Erratum to: $\mathbf{A} \mathbb{Q}$-factorial complete toric variety is a quotient of a poly weighted space

Michele Rossi • Lea Terracini

After the publication of [2], we realized that Proposition 3.1, in that paper, contains an error, whose consequences are rather pervasive along the whole section 3 and for some aspects of examples 5.1 and 5.2. Here we give a complete account of needed corrections.

First of all [2, Prop. 3.1] has to be replaced by the following:

Proposition 3.1 Let $X(\Sigma)$ be a Q-factorial complete toric variety and $Y(\widehat{\Sigma})$ be its universal 1-covering. Let $\left\{D_{\rho}\right\}_{\rho \in \Sigma(1)}$ and $\left\{\widehat{D}_{\rho}\right\}_{\rho \in \widehat{\Sigma}(1)}$ be the standard bases of $\mathcal{W}_{T}(X)$ and $\mathcal{W}_{T}(Y)$, respectively, given by the torus orbit closures of the rays. Then

$$
D=\sum_{\rho \in \Sigma(1)} a_{\rho} D_{\rho} \in \mathcal{C}_{T}(X) \Longrightarrow \widehat{D}=\sum_{\rho \in \widehat{\Sigma}(1)} a_{\rho} \widehat{D}_{\rho} \in \mathcal{C}_{T}(Y)
$$

Therefore, under the identification $\mathbb{Z}^{|\Sigma(1)|} \cong \mathcal{W}_{T}(X) \stackrel{\alpha}{\cong} \mathcal{W}_{T}(Y) \cong \mathbb{Z}^{|\widehat{\Sigma}(1)|}$ realized by the isomorphism $D_{\rho} \stackrel{\alpha}{\mapsto} \widehat{D}_{\rho}$,

$$
\mathcal{C}_{T}(X) \cong \alpha\left(\mathcal{C}_{T}(X)\right) \leq \mathcal{C}_{T}(Y) \leq \mathcal{W}_{T}(Y)
$$

is a chain of subgroup inclusions. Moreover the induced morphism $\bar{\alpha}: \mathrm{Cl}(X) \rightarrow \mathrm{Cl}(Y)$ is injective when restricted to $\operatorname{Pic}(X)$, realizing the following further chain of subgroup inclusions

$$
\operatorname{Pic}(X) \cong \bar{\alpha}(\operatorname{Pic}(X)) \leq \operatorname{Pic}(Y) \leq \operatorname{Cl}(Y)
$$

The authors were partially supported by the MIUR-PRIN 2010-11 Research Funds "Geometria delle Varietà Algebriche". The first author is also supported by the I.N.D.A.M. as a member of the G.N.S.A.G.A.

[^0]Proof: Let us fix a basis \mathcal{B} of the \mathbb{Z}-module $M \cong \mathbb{Z}^{n}$ and let V and \widehat{V} be fan matrices representing the standard morphisms

$$
\operatorname{div}_{X}: M \cong \mathbb{Z}^{n} \xrightarrow{V^{T}} \mathbb{Z}^{|\Sigma(1)|} \cong \mathcal{W}_{T}(X) \quad, \quad \operatorname{div}_{Y}: M \cong \mathbb{Z}^{r} \xrightarrow{\widehat{V}^{T}} \mathbb{Z}^{|\widehat{\Sigma}(1)|} \cong \mathcal{W}_{T}(Y)
$$

Let $\beta \in \mathrm{GL}_{n}(\mathbb{Q}) \cap \mathbf{M}_{n}(\mathbb{Z})$ be such that $V=\beta \widehat{V}$ and so realizing an injective endomorphism of the \mathbb{Z} module M. The result follows by writing down the condition of being locally principal for a Weil divisor and observing that

$$
\begin{align*}
\mathcal{I}^{\Sigma} & =\left\{I \subseteq\{1, \ldots, n+r\}:\left\langle V^{I}\right\rangle \in \Sigma(n)\right\} \tag{1}\\
& =\left\{I \subseteq\{1, \ldots, n+r\}:\left\langle\widehat{V}^{I}\right\rangle \in \widehat{\Sigma}(n)\right\}=\mathcal{I}^{\widehat{\Sigma}}
\end{align*}
$$

