
estimate θm̃. Despite this negative result, we remark that the assumption of θm̃
being not too small is not overly restrictive: indeed, one would usually assume
that the knowledge of the annotating agent is not too far from the true labels.
In this sense, the above-mentioned assumption is analogous to the assumptions
commonly made, e.g., in learning from noisy labels [1]: in this latter setting one
typically requires that, even though the annotating agent may sometimes make
a labeling error, the probability of such an event is not too large.

3.2.2. Complexity-theoretic Properties

A more impactful negative result for optimistic risk minimization concerns
its computational complexity. In particular, Proposition 3.1 shows that, even if
we restrict GRM to a very simple class of learning problems (which can be solved
efficiently in the supervised learning setting), optimistic risk minimization does
not admit any polynomial-time algorithm (unless P = NP):

Proposition 3.1. Let S̃ be an imprecise training set obtained sampling i.i.d.
from D̃, where X = Rd and Y = {−1, 1}. Let H be the class of half-spaces6

on X. Let g : Rd × X × Y → R be any loss function defined by g(w, x, y) =
l(y, ⟨w, x⟩), for some function l : Y ×R→ R satisfying the following properties:

1. for each (x, y) ∈ Z, l is convex in w;

2. sign(y) = sign(⟨w, x⟩) =⇒ l(y, ⟨w, x⟩) < l(−y, ⟨w, x⟩);

3. if sign(y − ⟨w, x⟩) = sign(y) then l(y, ·) is monotonically increasing in
|y − ⟨w, x⟩|.

6The class of half-spaces is defined by associating with each vector w ∈ Rd an hypothesis
hw ∈ H, with hw(x) = sign(⟨w, x⟩).
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Let g̃ : H×X×F(Y )→ R be the imprecise loss obtained from g (see Definition
3.5) and defined as7:

g̃(h, x, π) =

∫ 1

0

A({l(h, x, y′) : y′ ∈ πα})dα. (29)

If l does not also satisfy the following property:

∀t ∈ [−1, 1] it holds that l(y, t) = l(−y, t), (30)

then, unless P = NP, for any polynomial-time randomized learning algorithm
A it holds that |Lf

S̃
(AH(S̃))− Lf

S̃
(GRMf

H(S̃))| ≥ ϵ with probability greater than

1−O(e−ϵd).

Proof. It is easy show that for l satisfying conditions 1-3 in the theorem state-
ment, it holds that, when t ∈ [−1, 1], l(1, t) is monotonic non-decreasing in −t
while l(−1, t) is monotonic non-decreasing in t. Thus, unless l(1, t) = l(−1, t)
for any t in the same range, l̃ is not convex. In, particular, either there is at
least a value t ∈ [−1, 1] where l(1, t) = l(−1, t) and g̃ is non-smooth, or g̃ is
unbounded in [−1, 1]. Then, the result follows from [50], Theorem 1, by noting

that Lf

S̃
is non-convex and non-smooth (or unbounded).

As a consequence of the above result, since the hinge loss, the log-loss and
quadratic loss (as well as most other commonly adopted loss functions) all satisfy
conditions 1-3 but do not satisfy Eq. (30) (see also Example 3.5), it is easy to
show that popular learning algorithms such as least squares linear regression,
SVM or logistic regression (which admit a polynomial-time algorithm in the
supervised learning setting) do not admit a polynomial-time extension based on
optimistic risk minimization.

Example 3.5. Let l, l̃ be, respectively, the loss function and the corresponding
imprecise loss function defined in Example 3.4. Then, by Proposition 3.1 and
since l is the quadratic loss, it holds that l̃ is non-convex and non-smooth. In-
deed, let m̃ be the data-generating distribution defined in Example 3.1. Assume
that g(x) = x (hence w = 1) and, thus, f(x) = sign(x). Let x = 0.7 (thus,
f(x) = 1) and η = 0.7: thus, π(1) = 1 and π(−1) = 0.7. Then, for ŵ ∈ [−1, 1],
the loss functions l(ŵ, x, f(x)), l̃(ŵ, x, π) are depicted in Figure 1, which clearly
illustrates how l̃ is non-convex and non-smooth.

3.3. Learning from Fuzzy Labels: Instance-based Models

As in the case of standard supervised learning, the results given in Section 3.2
only apply to parametric models trained through optimistic risk minimization.

7Assume, for simplicity and without loss of generality, that 1 = π(1) > π(−1). Then, the
imprecise loss l̃ defined in Eq. (29) can be expressed as

g̃(h, x, π) = (1− π(−1)) · g(h, x, 1) + π(−1) · g(h, x,−1).
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Figure 1: A graphical illustration of Proposition 3.1, for the squared loss (see Example 3.5).
The dashed gray curve represents the precise squared loss l, while the blue curve represents
the corresponding imprecise loss l̃. It is easy to observe that l̃ is non-convex, as illustrated by
the fact that the dashed red line lies below the curve for l̃. Similarly, it is easy to see that l̃
is non-smooth, as l̃ is non-differentiable at the black point.

To address the above-mentioned limitations (particularly so, in regard to the
computational complexity), several other approaches have been considered in
the literature. Among others, instance-based methods [7, 29, 33, 35, 83] are
particularly attractive as they are computationally efficient. In its simplest and
most popular instantiation, this family of algorithms arises from a generalization
of the nearest-neighbors learning rule to the LFL setting:

Definition 3.7. For any instance x ∈ X and (imprecise) training set S̃, denote
with N(x, S̃) the collection of nearest neighbors of x in S̃. Then, generalized
nearest neighbors (GNN) can be defined as:

GNN(S̃, x) = argmax
y∈Y

 ∑
(xi,πi)∈N(x,S̃)

πi(y)

 . (31)

Intuitively, GNN uses the possibility degree of each possible class y as a
weight, thus favoring classes with higher possibility degree assigned to them.
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Theorem 3.3, then, provides a generalization of Theorem 2.3 to the LFL
setting for the GNN algorithm.

