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"We live on an island surrounded by a sea of ignorance. As our island of
knowledge grows, so does the shore of our ignorance."

John Archibald Wheeler





Abstract

The need for explanations of Machine Learning (ML) systems is growing as new models
outperform their predecessors while becoming more complex and less comprehensible for
their end-users. An essential step in eXplainable Artificial Intelligence (XAI) research is to
create interpretable models that aim at approximating the decision function of a black box
algorithm.

Though several XAI methods have been proposed in recent years, not enough attention
was paid to explaining how models change their behaviour in contrast with other versions
(e.g., due to retraining or data shifts). In such cases, an XAI system should explain why
the model changes its predictions concerning past outcomes. In several practical situations,
human decision-makers deal with more than one machine learning model. Consequently, the
importance of understanding how two machine learning models work beyond their prediction
performances is growing, to understand their behaviour, their differences, and their likeness.

To date, interpretable models are synthesised for explaining black boxes and their pre-
dictions and can be beneficial for formally representing and measuring the differences in
the retrained model’s behaviour in dealing with new and different data. Capturing and
understanding such differences is crucial, as the need for trust is key in any application to
support human-Artificial Intelligence (AI) decision-making processes.

This is the idea of ContrXT, a novel approach that (i) traces the decision criteria of a
black box classifier by encoding the changes in the decision logic through Binary Decision
Diagrams. Then (ii) it provides global, model-agnostic, Model-Contrastive (M-contrast)
explanations in natural language, estimating why -and to what extent- the model has modified
its behaviour over time. We implemented and evaluated this approach over several supervised
ML models trained on benchmark datasets and a real-life application, showing it is effective
in catching majorly changed classes and in explaining their variation through a user study.

The approach has been implemented, and it is available to the community both as a
python package and through REST API, providing contrastive explanations as a service.
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1
Introduction

1.1 Motivations and Scope

In the last decade, advances in artificial intelligence have led to increasingly powerful machine
learning models. Their high performance, however, comes at cost of a clear interpretation
of how these systems work internally. Because of their opaqueness, they are called black
boxes. Considering their wide range of sensitive applications, from health care to insurance
risk and credit scores, it has become apparent that being able to explain the logic behind
those models is crucial, especially in such critical scenarios when a user believes there is a
mismatch between the algorithm’s outcome and its own expectation.

The field of eXplainable AI (XAI) is rapidly growing to answer this need [56]. Since those
models are often used for guiding decision-makers to choose between different outcomes,
they must be interpretable and understandable.

As an example, once a machine learning-based system has been deployed to perform a
task, the problem of keeping it updated often requires retraining the model with new data
(see, e.g. [76]). In many real-life AI applications the data is gathered incrementally from
different sources. This often forces the machine learning engineers to retrain their models
to work on a dataset that grows periodically, and whose distribution changes frequently.
Consequently, the underlying learning function of the newly trained model might change
the system’s logic concerning the past, which leads to producing unexpected outcomes that
might contradict past predictions without providing any reason to the user. This is rapidly
becoming a critical issue in several contexts, especially in data science applications that deal
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Chapter 1. Introduction

with natural language (see, [130]). To clarify the matter, let us consider a machine learning
model ψ1 trained using a dataset D1 and deployed to perform a single-label classification
task, that is, to assign a Boolean value to each pair (d j,ci) ∈ D1×C where D1 is a set of
documents while C is a set of predefined categories. Although the accuracy reached during
the training phase may have been high, the introduction of new datasets Dt2, ...,Dtn at time
t2, ..., tn compels to retrain the model accordingly. Let us then consider a second machine
learning model ψ2, trained over Dt2 . One might ask the following:
Q1: Can we estimate to what extent ψ2 classifies Dt2 coherently to the past predictions made

by ψ1?

Q2: Why does the criteria used by ψ1 result in class c, but ψ2 does not classify on c anymore?

Q3: Can we use natural language to transform the differences between models’ classification
paths to make them comprehensible for the final users ?

To face these questions, machine learning-based systems have to synthesise explanations
that are transparent and comprehensible to technicians and decision-makers, so that they
can understand the rationale that the algorithm used, enabling them to make decisions more
consciously (see, e.g. [57]). In this thesis, we propose a method that tries to answer these
questions.