by the construction of $\widehat{\Sigma} \in \mathcal{S F}(\widehat{V})$, given the choice of $\Sigma \in \mathcal{S F}(V)$. Notice that \mathcal{I}^{Σ} describes the complements of those sets described by \mathcal{I}_{Σ}, as defined in [2, Rem.2.4]. In particular the Weil divisor $\sum_{j=1}^{n+r} a_{j} D_{j} \in \mathcal{W}_{T}(X)$ is Cartier if and only if

$$
\begin{equation*}
\forall I \in \mathcal{I}^{\Sigma} \quad \exists \mathbf{m}_{I} \in M: \forall j \notin I \mathbf{v}_{j}^{T} \mathbf{m}_{I}=a_{j} \tag{2}
\end{equation*}
$$

where \mathbf{v}_{j} is the j-th column of V. Then $\alpha\left(\sum_{j=1}^{n+r} a_{j} D_{j}\right)=\sum_{j=1}^{n+r} a_{j} \widehat{D}_{j}$ is a Cartier divisor since

$$
\forall I \in \mathcal{I}^{\Sigma} \quad \forall j \notin I \quad \widehat{\mathbf{v}}_{j}^{T}\left(\beta^{T} \mathbf{m}_{I}\right)=a_{j}
$$

where $\widehat{\mathbf{v}}_{j}$ is the j-th column of \widehat{V}.
The injectivity of $\bar{\alpha}$ follows from the well-known freeness of $\operatorname{Pic}(X)$.
As a consequence, parts $1,4,5$ of [2, Thm. 3.2] still hold, while parts $2,3,6,7$ have to be replaced by the following:

Theorem 3.2 Let $X=X(\Sigma)$ be a n-dimensional \mathbb{Q}-factorial complete toric variety of rank r and $Y=Y(\widehat{\Sigma})$ be its universal 1-covering. Let V be a reduced fan matrix of $X, Q=\mathcal{G}(V)$ a weight matrix of X and $\widehat{V}=\mathcal{G}(Q)$ be a CF-matrix giving a fan matrix of Y.
2. Define \mathcal{I}^{Σ} as in 11). For any $I \in \mathcal{I}^{\Sigma}$ let E_{I} be the $r \times(n+r)$ matrix admitting as rows the standard basis vectors $e_{i}=\left(0, \ldots, 0, \frac{1}{i}, 0, \ldots, 0\right)$, for $i \in I$, representing the i-th basis divisor $D_{i} \in \mathcal{W}_{T}(X) \cong \mathbb{Z}^{|\Sigma(1)|}$. Set $\widetilde{V}_{I}:=\left(V^{T} \mid E_{I}^{T}\right) \in \mathbf{M}_{n+r}(\mathbb{Z})$. Then Cartier divisors give rise to the following maximal rank subgroup of $\mathcal{W}_{T}(X)$

$$
\mathcal{C}_{T}(X) \cong \bigcap_{I \in \mathcal{I}^{\Sigma}} \mathcal{L}_{c}\left(\widetilde{V}_{I}\right) \leq \mathbb{Z}^{|\Sigma(1)|} \cong \mathcal{W}_{T}(X)
$$

and a basis of $\mathcal{C}_{T}(X) \leq \mathcal{W}_{T}(X)$ can be explicitly computed by applying the procedure described in [1, § 1.2.3].
3. Let $C_{X} \in \mathrm{GL}_{n+r}(\mathbb{Q}) \cap \mathbf{M}_{n+r}(\mathbb{Z})$ be a matrix whose rows give a basis of $\mathcal{C}_{T}(X)$ in $\mathcal{W}_{T}(X)$, as obtained in the previous part 2. Identify $\mathrm{Cl}(X)$ with $\mathbb{Z}^{r} \oplus \bigoplus_{k=1}^{s} \mathbb{Z} / \tau_{k} \mathbb{Z}$ by item (c) of part 4 in [2, Thm. 3.2], and represent the morphism d_{X} by $Q \oplus \Gamma$, according to parts 1 and 5. Let $A \in \mathrm{GL}_{n+r}(\mathbb{Z})$ be a matrix such that $A \cdot C_{X} \cdot Q^{T}$ is in HNF. Let $\mathbf{c}_{1}, \ldots, \mathbf{c}_{r}$ be the first rows of the matrix $A \cdot C_{X}$ and for $i=1, \ldots r$ put $\mathbf{b}_{i}=Q \cdot \mathbf{c}_{i}^{T}+\Gamma \cdot \mathbf{c}_{i}^{T}$. Then $\mathbf{b}_{1}, \ldots \mathbf{b}_{r}$ is a basis of the free group $\operatorname{Pic}(X)$ in $\operatorname{Cl}(X)$.
6. Given the choice of \widehat{V} and V as in the previous parts 4 and 5 of [2, Thm. 3.2], consider