Theorem 3.3 (LFL Generalization Bound for GNN [15]). Let X = [0, 1]d,
Y = {0, 1, · · · , |Y | − 1}, and ∀y ∈ Y , let ηy(x) be defined as:

ηy(x) = m̃(y|x) = m̃ ↓ (X × Y )(x, y)∑
y∈Y m̃ ↓ (X × Y )(x, y)

.

Assume that ∀y, ηy is c-Lipschitz. Let S̃ be an imprecise training set, with

|S̃| = m, Furthermore, assume that ∀x, |N(x, S̃)| = r is a constant, independent
of d, Y , x, S̃, m and m̃. Then E[Lm̃(GNN(S̃))] can be upper bounded by:

(α+ 2k∗ − k∗α)|Y |L2−Bayes
m̃ + (1+ k∗α− k∗) + (1 + α+ k∗α)4c

√
dm

−1
d+1 , (32)

where, α, k∗, k∗ are (respectively) the Ambiguity, Lower Knowledge and Up-
per Knowledge parameters for m̃; the expectation is computed w.r.t. m̃; and
L2−Bayes
m̃ = maxy∈Y LBayes

m̃←y
with m̃←y being the distribution obtained from m̃

by applying the standard One-vs-Rest reduction8

It is easy to observe that Theorem 3.3 implies that the expected risk of
generalized nearest neighbors grows exponentially fast with the dimensionality
of the feature space,: thus, as the number of features grows, the tendency of
GNN to over-fitting similarly increases. As a consequence, solving LFL prob-
lem using GNN (and, more generally, instance-based methods) is sample-hard.
While this problem can partially be addressed by applying feature selection or
dimensionality reduction algorithms for LFL [18], it nonetheless shows that, in
high-dimensional spaces, error rates for instance-based methods may converge
very slowly to optimal ones. Similarly, it is easy to see that an impossibility
theorem analogous to Theorem 3.2 holds also for GNN, as the expected er-
ror rate given in Eq. (32) depends explicitly on the parameters α, k∗, k

∗ of
the data-generating distribution m̃. By contrast, compared to optimistic risk
minimization, instance-based methods can be easily seen to be computationally
efficient.

Proposition 3.2. Let X be a d-dimensional vector space, Y be the label space
and S̃ ⊂ (X ×F(Y ))m be a training set. Let |N(x, S̃)| = r. Then, the expected
running time of generalized nearest-neighbors is O(rm|Y |d).

3.4. A Pseudo Label-based Approach for Learning from Fuzzy Labels

In Sections 3.2 and 3.3 we studied the learning-theoretic and complexity-
theoretic properties of GRM and GNN and highlighted some relevant theoret-
ical limitations for these two methods. Another significant limitation of opti-
mistic risk minimization and generalized nearest-neighbors (or, more generally,

8Let D be a data-generating distribution defined on X × Y , where 2 < |Y | < ∞.
Let y ∈ Y be any specific class. Then, the One-vs-Rest reduction D←y of D is the
data-generating distribution on X × {0, 1} defined pointwise by D←y(x, 1) = D(x, y) and
D←y(x, 0) =

∑
y′∈Y :y′ ̸=y D(x, y′).
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instance-based methods) regards the fact that both these families of methods
require the implementation of ad-hoc algorithms. In light of the availability of
efficient, out-of-the-box implementations for many learning algorithms (in the
supervised learning setting), this may be a significant limitation in terms of
empirical performance. To address this limitation, in this Section we propose
and study a novel algorithm based on a different class of models, namely pseudo
label-based methods. Pseudo label-based learning [40, 52, 58, 80] is a generic
approach for learning from weakly supervised data that is based on an iterative
training process, which is summarized in Algorithm 1.

Algorithm 1 The meta-procedure for pseudo label-based learning.

procedure pseudo label learning(h: ML model, S̃: imprecise dataset,
C: inclusion criterion)

S0 ← select precise instances (x, y) from S̃
T ← ∅
while T ̸= S do

Train h on Si

T ← {(x, h(x)) ∈ S : C(x, y, h) = True}
Si+1 ← refine the precise instances in Si based on h, T and S̃

end while
return h

end procedure

Intuitively, pseudo label-based learning methods involve an iteration between
two different steps, that are subsequently repeated until an appropriate stopping
condition is met. These two steps are as follows:

– a selection step, in which a precise dataset is constructed from the available
imprecise training set: this amounts to associating with each instance
(x, πx) a precise pseudo label y′;

– a training step, in which a standard supervised learning model is trained
on the selected precise dataset, by considering the pseudo labeled instances
(x, y′). Then, the labels predicted by the trained model h are used, to-
gether with an inclusion criterion (i.e., an algorithm C : X × Y × H →
{True,False}), so as to select a subset of instances that meet some qual-
ity requirement9: these instances are considered as correctly disambiguated
(i.e., the precise label associated with an instance x s.t. C(x, y, h) = True
is considered correct). Finally, the model h, together with the set of in-
stances T , is used to refine the precise pseudo labels.

