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Abstract
We consider the Hawking radiation emitted by an evaporating black hole in
JT gravity and compute the entropy of arbitrary subsets of the radiation in the
slow evaporation limit, and find a zoo of possible island saddles. The Hawk-
ing radiation is shown to have long range correlations. We compute the mutual
information between early and late modes and bound from below their squashed
entanglement. A small subset of late modes are shown to be correlated with
modes in a suitably large subset of the radiation previously emitted as well as
later modes. We show how there is a breakdown of the semi-classical approxi-
mation in the form of a violation of the Araki–Lieb triangle entropy inequality,
if the interior of the black hole and the radiation are considered to be separate
systems. Finally, we consider how much of the radiation must be collected, and
how early, to recover information thrown into the black hole as it evaporates.

Keywords: black holes, Hawking radiation, JT gravity

1. Introduction

Recent work [1, 2] has led to a step change in understanding the information loss paradox
of black holes. We can now see the missing ingredient in Hawking’s calculation [3] using
only semi-classical methods: there are new saddle points of the functional integral used for
calculating entropies of quantum fields on the black hole geometry, the replica wormholes.
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These new saddles allow one to calculate semi-classically the Page curve [4] of a black hole.
A pure state of matter that collapses to form a black hole will return to a pure state. The replica
wormholes, along with Page’s original insight, imply that Hawking radiation must have very
non-trivial correlations between subsets emitted at different times. It is the purpose of this paper
to probe these correlations for an evaporating black hole in the Jackiw-Teitleboim (JT) gravity
set up for which the replica wormhole calculations have fully developed.

Quantum information tools have provided a very powerful way to understand the behaviour
of black holes. This goes back to tracking the entropy of the Hawking radiation across the
lifetime of an evaporating black hole, the Page curve [4], or the way that the information of
systems, e.g. a diary, dropped into a black hole, can be recovered in the radiation, considered
by Hayden and Preskill [5]. The Page curve has been derived in these, or related, scenarios [1,
2, 6–8] (see also [9–11]). It is a goal of this work, to show that replica wormhole techniques,
and the effective rules that they give rise to, mean that more refined information processing
properties of black holes can also be calculated from first principles via standard quantum
field theory calculations. For instance, we are able to derive the detailed aspects of information
recovery anticipated by Hayden and Preskill. We will show that the information contained in
a diary, in this case taking the form of a local quench in the Quantum Field Theory (QFT),
thrown into a black hole before the Page time, can be recovered at a time

t = tPage +
1
k
· Sdiary

SBH
, tPage =

2
k

log
3
2

, (1.1)

where Sdiary is the entropy of the diary assumed to be small compared with SBH, the Beken-
stein–Hawking entropy of the black hole, and k is the evaporation rate.

It has been appreciated for a while, that if black holes obey the laws of quantum mechanics
then something quite dramatic must happen to reconcile unitarity of evaporation with the rules
of effective theories. More precisely, if a Hawking mode B is emitted by an old black hole, one
past the Page time, then it must be entangled with a mode of the early Hawking radiation RB in
order to ensure unitarity. On the other hand, the usual rules of local effective theory imply that
the Hawking mode must be entangled with its partner mode behind the horizon A. Quantum
mechanics, of course, forbids B to be maximally entangled with two separate subsystems. One
reaction is to give up the entanglement across the horizon leading to a separable quantum state
with a diverging energy density at the horizon, a ‘firewall’ [12]. Another, arguably even more
dramatic answer that maintains a smooth geometry at the horizon, is to hypothesize that A and
RB are not separate subsystems A = RB: modes on the inside of the black hole are actually
living in the Hilbert space of the early Hawking radiation (see [13]).

One of the goals of this work is to pin down where RB lies within the early radiation by
taking B to be a small subset of modes emitted at a certain time by an old black hole. We
then attempt to locate RB by maximizing B’s mutual information with the radiation emitted
earlier3. We find that RB must lie in a large subset of modes emitted from around the Page time
to just before B. This means that the purifier RB is de-localized in the earlier radiation. This is
in tune with ideas from quantum information theory that suggest that extracting RB would be
computationally a hard problem [14].

The astonishing ‘A = RB’ scenario grew out of ideas of black hole complementarity [14–23]
and ER = EPR [20] (see the review [13] for a detailed discussion and other references). If
A = RB is really true, then it is legitimate to ask what goes wrong with conventional effective

3 This is a necessary condition because the mutual information by itself does not imply entanglement. However, we
also consider a genuine measure of entanglement known as the squashed entanglement. Half the mutual information
is an upper bound for the latter.

2



J. Phys. A: Math. Theor. 53 (2020) 475401 T J Hollowood et al

quantum field theory on the black hole background? It is a goal of this work to show that
one way that the breakdown of QFT manifests as a breakdown of the consistency conditions
on the entropies of spatially separated regions of the quantum fields, specifically the triangle
inequality of Araki and Lieb [24]

SAR � |SA − SR |. (1.2)

Here, A will be modes behind the horizon and R the Hawking modes of an old black hole.
The reason for the breakdown will be that for an old black hole, SR is dominated by a replica
wormhole saddle (has an ‘island’) whereas SA and SAR are not. It is the island then that disrupts
the usual consistency of the entropies in QFT. In retrospect, the conclusion is not surprising
because the triangle inequality does not apply to subregions that overlap, and when R has an
island then this overlaps with A.

The organization of this paper is as follows. In section 2, we review the set up in JT gravity,
where an evaporating black hole is created by a local quench [11] (related to scenarios in [6,
25]). In this section, we emphasize the simplifications that occur in the slow evaporation limit.
In section 3, we describe how to evaluate the entropy of a set of intervals in the bath, including
the island saddles that follow from the replica wormholes. The key computation is the solution
for the island saddles that we show simplifies in the slow evaporation limit. There are a whole
zoo of island saddles, even with the assumptions we make, but usually only a few are actually
needed. The remaining sections put our entropy formulae to use. In section 4, we derive the
Page curve of the evaporating black hole and extract the Page time. We then calculate the
correlation between the early and late Hawking radiation in the form of the mutual information.
This shows that there are strong correlations, as expected on the basis of Page’s analysis. The
correlations can be shown to be quantum, i.e. entanglement, by establishing a lower bound on
the squashed entanglement, a measure of entanglement in mixed states. In section 5 we analyse
the correlation between the early and late Hawking modes in more detail. We pick a narrow
interval of late modes B and find out which interval of early modes it is maximally correlated
with. This establishes that modes entangled with B, RB, are de-localized over a large subset
of the early modes that extends from around the Page time to the modes emitted just before
B. This is what is expected: the entangled modes RB should be difficult to extract from the
early radiation [14]. Section 6 is devoted to showing that, when the interior of the black hole
is considered, there is breakdown of the Araki–Lieb triangle inequality for the entropies of the
interior and the radiation. This provides a smoking gun for the A = RB scenario. In section 7 we
consider how information thrown into the black hole in the form of an entropy carrying local
quench in the Conformal Field Theory (CFT) is recovered in the Hawking radiation. We find
detailed agreement with the quantum information analysis of Hayden and Preskill [5]. Finally
in section 8 we show an operator insertion behind the horizon is observable in the bath, if the
appropriate interval in the bath is in its island saddle.

1.1. Entropy as an observable

For the new developments involving black holes and the information loss paradox, the entropy
plays a key rôle. Our results involve the entropies of sub-regions in the radiation bath and asso-
ciated quantum information measures. It is a natural question to ask whether these entropies
are observable, even in principle? This is important because we have shown that the entropy
of sub-regions of the bath are sensitive to physics behind the horizon and so it is fundamental
to understand if it is actually observable from the bath.

More generally, we can consider the Rényi entropies S(n)
A = (1 − n)−1 log tr ρn

A of the sub-
region, where SA = limn→1 S(n)

A . Note that for a finite dimensional subsystem A of dimension

3
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dA, only the first dA − 1 Rényi entropies are needed to extract the eigenvalues of ρA and hence
the von Neumann entropy of A.