$$
\begin{aligned}
U & :=\binom{{ }^{r} U_{Q}}{\widehat{V}} \in \mathrm{GL}_{n+r}(\mathbb{Z}) \\
W & \in \mathrm{GL}_{n+r}(\mathbb{Z}): W \cdot\left({ }^{n+r-s} U\right)^{T}=\operatorname{HNF}\left(\left({ }^{n+r-s} U\right)^{T}\right) \\
G & :={ }_{s} \widehat{V} \cdot\left({ }_{s} W\right)^{T} \in \mathrm{M}_{s}(\mathbb{Z}) \\
U_{G} & \in \operatorname{GL}_{s}(\mathbb{Z}): U_{G} \cdot G^{T}=\operatorname{HNF}\left(G^{T}\right) .
\end{aligned}
$$

Then a "torsion matrix" representing the "torsion part" of the morphism d_{X}, that is, $\tau_{X}: \mathcal{W}_{T}(X) \rightarrow$ $\operatorname{Tors}(\mathrm{Cl}(X))$, is given by

$$
\begin{equation*}
\Gamma=U_{G} \cdot{ }_{s} W \quad \bmod \tau \tag{3}
\end{equation*}
$$

where this notation means that the (k, j)-entry of Γ is given by the class in $\mathbb{Z} / \tau_{k} \mathbb{Z}$ represented by the corresponding (k, j)-entry of ${ }^{s} U_{G} \cdot{ }_{s} W$, for every $1 \leq k \leq s, 1 \leq j \leq n+r$.
7. Setting $\delta_{\Sigma}:=\operatorname{lcm}\left(\operatorname{det}\left(Q_{I}\right): I \in \mathcal{I}^{\Sigma}\right)$ then

$$
\delta_{\Sigma} \mathcal{W}_{T}(X) \subseteq \mathcal{C}_{T}(X) \quad \text { and } \quad \delta_{\Sigma} \mathcal{W}_{T}(Y) \subseteq \mathcal{C}_{T}(Y)
$$

and there are the following divisibility relations

$$
\delta_{\Sigma}\left|[\operatorname{Cl}(Y): \operatorname{Pic}(Y)]=\left[\mathcal{W}_{T}(Y): \mathcal{C}_{T}(Y)\right]\right|[\operatorname{Cl}(X): \operatorname{Pic}(X)]=\left[\mathcal{W}_{T}(X): \mathcal{C}_{T}(X)\right] .
$$

Proof: (2): Recalling relation (2) in the proof of Proposition 3.1, set

$$
\forall I \in \mathcal{I}^{\Sigma} \quad \mathcal{P}^{I}=\left\{L=\sum_{j=1}^{n+r} a_{j} D_{j} \in \mathcal{W}_{T}(X) \mid \exists \mathbf{m} \in M: \forall j \notin I \mathbf{m} \cdot \mathbf{v}_{j}=a_{j}\right\}
$$