In general the selection step may depend on the result of the training step,
so that, in effect, the two steps may have a compounding effect on the final per-

9One common example of an inclusion criterion is to assign C(x, y, h) = True iff the
classifier h assigns a large confidence score to label y for instance x.
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formance of the trained model. In experimental comparisons [69], pseudo label-
based methods have reported good empirical performance, comparable with, or
better than, other state-of-the-art methods. Furthermore, pseudo label-based
learning methods allow the use of efficient, out-of-the-box standard classifiers
to implement the training step described above: indeed, the management of
imprecise labels is performed as a pre-processing routine (in the selection step),
while learning is entirely performed on precise (pseudo-labeled) instances, dur-
ing the training step. Despite having these intuitively appealing characteristics,
the theoretical properties of pseudo label-based methods have been investigated
only in the semi-supervised learning setting [3], while the more general LFL set-
ting has not been studied before. A possible reason for this gap may regard the
complexity of studying the sequential, iterative dynamics of the more commonly
used pseudo label-based learning methods (see Algorithm 1).

To address these limitations, we propose a novel pseudo label-based learning
algorithm called Random Resampling-based Learning (RRL), whose pseudo-
code formulation is given in Algorithm 2. RRL is based on the ensemble learning
paradigm and employs a parallel composition of base classifiers, each of which
is trained by means of a standard learning algorithm. In this section we will
show that this implementation choice leads to an increased simplicity both in
theoretical terms, as it allows to assume that iterations are independent of each
other, as well as in computational terms, as it transforms the sequential routine
in Algorithm 1 into a massively parallelizable one.

Algorithm 2 The RRL algorithm.

procedure RRL(S̃: imprecise dataset, n: ensemble size, H: base function
class)

Ensemble← ∅
for all iterations i = 1 to n do

Draw a boostrap sample S′ from S̃
T ri ← ∅
for all (x, π) ∈ S′ do

Sample α ∼ Uniform[0, 1]
Add (x, y′) to Tri, where y′ ∼ Uniform[πα]

end for
Add base model hi ∈ H trained on Tri to Ensemble

end for
return Ensemble

end procedure

Intuitively, the RRL algorithm can be understood as an extension of bagging-
based ensemble learning to the LFL setting. In each of the bootstrap samplesm
the precise pseudo labels to be associated with the imprecise instances (x, πx)
are drawn independently from a probability distribution compatible with πx. In
particular, the pseudo labels are drawn, for each x ∈ X, from the probability
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distribution P̂ rπx defined by:

P̂ rπx
(y) =

∫ πx(y)

0

dα

|πα
x |

. (33)

The distribution P̂ r given in Eq. (33) is obtained by means of the possibility-
probability transform [39] and is implemented by means of a two-stage sampling
procedure (see Algorithm 2). First, an α-cut is selected uniformly at random;
then, one element of the selected α-cut is drawn uniformly at random. Intu-
itively, this sampling procedure favors class labels having higher possibility de-
grees. The above-mentioned procedure is applied to obtain n bootstrap samples
which are then used to train a corresponding number of base models. Finally
the base models are aggregated by simple majority voting or averaging.

It is easy to observe that, from the point of view of computational complexity,
the RRL algorithm is more efficient than optimistic risk minimization.

Proposition 3.3. Let H be an hypothesis space and A : (X × Y )ω 7→ H a
training algorithm whose computational time cost is upper bounded by the func-
tion TA : N → N. Then, given an imprecise training set S̃ s.t. |S̃| = m, and
setting the ensemble size to n, the computational complexity of RRL is within
O(n(TA(m) +m|Y |)). In particular, if TA is polynomially bounded, then RRL
can be trained in polynomial time.

Thus, if h can be trained in polynomial time, also RRL can be trained in
polynomial time: this is in contrast with the case of optimistic risk minimization,
which was shown to be NP-hard in the general case (see Theorem 3.1).

3.4.1. Learning-theoretic Properties of RRL

In regard to the generalization properties of RRL, we first note that the
sampling scheme for the pseudo label can be given a formal justification, under
weak assumptions about the data-generating fuzzy random set m̃. Such a result
can be obtained by relating the distribution over labels P̂ rπx (see Eq. (33)) with
the distribution over labels determined by the imprecise Bayes classifier.

Definition 3.8 (Imprecise Bayes Classifier). Let m̃ be a data-generating distri-
bution, and let m̃ ↓ (X ×F(Y )) be the corresponding imprecise data-generating
distribution. Then, the imprecise Bayes classifier is defined by:

f∗ = argminf∈MES̃LS̃(f), (34)

where M = {f : X → Y : f measurable w.r.t. m̃ ↓ (X × F(Y ))}. That is,
the imprecise Bayes classifier is the unique classifier with optimal performance
among those that do not have access to the true labels.

Theorem 3.4. Assume that m̃ satisfies the following calibration property: with
probability 1 over (xi, yi, πi) ∼ m̃, it holds that m̃(yi|xi, πi) ≤ πi(yi). Then, f∗

given by Pr(f∗(x) = y) = P̂ rπx
(y) is the imprecise Bayes classifier w.r.t. the

l2 loss among probability distributions and the uniform prior.
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Proof. The calibration property assumed in the statement of the theorem guar-
antees that, for each x ∈ X, the true probability distribution over Y lies in the
credal set [45]:

Px,πx
= {P ∈ P(Y ) : P (y) ≤ πx(y)},

that is, the set of all probability distributions (over labels) that are upper
bounded by the corresponding possibility degree. As a consequence of [39],
Theorem 1, it follows that P̂ rπx

∈ Px,πx
and

P̂ rπx
= arg min

P∈Px,πx

EP ′ [(P
′ − P )2], (35)

where P ′ is selected uniformly from Px,π: that is, the possibility-probability

transform P̂ rπx
obtained from πx is the center of mass of the credal set Px,πx

.
We note that, since the credal set Px,πx

is convex (by definition of credal set),

then P̂ rπx is the unique minimizer of Eq. (35). Thus, among all possible
distributions over Y , P̂ rπx is the unique one having minimal expected l2 loss
and the result follows.