The Rényi entropies are not directly conventional observables in the sense of being asso-
ciated to a Hermitian operator. They can be computed by joint measurements on n copies
of the system. However, at least in the case of finite dimensional systems, they can be mea-
sured by measuring a set of conventional, but random, observables on a single copy of the
system (e.g. [26, 27]). The idea is take a complete set of rank-1 projection operators on A,
Π j, j = 1, 2, . . . , dA. Then define the rotated sets UΠ jU†, for an arbitrary unitary operator U
on A. These are associated to some Hermitian operators OU =

∑
j λ jUΠ jU†. Then one mea-

sures OU in the conventional sense on copies of the system in order to estimate the Born rule
probabilities for the outcomes j and for an arbitrary U,

pU( j) = tr
(
ρAUΠ jU

†) . (1.3)

The estimates for the Rényi entropies are then given as averages of powers of the probabilities
in the unitary ensemble; for example, for the second Rényi entropy

tr ρ2
A = (dA + 1)

∑
j

pU( j)2 − 1, (1.4)

where the over-line indicates an average over the unitary orientation. The higher tr ρn
A involve

a similar average of a polynomial of order n in the probability. The explicit formula is given in
[27]:

∑
j

pU( j)n =
∑

Cb1,...,bn

n∏
m=1

(
tr ρm

A

)bm , (1.5)

where the sum is over conjugacy classes 1b12b2 · · · nbn of the symmetric group Sn and

Cb1,...,bn =
dAn!∏n

m=1 (dA + m − 1) jbmbm!
. (1.6)

In a real application of this protocol, the average over the unitary ensemble is realized in terms
of a discrete sampling known as a k-unitary design.

The conclusion is that, in principle, the entropy can be measured locally on a subsys-
tem using conventional, albeit random, quantum measurements, at least for finite dimensional
systems.

2. The evaporating black hole

The setup consists of the extremal black hole in Jackiw–Teitelboim gravity [28, 29] defined
on a patch AdS2, with the standard metric in Poincaré coordinates

ds2 = − 4 dx+ dx−

(x− − x+)2
, (2.1)

with a half Minkowski space spliced on the time-like boundary to act as a radiation bath with
metric ds2 = −dy+dy− [2, 6, 8, 25, 30]. Then along the boundary x+ ∼ x−,4 we have x± = y±.

4 The details of the regularization at the boundary are described in [25].
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Figure 1. A Penrose diagram showing a shockwave inserted at the boundary of the AdS
and bath regions with an in-going component that excites the extremal black hole, shift-
ing the horizon out, leading to an evaporating black hole. Also shown is an interval A in
the bath and its island, the shaded area in the AdS region, the causal domain of the two
Quantum Extremal Surfaces (QES) QESs pâ.

The boundary conditions are transparent, so that modes of the CFT propagate through the
boundary without reflection. On the AdS region, the gravitational sector includes the dilaton,
which in the extremal black hole case takes the form

φ = φ0 +
2φr

x− − x+
. (2.2)

A CFT, which we take to be a large number of free fermions, propagates across the whole
geometry, the AdS and Minkowski regions.

The evaporating black hole is created by a local quench [11]—an operator insertion—in
the CFT initiated from a point on the boundary at t = 0 that leads to an in-going and out-going
shockwave: see figure 1.5 The quench corresponds to a CFT state created by the action of a
local operator on the vacuum at the time-like boundary:

O(y± = iε) |0〉 , (2.3)

where the small shift ε in the imaginary time direction is needed to ensure that the state can be
normalized. The in-going component of the shockwave, x+ = 0, carries energy into the black
hole and excites it to a black hole of inverse temperature

β =

√
πφr

4GNEshock
, (2.4)

where Eshock = ΔO/ε. When ε is small, the shockwave energy is large and its
energy–momentum tensor becomes concentrated on the two wavefronts x+ = 0 and y− = 0
propagating into, and away from, the black hole, respectively.

In the following, we will suppose that the intrinsic entropy of the shockwave between the
in- and out-going components is vanishing, or at least small compared with the gravitational
entropy, and can be ignored. For simplicity, we will also assume that the gravitational entropy

5 We choose Penrose diagrams so that the straight line at the bottom corresponds to t = 0 in the bath and tPoincare«= 0
in the AdS region. The boundary between the AdS region and the bath, x+ = x−, or y+ = y−, becomes curved behind
the shockwaves.
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of the excited black hole is much greater than the extremal entropy6

SBH =
πc

6βk
� S0 =

φ0

4GN
. (2.5)

The key physical quantity here is the inverse time scale

k =
GNc
3φr

, (2.6)

which sets the rate of evaporation of the black hole. We shall work in the limit where k � 1
(relative to the AdS scale which is set to 1) with β fixed and time scales with kt fixed. This limit
is simply one of expediency rather than necessity that means we can avoid having to resort to
numerical techniques.

In front of the shockwave, the AdS and bath coordinates are related via x± = y±. We con-
tinue this through the shockwave by writing x± = f(y±). The exact expression for f(t) [6]
involves modified Bessel functions of the first and second kind and can be deduced from (2.9)
below, but there is a simple expression for f(t) for times that extend to O(k−1),

f (t) =
β

π
tanh

[
2π
kβ

S(t)

]
where S(t) =

(
1 − e−kt/2

)
θ(t). (2.7)

This approximation will be adequate for our analysis here, but longer time scales of order
k−1|logβk| require the full Bessel functions.

The coordinates x± do not extend behind the horizon and so it will prove useful to define
new coordinates w± related to x± by a Möbius transformation7

x± = ±β

π
· w

± ∓ 1
w± ± 1

, (2.8)

which cover the region inside the horizon of the newly created black hole,w− > 0. The horizon
of the original extremal black hole in front of the shockwave is at w− = 1, while, behind the
shockwave the horizon is at w− = 0. It is important that the vacuum state does not change
under a Möbius, or SL(2,R) transformation.

The new coordinates are related to the bath coordinates by an associated function
w± = ± f̂ ( y±)±1. The function f̂ is expressed in terms of modified Bessel functions of the
1st and 2nd kind [6],

f̂ (t) =
e4π/(βk)

π

K0(z)
I0(z)

, z =
2π
βk

e−kt/2. (2.9)

However, in the small k regime with kt fixed, it takes a simple form which we write through
the shockwave, and for times up to O(k−1), as

log f̂ (t) = θ(−t) log
1 + πt/β
1 − πt/β

+
4π
βk

S(t). (2.10)

The expression for t < 0 yields x± = t via the Möbius transform (2.8).

6 Whilst still requiring S0 � 1 to suppress higher terms in the genus expansion of JT gravity.
7 In an equilibrium situation at temperature β−1, w± = ±exp(±2πy±/β) where y± cover the black hole patch outside
the horizon.
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In what follows, we will need the small k limit, with kt and β fixed, of various quantities
that depend on f and f̂ evaluated at various times. We will use the notation f̂ i = f̂ (t − τi),
etc. The leading behaviour we want is always O(k−1). For example, consider log f̂ i, whose
leading behaviour is

log f̂ i →
4π
βk

S(t − τi). (2.11)

So at this order, log f̂ i switches on abruptly at t = τi. Another important example is the quantity
log( f̂ −1

j − f̂ −1
i ) with, say, τi < τj. In this case, the contribution at order k−1 kicks in when

t > τj, but independent of τi,

log( f̂ −1
j − f̂ −1

i ) →−4π
βk

S(t − τ j). (2.12)

Similarly log f̂ ′
i → 4π

βkS(t − τi). Finally, we can deal with expressions that depend on f rather

than f̂ by effectively replacing f i → 1 − 2 f̂ −1
i , which follows from the Möbius transformation

that relate the two, in the small k limit.

3. Entropy of arbitrary intervals

As the excited black hole state evaporates and relaxes, we want to evaluate the von Neumann
entropy in the Hawking radiation collected by a certain number of disjoint intervals in the bath.