Then \mathcal{P}^{I} contains $\operatorname{Im}\left(\operatorname{div}_{X}: M \rightarrow \mathcal{W}_{T}(X)\right)=\mathcal{L}_{c}\left(V^{T}\right)$ and a \mathbb{Z}-basis of \mathcal{P}^{I} is given by

$$
\left\{D_{j}, j \in I\right\} \cup\left\{\sum_{k=1}^{n+r} v_{i k} D_{k}, i=1, \ldots, n\right\}
$$

where $\left\{v_{i k}\right\}$ is the i-th entry of \mathbf{v}_{k}, so giving the rows of the matrix \widetilde{V}_{I} defined in the statement.
(3): By definition

$$
\operatorname{Pic}(X)=\operatorname{Im}\left(\mathcal{C}_{T}(X) \hookrightarrow \mathcal{W}_{T}(X) \xrightarrow{d_{\times}} \operatorname{Cl}(X)\right)
$$

so that $\operatorname{Pic}(X)$ is generated by the image under $Q \oplus \Gamma$ of the transposed of the rows of C_{X}. Since $\operatorname{rk}\left(C_{X}\right)=$ $n+r$ and $\operatorname{rk}(Q)=r$, the matrix $C_{X} \cdot Q^{T}$ has rank r and therefore its HNF has the last $n-r$ rows equal to zero. Therefore the rows of the matrix $A \cdot C_{X}$ provide a basis of $\mathcal{C}_{T}(X)$ in $\mathcal{W}_{T}(X)$ such that its last n rows are a basis of $\mathcal{L}_{r}(\widehat{V}) \cap \mathcal{C}_{T}(X)=\mathcal{L}_{r}(V)$. Since $\operatorname{Pic}(X)$ is free of rank r it is freely generated by the images under d_{X} of the first r rows.
(6): A representative matrix of the torsion part $\tau_{X}: \mathcal{W}_{T}(X) \rightarrow \mathrm{Cl}(X)$ of the morphism d_{X} is any matrix satisfying the following properties:
(i) $\Gamma=\left(\gamma_{k j}\right)$ with $\gamma_{k j} \in \mathbb{Z} / \tau_{k} \mathbb{Z}$,
(ii) $\Gamma \cdot\left({ }^{r} U_{Q}\right)^{T}=\mathbf{0}_{s, r} \bmod \boldsymbol{\tau}$, meaning that Γ kills the generators of the free part $F \leq \mathrm{Cl}(X)$ defined in display (4) of part 1 of [2, Thm. 3.2],
(iii) $\Gamma \cdot V^{T}=\mathbf{0}_{s, n} \bmod \boldsymbol{\tau}$, where V is a fan matrix satisfying condition 4.(b) in [2, Thm. 3.2]: this is due to the fact that the rows of V span $\operatorname{ker}\left(d_{X}\right)$,
(iv) $\Gamma \cdot\left({ }_{s} \widehat{V}\right)^{T}=\mathbf{I}_{s} \bmod \boldsymbol{\tau}$, since the rows of ${ }_{s} \widehat{V}$ give the generators of $\operatorname{Tors}(\mathrm{Cl}(X))$, as in display (6) of part 5 of [2, Thm. 3.2].

Therefore it suffices to show that the matrix $U_{G} \cdot{ }_{s} W$ in (3) satisfies the previous conditions (ii), (iii) and (iv) without any reduction $\bmod \boldsymbol{\tau}$, that is,

$$
U_{G} \cdot{ }_{s} W \cdot\left({ }^{n+r-s} U\right)^{T}=\mathbf{0}_{s, n+r-s} \quad, \quad U_{G} \cdot{ }_{s} W \cdot\left({ }_{s} \widehat{V}\right)^{T}=\mathbf{I}_{s} .
$$

The first equation follows by the definition of W, in fact

$$
W \cdot\left({ }^{n+r-s} U\right)^{T}=\operatorname{HNF}\left(\left({ }^{n+r-s} U\right)^{T}\right)=\binom{\mathbf{I}_{n+r-s}}{\mathbf{0}_{s, n+r-s}} \Rightarrow{ }_{s} W \cdot\left({ }^{n+r-s} U\right)^{T}=\mathbf{0}_{s, n+r-s}
$$

The second equation follows by the definition of U_{G}, in fact

$$
U_{G} \cdot{ }_{s} W \cdot\left({ }_{s} \widehat{V}\right)^{T}=U_{G} \cdot G^{T}=\operatorname{HNF}\left(G^{T}\right)=\mathbf{I}_{s} .
$$