Corollary 3.2. Assume there exists a consistent learning algorithm A for base
class H, that is, ∀ϵ > 0:

lim
m→∞

Pr
[
|Lm̃(A(S))− Lm̃(f̂)| > ϵ

]
= 0,

where, f̂ is the Bayes classifier and the probability is w.r.t. the sampling of a
(precise) training set S from the precise data-generating distribution m̃ ↓ (X×Y )
(and any eventual randomization in algorithm A). Then, RRL is consistent and
converges to the imprecise Bayes classifier f∗. That is, ∀ϵ > 0:

lim
m→∞

Pr
[
|Lm̃(RRL(S̃))− Lm̃(f∗)| > ϵ

]
= 0,

where the probability is w.r.t. the sampling of a training set S̃ from the impre-
cise data-generating distribution m̃ ↓ (X × F(Y )), and the randomization in
Algorithm 2.

Proof. The result follows directly from Theorem 3.4, consistency of H and the
definition of RRL.

Thus, in the asymptotic regime wherein RRL is given access to the whole
data-generating distribution m̃, Theorem 3.4 and Corollary 3.2 provide intuitive
justification for the sampling scheme adopted in Algorithm 2. Indeed, the two
results show that, under the above mentioned assumptions, the classifier given
by RRL would be equivalent to the imprecise Bayes classifier. Nonetheless,
it is easy to see that, in general, the ensemble classifier returned by RRL is
not guaranteed to be the imprecise Bayes classifier, since the underlying data-
generating distribution m̃ is unknown and in general cannot be estimated from
finite samples. To address this shortcoming, we then study the generalization
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properties of RRL, under two different assumptions about the base function
class H. Theorem 3.5 assumes that the base function class is a bounded convex
set with finite Natarajan dimension d and that the loss function which is used
to measure the accuracy of the classifiers is Lipschitz: this allows us to derive a
finite sample bound based on the rich literature on random features [68].

Theorem 3.5. Assume the base hypothesis class H is a bounded convex set
in a Hilbert space of functions X → RY , with supx,h|h(x)| ≤ 1 and Natarajan
dimension d. Let p be the probability density over H determined by RRL and
let C = minh∈H p(h) > 0. Let l : Y × Y → [0, 1] be a loss function which is
L-Lipschitz w.r.t. its first argument. Then, when the RRL algorithm is executed
on a imprecise training set S̃, with |S̃| = m, sampled i.i.d. from m̃, it returns a

function ĥ = 1
n

∑
i hi s.t. |minh∈H Lm̃(h)− Lf

S̃
(ĥ)| can be upper bounded by:

(
1√
m

+
1√
n
)
|Y |L
C

√
log

6

δ
+

√√√√r · ln( r|Y |
2

θ2
m̃

) + ln 3
δ

mθm̃
+

√
Kn + ln 3m

δ

2(m− 1)
, (36)

with probability greater than 1−δ over the sampling of the S̃ and the randomized
execution of RRL. Furthermore the term Kn in Eq. (36) depends only on m̃, m
and r = max{n, d}.

Proof. Since H is a class satisfying the assumptions given in the statement,
each h ∈ H can be expressed as h =

∫
H α(f)fdf , with

∫
H α(h)dh = 1 and

∀h ∈ H, α(h) ≥ 0. Let h∗ = argminh∈H Lm̃(h). Assume the learning algorithm
A for H is deterministic, and let S1, . . . , Sn be the bootstrap samples randomly
selected in any randomized execution of RRL. Denote with hi = A(Si) and let

h+ = argminh∈H{Lf

S̃
(h) : h =

∑
i αihi ∧

∑
i αi = 1 ∧ ∀iαi ≥ 0}. Then, the

generalization gap |Lm̃(h∗)− Lf

S̃
(ĥ)| can be upper bounded by:

|Lm̃(h∗)− Lm̃(h+)|+ |Lm̃(h+)− Lf

S̃
(h+)|+ |Lf

S̃
(h+)− Lf

S̃
(ĥ)|.

Thus, the risk of RRL can be estimated by bounding the three terms above
separately. By [68], Theorem 1, and noting that l being L-Lipschitz implies
that l̃ is L|Y |-Lipschitz, the first term can be upper bounded by

(
1√
m

+
1√
n
)
|Y |L
C

√
log

6

δ
.

For the second term, note that function h+ can be expressed as a linear
classifier defined over a n-dimensional feature space A, where A is the space ob-
tained by convex combinations of functions in the ensemble returned by the RRL
algorithm. Since H has Natarajan dimension d and is convex, the Natarajan
dimension of the above-mentioned linear classifier is r = O(max{n, d}). Thus,
the second term can be bounded, by Theorem 3.1, as:√√√√r · ln( r|Y |

2

θ2
m̃

) + ln 3
δ

mθm̃
.
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Finally, noting that Lf

S̃
(h+) ≤ Lf

S̃
(ĥ) and Lf

S̃
= ESf

i
LSf

i
, where Sf

i is a

bootstrap dataset sampled i.i.d. from S̃, and h+ can be written in the form
h+ =

∑
i αihi, the third term can be upper bounded by a simple argument

based on PAC-Bayes learning (see [78], Theorem 1) as:√
KL(α||u) + ln 3m

δ

2(m− 1)
,

where α is the probabilitity distribution s.t. P (hi) = αi, u is the probability
distribution s.t. P (hi) =

1
n , and KL is the Kullback-Leibler divergence. Letting

Kn = ES∼D̃Eh1∼p,...,hn∼pKL(α||u), the result follows.