3.1. No-island saddle

We consider a union A ≡ ∪N
j=1A j of N disjoint spatial intervals in the bath

A j = [b2 j−1, b2 j] with b j < b j+1, j = 1, 2 . . .N, (3.1)

with Minkowski coordinates for each endpoint pj: (y± = t ± b j). We will be interested in
timescales t of order k−1 and locations {bj} which are also O(k−1). The entanglement entropy
of the union of these intervals, in a theory of 2c free fermions in the vacuum state in a non-trivial
frame,

ds2 = −Ω−2 dξ+ dξ−, (3.2)

is given by,

SQFT = − c
6

∑
i< j

(−1) j−i log σi j −
c
6

∑
j

log Ω j + NSUV, (3.3)

where σi j = −(ξ+i − ξ+j )(ξ−i − ξ−j ) and SUV = − c
6 log εUV contains the UV cut off, while Ω j

are the values of the conformal factor at each endpoint. The result follows from the expression
for the entropy of several intervals of free fermions in the Minkowski vacuum [31] augmented
with a conformal transformation to the non-trivial frame [6].

In the present case, the in-going modes are in the vacuum state of the bath coordinate
y+ whereas the out-going modes, containing the Hawking radiation, are in the vacuum state
of the AdS coordinate w− (or equivalently x−). Hence, the out-going modes—the Hawking
radiation—once they are in the bath are manifestly not in the Minkowski vacuum.

7
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The QFT entropy, what we will call the ‘no-island saddle’, is computed by using the frame
(y+,w−) and takes the form

Sno island ≡ SQFT = − c
6

∑
i< j

(−1) j−i log( f̂ −1
j − f̂ −1

i )(y+j − y+i ) +
c

12

∑
j

log
f̂ 2

j

f̂ ′
j

+ · · · (3.4)

The second set of terms arise from the conformal factors at {pj} from changing coordinates
from y− to w−. Now we take the small k limit, applying the rules that we established earlier.
Note that the y+ coordinates do not contribute at leading order in k−1:

Sno island = 2SBH

2N∑
j=1

(−1) j−1Sb j + NSUV, (3.5)

where we used the shorthandSb ≡ S(t − b). So in the slow evaporation limit, the entropy takes
a simple form in terms of the elementary function S(t) defined in (2.7). The final form above
is consistent with causality. The wavefront of the Hawking radiation as it enters the bath, is
along y− = 0. It only reaches an endpoint b of an interval at t = b which is reflected in the fact
that S(t − b) is proportional to the step function θ(t − b).

3.2. Island saddles

The entropy of regions A = ∪ jA j in the bath that we have just established, can be computed
semi-classically using steepest-descent functional integral techniques via the replica method
[32, 33]. The recent step forward, is the realization that in the gravitational context there can be
new saddles that involve non-trivial replica geometries, the replica wormholes [1, 2]. The new
saddles, or instantons, can be computed by a recipe as follows: if we are computing an entropy
of a region in the bath A, then the replica-wormhole saddles require us to define a generalized
entropy by adding to the QFT entropy, the contribution of new regions I, the island(s), whose
endpoints p̂a are the quantum extremal surfaces8, and also the value of the dilaton at the QESs.
Then one extremizes over the positions of the QESs:

SI(A) = ext
{ p̂a}

{∑
â

φ( p̂a)
4GN

+ SQFT(A ∪ I)

}
. (3.6)

Finally, it is the saddle with the smallest entropy amongst the saddles that dominates,

SA = min
I

SI(A), (3.7)

including the no-island saddle. The recipe of this kind of form first appeared in holographic
contexts [34–37] but the replica wormholes mean that the result can be derived from conven-
tional field theory methods without any recourse to holography. Note that usually, the dilaton
terms cost a lot of entropy and so it is only in very special situations that an island saddle
dominates over the no-island saddle.

3.3. Two-QES saddles: one behind shockwave

There are various kinds of possible island saddles that could contribute. We will assume here
that the only important ones have two QES p̂a, â = 1, 2. Consider the generalized entropy—the

8 Strictly speaking the island is the causal domain of a Cauchy slice joining the QES. Note that QESs are just points
in 2d gravity, but in higher dimensions they are genuine surfaces.

8
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terms in the curly brackets in (3.6)—in x± coordinates

Sgen.(x±â ) = 2S0 +
c
6

log(x+
1̂
− x+

2̂
)(x−

2̂
− x−

1̂
)

+
c
6

2∑
â=1

⎧⎨⎩1
k
· 1

x−â − x+â
+ log

2
x−â − x+â

−
2N∑
j=1

(−1)â− j

× log(t + b j − x+â )(x−â − fj)
}
+ Sno island. (3.8)

It is clear from this that extrema would have x±â = O(k−1) and the entropy is dominated
at O(k−1) by the no-island contribution. Actually, closer analysis fails to find a physically
acceptable solution and so we will discard this possibility anyway.

Now consider the case with one QES in front and one behind the shockwave, the case
illustrated in figure 1. The QES in front p̂1 will have coordinates x±

1̂
= O(k−1), i.e.w±

1̂
= ∓1, to

leading order, and so our task is to find the position of the second QES p̂2 behind the shockwave.
The ingredients we need, include the conformal factor in the AdS region in the (y+,w−) frame,

Ω−2 =
4 f̂ ′(y+)

(1 + w+w−)2
, (3.9)

and the dilaton, determined by the master function f̂ [11]:

φ = φ0 + 2φr

{
f̂ ′′(y+)

2 f̂ ′(y+)
− w− f̂ ′(y+)

1 + w− f̂ (y+)

}
. (3.10)

In the same frame, it is useful to change variable from y+ back to w+ = f̂ (y+). Within our
approximation (2.10), we then have

φ = φ0 +
2πφr

β
· 1 − w+w−

1 + w+w−

(
1 − βk

4π
log w+

)
− kφr

2
,

Ω−2 =
4

(1 + w+w−)2
· 2πw+

β

(
1 − βk

4π
log w+

)
.

(3.11)

Putting the ingredients together, the generalized entropy needed to determine the position of
the second QES, is

Sgen.(w±
2̂

) =
πc

6βk
·

1 − w+

2̂
w−

2̂

1 + w+

2̂
w−

2̂

(
1 − βk

4π
log w+

2̂

)

+
c

12
log

w+

2̂
(1 − βk

4π log w+

2̂
)

(1 + w+

2̂
w−

2̂
)2

+
c
6

log(w−
1̂
− w−

2̂
)(y+

2̂
− x+

1̂
)

− c
6

∑
j

(−1) j log(w−
2̂
+ f̂ −1

j )(t + b j − y+
2̂

) + Sno island + · · · .

(3.12)

We have not shown some constants that are sub-leading in k.
Extremizing over the coordinates w±

2̂
of the second QES, leads to a pair of rather compli-

cated equations. However, only a small number of terms actually matter in the small k limit. In

9
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particular, the solutions will havew+

2̂
w−

2̂
= O(k) and this allows us to replace 1 + w+

2̂
w−

2̂
→ 1.

In addition, there are terms contributing to the saddle point equation from varying with respect
to w−

2̂
of the form

β

2πw+

2̂

· 1
y+

2̂
− t − b j

,
β

2πw+

2̂

· 1
y+

2̂
− x+

1̂

, (3.13)

Since we take t, bj to be O(k−1), and once we have the solution, y+
2̂

is also O(k−1), these terms
are suppressed by a factor of k compared to leading terms in the saddle point equations.