(7): Part (4) of [1, Thm. 2.9] gives that $\delta_{\Sigma} \mid[\operatorname{Cl}(Y): \operatorname{Pic}(Y)]=\left[\mathcal{W}_{T}(Y): \mathcal{C}_{T}(Y)\right]$. On the other hand Proposition 3.1 gives that $\left[\mathcal{W}_{T}(Y): \mathcal{C}_{T}(Y)\right] \mid\left[\mathcal{W}_{T}(X): \mathcal{C}_{T}(X)\right]=[\operatorname{Cl}(X): \operatorname{Pic}(X)]$.

Considerations i, ii, iii, iv, v of [2, Rem. 3.3] still holds, while vi, vii and the remaining part of Remark 3.3 have to be replaced by the following

Remark 3.3
vi. apply procedure [1, §1.2.3], based on the HNF algorithm, to get a $(n+r) \times(n+r)$ matrix C_{X} whose rows give a basis of $\mathcal{C}_{T}(X) \leq \mathcal{W}_{T}(X) \cong \mathbb{Z}^{|\Sigma(1)|}$;
vii. apply procedure described in part 6 of Theorem 3.2 to get a system of generators of $\operatorname{Pic}(X)$ in $\mathrm{Cl}(X)$. Precisely, let $A \in \mathrm{GL}_{n+r}(\mathbb{Z})$ be a switching matrix such that $\operatorname{HNF}\left(C_{X} \cdot Q^{T}\right)=A \cdot C_{X} \cdot Q^{T}$, and put

$$
\begin{equation*}
B_{X}={ }^{r}\left(A \cdot C_{X} \cdot Q^{T}\right), \quad \Theta_{X}={ }^{r}\left(A \cdot C_{X} \cdot \Gamma^{T}\right) \tag{4}
\end{equation*}
$$

Then the rows of the matrices B_{X} and Θ_{X} represent respectively the free part and the torsion part of a basis of $\operatorname{Pic}(X)$ in $\operatorname{Cl}(X)$, where the latter is identified to $\mathbb{Z}^{r} \oplus \bigoplus_{k=1}^{s} \mathbb{Z} / \tau_{k} \mathbb{Z}$.
Moreover:

- recall that, for the universal 1-covering Y of X, once fixed the basis $\left\{\widehat{D}_{j}\right\}_{j=1}^{n+r}$ of $\mathcal{W}_{T}(Y) \cong \mathbb{Z}^{n+r}$ and the basis $\left\{d_{Y}\left(\widehat{L}_{i}\right)\right\}_{i=1}^{r}$ of $\mathrm{Cl}(Y) \cong \mathbb{Z}^{r}$, (see (11) in [1, Thm. 2.9]), one gets the following commutative diagram

where B_{Y} is the $r \times r$ matrix constructed in [1, Thm. 2.9(3)] and

$$
C_{Y}=\left(\begin{array}{cc}
B_{Y} & \mathbf{0}_{r, n} \\
\mathbf{0}_{n, r} & \mathbf{I}_{n}
\end{array}\right) \cdot U_{Q}=\binom{B_{Y} \cdot{ }^{r} U_{Q}}{\widehat{V}}
$$

- once fixed the basis $\left\{D_{j}\right\}_{j=1}^{n+r}$ for $\mathcal{W}_{T}(X) \cong \mathbb{Z}^{n+r}$ and the basis $\left\{d_{X}\left(L_{i}\right)\right\}_{i=1}^{r}$ of the free part $F \cong \mathbb{Z}^{r}$ of $\mathrm{Cl}(X)$, constructed in part 1 of [2, Thm. 3.2], one gets the following commutative diagram

Moreover:

- recall the following commutative diagram of short exact sequences

then, putting all together, one gets the following 3-dimensional commutative diagram