Thus, Theorem 3.5 shows that, as the training set size m and the number
of ensembled models n grows to infinity, RRL converges to optimistic risk mini-
mization w.r.t. to the hypothesis class H. Indeed, the first and last terms of Eq.
(36) converge to 0 with a rate that is equivalent to the square root of the above-
mentioned parameters. However, while Theorem 3.5 can be applied to obtain
generalization bounds for RRL with linear or kernel methods as base classifiers,
the same does not hold for the case of tree-based classifiers: indeed, such classes
of classifiers do not satisfy the assumptions in Theorem 3.5. Tree-based classi-
fiers, however, are among the most commonly used base classifiers for ensemble
methods, due to their computational efficiency and good performance [70].

Then, we prove an alternative result that can be applied in settings that are
more similar to those considered in standard ensemble learning methods. In par-
ticular, assuming the classifiers in the ensemble are independent of each other,
we derive a tail bound on the probability of error of the averaged hypothesis
returned by Algorithm 2.

Theorem 3.6. Let l0−1 be the 0-1 loss. Let H be a class of hypotheses whose
Natarajan dimension is d. Let HA ⊆ H be the set of hypotheses returned by
Algorithm 2. Let ĥ be the function obtained by averaging the hypotheses in HA.
Let γT , γV be defined as:

γT = max
h∈HA

Lf

S̃
(h) + ϵ ≤ 1

2
, (37)

γV = max
h∈HA

Lf
v (h) +

√
log(2/δ)

2mh
v

≤ 1

2
, (38)

where ϵ is defined as ϵ = 2
√

2d(ln(mT )+ln(|Y |))
mT

. Then, assuming the h ∈ HA

err independently, the following inequalities hold jointly with probability greater
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than 1− 2δ:

1− LD(h) ≥ 1

2
(1−

√
1− e

−Kγ2
T

1−γ2
T ), (39)

1− LD(h) ≥ 1

2
(1−

√
1− e

−Kγ2
V

1−γ2
V ), (40)

LD(h) ≤ e−n·KL( 1
2 ||γV ), (41)

where mT is the size of the training set, mh
v is the size of the out-of-bag validation

set for base classifier h, Lf
v (h) is the out-of-bag error for base classifier h, and

KL(a||b) = a log a
b + (1 − a) log 1−a

1−b is the Kullback-Leibler divergence between
two Bernoulli variables (with mean a, b).

Proof. Inequality (39) follows by applying Slud’s inequality [9, 75] to HA, by
noting that LD(h) is distributed as a Bernoulli random variable whose parameter

p is upper bounded by γT and ĥ errs on an instance x iff at least K/2 hypotheses
in HA also err. Inequality (40) similarly follows by Slud’s inequality, bounding
LD(h) with the validation error derived by direct application of Hoeffding’s
inequality. Finally, inequality (41) follows from Chernoff’s bound for binomial
distributions [2] applied to the out-of-bag validation error.

It is easy to notice that, under the assumption of independence among the
base classifiers, Theorems 3.4 and 3.6 imply that, as the number of ensembled
base classifiers n grows to infinity, the performance of RRL converges to that
of the imprecise Bayes classifier. This result is analogous to the consistency of
Random Forest in the standard supervised learning setting [8]. Nonetheless,
even though widely assumed in the literature on ensemble methods [8], the as-
sumption of independence of the base classifiers is rather strong and, in general,
cannot be guaranteed to hold as n grows. Thus, when independence of the base
classifier does not hold, in practice RRL may have a rate of convergence that is
much smaller than exponential or may even fail to be consistent [41].

In any case, we want to highlight two differences between Theorems 3.5 and
3.6. On the one hand, the two theorems apply to different base function classes.
Indeed, while Theorem 3.5 applies to convex base classes it cannot be applied
to tree-based models, as mentioned above; by contrast, Theorem 3.6 cannot be
directly applied to convex base classes as these latter enjoy stability guarantees
[75] that violate the independence assumption. On the other hand, Theorem
3.6 directly bounds the l0−1 loss generalization error of RRL, while Theorem 3.5
only provides a bound in terms of a surrogate convex loss l for which, in general,
it holds that l0−1 ≤ l. Thus, Theorem 3.5 is less informative than Theorem 3.6
whenever the l0−1 loss (that is, accuracy) is the target metric.

Concluding this section, it is not hard to observe that the RRL algorithm
provides a trade-off among the positive characteristics of instance-based meth-
ods and optimistic risk minimization. Similarly to instance-based methods, the
time complexity of RRL is polynomial as long as the time required to train
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the base classifiers is also polynomial. This is in contrast with optimistic risk
minimization, for which the associated learning problem was shown to be, in
general, computationally hard. On the other hand, RRL shares favourable risk
bounds with optimistic risk minimization. Indeed, in general, the generaliza-
tion error of RRL increases only polynomially with the dimensionality of the
input space, whereas, by contrast, the generalization error of instance-based
methods grows exponentially fast w.r.t. the dimensionality of the feature space
X. Furthermore, it can easily be seen that, under the conditions of Theorem
3.5, the generalization error of RRL asymptotically tends (as the sample size
m and the number of ensembled models n both grow to infinity), to the bound
shown in Theorem 3.1 for optimistic risk minimization. Nonetheless, it can
be noted that the above-mentioned error bounds suffer from the same limita-
tions that were previously mentioned in Sections 3.2 and 3.3. In particular, the
obtained bounds depend on hardness parameters of the data-generating distri-
bution which in general are unknown and cannot be estimated from data. Thus,
it can be difficult to apply the derived bounds in real-world settings when no
information about such parameters is available. For this reason, even more so
than for standard supervised ML, experimental evaluation is of paramount im-
portance in the validation of LFL algorithms. Section 4, then, will be devoted
to the assessment of state-of-the-art methods for LFL tasks.