The stripped down equations that determine the leading order behaviour can be written
compactly in terms of the variables ω+

2̂
and w−

2̂
where

ω+

2̂
= w+

2̂

(
1 − βk

4π
ln w+

2̂

)
= w+

2̂

(
1 − S(y+

2̂
)
)
. (3.14)

It is useful to recall the definition of S and note that ω+

2̂
= w+

2̂
e−ky+

2̂
/2. For the saddle point to

be behind the shockwave, we need w+

2̂
> 0, or equivalently ω+

2̂
> 0. Importantly, on the time

and length scales of our interest, the pre-factor (1 − S) is O(k0). We find,

2π
βk

ω+

2̂
− 1

w−
2̂
− w−

1̂

+

2N∑
j=1

(−1) j

w−
2̂
+ f̂ −1

j

= 0,

2π
βk

w−
2̂
− 1

4ω+

2̂

= 0.

(3.15)

The second of these two equations ensures that w+

2̂
w−

2̂
= O(k), consistent with the

approximation.
We can now insert the position of the first QES, w−

1̂
= 1 into the above. If we write

w−
2̂
= 1/4p, then ω+

2̂
= βkp/2π and p must satisfy

1 +
4

4p− 1
+ 4

2N∑
j=1

(−1) j f̂ j

4p+ f̂ j
= 0. (3.16)

The solution of this equation is made straightforward by the extreme behaviour of the func-
tions f̂ j in the small k limit. At leading order in k, it vanishes for t < bj, but then increases
exponentially for t > b j in such a way that f̂ j � f̂ i, if b j < bi. Hence, one can spot 2N distinct
solutions labelled by α = 1, 2, . . . , 2N, for which p = cα f̂α, i.e.

ω+

2̂
=

βkcα
2π

f̂α, w−
2̂
=

1

4cα f̂α
, (3.17)

where cα = 3
4 , for α odd, and cα = 1

12 , for α even. Working to the leading order in the small

k approximation, the coordinate w+

2̂
= ω+

2̂
eky+

2̂
/2 for the QES behind the shockwave is then

simply,

w+

2̂
=

βkcα
2π

f̂α eky−α /2. (3.18)

10
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We can also write (3.17) in terms of the w− coordinate of the corresponding point in the bath
w−

α = −1/ f̂α

ω+

2̂
= −βkcα

2π
· 1
w−

α

, w−
2̂
= −w−

α

4cα
, (3.19)

Note that the saddles are only consistent if w+

2̂
> 0, ensuring that the QES is behind the

shockwave: see figure 1. This means that they only appear when t > bα. In addition, we have
w+

2̂
< w+

1 which is necessary because the QES p̂2 must be space-like with respect to the points

in the bath. All these saddles have w−
2̂
> 0, and so the second QES is inside the horizon of the

black hole created by the shockwave at least in our window of approximation, i.e. for times t
of O(k−1). For much later times, the QES pops outside the horizon as the black hole relaxes
back to the extremal black hole [11]. We will not be concerned with this very long time regime
in this paper.

In order to calculate the entropy of the island saddle with the solution (3.17), the relevant
terms in (3.12), that contribute at leading order, are

πc
6βk

·
1 − w+

2̂
w−

2̂

1 + w+

2̂
w−

2̂

(
1 − βk

4π
log w+

2̂

)
+

c
12

log w+

2̂
→ SBH

(
1 + Sbα

)
,

− c
6

∑
j

(−1) j log(w−
2̂
+ f̂ −1

j ) → 4SBH

∑
j

(−1) jSbmax(α, j) . (3.20)

The entropy only depends on log w+

2̂
at the leading order in k wherein log w+

2̂
� log

ω+

2̂
= O(k−1). Hence, the entropy of the α-labelled island saddle, t > bα, is

Sisland(α) = Sno island + SBH

⎧⎨⎩1 + Sbα + 4
2N∑
j=1

(−1) jSbmax( j,α)

⎫⎬⎭ . (3.21)

If the extremal entropy is not negligible, we must add 2S0 to the island saddle entropies, but
for the present purpose we will mostly ignore it. Note that the islands do not lead to additional
UV divergences because these are absorbed into a renormalization of φ0. The island saddles
with α even, never have the lowest entropy and can therefore be ignored. This follows from
the inequalities,

Sisland(2α) − Sisland(2α±1) = (−1 ± 2)SBH e−kt/2(ekb2α±1/2 − ekb2α/2) > 0. (3.22)

3.4. Both QES behind the shockwave

Now let us consider the possibility that both QES are behind the shockwave. The generalized
entropy is

Sgen.(w±
â ) =

∑
â

(
φ( p̂a)
4GN

− c
6

log Ωâ −
∑

j

(−1)â− j log σâ j

)

−
∑
â<b̂

(−1)â−b̂ log σâb̂ + Sno island, (3.23)

11
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where, for each QES, the dilaton and conformal factor are given in (3.12). In the above equation,
the spacetime intervals are

σâb̂ = −(w−
â − w−

b̂
)(y+â − y+

b̂
), σâ j = −(w−

â + f̂ −1
j )(y+â − t − b j). (3.24)

We are assuming that the order of the points on a Cauchy surface, from left to right, is
( p̂1, p̂2, p1, p2, . . . , p2N).

The position of the second QES p̂2 is again determined by equation (3.15), and now the first
QES p̂1 satisfies the same equation with the replacement p̂2 ↔ p̂1,

2π
βk

ω+

1̂
− 1

w−
1̂
− w−

2̂

−
2N∑
j=1

(−1) j

w−
1̂
+ f̂ −1

j

= 0,

2π
βk

w−
1̂
− 1

4ω+

1̂

= 0.

(3.25)

Again we have self-consistently discarded terms that are higher order in k. Each QES has
2N possible saddle points labelled as α(â) where â = 1, 2. The solutions generalize (3.17)
with

w+
â =

βkcâ

2π
f̂α(â) e

1
2 ky−

α(̂a) , w−
â =

1

4câ f̂α(â)
. (3.26)

Here câ = 3
4 forα(1̂) even orα(2̂) odd and câ = 1

12 forα(1̂) odd orα(2̂) even. Since w+

1̂
< w+

2̂
,

we must have9 α(1̂) > α(2̂).
We note that there is a term involving (y+

1̂
− y+

2̂
) in the second equation in (3.15) and in

(3.23) which contributes in the special case that α(1̂) = α(2̂). But this case yields an entropy
that is always greater than the no-island entropy:

Sisland(α,α) = Sno island + 2SBH

(
1 − Sbα

)
> Sno island (3.27)

and so is never dominant. Consequently from now on, we will assume that α(2̂) �= α(1̂).
Since we are taking both QESs to be behind the shockwave, the saddle points above only

appear when t > bα(1̂) and they have entropy given by evaluating (3.12) in the small k regime,
yielding,

Sisland(α(1̂),α(2̂)) = Sno island + SBH

⎧⎨⎩2 +

2∑
â=1

⎛⎝Sbα(̂a)
+ 4

2N∑
j=1

(−1) j−âSbmax( j,α(̂a))

⎞⎠− 4Sb
α(̂1)

⎫⎬⎭ .

(3.28)

There is a zoo of possible saddles that can compete for the minimal entropy. However, many of
the saddles can never have minimal entropy, given that 1 � Sbi � Sb j , for i < j. The following
is a list of saddles for one and two intervals which can have minimal entropy. We write them

9 ω+
â and w+

â only differ by order one terms in the exponent, and therefore on the time scales of interest, log
ω+

1̂
< log ω+

2̂
⇒ log w+

1̂
< log w+

2̂
.

12
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in shorthand as a vector (c0, c1, . . . , c2N),

S = SBH

⎛⎝c0 +
2N∑
j=1

c jS j

⎞⎠ . (3.29)

Using this notation we explicitly list Snoisland, the island entropy with one QES behind the
shockwave Sisland(α), and the entropy Sisland (α(1̂),α(2̂)) with both QESs behind the shockwave:

Sno island = (0, 2,−2), Sisland(1) = (1,−1, 2), Sisland(21) = (2,−1,−1).

