
Erratum to: A Q–factorial complete toric variety is a quotient of a poly

weighted space

Michele Rossi · Lea Terracini

After the publication of [2], we realized that Proposition 3.1, in that paper, contains an error, whose

consequences are rather pervasive along the whole section 3 and for some aspects of examples 5.1 and 5.2.

Here we give a complete account of needed corrections.

First of all [2, Prop. 3.1] has to be replaced by the following:

Proposition 3.1 Let X(Σ) be a Q–factorial complete toric variety and Y (Σ̂) be its universal 1-covering.

Let {Dρ}ρ∈Σ(1) and {D̂ρ}ρ∈Σ̂(1) be the standard bases of WT (X) and WT (Y ), respectively, given by the

torus orbit closures of the rays. Then

D =
∑

ρ∈Σ(1)

aρDρ ∈ CT (X) =⇒ D̂ =
∑

ρ∈Σ̂(1)

aρD̂ρ ∈ CT (Y ) .

Therefore, under the identification Z|Σ(1)| ∼= WT (X)
α∼= WT (Y ) ∼= Z|Σ̂(1)| realized by the isomorphism

Dρ
α7→ D̂ρ,

CT (X) ∼= α(CT (X)) ≤ CT (Y ) ≤ WT (Y )

is a chain of subgroup inclusions. Moreover the induced morphism α : Cl(X) → Cl(Y ) is injective when

restricted to Pic(X), realizing the following further chain of subgroup inclusions

Pic(X) ∼= α(Pic(X)) ≤ Pic(Y ) ≤ Cl(Y )

.
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The first author is also supported by the I.N.D.A.M. as a member of the G.N.S.A.G.A.

Michele Rossi
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Proof: Let us fix a basis B of the Z-module M ∼= Zn and let V and V̂ be fan matrices representing the

standard morphisms

divX : M ∼= Zn V T−→ Z|Σ(1)| ∼=WT (X) , divY : M ∼= Zr V̂ T−→ Z|Σ̂(1)| ∼=WT (Y )

Let β ∈ GLn(Q) ∩Mn(Z) be such that V = βV̂ and so realizing an injective endomorphism of the Z-

module M . The result follows by writing down the condition of being locally principal for a Weil divisor

and observing that

IΣ = {I ⊆ {1, . . . , n+ r} :
〈
V I
〉
∈ Σ(n)} (1)

= {I ⊆ {1, . . . , n+ r} :
〈
V̂ I
〉
∈ Σ̂(n)} = IΣ̂

by the construction of Σ̂ ∈ SF(V̂ ), given the choice of Σ ∈ SF(V ). Notice that IΣ describes the

complements of those sets described by IΣ , as defined in [2, Rem. 2.4]. In particular the Weil divisor∑n+r
j=1 ajDj ∈ WT (X) is Cartier if and only if

∀ I ∈ IΣ ∃mI ∈M : ∀ j 6∈ I vTj mI = aj , (2)

where vj is the j-th column of V . Then α(
∑n+r
j=1 ajDj) =

∑n+r
j=1 ajD̂j is a Cartier divisor since

∀ I ∈ IΣ ∀ j 6∈ I v̂Tj (βTmI) = aj

where v̂j is the j-th column of V̂ .

The injectivity of α follows from the well-known freeness of Pic(X). �

As a consequence, parts 1, 4, 5 of [2, Thm. 3.2] still hold, while parts 2, 3, 6, 7 have to be replaced by

the following:

Theorem 3.2 Let X = X(Σ) be a n–dimensional Q–factorial complete toric variety of rank r and

Y = Y (Σ̂) be its universal 1–covering. Let V be a reduced fan matrix of X, Q = G(V ) a weight matrix of

X and V̂ = G(Q) be a CF–matrix giving a fan matrix of Y .

2. Define IΣ as in (1). For any I ∈ IΣ let EI be the r×(n+r) matrix admitting as rows the standard basis

vectors ei = (0, . . . , 0, 1
i
, 0, . . . , 0), for i ∈ I, representing the i-th basis divisor Di ∈ WT (X) ∼= Z|Σ(1)|.