4. Experimental Analysis

As a complementary focus to the above theoretical analysis, the aim of this
section will be to discuss the empirical validation and experimental comparison
of state-of-the-art LFL algorithms, based on a large benchmark suite, encom-
passing both synthetic and real-world datasets. We considered, in particular,
the following algorithms:

– two pseudo label-based learning algorithms, namely: the RRL algorithm,
described in Section 3.4, using decision trees as base model; and the state-
of-the art POP algorithm (denoted as PLC), introduced in [80] (itself
being a modification of the progressive identification learning algorithm
[40, 58]), using a multi-layer perceptron as base model;

– two variants of instance-based methods, namely: generalized nearest neigh-
bors (denoted as GNN), i.e., the instantiation of learning rule (31) where
N(x, S̃) is the set of k nearest neighbors of x; and generalized radius neigh-
bors (denoted as GRN), i.e., the instantiation of learning rule (31) where
N(x, S̃) is the set of all instances at distance smaller than ϵ from x, for ϵ a
threshold hyper-parameter. For the case of GNN, the hyper-parameter k
was set to 5 neighbors10, while, for the case of GRN, the hyper-parameter
ϵ was optimized during training;

10This value was selected as default in analogy with the default recommended value in the
scikit-learn library (see https://scikit-learn.org/stable/modules/generated/sklearn.

neighbors.KNeighborsClassifier.html).
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– a hybrid pseudo label and instance-based learning method, called DELIN
[4, 79, 82] (denoted as DELIN). DELIN combines a pseudo label-based
learning approach for dimensionality reduction, based on linear discrimi-
nant analysis, with an instance-based classification method, based on gen-
eralized nearest neighbors. The two algorithms are iteratively and al-
ternatively executed to improve the classification performance of a GNN
classifier, by addressing the curse of dimensionality. Since the number
of reduced dimensions is a hyper-parameter, this was optimized during
training and validation. For the GNN classifier, as before, the number of
neighbors was set to 5;

– two implementations of GRM, namely: a version of GRM based on linear
SVM learning and the hinge loss as base loss (denoted as GRMSVM); and
a version of GRM based on a single hidden layer multi-layer perceptron
and the cross-entropy loss as base loss (denoted as GRMNN).

For all of the above-mentioned algorithms we considered the reference imple-
mentation provided in the scikit-weak [20] library11.

All the algorithms were evaluated on contaminated versions of standard
precise benchmark datasets from the UCI collection [37], as well as on real
imprecise datasets. The full list of datasets is reported in Table 1. For the
precise benchmark datasets two different contamination models were considered:

– fully random contamination: this contamination model represents a gen-
eralization of the random contamination model, adopted in [65] for the
superset learning setting, to the LFL setting, and has been used in the
context of information elicitation from questionnaires in [14, 73]. For
each training instance x, we assign the correct label y a possibility degree
π(y) = 1. By contrast, for each wrong label y′ ̸= y, we draw n Bernoulli
random variables with success rate ϵ, denoted as {Bi(ϵ)}ni=1, and define
the possibility degree π(y′) as

π(y′) =

∑n
i=1 Bi

n
,

that is, the possibility degree of y′ is the number of observed successes.
Equivalently, y′ is associated with possibility degree π(y′) with probability:

Binom(π(y′);n, ϵ) =

(
n

⌈π(y′) · n⌉

)
ϵ⌈π(y

′)·n⌉(1− ϵ)n−⌈π(y
′)·n⌉,

where Binom(·;n, ϵ) is the binomial probability distribution with param-
eters n and ϵ. Intuitively, fully random contamination can be understood
as a labeling process by which n experts are asked to assess whether la-
bel y′ applies to instance x, and then taking the possibility degree y′ as

11https://github.com/AndreaCampagner/scikit-weak
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being the (normalized) number of experts that gave a positive answer.
In our experiments, we set n = 100 and considered different values for
ϵ ∈ {0.1, 0.25, 0.5, 0.7, 0.9}. We note that fully random contamination
ensures that the strong superset assumption holds;

– label relaxation contamination [55]: this contamination model was pro-
posed in the setting of learning from noisy labels [55, 54], as a generaliza-
tion of label smoothing (a regularization approach commonly adopted in
deep learning [62]). The intuitive idea of label relaxation contamination is
that each precise label, which may potentially be noisy, is transformed into
a fuzzy label: thus, label relaxation transforms a learning from noisy la-
bels problem into a LFL one. In particular, in the experiments, we used a
k-nearest neighbors model to implement the label relaxation process. For
each training instance x, the k ∈ {3, 5, 7} nearest neighbors of x (including
x itself) are selected and each label y is assigned a possibility degree π(y):

π(y) =
|{x′ ∈ N(x, S) : (x′, y) ∈ S}|

maxy′∈Y |{x′ ∈ N(x, S) : (x′, y′) ∈ S}|
.

Thus, the disagreement about the labels among the nearest neighbors of
x is interpreted as a measure of noisiness, and the (normalized) frequency
of each label is understood as a measure of the plausibility of that label.
Notice that for this contamination model the possibility degree of the
correct class label y for a given instance x is always π(y) > 0 (as x itself is
included in the set of its nearest neighbors) but, in general, it may happen
that π(y) ̸= 1: thus, only the weak superset assumption holds (but, in
general, not the strong one).