The Snake Lemma implies

$$
\begin{aligned}
\operatorname{coker}\left(\beta^{T}\right) & \cong \operatorname{ker}(\bar{\alpha}) \cong \operatorname{Tors}(\operatorname{Cl}(X)) \\
\mathcal{K} & \cong \operatorname{coker}\left(\alpha_{\mid}\right) \cong \mathcal{C}_{T}(Y) / \mathcal{C}_{T}(X)
\end{aligned}
$$

so giving the following short exact sequences on torsion subgroups

For what concerns the examples given in section 5, considerations related with parts v, vi and vii of Remark 3.3 have to be replaced as follows

Example 5.1
v. A matrix $W \in \mathrm{GL}_{4}(\mathbb{Z})$ such that $\operatorname{HNF}\left(\left({ }^{3} U\right)^{T}\right)=W \cdot\left({ }^{3} U\right)^{T}$ is given by

$$
W=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & -2 \\
0 & 1 & -3 & 2 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

giving

$$
G:={ }_{1} \widehat{V} \cdot\left({ }_{1} W\right)^{T}=(1)
$$

Therefore

$$
\Gamma={ }_{1} W \quad \bmod 5=\left([0]_{5}[4]_{5}[2]_{5}[1]_{5}\right) .
$$

Consequently display (16) in [2], giving the action of $\operatorname{Hom}\left(\operatorname{Tors}(\operatorname{Cl}(X)), \mathbb{C}^{*}\right) \cong \mu_{5}$ on $Y=\mathbb{P}^{3}$, should be replaced by the following (equivalent) one:

$$
\begin{array}{rlc}
\mu_{5} \times \mathbb{P}^{3} & \longrightarrow & \mathbb{P}^{3} \\
\left(\varepsilon,\left[x_{1}: \ldots: x_{4}\right]\right) & \mapsto\left[x_{1}: \varepsilon^{4} x_{2}: \varepsilon^{2} x_{3}: \varepsilon x_{4}\right] . \tag{8}
\end{array}
$$

vi. Applying procedure [1, § 1.2.3] as described in part 2 of Theorem 3.2 , one gets a 4×4 matrix C_{X} whose rows give a basis of $\mathcal{C}_{T}(X)$ inside $\mathcal{W}_{T}(X) \cong \mathbb{Z}^{|\Sigma(1)|}$. Namely

$$
C_{X}=\left(\begin{array}{cccc}
5 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
-3 & -3 & 1 & 0 \\
-2 & -4 & 0 & 1
\end{array}\right)
$$

meaning that

$$
\mathcal{C}_{T}(X)=\mathcal{L}\left(5 D_{1}, 5 D_{2},-3 D_{1}-3 D_{2}+D_{3},-2 D_{1}-4 D_{2}+D_{4}\right) .
$$

On the other hand, by part (3) of [1, Thm. 2.9], a basis of $\mathcal{C}_{T}(Y) \subseteq \mathcal{W}_{T}(Y)$ is given by the rows of

$$
C_{Y}=\mathbf{I}_{4} \cdot U_{Q}=U_{Q} \in \mathrm{GL}_{n}(\mathbb{Z})
$$

giving $\mathcal{C}_{T}(Y)=\mathcal{W}_{T}(Y)$, as expected for $Y=\mathbb{P}^{3}$.
vii. A basis of $\operatorname{Pic}(X)$ inside $\mathrm{Cl}(X)$ is then obtained by applying part 6 of Theorem 3.2 With the notation of Remark 3.3 vii, a switching matrix A such that $A \cdot C_{X} \cdot Q^{T}$ is in HNF is

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

so that

$$
\begin{aligned}
& B_{X}={ }^{1}\left(A \cdot C_{X} \cdot Q^{T}\right)=(5) \\
& \Theta_{X}={ }^{1}\left(A \cdot C_{X} \cdot \Gamma^{T}\right)=(0)
\end{aligned}
$$

Then

$$
\operatorname{Pic}(X) \cong \mathbb{Z}\left[5 d_{X}\left(D_{1}\right)\right] \leq \mathbb{Z}\left[d_{X}\left(D_{1}\right)\right] \oplus \mathbb{Z} / 5 \mathbb{Z}\left[d_{X}\left(D_{3}-D_{4}\right)\right] \cong \mathrm{Cl}(X) \Rightarrow \mathrm{Cl}(X) / \operatorname{Pic}(X) \cong \mathbb{Z} / 5 \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z}
$$