Set ṼI :=
(
V T |ETI

)
∈Mn+r(Z). Then Cartier divisors give rise to the following maximal rank subgroup

of WT (X)

CT (X) ∼=
⋂
I∈IΣ

Lc
(
ṼI
)
≤ Z|Σ(1)| ∼=WT (X)

and a basis of CT (X) ≤ WT (X) can be explicitly computed by applying the procedure described in [1,

§ 1.2.3].

3. Let CX ∈ GLn+r(Q) ∩Mn+r(Z) be a matrix whose rows give a basis of CT (X) in WT (X), as obtained

in the previous part 2. Identify Cl(X) with Zr⊕
⊕s
k=1 Z/τkZ by item (c) of part 4 in [2, Thm. 3.2], and

represent the morphism dX by Q⊕ Γ , according to parts 1 and 5. Let A ∈ GLn+r(Z) be a matrix such

that A · CX · QT is in HNF. Let c1, . . . , cr be the first r rows of the matrix A · CX and for i = 1, . . . r

put bi = Q · cTi + Γ · cTi . Then b1, . . .br is a basis of the free group Pic(X) in Cl(X).

6. Given the choice of V̂ and V as in the previous parts 4 and 5 of [2, Thm. 3.2], consider

U :=

(
rUQ

V̂

)
∈ GLn+r(Z)

W ∈ GLn+r(Z) : W · (n+r−sU)T = HNF
(

(n+r−sU)T
)

G := sV̂ · (sW )T ∈Ms(Z)

UG ∈ GLs(Z) : UG ·GT = HNF(GT ) .
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Then a “torsion matrix” representing the “torsion part” of the morphism dX , that is, τX : WT (X) →
Tors(Cl(X)), is given by

Γ = UG · sW mod τ (3)

where this notation means that the (k, j)–entry of Γ is given by the class in Z/τkZ represented by the

corresponding (k, j)–entry of sUG · sW , for every 1 ≤ k ≤ s , 1 ≤ j ≤ n+ r.

7. Setting δΣ := lcm
(
det(QI) : I ∈ IΣ

)
then

δΣWT (X) ⊆ CT (X) and δΣWT (Y ) ⊆ CT (Y )

and there are the following divisibility relations

δΣ | [Cl(Y ) : Pic(Y )] = [WT (Y ) : CT (Y )] | [Cl(X) : Pic(X)] = [WT (X) : CT (X)] .

Proof: (2): Recalling relation (2) in the proof of Proposition 3.1, set

∀ I ∈ IΣ PI = {L =

n+r∑
j=1

ajDj ∈ WT (X) | ∃m ∈M : ∀ j 6∈ I m · vj = aj}.

Then PI contains Im(divX : M →WT (X)) = Lc
(
V T
)

and a Z-basis of PI is given by

{Dj , j ∈ I} ∪ {
n+r∑
k=1

vikDk, i = 1, . . . , n},

where {vik} is the i-th entry of vk, so giving the rows of the matrix ṼI defined in the statement.

(3): By definition

Pic(X) = Im(CT (X) ↪→WT (X)
dX→ Cl(X))

so that Pic(X) is generated by the image under Q⊕Γ of the transposed of the rows of CX . Since rk(CX) =

n+ r and rk(Q) = r, the matrix CX ·QT has rank r and therefore its HNF has the last n− r rows equal to

zero. Therefore the rows of the matrix A ·CX provide a basis of CT (X) in WT (X) such that its last n rows

are a basis of Lr(V̂ ) ∩ CT (X) = Lr(V ). Since Pic(X) is free of rank r it is freely generated by the images

under dX of the first r rows.

(6): A representative matrix of the torsion part τX : WT (X) → Cl(X) of the morphism dX is any matrix

satisfying the following properties:

(i) Γ = (γkj) with γkj ∈ Z/τkZ,

(ii) Γ · (rUQ)T = 0s,r mod τ , meaning that Γ kills the generators of the free part F ≤ Cl(X) defined in

display (4) of part 1 of [2, Thm. 3.2],

(iii) Γ · V T = 0s,n mod τ , where V is a fan matrix satisfying condition 4.(b) in [2, Thm. 3.2]: this is due to

the fact that the rows of V span ker(dX),

(iv) Γ · (sV̂ )T = Is mod τ , since the rows of sV̂ give the generators of Tors(Cl(X)), as in display (6) of part

5 of [2, Thm. 3.2].