Q2 is posed as a "why question", requiring a contrastive explanation or a response to
a counterfactual case, which is termed foil. That is, people usually do not ask "why event
P happened" but "why P rather than Q" [89]. Most of the current work in XAI, as argued
by [89], are either centred mainly around causal attribution (see e.g. [108]), or despite
raising contrastive questions, fail to provide contrastive explanations. Notably, contrastive
explanations can be multifaceted: one might ask "Why does object A have property P at time
ti, but property Q at time t j?", i.e., a T-contrast, firstly introduced by [121] and formalised
in [89]. Answering Q2 requires observing the system as a whole (i.e., global explanation)
rather than at a single instance level (i.e., local explanation). A way for generating global
explanations from a black box model requires using the training data to fit a surrogate model
to the black box and deriving a surrogate model capable of mimicking the original model
globally (see Figure 1.1).

Figure 1.1 Fitting a global surrogate, taken from [18].

2



Chapter 1. Introduction

Novelty The novelty of our approach is the encoding of the differences in the logic of both
ψ1 and ψ2 through compacted representation of boolean formulae, i.e., Binary Decision
Diagram (BDD), to derive contrastive explanations for text and tabular classifiers. Though
contrastive approaches are gaining importance in the literature (see Part I), there is no work
that the authors are aware of that computes T-contrast or model-contrast explanation globally,
as clarified by the most recent state-of-the-art surveys on XAI for supervised machine
learning (see Burkart and Huber [18], Mueller et al. [92], Miller [88]). Clearly, we consider
the black box is neither interpretable by nature (i.e. models which can be interpreted without
using any interpretability method, like decision trees and linear models) nor by design, as
recently clarified by [18].

1.2 Motivating Example

Figure 1.2 Enhanced decision-making process with model contrastive explanations.

When choosing between two different black-box machine learning models, a user might
be uncertain about which one is better for his decision-making purpose. The two models
might be similar in predictive accuracy given the same task while completely different in
their inner working - e.g., being trained on different substrata of data or using a different
learning algorithm. The same data instance might be classified differently between the two
models, with the user not understanding the reasons behind the dissimilarity.

The approach proposed in this Thesis can enhance the decision-making process by
providing model contrastive explanations, which describe how the models differ between

3



Chapter 1. Introduction

themselves as in Figure 1.2. Model contrastive natural language explanations provide a
clearer understanding of why a specific instance was classified differently by providing the
main classification paths that have changed or remained the same. Overall, these explanations
can help choose which model is more beneficial for the user’s purpose.

The example below is inspired by a real-life problem in the field of text classification
of multilingual online job ads within an EU project [25, 38]. To clarify the matter, let us
consider an organisation that needs to classify millions of online job ads to analyse labour
market dynamics over time across borders. In such a scenario, training a machine learning
model would be helpful to support questions such as: Which occupations will grow in the
future and where? What skills will be demanded the most in the next years? However, once
such a model has been trained and deployed (see, e.g., [30, 11]) it needs to be periodically
re-trained as the labour market demand constantly changes through time, mainly due to rise
of new emerging occupations and skills [52]. This, in turn, leads policy makers to ask if -
and to what extent - the re-trained model is coherent in classifying new job ads with respect
to the past criteria.

As an example, let us consider the systems analysts, an occupation that changed a lot
in the last years driven by technological progresses [77]. A policy maker might ask: "how
systems analysts are now classified by the updated model, and how the updated model differs
with respect to the previous one?"

Figure 1.3 ContrXT output for the class "Systems Analysts", showing the change in classification paths between
the updated and the older model.

Figure 1.3 shows the difference in the criteria between the two classifiers for the class
"Systems Analysts". The Figure shows that the updated model considers business analysts

4



Chapter 1. Introduction

as Systems Analysts. Furthermore, the user can easily discover that a novel occupation, i.e.,
"data scientist", is considered as a system analyst by the updated model. On the other side,
Figure 1.3 clarifies to the user that the updated model changed its criterion in regard to the
term "test analyst", that now does not characterise the class anymore. Being able to catch
those differences -class by class- is helpful to end users as it allows understanding to what
extent the updated model is coherent with past predictions, as well as its ability to catch the
novelty in the domain and terms that might lead the model to misclassification.