(3.30)

Then, for two intervals we have,

Sno island = (0, 2,−2, 2,−2), Sisland(1) = (1,−1, 2,−2, 2),

Sisland(3) = (1, 2,−2,−1, 2), Sisland(21) = (2,−1,−1, 2,−2),

Sisland(41) = (2,−1, 2,−2,−1), Sisland(43) = (2, 2,−2,−1,−1).

(3.31)

Note that in the expressions above, we have left the cut off term implicit.

3.5. Position of the QES and scrambling time

It is important to know when an in-going null ray beginning on the boundary at time t0 lies in
the island of a saddle at time t. Given the coordinates of the QESs in (3.26), the condition is

βkcα(1̂)

2π
e

1
2 ky−

α(̂1) f̂α(1̂) < f̂(t0) <
βkcα(2̂)

2π
e

1
2 ky−

α(̂2) f̂α(2̂), (3.32)

where the lower bound is only important if both QES are behind the shockwave. The bounds
here, using our approximations, are

t0 = t − bα(â) − ek(t−bα(̂a))/2 β

2π
log

(
2π

βkcα(â)
e−k(t−bα(̂a))/2

)
. (3.33)

The final term here is an expression of the scrambling time, the time it takes to recover infor-
mation dropped into an old black hole as we shall verify later. This term is sub-leading in the
small k limit, where t0 and the b j are order k−1. Interestingly, if we ignore the small correction
from the scrambling time and partner the in-going ray at t0 = t − bα(â) on the boundary with an
out-going ray, then the latter hits the branch point pα(â) in the bath at time t just as the in-going
one hits the QES p̂a, as shown in figure 2.

4. Page curve and early/late correlations

The Page curve is simply the entropy of a single interval [0, t] in the bath at time t that collects
all the Hawking radiation emitted during the life of the evaporating black hole up to time t, i.e.
in the temporal interval 〈0, t〉.10 Note that the point p2 lies on the wave front of the Hawking

10 We use angle brackets to distinguish a temporal interval from a spatial one and we will specify both to avoid any
confusion. Importantly, when we write [0, t] we mean the limit ε→ 0 of [ε, t], to emphasize that in the holographic
interpretation the boundary system is not included.

13
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Figure 2. Thew+ coordinates of the QESs determine when a null ray from the boundary
is in the island of an interval in the bath. The shaded area is the island-(21) of a single
interval in the bath at time t. Note, also, the relation between the w− coordinates branch
points in the bath and the w+ coordinates of the QESs.

radiation. The curve involves a competition between the no-island and island-(1) saddles:

SPage curve(t) = SBH min (2S(t), 1 − S(t))

= SBH min
(

2 − 2 e−kt/2, e−kt/2
)
. (4.1)

The Page time occurs when the no-island ceases to dominate and the island saddle takes over.
This occurs at

tPage =
2
k

log
3
2
. (4.2)

If we do not neglect the extremal entropy and write S0 = ξSBH, then the Page time is increased
to tPage =

2
k log 3

2(1−ξ) . Clearly, if ξ > 1 then our approximation regime breaks down and full

Bessel function expression for f̂ will be needed. In the following, for simplicity, we will
suppose that ξ is small and can be neglected.

4.1. Mutual information

We can compute the mutual information between the early and late radiation emitted in time
intervals 〈0, tPage〉 and 〈tPage, t〉, for t > tPage. In order to do this, one collects the two subsets in
spatial intervals B = [t − tPage, t] and A = [0, t − tPage], respectively, at time t: see figure 3. In
order for the result to be UV safe, we suppose the two intervals are slightly separated by more
than the UV cut off. The mutual information is

IA,B = SA + SB − SAB. (4.3)

It is easy to see that B is at the island-(1)/no-island threshold, while AB is always in its
island-(1) saddle. The interval A has a transition from its no-island to island saddle at a time

14
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Figure 3. A scenario to measure the mutual information of the early and late Hawk-
ing radiation emitted in time intervals B = 〈0, tPage〉 and A = 〈tPage, t〉 by collecting the
radiation in appropriate spatial intervals on a Cauchy surface.

t = 2
k log 9

2 :

SA = SBH min

(
4
3
− 2 e−kt/2,

2
3
+ e−kt/2

)
,

SB =
2
3

SBH, SAB = SBH e−kt/2.

(4.4)

Hence, the mutual information increases as t increases from tPage, but then plateaus for
t > 2

k log 9
2 :

IA,B = SBH min

(
2 − 3 e−kt/2,

4
3

)
. (4.5)

4.2. Quantum correlations

The fact that the early and late modes have non-vanishing mutual information means that
they are correlated but this does not discriminate between classical and quantum correlations.
One way to measure genuine quantum correlations, is via the behaviour of the conditional
entropies [38]

SA|B = SAB − SB, SB|A = SAB − SA. (4.6)

These must be non-negative in a classical system and so their negativity is a measure of
quantum correlations. In the present case,

SA|B = SBH

(
e−kt/2 − 2

3

)
, SB|A = −SBH min

(
2
3

,
4
3
− 3 e−kt/2

)
. (4.7)

Recalling that t > tPage, the former is always negative and the latter becomes negative for
t > 2

k log 9
2 .

We can consider the same correlation measures on other subsets of the radiation. For
example in figure 4, we show the conditional entropies for two subsets of the radiation 〈0, t〉
and 〈t, 4tPage〉 with varying t. The existence of genuine quantum correlation is clear.

15



J. Phys. A: Math. Theor. 53 (2020) 475401 T J Hollowood et al

Figure 4. Left: A plot of SA|B (dashed) and SB|A (solid) for the two temporal subsets
B = 〈0, t〉 and A = 〈t, 4tPage〉. Notice that at least one of them is negative at each t indi-
cating the presence of quantum correlations. Right: for the same regions a plot of the
upper and lower bounds on the squashed entanglement (assuming the UV cut off term
is sufficiently small). Thus proves the existence of entanglement between A and B.

Measuring entanglement between two subsystems A and B in quantum mechanics is not sim-
ple or obvious when the state on AB is not pure. An excellent measure of quantum correlations
is provided by the squashed entanglement [39–41] (see also [42, 44]) defined as

Esq.
A,B =

1
2

min
C

IA,B|C, (4.8)

involving the conditional mutual information

IA,B|C = IA,BC − IA,C. (4.9)

Here, C is any additional quantum system appended to A and B. Unfortunately, this latter fea-
ture renders it impractical to calculate the squashed entanglement. However, it can be bounded
both from above and below [41] by quantities that are calculable:

max(0,−SA|B,−SB|A) � Esq.
A,B � 1

2
IA,B. (4.10)

Notice that the lower bound involves minus the conditional entropies, so a non-trivial bound
occurs when one or both of the conditional entropies are negative, indicating quantum entan-
glement. In the QFT setting, the lower bound can be made UV safe, if A and B (but not C) are
taken to be adjacent.

Let us consider two subsets of radiation 〈0, t〉 and 〈t, T〉 collected in bath regions
A = [0, T − t] and B = [T − t, T] at time T. One can compute the upper and lower bounds
of the squashed entanglement, Esq.

≷ , as in (4.10). There are four temporal regions:

t � tPage Esq.
< = Esq.

> = 2S(t),

tPage < t � t1 Esq.
< (−SB|A) = Esq.

> = 1 − S(t),

t1 < t � t2

⎧⎨⎩Esq.
< (−SB|A) = −1 + 3S(T) − 2S(t),

Esq.
> =

3
2

(S(T) − S(t)),

t > t2

⎧⎨⎩Esq.
< (−SA|B) = S(T) − S(t),

Esq.
> =

3
2

(S(T) − S(t)),

(4.11)
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Figure 5. These plots show the mutual information IA,B (dotted) and conditional mutual
information IA,B|C (continuous) for three intervals A, B, C in the Hawking radiation col-
lected at a fixed time 8tPage. Left: with A and B fixed with C moving and Right: with A
and C fixed with B moving. The shaded regions indicates where the intervals overlap.
Notice that we get IA,B|C = 0 when C = A or B, as expected from its definition. The
non-negativity of IA,B and IA,B|C are checks of sub-additivity and strong sub-additivity,
respectively.

where t1 = T − log 3
log 3/2 tPage and t2 = T − log 2

log 3/2 tPage. Figure 4 shows the upper and lower
bounds for our example with T = 4tPage.