For the real-world imprecise datasets, 5 different tasks were considered:

– Circulating Tumor Cells detection [19, 76, 77] from fluorescence microscopy,
as an example of a learning from multi-rater problem. In particular, fuzzy
labels are obtained by consensus among 11 raters: each rater provided a
precise label y and the possibility degree of label y was computed as

π(y) =
num. of raters who proposed label y

maxy′ num. of raters who proposed label y′
;

– COVID-19 diagnosis from routine laboratory exams [12], as an example of
a learning from noisy labels problem. In this dataset, the fuzzy labels were
obtained by considering the sensitivity and specificity of a RT-PCR swab
test and computer imaging. In particular, let Sens(swab),Spec(swab) be
the sensitivity and specificity for the swab test and Sens(img),Spec(img)
be the corresponding values for the imaging test. Then, for instance x,
define the evidence for the positive class as:

e(+1|x) = Sens(swab)1swab(x)=+1 + Sens(img)1img(x)=+1,
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and similarly define the evidence for the negative class e(−1|x). Then, the
possibility degree π(y) for class y ∈ {−1,+1} was defined as:

π(y) =
e(y|x)

maxy′∈{−1,1} e(y′|x)
;

– Knee lesion detection [13] from magnetic resonance imaging, as a second
example of a learning from multi-rater problem. In this case the fuzzy
labels are obtained by confidence-weighted consensus among 12 raters:
that is, if rater ri associated a confidence of ci(y) to label y, then

π(y) =
1
12

∑12
i=1 ci(y)

maxy′
1
12

∑12
i=1 ci(y

′)
;

– Spine surgery invasiness prediction [16], as an example of a semi-supervised
learning task. In this a single rater labeled all instances as either non-
invasive, invasive or uncertain;

– Sagittal misalignment assessment [17], as an example of a superset learning
task. In this case, two medical specialists annotated all the instances in
the datasets, and the sets of labels were obtained by simply selecting, for
each instance x, all the labels associated with x.

All algorithms were evaluated in a 10-repeated 5-fold cross-validation exper-
imental setting, to take into account sensitivity to initialization and random-
ization. In particular, all models were evaluated in terms of balanced accuracy,
in order to measure the models’ error rate also under conditions of label imbal-
ance, and running time (in ms), as a measure of computational efficiency. For
the synthetically contaminated datasets, balanced accuracy was evaluated by
comparison with the known ground truth labeling (which was not available to
the learning algorithms during training). For the real-world imprecise datasets,
instead, balanced accuracy was evaluated on a subset of the data whose labels
were precise. That is: for the ctc, mri and spine datasets, the test sets encom-
passed only instances on which all raters proposed the same label; for the covid
dataset, the test set encompassed only instances on which the two diagnostic
tests provided the same diagnosis; while for the invasiveness dataset the test
set encompassed only instances rated as invasive or non-invasive. Statistical
analysis of the results was performed by means of a ranking-based comparison,
using Friedman test with Wilcoxon post-hoc procedure [6].

Results of the experimental analysis are reported in Figures 2a and 3, in
terms of balanced accuracy, and Figures 2b and 4, in terms of running time.

In terms of balanced accuracy, the three best models were RRL, DELIN
and GRMNN. In particular, RRL was the best algorithm in terms of both raw
balanced accuracy as well as average ranks. Furthermore. even though the
performance of RRL and DELIN were not statistically significantly different,
RRL reported better performance on average and it was also significantly bet-
ter than all other considered algorithms. Similarly, no significant difference
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Table 1: List of datasets considered in the experimental comparison of LFL algorithms.

Classes Features Instances
UCI datasets
avila 10 10 20768
banknote 2 4 1372
cancerwisconsin 2 9 683
car 4 16 864
credit 2 61 1000
crowd 6 28 10845
diabetes 2 8 768
digits 10 62 5620
frog-family 4 22 7195
frog-genus 8 22 7195
frog-species 10 22 7195
hcv 4 12 582
htru 2 8 17898
ionosfera 2 33 351
iranian 2 45 7032
iris 3 4 150
mice 8 78 972
mushroom 6 99 5644
myocardial 2 111 1700
obesity 7 31 2111
occupancy 2 5 20560
pen 10 16 10992
robot 4 24 5456
sensorless 11 48 20000
shill 2 9 6321
sonar 2 60 208
vowel 11 9 990
wifi 4 7 2000
wine 3 13 178

Imprecise Datasets
ctc 2 2500 617
covid 2 69 1624
mri 2 100 427
invasiveness 3 186 72
spine 7 14 120

was detected among DELIN and GRMNN, as well as between GRMNN, GNN
and PLC. These results confirm the good performance of RRL, which can then
be related with the theoretical results demonstrated in Section 3.4. Indeed,
RRL had results comparable with those of GRMNN and DELIN, respectively
an optimistic risk minimization and a (dimensionality reduced) instance-based
method. Interestingly, however, the proposed RRL algorithm reported better
performance, on average, than the other two methods. Also this difference
could be explained by referring to the theoretical results shown in Section 3.
For the case of GRMNN, the fact that solving the optimistic risk minimization
problem is NP-hard may lead to premature convergence to either local minima
or saddle points, and, consequently, to sub-optimal generalization error. For
the case of DELIN, by contrast, even though this algorithm performs a data
dimensionality pre-processing step to reduce the risk of over-fitting of GNN,
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(a) (b)

Figure 2: Results of the experiments. Left: mean balanced accuracy scores of the models under
study (higher is better), Error bars denote 95% C.I. Mean running times (ms) of the models
under study (lower is better). Error bars denote 95% C.I. Legend, okra: generalized risk
minimization based, green: pseudo label-based learning based, blue: instance-based methods.