Therefore it suffices to show that the matrix UG · sW in (3) satisfies the previous conditions (ii), (iii) and

(iv) without any reduction mod τ , that is,

UG · sW · (n+r−sU)T = 0s,n+r−s , UG · sW · (sV̂ )T = Is .

The first equation follows by the definition of W , in fact

W · (n+r−sU)T = HNF
(

(n+r−sU)T
)

=

(
In+r−s

0s,n+r−s

)
⇒ sW · (n+r−sU)T = 0s,n+r−s
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The second equation follows by the definition of UG, in fact

UG · sW · (sV̂ )T = UG ·GT = HNF(GT ) = Is .

(7): Part (4) of [1, Thm. 2.9] gives that δΣ | [Cl(Y ) : Pic(Y )] = [WT (Y ) : CT (Y )]. On the other hand

Proposition 3.1 gives that [WT (Y ) : CT (Y )] | [WT (X) : CT (X)] = [Cl(X) : Pic(X)]. �

Considerations i, ii, iii, iv, v of [2, Rem. 3.3] still holds, while vi, vii and the remaining part of Remark

3.3 have to be replaced by the following

Remark 3.3

vi. apply procedure [1, § 1.2.3], based on the HNF algorithm, to get a (n+ r)× (n+ r) matrix CX whose

rows give a basis of CT (X) ≤ WT (X) ∼= Z|Σ(1)|;

vii. apply procedure described in part 6 of Theorem 3.2 to get a system of generators of Pic(X) in Cl(X) .

Precisely, let A ∈ GLn+r(Z) be a switching matrix such that HNF(CX ·QT ) = A · CX ·QT , and put

BX = r(A · CX ·QT ), ΘX = r(A · CX · ΓT ) (4)

Then the rows of the matrices BX and ΘX represent respectively the free part and the torsion part of

a basis of Pic(X) in Cl(X), where the latter is identified to Zr ⊕
⊕s
k=1 Z/τkZ.

Moreover:

– recall that, for the universal 1–covering Y of X, once fixed the basis {D̂j}n+rj=1 ofWT (Y ) ∼= Zn+r and

the basis {dY (L̂i)}ri=1 of Cl(Y ) ∼= Zr, (see (11) in [1, Thm. 2.9]), one gets the following commutative

diagram

0

��

0

��

0

��
0 // M

(
0n,r | In

)
// CT (Y ) ∼= Pic(Y )⊕M

(
Ir |0r,n

)
//

CTY
��

Pic(Y ) //

BTY

��

0

0 // M
divY

V̂ T
//

��

WT (Y ) =

n+r⊕
j=1

Z ·Dj

��

dY

Q
// Cl(Y )

��

// 0

0 // TY

��

∼= // TY //

��

0

0 0

where BY is the r × r matrix constructed in [1, Thm. 2.9(3)] and

CY =

(
BY 0r,n

0n,r In

)
· UQ =

(
BY · rUQ

V̂

)
,
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– once fixed the basis {Dj}n+rj=1 for WT (X) ∼= Zn+r and the basis {dX(Li)}ri=1 of the free part F ∼= Zr

of Cl(X), constructed in part 1 of [2, Thm. 3.2], one gets the following commutative diagram

0

��

0

��

0

��
0 // M

(
0n,r | In

)
// CT (X) ∼= Pic(X)⊕M

(
Ir |0r,n

)
//

CTX
��

Pic(X) //

BTX⊕Θ
T
X

��

0

0 // M
divX

V T
//

��

WT (X) =

n+r⊕
j=1

Z ·Dj

��

dX=fX⊕τX
Q⊕Γ

// Cl(X)

��

// 0

0 // TX

��

∼= // TX //

��

0

0 0

Moreover:

– recall the following commutative diagram of short exact sequences

0

��
0

��

0

��

ker(α) = Tors(Cl(X))