Even though we cannot calculate the squashed entanglement directly, we can gain some
intuition by choosing C in (4.8) to be another subset of the Hawking radiation. In figure 5 we
illustrate that, when the interval C is distinct, i.e. has no overlap with A and C, that

IA,B|C � IA,B. (4.12)

So, even though we cannot claim that Esq.
A,B = 1

2 IA,B, this is an indication that the mutual infor-
mation we have calculated is a good measure of entanglement since we managed to ‘squash
away’ some of the non-quantum correlations by choosing a suitable C of the Hawking radia-
tion. Moreover, since the mutual information is an upper bound for the squashed entanglement,
this is another indication that the correlations amongst subsets of the Hawking radiation are
due to entanglement and are not just classical.

There are other interesting measures of entanglement like the reflected entropy that can also
be measured in context of black holes in JT gravity [43].

4.3. Entropy consistency conditions

The von Neumann entropies of entanglement must satisfy various consistency conditions in
a generic quantum system, including sub-additivity and the Araki–Lieb inequality. Firstly, if
we assume that the UV cut-off is sub-leading compared with the order k−1 contributions to the
entropy, then one can verify that the Araki–Lieb triangle inequality,

SAB � |SA − SB |, (4.13)

is satisfied by our subset of modes 〈0, tPage〉 and 〈tPage, t〉. We can also make the same check
for other subsets; for example in figure 6, we show SAB, SA + SB and |SA − SB| for subsets
〈0, t − 1

2 tPage〉 and 〈t, 5tPage〉 as a function of t.
The next consistency condition is sub-additivity; namely the non-negativity of the mutual

information IA,B � 0. This is clearly satisfied for our subsets 〈0, tPage〉 and 〈tPage, t〉 in (4.5). It
is also satisfied for the choices of subsets in figures 5 and 6.

17



J. Phys. A: Math. Theor. 53 (2020) 475401 T J Hollowood et al

Figure 6. Check of the Araki–Lieb triangle inequality and sub-additivity of entangle-
ment entropy, SA + SB � SAB � |SA − SB|, with SAB (continuous), |SA − SB| (dashed)
and SA + SB (dot-dashed). Here we considering, for example, the following two subsets
B = 〈0, t − 1

2 tPage〉 and A = 〈t, 5tPage〉.

The final consistency condition we will consider is strong sub-additivity which can be stated
in terms of non-negativity of the conditional mutual information, or

IA,BC � IA,C. (4.14)

This is clearly satisfied in our choice of subsets 〈0, tPage〉 and 〈tPage, t〉 because as t increases,
the subset B is becomes larger, in other words we can think of this as adding a new sub-
set of the radiation B → BC, and the mutual information is decreasing. One can check that
strong sub-additivity is also satisfied in the example of figure 5 and for other choices of
subsets.

To summarize, we do not have general proofs that all the necessary consistency conditions
are satisfied by the entropies, but in all checks have tried they are seen to be satisfied.

5. Hunt the purifier

The implication of Page’s argument [4] for the behaviour of the entropy of the Hawking radi-
ation is that a late mode B of the radiation must be entangled with an early mode RB, in order
that the initial pure state evolves ultimately back to a pure state when the black hole evaporates
away. In this section, we will calculate the mutual information of a small subset of late modes
B with subsets of early modes and by maximizing the latter, identify where RB lies within the
early radiation. But then we shall turn the scenario around and ask which future modes B is
correlated with (figure 7).

5.1. Searching for RB in the past

To this end, we pick a subset of Hawking modes B emitted in a small temporal interval 〈t, t + δ〉
captured in a spatial interval [0, δ] at time t + δ. Note by small, we mean that the dimensionless
quantity kδ is small. The question is, what is the smallest subset of the earlier radiation R
emitted between times 〈t1, t2〉, captured in spatial interval [t + δ − t2, t + δ − t1] at time t +
δ, that has maximal mutual information at O(k−1) with the late modes B. This provides a
way of identifying where the purifier RB of the modes B are located in the earlier Hawking
radiation
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Figure 7. A small set of late Hawking modes B and a subset of the early Hawking radi-
ation R. We are interested in the correlation of B and the smallest region R with the
maximum correlation.

The first point to make is that B is a narrow interval, so it is dominated by its no-island
saddle, so

SB = kδSBH e−kt/2. (5.1)

In order for there to be non-vanishing mutual information, R must be dominated by an island
saddle. In particular, this requires the island-(1) saddle to dominate and

2 e−kt1/2 − 3
2

e−kt2/2 > 1. (5.2)

However, when R has an island, the combined subsystem BR can be dominated by the island-(3)
saddle and the mutual information vanishes because

SB,no island + SR,island(1) = SBR,island(3). (5.3)

A non-vanishing IB,R only arises when BR switches over to its island-(1) saddle. The compe-
tition between these two determines the mutual information evaluated at time t + δ (with R at
its island-(1) saddle)

IB,R = SBH max
(

0,−3 e−k(t+δ)/2 + 4 e−kt/2 − e−kt2/2
)
. (5.4)

Since δ is small, for IB,R to be non-vanishing we require

t2 > t − 3δ (5.5)

and in order that the mutual information is a maximum requires that the early interval is
adjacent to the late interval, i.e. t2 = t, giving

IB,R =
3
2

SB, (5.6)

assuming that the cut off term is negligible and δ is small.
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Notice that (5.6) is independent of t1 and so to identify where the entangled partner modes
RB are, we should take t1 as large as possible compatible with the constraint (5.2) with t2 = t.
This determines

t1 =
2
k

log
4

2 + 3 e−kt/2
. (5.7)

So the modes that are correlated with the late modes localized in the small interval
B = 〈t, t + δ〉 lie de-localized in the large interval of earlier modes

RB ⊂
〈

2
k

log
4

2 + 3 e−kt/2
, t

〉
. (5.8)

As a consistency check, note that above requires that t > tPage which is what we would intu-
itively expect: the black hole must be old. In the next subsection will see that the maximum
mutual information is 3

2 SB and not 2SB because B is also entangled with later modes.

5.2. Searching for RB in the future

We can reverse the logic of the last section, and consider the same scenario but where now R
are later Hawking modes. So now we have t1 > t and the radiation corresponding to R and B
are collected in intervals [0, t2 − t1] and [t2 − t − δ, t2 − t], respectively, at time t2. One finds
that in order to maximize the mutual information IR,B, we need to begin collecting radiation
immediately so that t1 = t + δ.

Then the question is, how small can t2 be whilst maintaining maximum mutual information
IR,B. If the modes B are early, i.e. t < tPage, the maximum IR,B is achieved when SR switches
from its no-island to island-(1) saddle. This occurs when (5.2) is satisfied with t1 = t, which
means the minimum t2 is

t2 =
2
k

log
3

4 e−kt/2 − 2
. (5.9)

Since SRB is also in its island-(1) saddle, we have, for small δ,

IR,B = 2SB, (5.10)

where we are assuming the cut off is negligible.
When t > tPage, the rôles of the island-(1) saddles of R and RB change to the (21) and

(41) island saddles, respectively. Now the minimum t2 is determined by when these saddles
dominate over the non-island saddle, i.e. when

t2 = t +
2
k

log 3. (5.11)

In this case,

IB,R =
1
2

SB. (5.12)

This is a very satisfying result because we know that for t > tPage, B is correlated with the early
radiation as in (5.6), i.e. IB,R = 3

2 SB. So, overall, SB is correlated with the rest of the Hawking
radiation with a mutual information 2SB, which is what one expect if B is entangled with the
rest of the radiation and the overall state is pure, at least approximately so when the extremal
entropy is negligible.
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Figure 8. The Hawking radiation R of an old black hole, emitted in the interval 〈0, t〉.
The modes A behind the horizon are contained in an interval [p0, ph] where ph is on the
horizon.