1.3 Contributions

The contributions of this work are as follows:
1. We propose a novel approach to compute model-agnostic global T-contrast explanations

from black box text classifiers. Our approach (i) encodes the differences in the
classification criteria over multiple training phases through BDDs, and (ii) estimates to
what extent the models are congruent or different;

2. We implement this approach as an off-the-shelf Python tool, namely ContrXT (short
for Contrastive eXplainer for Text/Tabular classifier), publicly available to the com-
munity on Github1, evaluating it on (i) 20newsgroups [65] a well-known multi class
benchmark which is partitioned evenly across 20 different topics (classes), and (ii) a
real-application in the field of Online Job Ads classification (see [11, 51, 52]), as a
research activity of an ongoing EU Project [38].

3. We then generalize the approach above in [78], namely symbolic reasoning moving
from time contrastive to model contrastive dealing with both textual and tabular data;

4. The effectiveness on tabular data is evaluated over multiple benchmarks, including
multiple methods of generating the surrogate models (e.g.,Rulefit), and a feature that
enhances the natural language explanations computed by the tool providing real data
examples to the users. We also tackle the issue of trade-off between fidelity with the
original black box model and interpretability.

1.4 Thesis Outline

The thesis is divided in four main parts, organized as follows:

Part I presents the theoretical basis and related work in the field of XAI and contrastive
explanations.

1https://github.com/Crisp-Unimib/ContrXT
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Chapter 1. Introduction

Part II formalizes the approach, shows the implementation of the tool and presents the
experimental results on benchmark datasets.

Part III introduces different works on real-world data, dealing with contrastive explanations
and machine learning in the domain of Labour Market Intelligence (LMI) and Online
Job Advertisement (OJA).

Part IV, lastly, draws the conclusions and proposes several ideas for future research
activities.
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Background and Theoretical Basis
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Chapter 1.

In the first part, we introduce the formal notation and concepts that will be used in
the Thesis. In chapter 2 we give an introduction to Machine Learning (ML), focusing on
black box and white box classification and model evaluation techniques. Then, we look at
eXplainable AI (XAI) methodologies in chapter 3, paying attention to the different kinds of
explanations and diving deeper in the ones that will be used in the Thesis.
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2
Black Boxes and White Boxes

In this section, we will give a brief introduction to supervised machine learning, with keys
definitions and concepts that will be used through the Thesis.

There are two main types of supervised learning: classification and regression. Classi-
fication deals with predicting discrete class labels, while regression predicts a continuous
variabile. The methods developed in the Thesis focus on the former.

2.1 Supervised Black and White Box Classification

Black boxes are models whose behaviour and internal logic is hidden to end-users. As our
methodology deals with classification, our formalisation relies on the definition of [111].

Definition 2.1.1 (Classifier). Let D = {d1, . . . ,dn} be a set of documents, the classification of
D under the class set C consists of ∣C∣ independent problems of classifying each document
d ∈D under a given class ci for i = 1, . . . , ∣C∣. Then, a classifier for ci is a function ψ ∶D×
C → {0,1} that approximates an unknown target function ψ̇ ∶D×O → {0,1}. When dealing
with a single-label classifier, ∀d ∈D the following constraint must hold: ∑c∈C ψ(d,c) = 1.

On the other hand, white box models, or interpretable models, are comprehensible by
humans on their own, without the need of additional explanations. This method of training is
also called ante-hoc explainability. A definition of a white box is provided by [18]:
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Figure 2.1 [18] shows different ways to gain explainability, starting from (a) standard supervised, black box
machine learning without explanation. (b)-(d) Model/global explanations: (b) post-hoc black box model
explanation, (c) interpretable by nature, i.e., white box model explanation, and (d) explaining a black box model
by means of a global surrogate model (see Sec. 3.2). (e)-(f) Instance/local explanations: (e) directly or (f) with
a local surrogate.