��
0 // M

divX

V T
//

βT

��

WT (X) = Z|Σ(1)| dX //

αIn+r

��

Cl(X) //

α

��

0

0 // M
divY

V̂ T
//

��

WT (Y ) = Z|Σ̂(1)| dY //

��

Cl(Y ) //

��

0

coker(βT ) ∼= Tors(Cl(X))

��

0 0

0
(5)
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then, putting all together, one gets the following 3–dimensional commutative diagram

M
� � divX(

0n,r | In
) //� o

βT

��

CT (X)� s
α|

(CX ·C−1
Y )T %%

dX |(
Ir |0r,n

) // //
� _

CTX

��

Pic(X)� r
α|

(BX ·B−1
Y )T $$

� _

��

� _

BTX⊕Θ
T
X

��

M
� � divY(

0n,r | In
) //

## ##

CT (Y )
dY |(

Ir |0r,n
) // //

� _

CTY

��

%% %%

Pic(Y )

%% %%

� _

BTY

��

coker(βT )
� � // coker(α|) // // coker(α|)

ker(α)� _

��

� s

%%
M
� � divX

V T
//� o

βT

��

WT (X)

����

dX=fX⊕τX
Q⊕Γ

// //

α

In+r %%

Cl(X)

α

Ir⊕0r $$ $$

����

M
� � divY

V̂ T
//

$$ $$

WT (Y )

����

dY

Q
// // Cl(Y )

����

coker(βT )

K � s

&&

∼=
// K � s

&&
TX

%% %%

∼=
// TX

%%
TY ∼=

// TY
(6)

The Snake Lemma implies

coker(βT ) ∼= ker(α) ∼= Tors(Cl(X))

K ∼= coker(α|) ∼= CT (Y )/CT (X)

so giving the following short exact sequences on torsion subgroups

0

��
0 // Tors(Cl(X)) // CT (Y )/CT (X) //

��

Pic(Y )/Pic(X) // 0

Cl(X)/Pic(X)

��
Cl(Y )/Pic(Y )

��
0

(7)
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For what concerns the examples given in section 5, considerations related with parts v, vi and vii of

Remark 3.3 have to be replaced as follows

Example 5.1

v. A matrix W ∈ GL4(Z) such that HNF
(
(3U)T

)
= W · (3U)T is given by

W =


1 0 0 0

1 0 1 −2

0 1 −3 2

0 0 1 −1


giving

G := 1V̂ · (1W )T =
(

1
)

Therefore

Γ = 1W mod 5 =
(

[0]5 [4]5 [2]5 [1]5

)
.

Consequently display (16) in [2], giving the action of Hom(Tors(Cl(X)),C∗) ∼= µ5 on Y = P3, should be

replaced by the following (equivalent) one:

µ5 × P3 −→ P3

(ε, [x1 : . . . : x4]) 7→
[
x1 : ε4x2 : ε2x3 : εx4

]
.

(8)

vi. Applying procedure [1, § 1.2.3] as described in part 2 of Theorem 3.2, one gets a 4× 4 matrix CX whose

rows give a basis of CT (X) inside WT (X) ∼= Z|Σ(1)|. Namely

CX =


5 0 0 0

0 5 0 0

−3 −3 1 0

−2 −4 0 1


meaning that

CT (X) = L (5D1, 5D2,−3D1 − 3D2 +D3,−2D1 − 4D2 +D4) .

On the other hand, by part (3) of [1, Thm. 2.9], a basis of CT (Y ) ⊆ WT (Y ) is given by the rows of

CY = I4 · UQ = UQ ∈ GLn(Z)

giving CT (Y ) =WT (Y ), as expected for Y = P3.

vii. A basis of Pic(X) inside Cl(X) is then obtained by applying part 6 of Theorem 3.2. With the notation

of Remark 3.3 vii, a switching matrix A such that A · CX ·QT is in HNF is

A =


1 0 0 0

−1 1 0 0

1 0 1 0

1 0 0 1


so that

BX = 1(A · CX ·QT ) =
(

5
)

ΘX = 1(A · CX · ΓT ) =
(

0
)