Example 5.2
v. A matrix U as defined in part 6 of Theorem 3.2 is given by

$$
U=\binom{{ }^{2} U_{Q}}{\widehat{V}^{\prime}}=\left(\begin{array}{cccccc}
2 & -1 & 0 & 0 & 0 & 0 \\
-6 & 3 & 1 & 0 & 0 & 0 \\
521 & -251 & -168 & -2 & 14 & 28 \\
388 & -222 & -112 & 7 & 45 & 3 \\
-184 & 105 & 53 & -2 & -23 & -1 \\
191 & -109 & -55 & 2 & 24 & 1
\end{array}\right)
$$

A matrix $W \in \mathrm{GL}_{6}(\mathbb{Z})$ such that $\operatorname{HNF}\left(\left({ }^{4} U\right)^{T}\right)=W \cdot\left(\left({ }^{4} U\right)^{T}\right)$ is given by

$$
W=\left(\begin{array}{cccccc}
-57 & -115 & 3 & -549 & 17 & 0 \\
4 & 8 & 1 & 3 & 7 & 0 \\
-125 & -250 & 0 & -1090 & 14 & 0 \\
-170 & -340 & 0 & -1482 & 19 & 0 \\
-188 & -376 & 0 & -1639 & 21 & 0 \\
-126 & -252 & 0 & -1092 & 13 & 1
\end{array}\right)
$$

then

$$
G={ }_{2} \widehat{V}^{\prime} \cdot\left({ }_{2} W\right)^{T}=\left(\begin{array}{cc}
-2093 & -1392 \\
2302 & 1531
\end{array}\right)
$$

A matrix $U_{G} \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\operatorname{HNF}\left(G^{T}\right)=U_{G} \cdot G^{T}$ is given by

$$
U_{G}=\binom{1531-2302}{1392-2093}
$$

hence giving

$$
\left.\begin{array}{rl}
\Gamma & =U_{G} \cdot{ }_{2} W \\
& \bmod \boldsymbol{\tau} \\
& =\left(\begin{array}{cccc}
2224 & 4448 & 0 & 4475 \\
2022 & 4044 & 0 & 4068
\end{array} 2023-2302\right. \\
2023
\end{array}\right) \quad \bmod \binom{3}{15} .
$$

Consequently display (20) in [2] should be replaced by the following (equivalent) one

$$
\begin{align*}
& g\left(\left(\left(t_{1}, t_{2}\right), \varepsilon, \eta\right),\left(x_{1}, \ldots: x_{6}\right)\right):= \tag{9}\\
& \left(t_{1}^{2} t_{2} \varepsilon \eta^{12} x_{1}, t_{1}^{4} t_{2} \varepsilon^{2} \eta^{9} x_{2}, t_{1} t_{2}^{3} x_{3}, t_{1}^{5} t_{2}^{2} \varepsilon^{2} \eta^{3} x_{4}, t_{1}^{4} t_{2}^{3} \varepsilon^{2} \eta^{13} x_{5}, t_{1}^{3} t_{2}^{7} \varepsilon^{2} \eta^{7} x_{6}\right)
\end{align*}
$$

vi. Depending on the choice of the fan $\Sigma_{i} \in \mathcal{S F}(V)$, by applying procedure [1] 1.2.3] as described in part 2 of Theorem 3.2 one gets a 6×6 matrix $C_{X, i}$ whose rows give a basis of $\mathcal{C}_{T}\left(X_{i}\right)$ inside $\mathcal{W}_{T}\left(X_{i}\right) \cong \mathbb{Z}^{\left|\Sigma_{i}(1)\right|}$. Namely