Definition 2.1.2 (White Box Classifier). Given training data D, a white box classifier aims
for solving the optimization problem

pg∗ = argmin
pg∈I

1
n

n

∑
i=1

S(pg(xi),yi) (2.1)

where the averaged error S over all the n training instances is minimized and pg∗ is the
resulting model from the hypothesis space of interpretable models I.

Figure 2.1 shows the differences between various types of black and white box approaches,
starting from a completely black box model to different kinds of white box explanations. We
also like additional insights on different types of interpretable models for supervised learning,
focusing on algorithms that are most relevant to the Thesis.

12



Chapter 2. Black Boxes and White Boxes

Figure 2.2 Examples of decision trees trained on the Iris benchmark dataset. The maximum depth of the tree on
the left is set to 3, while on the right, it is set to 4.

2.1.1 Decision Trees

Decision trees are composed by nodes and leafs, and are trained as in Def. 2.1.2. Figure 2.2
shows a decision tree in action. A splitting feature and a splitting value are given to tree
nodes. In the case of classification, leaf nodes are given a class label; in the case of regression,
they are given the average value. The classification procedure for a test instance d travels
downward from the root node at the top of the tree, and follows a path to a leaf node where
the class value is assigned.

A specific feature value is compared to the splitting value at each intermediate node. The
direction of travel is either left or right depending on the results of this comparison. Typically,
decision trees are greedily built top-down, so that once a feature and its value are chosen
as the splitting criterion, these are fixed and cannot be changed [74]. To enhance a tree’s
capacity to generalise to new data, trees are typically first grown to their maximum size, and
then pruned afterwards by removing unnecessary splits. Decision trees can be converted in
rule-based models, while the opposite is not always possible.

There are various different algorithms that can be used to build decision trees. The
ID2of3 [31] algorithm uses a hill climbing search process to learn M-of-N splits for each
node of the tree. C4.5 [104] is a divide and conquer algorithm, based on information theory
concepts. It uses the gain ratio criterion, an entropy-based node splitting strategy. In this
type of algorithm, input features can be categorical as well as numerical, since the latter are
automatically split in a discrete set of intervals. The trees are converted in sets of if-then
rules, which are then evaluated to find the best ordering that minimises the gain ratio. It also
applies pruning by selectively removing a certain rule precondition, if the accuracy of the
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tree increases by doing so. C4.5 is also extended by C5.0T [120], which typically builds
smaller sets of rules while also using less memory and being more accurate. Finally, the
Classification And Regression Trees (CART) [15] technique is also based on the divide and
conquer principle. It splits the input features and their values using the Gini index as the
criterion, using the feature and threshold that return the highest information gain during each
split. It also supports regression supervised machine learning tasks, and in contrast to C4.5,
it does not compute rule sets. CART is the algorithm used by the popular machine learning
toolkit package Scikit-Learn [101], in an highly optimised version.

2.1.2 Rule Based Models

Decision rules are structured as IF condition THEN label ELSE other label. Simple decision
rules, decision sets, decision tables, and m-of-n rules are a few examples of specific rule-
based techniques. To expand on a set of rules, one can either expand a list by adding a
rule with "ELSE IF" to an existing one, or create a set by adding another rule without any
additional syntax. A rule’s condition can be either a single feature, operator, or triple of
values, which is commonly referred to as a literal in the literature [126]. Others define it as a
predicate [72, 73]. The rule can also be a conjunction or disjunction of multiple predicates,
the former being the most common case for building rule based models [63]. Figure 2.1
illustrates the structure of an example rule.

1 IF feature_1 > 128.5 THEN probability of diabetes: 68.6%
(57.3% -78.8%)

2 ELSE IF feature_5 > 28.94 THEN probability of diabetes: 28.6%
(19.1% -39.1%)

3 ELSE probability of diabetes: 3.9% (0.5% -10.6%)

Code 2.1 Example of a rule based model on diabetes benchmark dataset.