6. Entanglement-monogamy problem

One way to present the entanglement-monogamy problem is simply the fact that unitarity
requires for an old black hole that the Hawking radiation has a falling entropy, in other words,
its state is becoming purer, whilst at the same time it must be entangled with modes behind the
horizon in order to have a smooth geometry at the horizon. This seems contradictory.

In order to put some flesh on the bones, let us consider the radiation R emitted in the interval
〈0, t〉 past the Page time t > tPage and a large subset of the modes behind the horizon A: see
figure 8. The argument is similar to that in [13]. Past the Page time, where SR is decreasing, we
can expect—and verify later—that SA > SR and so the triangle inequality of Araki and Lieb
(1.2) implies

SAR � SA − SR. (6.1)

This can be written as

IA,R � 2SR. (6.2)

So the fact that the late modes are entangled with the early modes limits the mutual information
of the radiation with the modes inside the horizon.

Now in order for the inequality (6.2) to have any teeth, we have to assume that the UV cut
is not so large so that SBH � |c log εUV| and hence the cut off terms are small compared with
the O(k−1) contributions to the entropy. Making this assumption, let us calculate the mutual
information IA,R. The interval A is the region behind the horizon between points p0 and ph,
where p0 is some point deep inside the black hole and ph is a point on the horizon, i.e. with
coordinate w−

h = 0. The interval in the bath is [0, t] between points p1 on the boundary, with
coordinate w− = − f̂(t)−1, and p2 far into the bath.

The first issue to settle is whether the interval behind the horizon A, or AR, can have an
island saddle itself. There is no reason, a priori, why they cannot. We do not have a general
proof that there are no island saddles that can contribute, but suppose we try to have a QES
p̂1 somewhere near the horizon. The extremization will yield a pair of equations dominated by
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the interaction between ph and the QES11:

2π
βk

w+

1̂
− 1

w−
1̂
− w−

h

+ · · · = 0,
2π
βk

w−
1̂
− 1

4w+

1̂

+ · · · = 0. (6.3)

This means that

w+

1̂
= −3βk

8π
· 1
w−

h

, w−
1̂
= −3

4
w−

h (6.4)

and so as ph approaches the horizon,w−
h → 0, the QES to pushed off to an unphysicalw+

1̂
→∞,

w−
1̂
→ 0. While this is not a proof that an island cannot dominate, it is suggestive and we will

assume that it is true for A and AR.
If R were in its no-island saddle, then the mutual information IA,R would come from the

cross terms between the points inside the black hole and those in the bath. However, R is in its
island-(1) saddle and therefore,

IA,R ∼ − c
6

log
σh1σ02

σ01σh2
+ SR,island(1) − SR,no island, (6.5)

where the σ’s are expressed in the (y+,w−) frame. We have SR,island(1) = SBHe−kt/2 and
SR,noisland = 2SBH(1 − e−kt/2). The cross terms are dominated by the αh1 term, and in partic-
ular the piece coming from the difference of the w− coordinates which is becoming small at
late times; hence

IA,R ∼ − c
6

log( f̂ −1
1 − 0) − SBH

(
2 − 3 e−kt/2

)
→ 4SSBS (t) − SBH

(
2 − 3 e−kt/2

)
= SBH

(
2 − e−kt/2

)
. (6.6)

This is in contradiction with the expectation (6.2) precisely when t > tPage, and implies some
radical departure from the idea that the inside of the black hole is a separate subsystem.

We can put our finger on exactly where the monogamy argument goes wrong. From (6.6),
since SA = SAR + IA,R − SR, this clearly indicates a breakdown of the Araki–Lieb triangle
inequality:

SA − SR = SAR + SBH

(
2 − 3 e−kt/2

)
≮ SAR, (6.7)

precisely for t > tPage. Intuitively, what is happening is that SR is dominated by a saddle that
includes the island in the interior of the black hole, but SAR has no island because it already
includes the interior region. So the subsystems R and A actually overlap because R has an
island, and the triangle inequality only applies when the two subsystems are distinct. Note that
the Araki–Lieb inequality was also identified as being at risk in the related scenario in [6].

These considerations lend weight to the so-called ‘A = RB’ hypothesis (e.g. see the review
[13]) which identifies the Hilbert space of modes in the early radiation RB, that are entan-
gled with late modes B, with the Hilbert space of modes behind the horizon A. This leads to
the astonishing conclusion that the modes inside an old black hole are actually modes of the
Hawking radiation emitted earlier.

11 We ignore the distinction between ω+

1̂
and w+

1̂
which is sub-leading in the exponent.
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7. Recovering information

In this section, we consider the effect of an additional shockwave inserted on the boundary at
a later time. The shockwave has negligible energy, so there is no significant back reaction, but
carries entanglement entropy between its out- and in-going components. Since it is information
carrying, as is the fashion [5], we will refer to the in-going shockwave as the ‘diary’ and the
out-going one as its ‘purifier’.

Before we turn to the gravitational setting, let us consider the effect in a CFT in Minkowski
space. Specifically, let us consider the effect on the mutual information of two intervals D and
P. As a component of the shockwave, e.g. the diary, enters an interval, say D, the entropies SD

and SDP jump by Sdiary so the mutual information stays the same. If D contains the diary and P
the purifier, both SD and SP jump by Sdiary but SDP stays the same. So the mutual information
ID,P jumps by 2Sdiary. This makes intuitive sense, if D and P contain the diary and the purifier,
respectively, the mutual information increases by 2Sdiary.

7.1. Black hole as a mirror scenario

Within the JT gravity framework, there are several scenarios we could discuss. The simplest is
the one that matches the thought experiments of Hayden and Preskill [5], where a diary, i.e. a
local entanglement carrying quench, is dropped into the black hole at some point on boundary
at time t0 > 0: see figure 9. All the Hawking radiation is collected up to some time t and the
question is how large does t have to be to recover the information of diary. To this end, we
reserve a narrow interval in bath P = [t − t0 − δ, t − t0 + δ], designed to pick up the purifier
at time t, where δ is small. The complement D = [0, t − t0 − δ] ∪ [t − t0 + δ, t], is then the
Hawking radiation collected in this context. The information has returned at time t if

ID,P(t) ≈ 2Sdiary. (7.1)

In order for the information to be returned, requires that the islands of D and DP contain the
diary, whereas P must not have an island12. This latter requirement is guaranteed since P is a
narrow interval and, as long as the entropy of the diary is not too large compared with SBH, the
no-island saddle always dominates:

SP,no island = 2SBH e−kt0/2(ekδ/2 − e−kδ/2) + Sdiary ≈ Sdiary,

SP,island(1) = SBH

(
2 − e−kt0/2(2 ekδ/2 − e−kδ/2)

)
≈ SBH(2 − e−kt0/2),

(7.2)

In the above, note that the no-island saddle is shifted by Sdiary because P contains the purifier
but the island contains the diary and so the island saddle is not shifted. We are assuming that
diary entropy is not too large compared with the black hole so η = Sdiary/SBH � 1.

So in order for the information to be recovered, D and DP must be dominated by their
island-(1) saddles and the diary must be contained within the islands, so that

SDP ≈ SD − Sdiary, (7.3)

from which (7.1) follows.

12 There is a subtlety here because D consists of two intervals, albeit ones separated by a small amount, and so has two
island saddles: in the notation of (3.31) island-(1) and island-(3). In this case, the saddle (3) is always sub-dominant.
Then the non-diary parts of SD and SDP for the no-island and island saddles are approximately the same.
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Figure 9. In this scenario, the Hawking radiation is collected in interval D from the
beginning of the evaporation, excluding a small interval P that is used to collect the
purifier of the diary. Also shown is the island of D that dominates when t is large enough.
The information is returned in D when t is a little larger than the Page time determined
by the diary’s entropy.