$$
C_{X, 1}=\left(\begin{array}{cccccc}
265926375 & 0 & 0 & 0 & 0 & 0 \\
-148978500 & 825 & 0 & 0 & 0 & 0 \\
-58474020 & -375 & 15 & 0 & 0 & 0 \\
37 & -18 & -7 & 1 & 0 & 0 \\
-58473933 & -417 & -3 & 0 & 3 & 0 \\
19 & -8 & -5 & 0 & -1 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& C_{X, 2}=\left(\begin{array}{cccccc}
43543500 & 0 & 0 & 0 & 0 & 0 \\
-34716000 & 15 & 0 & 0 & 0 & 0 \\
-594165 & 0 & 30 & 0 & 0 & 0 \\
-34715963 & -3 & -7 & 1 & 0 & 0 \\
17655087 & -12 & -18 & 0 & 3 & 0 \\
19 & -8 & -5 & 0 & -1 & 1
\end{array}\right) \\
& C_{X, 3}=\left(\begin{array}{cccccc}
43543500 & 0 & 0 & 0 & 0 & 0 \\
-37009500 & 825 & 0 & 0 & 0 & 0 \\
-6534165 & -750 & 30 & 0 & 0 & 0 \\
37 & -18 & -7 & 1 & 0 & 0 \\
87 & -42 & -18 & 0 & 3 & 0 \\
19 & -8 & -5 & 0 & -1 & 1
\end{array}\right)
\end{aligned}
$$

vii. A basis of $\operatorname{Pic}\left(X_{i}\right)$ inside $\mathrm{Cl}\left(X_{i}\right)$ is then obtained by applying part 6 of Theorem 3.2. For $i=1,2,3$, matrices A_{i} switching $C_{X_{i}} \cdot Q^{T}$ in Hermite normal form are respectively

$$
\begin{gathered}
A_{1}=\left(\begin{array}{ccccccccc}
-351039 & -449987 & -449987 & 0 & 0 & 0 \\
-502913 & -644670 & -644670 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
A_{2}=\left(\begin{array}{ccccccc}
-93838 & -117699 & 0 & 0 & 0 & 0 \\
-1157199 & -1451450 & 0 & 0 & 0 & 0 \\
4 & 5 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 \\
-2 & -2 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
A_{3}=\left(\begin{array}{cccccc}
-10317 & -12139 & 0 & 0 & 0 & 0 \\
-22429 & -26390 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

giving

$$
\begin{aligned}
& B_{X_{1}}={ }^{2}\left(A_{1} \cdot C_{X_{1}} \cdot Q^{T}\right)=\left(\begin{array}{cc}
825 & 185620050 \\
0 & 265926375
\end{array}\right) \\
& B_{X_{2}}={ }^{2}\left(A_{2} \cdot C_{X_{2}} \cdot Q^{T}\right)=\left(\begin{array}{cc}
60 & 1765515 \\
0 & 21771750
\end{array}\right) \\
& B_{X_{3}}={ }^{2}\left(A_{3} \cdot C_{X_{3}} \cdot Q^{T}\right)=\left(\begin{array}{cc}
3300 & 10016325 \\
0 & 21771750
\end{array}\right) \\
& \Theta_{X_{i}}={ }^{2}\left(A_{i} \cdot C_{X_{i}} \cdot \Gamma^{T}\right)=\binom{[0]_{3}[0]_{15}}{[0]_{3}[0]_{15}}, \quad \text { for } i=1,2,3 .
\end{aligned}
$$

References

1. Rossi M. and Terracini L. \mathbb{Z}-linear Gale duality and poly weighted spaces ($P W S$) Linear Algebra Appl. 495 (2016), 256-288; DOI:10.1016/j.laa.2016.01.039; arXiv:1501.05244
2. Rossi, M., and Terracini, L. A \mathbb{Q}-factorial complete toric variety is a quotient of a poly weighted space Ann. Mat. Pur. Appl. 196 (2017), 325-347; DOI:10.1007/s10231-016-0574-7; arXiv:1502.00879.

[^0]: Michele Rossi
 Dipartimento di Matematica - Università di Torino - Via Carlo Alberto 10-10123 Torino (Italy)
 Tel.: +39-011-6702813
 Fax: +39-011-6702878
 E-mail: michele.rossi@unito.it
 Lea Terracini
 Dipartimento di Matematica - Università di Torino - Via Carlo Alberto 10-10123 Torino (Italy)
 Tel.: +39-011-6702813
 Fax: +39-011-6702878
 E-mail: lea.terracini@unito.it