Then

Pic(X) ∼= Z[5dX(D1)] ≤ Z[dX(D1)]⊕ Z/5Z[dX(D3 −D4)] ∼= Cl(X) ⇒ Cl(X)/Pic(X) ∼= Z/5Z⊕ Z/5Z .
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Example 5.2

v. A matrix U as defined in part 6 of Theorem 3.2 is given by

U =

(
2UQ

V̂ ′

)
=



2 −1 0 0 0 0

−6 3 1 0 0 0

521 −251 −168 −2 14 28

388 −222 −112 7 45 3

−184 105 53 −2 −23 −1

191 −109 −55 2 24 1


A matrix W ∈ GL6(Z) such that HNF((4U)T ) = W · ((4U)T ) is given by

W =



−57 −115 3 −549 17 0

4 8 1 3 7 0

−125 −250 0 −1090 14 0

−170 −340 0 −1482 19 0

−188 −376 0 −1639 21 0

−126 −252 0 −1092 13 1


then

G = 2V̂
′ · (2W )T =

(
−2093 −1392

2302 1531

)

A matrix UG ∈ GL2(Z) such that HNF(GT ) = UG ·GT is given by

UG =

(
1531 −2302

1392 −2093

)

hence giving

Γ = UG · 2W mod τ

=

(
2224 4448 0 4475 2225 −2302

2022 4044 0 4068 2023 −2093

)
mod

(
3

15

)

=

(
[1]3 [2]3 [0]3 [2]3 [2]3 [2]3

[12]15 [9]15 [0]15 [3]15 [13]15 [7]15

)

Consequently display (20) in [2] should be replaced by the following (equivalent) one

g (((t1, t2), ε, η), (x1, . . . : x6)) := (9)(
t21t2εη

12 x1, t
4
1t2ε

2η9 x2, t1t
3
2 x3, t

5
1t

2
2ε

2η3 x4, t
4
1t

3
2ε

2η13 x5, t
3
1t

7
2ε

2η7 x6
)

vi. Depending on the choice of the fan Σi ∈ SF(V ), by applying procedure [1, § 1.2.3] as described in part

2 of Theorem 3.2, one gets a 6×6 matrix CX,i whose rows give a basis of CT (Xi) insideWT (Xi) ∼= Z|Σi(1)|.
Namely

CX,1 =



265926375 0 0 0 0 0

−148978500 825 0 0 0 0

−58474020 −375 15 0 0 0

37 −18 −7 1 0 0

−58473933 −417 −3 0 3 0

19 −8 −5 0 −1 1


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CX,2 =



43543500 0 0 0 0 0

−34716000 15 0 0 0 0

−594165 0 30 0 0 0

−34715963 −3 −7 1 0 0

17655087 −12 −18 0 3 0

19 −8 −5 0 −1 1



CX,3 =



43543500 0 0 0 0 0

−37009500 825 0 0 0 0

−6534165 −750 30 0 0 0

37 −18 −7 1 0 0

87 −42 −18 0 3 0

19 −8 −5 0 −1 1


vii. A basis of Pic(Xi) inside Cl(Xi) is then obtained by applying part 6 of Theorem 3.2. For i = 1, 2, 3,

matrices Ai switching CXi ·QT in Hermite normal form are respectively

A1 =



−351039 −449987 −449987 0 0 0

−502913 −644670 −644670 0 0 0

1 1 2 0 0 0

0 0 0 1 0 0

1 1 1 0 1 0

0 0 0 0 0 1



A2 =



−93838 −117699 0 0 0 0

−1157199 −1451450 0 0 0 0

4 5 1 0 0 0

0 −1 0 1 0 0

−2 −2 0 0 1 0

0 0 0 0 0 1



A3 =



−10317 −12139 0 0 0 0

−22429 −26390 0 0 0 0

1 1 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


giving

BX1
= 2(A1 · CX1

·QT ) =

(
825 185620050

0 265926375

)

BX2
= 2(A2 · CX2

·QT ) =

(
60 1765515

0 21771750

)

BX3
= 2(A3 · CX3

·QT ) =

(
3300 10016325

0 21771750

)

ΘXi = 2(Ai · CXi · Γ
T ) =

(
[0]3 [0]15

[0]3 [0]15

)
, for i = 1, 2, 3 .
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