Let us consider D. Although this consists of two intervals, the non-diary part of the entropy
is approximately that of a single interval [0, t], since δ is small. Of course DP is the whole
interval [0, t]. The difference is that when the diary is in the island of D the island entropy is
shifted up by Sdiary, whereas for DP the opposite is true, the no-island entropy is shifted by
Sdiary since it contains the purifier. So the island for DP appears at t−, before that of D at time
t+, where

2 − 2 e−kt∓/2 = e−kt∓/2 ∓ η =⇒ t∓ ≈ tpage ∓
η

k
. (7.4)

However, we have to check that the diary is in the island, that is the w+ coordinate of the diary
is less than that of the QES p̂2 of DP, or D, at time t when the radiation is collected, i.e.

f̂(t0) <
3βk
8π

f̂(t)ekt/2. (7.5)

The pre-factor here, leads to a delay t > t0 +Δtscr.,

Δtscr. ≈
β

2π
ekt/2 log

(
8π
3βk

e−kt/2

)
, (7.6)

identified as the scrambling time of the black hole, however, this is a small effect when the
leading time scales are of order k−1 and so, to leading order, we ignore it. Collecting all this
together yields the mutual information, which increases in a piece-wise continuous fashion as

ID,P(t) =

⎧⎪⎪⎨⎪⎪⎩
0 t � t−,

SBH

(
2 − 3 e−kt/2

)
+ Sdiary t− � t � t+,

2Sdiary t+ � t.

(7.7)
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So the following picture emerges that is entirely consistent with the analysis of Hayden and
Preskill [5]. If we collect all the Hawking radiation emitted from t = 0, then if the diary is
thrown in before the time t−, a little earlier than the Page time, then the information will be
returned a little later than the Page time at t+. From (7.4), note that the additional time beyond
tPage is proportional to the diary’s entropy. If the diary is thrown in after t+, then it is returned
almost immediately after a short delay given by the instantaneous scrambling time of the black
hole Δtscr. at time t0. This is the origin of the ‘black hole as a mirror’ metaphor.

7.2. Recovery after the fact

There are variations of this scenario we can analyse. Suppose we throw the diary in, but only
then start to collect the Hawking radiation in a temporal interval 〈t0, t〉, as shown in figure 10.
In this case, we collect the Hawking radiation in a spatial interval D = [0, t − t0] at time t. Now
the conditions (7.4) that DP and D have an island at t = t∓, respectively, are modified to

2 e−kt0/2 − 2 e−kt∓/2 = e−kt∓/2 + 2 − 2 e−kt0/2 ∓ η

=⇒ t∓ = t0 +
2
k

log
3

4 − (2 ∓ η)ekt0/2
.

(7.8)

We know that in order to recover the information at time t, i.e. ID,P(t) ≈ 2Sdiary, requires t � t+.
It follows that the diary cannot be thrown in too late

t0 <
2
k

log
4

2 + η
. (7.9)

In addition, the minimum collection time t+ − t0 becomes longer for later t0:

t+ − t0 =
2
k

log
3

4 − (2 + η)ekt0/2
. (7.10)

Note that if the diary is thrown in close to, or later than, the bound (7.9), t+ becomes too large
or diverges and our approximations will break down. One expects that the exact analysis will
show that the information does come out eventually, as the black hole evaporates back to the
extremal black hole.

8. Behind the horizon in the bath

The entropy calculations show that for an old black hole the physics behind the horizon is
subtly encoded in the state of the bath. This extends to more refined quantities like the entropy
of an interval in the bath in an excited state of the CFT created by the local operator insertion,
as our story of recovering information in section 7 shows. In this section, we consider this in
a little more detail. The question we ask, is how does the entropy of an interval of radiation in
the bath respond to an operator insertion behind the horizon?

First of all, in the non-gravitational setting, the response of an interval to an operator inser-
tion has been well studied, e.g. [45, 46]. The excited state is O(y±0 + iε) |0〉, defined as in
(2.3) with a small imaginary shift in the insertion point in order to ensure that the state is
normalized. If the interval is A = [b1, b2] and the operator is inserted at point y±0 , then the
entropy ΔSA(t), the difference of the entropy with and in the absence of the operator insertion,
responds in a causal way. This means that ΔSA(t) becomes non-trivial approximately when
either t − b2 � y−0 � t − b1 or t + b1 � y+0 � t + b2.
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Figure 10. In this scenario, the Hawking radiation is collected after the diary is thrown
into the black hole at t0. The information is returned in D if t0 is not too large and t is
sufficiently late.

The intuitive picture is that the operator insertion creates a left- and a right-moving shock-
wave and the entropy of the interval responds as either of these shockwaves moves through
the interval. The leading order effect for small ε, at O(ε0), is that ΔSA(t) jumps by log dO,
where dO is the quantum dimension of the operator—not to be confused with its scaling dimen-
sion—when either of the shockwave moves into the interval. The quantity log dO is a measure
of the entanglement of the operator O between the left- and right-moving shockwaves. In
section 7, we called log dO the entropy of the diary. There are interesting universal corrections
in an expansion in the small quantity ε [46].

Given how the entropy of a subregion behaves in the presence of an operator insertion, it
seems obvious that, when an interval in the bath is in an island saddle, operator insertions
behind the horizon that pass through the island will be witnessed by the interval in the bath.
This seems to be a prima facie violation of locality that is, in principle, measurable in the bath
in the sense that we describe in the discussion section 1.1.

Let us consider the effect in more detail. Let us take an interval in the bath A = [b1, b2]. At
late times, and certainly t > b2, the entropy of the interval involves a competition between the
no-island and the island-(21) saddles:

Sno island = 2SBH e−kt/2
(

ekb2/2 − ekb1/2
)

,

Sisland(21) = SBH e−kt/2
(

ekb1/2 + ekb2/2
)
.

(8.1)

The island-(21) saddle dominates when ekb2/2 > 3 ekb1/2. This saddle illustrated in figures 2
and 11.

Suppose the operator insertion behind the horizon as shown in figure 11, at w±
0 . In this case,

the right-moving shockwave lies in the island if

1

3 f̂(t − b2)
� w−

0 � 1

3 f̂(t − b1)
. (8.2)

So the effect is indistinguishable to a scenario where the operator insertion in made in the bath
at a point with coordinate y−0 = f̂ −1(1/(3w−

0 )).
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Figure 11. An operator insertion made behind the horizon generates a pair of shock-
waves. Here, at a certain time, the right moving one is in the island of the interval in the
bath, the shaded region, and creates an effect that is indistinguishable from an operator
insertion made in the bath as shown.

9. Discussion

In this work we set up the calculation of von Neumann entropies for an arbitrary number of
subsystems within the Hawking radiation bath of an evaporating black hole in JT gravity pro-
duced by a shockwave injected via a local quench. The primary goal in this analysis was to
display the correlations within early and late Hawking modes, and to flesh out the ‘A = RB’
scenario within this framework. The slow evaporation limit k � 1 with kt fixed, in conjunction
with large interval sizes∼ O(k−1) results in a simple but rich, analytically tractable interplay of
island and no-island saddles. We focussed attention on island saddles with only two QESs since
we generically expect additional QES contributions to significantly increase the entropy. Such
islands are sufficient for teasing out the refined correlations between two disjoint subsets of the
Hawking modes in the bath. Whether islands with additional QESs dominate, likely depends
on the number and size of separations between the intervals in the bath, and it would be very
interesting to understand the conditions under which such saddles could become relevant, and
how multi-QES islands may compete with each other. In the bath CFT, Rényi/entanglement
entropies can be understood as correlators of twist fields. The operator product of twist fields
is dominated by the stress tensor in the short interval limit. It would be interesting to under-
stand what implications the calculation of multi-interval entropies has for correlators of local
operators (such as the stress tensor) and lack of cluster property (see e.g. [47]) in the presence
of replica wormhole (island saddle) contributions.
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