(a) (b)

Figure 3: Comparison of the the models under study in terms of balanced accuracy. Left:
critical difference diagram of the mean ranks (lower is better), bars denote significance cliques
at 95% confidence level. Right: heatmap of p-values obtained with the post-hoc Friedman-
Nemenyi test, significance at different thresholds is denoted with shades of red. For each
significant comparison in the right side, the best method in the corresponding pair of models
can be assessed from the left side, by looking at which of the two models had a lower mean
rank.

the number of reduced dimension may still be too large to avoid the curse of
dimensionality. Indeed, in the experiments the number of reduced dimension
was dynamically optimized during cross-validation, thus leading to a possible
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(a) (b)

Figure 4: Comparison of the the models under study in terms of running time.Left: critical
difference diagram of the mean ranks (lower is better), bars denote significance cliques at 95%
confidence level. Right: heatmap of p-values obtained with the post-hoc Friedman-Nemenyi
test, significance at different thresholds is denoted with shades of red. For each significant
comparison in the right side, the best method in the corresponding pair of models can be
assessed from the left side, by looking at which of the two models had a lower mean rank.

over-fitting of this hyper-parameter. By contrast, the worst performing algo-
rithm was GRN, which reported significantly lower performance than all the
other considered methods. Interestingly, GRMNN reported significantly better
performance than GRMSVM, likely due to the fact that most of the considered
datasets did not satisfy the linear separability assumption required for the good
functioning of the linear SVM model underlying GRMSVM.

In terms of running time, the best performing algorithm was GNN, which
was significantly more computationally efficient than all other considered algo-
rithms, with the exception of GRN. This result is expected: indeed, the training
time of lazy instance-based methods such as GNN and GRN is typically con-
stant (or, at most, log-linear) in the size of the training set. By contrast, the two
worst performing algorithms were both generalized risk minimization methods,
namely GRMNN and GRMSVM: these two algorithms were significantly less
computationally efficient than all the other considered algorithms. This result,
on the one hand, confirms the general hardness of these learning algorithm (see
Theorem 3.1); on the other hand, it can be remarked that memory transfer
bottlenecks in the scikit-weak implementation of these algorithms (which of-
floads tensor processing operations to GPU execution) could also have a role
in the observed performance gap. Further research should be devoted at de-
composing these two computing costs, and possibly optimizing memory usage.
The proposed RRL algorithm reported a running time which was intermedi-
ate between those of instance-based methods and generalized risk minimization
ones: in particular, RRL had an average running time comparable with (i.e.,
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not significantly different from) that of DELIN.
Thus, the experimental results show the effectiveness of the proposed RRL

algorithm: indeed, the proposed approach reported a running time which was
comparable, or better than, other state-of-the-art methods for LFL, while at
the same time exhibiting the best generalization accuracy among the compared
methods. These results, furthermore, are complemented by the generalization
guarantees for RRL which were proved in Section 3.4.

5. Conclusion

The aim of this article was to study the problem of learnability in the LFL
setting. To this aim, we first analyzed the generalization ability, as well as the
computational complexity, of two of the main learning paradigms in this setting,
namely: instance-based methods and generalized risk minimization. Further-
more, the second main contribution consists in the proposal of a novel pseudo
label-based learning algorithm, called RRL, and the study of its statistical and
generalization properties. To our knowledge, this is the first theoretical inves-
tigation of the pseudo label-based learning paradigm in the setting of learning
from imprecise data. These theoretical contributions have then been comple-
mented with a third, experimental, contribution through which we compared
the performance (in terms of generalization accuracy and running time) of sev-
eral state-of-the-art methods for LFL. In particular, our results show the ef-
fectiveness of the proposed RRL algorithm, and thus confirm and reinforce the
presented theoretical analysis. We believe these results to be particularly in-
teresting, as they show how the interaction between uncertainty representation
theories and machine learning could lead to the development of novel and effec-
tive algorithmic approaches: indeed, we showed that the construction method
for RRL (which directly relies on well-known results in possibility theory) al-
lows to achieve performance and theoretical properties comparable with, and
better than, the state-of-the-art. In light of these results and contributions, the
following open problems could be worthy of further research.

– From an empirical perspective, the performance gap reported by general-
ized risk minimization algorithms, despite being consistent with the hard-
ness of the associated optimization problems, could also be attributed to
costs related to GPU usage. Further work should be devoted at optimizing
resource usage to improve the efficiency of these algorithms.

– Several theoretical characterizations of LFL paradigms, namely general-
ized risk minimization, instance-based methods and pseudo label-based
learning, have been considered, focusing on the establishment of upper
bounds on the learnability of this setting: further work should be devoted
at exploring tighter bounds, especially under constraining assumptions on
the problem instances, as well as at proving matching lower bounds.

– In regard to GRM, we explicitly focused on the case of optimistic risk min-
imization. However, other alternative approaches have been proposed [48],
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chiefly among them pessimistic risk minimization [43], which has been pre-
viously proposed as a way to enable less cautious predictions and improve
robustness to noisy labels. Future work should explore the theoretical
properties of these alternative instantiations of the GRM paradigm.

– Finally, in this article we focused on the LFL setting: despite it being
a practically relevant and natural setting for weakly supervised learning,
future research should investigate theoretical characterizations, as well as
practical algorithms, for more general forms of imprecise data [36, 46]. To
this aim, two particularly promising research directions regard the prob-
lem of learning from fuzzy data, as well as the problem of learning from
comparative probabilities [21]. On the one hand, the study of the problem
of learning from fuzzy data would extend the applicability of the proposed
RRL algorithm, as well as of other state-of-the-art methods for LFL, to
more general settings in which imprecision affects not only the target su-
pervision, but also the feature values. On the other hand, the problem
of learning from comparative probabilities represents a particularly inter-
esting conceptual generalization of LFL, due to the relationship between
comparative probabilities and the theory of credal sets [60].

More generally, we believe that further interaction between machine learning
(specifically, learning theory) and uncertainty representation theories would en-
able the study of more realistic and complex learning problems, involving differ-
ent forms of uncertainty that may affect the data, as well as enable the design
of simple, yet effective, learning algorithms.
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