Figure 2.3 shows the difference between rule sets and rule lists: in rule sets, the rules are
disjoined and can overlap with each other, while in rule lists, all the rules are conjoined by
ELSE IF operations, ensuring no overlap occurs. The representation of decision trees is also
added for comparison, the main difference being, rules generated by decision trees always
begin with the same feature, the root of the tree, and follow its binary structure.

Rule based models are popular in the literature, with various different algorithms available.
1R [62] creates classification rules for objects based on a single attribute, using a set of
training samples as input. Some algorithms use ant-based induction, such as AntMiner+ [81]
algorithm, which creates one single rule at a time. There is a multitude of ant-based
algorithms, such as cAntMinerPB [95], which creates a list of rules that also consider the
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(a) Rule Set (b) Rule List (c) Decision Tree

Figure 2.3 Graphical visualization of the difference between rule sets, rule lists and rule trees - taken from [116].

interactions between each other. Among others are RIPPER [29], CN2 [80], C5.0R [120]
and Re-RX [113].

Falling Rule Lists [125] consist of (as suggested by the name) a list of rules in descending
order of class probabilities - meaning, the first rules have the highest probability of matching
an instance of the selected class, while the last ones have a lower chance. Falling Rules Lists
use Bayesian probabilities as their foundation, and as such, can integrate in the learning
process a prior for the size of a decision list. Another upside of this method is the possibility
of assigning probabilities also to unseen new instances, as long as they match a rule from the
list.

Interpretable Decision Sets [72] are trained to learn a set of rules, optimised for being
as short and accurate as possible. The rules are each independent from each other, and can
be used singularily. Its algorithm works on a pre-mined rule space, where association rule
mining is applied, generating the most frequent item-sets. Both accuracy and interpretability
are considered in the optimisation process.

2.2 Evaluation Metrics in Machine Learning

In supervised machine learning methods, a thorough evaluation is key to understanding the
performance of either a black or white box classifier.

It is not advised to estimate the goodness of a model on the same data it was trained
on. There are different ways of splitting the available data for evaluation, the first one being
the hold-out method. Training and performance assessment are performed on two different
subsets which form a partition of the dataset. These are called training and test sets. A
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Figure 2.4 Graphical overview of the k-fold cross-validation methodology, taken from [107].

third evaluation set can also be used for selection of hyper parameters settings. The training
set is larger than the test set, usually being around 80% of the original dataset, with the
test set being the remaining 20%. These subsets are often created using stratified sampling
procedures on the target class, to ensure homogeneous distribution between the sets.

Alternatively to hold-out, k-fold cross-validation [48, 114] is widely used to achieve
consistent results in the evaluation of models. k-fold cross validation, when compared to
the hold-out technique, usually gives a better and less biased indication of how well the
model will perform on unseen data. That is, because during hold-out, the data used for
testing the model will not be used for training, which could be detrimental in the case that
the numerosity of dataset is low, or that some of those instances are actually fundamental for
the model to understand outlier cases.

During every iteration of the procedure, the k-fold cross-validation technique splits the
original dataset randomly in k groups, k being a parameter chosen by the user - usually 5 or
10. An higher number of folds can give better estimation, up to being equal to the number
of instances in the dataset. This latter case is called Leave-One-Out cross-validation, that
comes at the cost of higher computation costs and because of that is often unfeasible.

After splitting the data, a model is trained on k-1 folds and evaluated on the remaining one,
as presented in Figure 2.4. The procedure is repeated k times, and the resulting performance
indicators are then averaged.

The performance can estimated using a variety of different indicators, which are all
computed on the basis of how many samples were correctly classified in the test set. The
confusion matrix is a matrix C, in which Ci, j is equal to the number of data instances that
are in group i based on the ground truth, and are classified by the model in group j. In a
binary classification problem, the number of true negatives is C0,0, true positives are C1,1,
false negatives are C1,0 and false positives are C0,1, as shown in Table 2.1.
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Table 2.1 A representation of a binary confusion matrix, which can be used to calculate various classification
performance indicators.

Predicted Class

Ground Truth 0 1

0 True Negatives (TN) False Positives (TP)
1 False Negatives (FN) True Positives (TP)

The most commonly used indicator is the accuracy, the fraction of correctly classified
instances, as in Eq. 2.2.

Accuracy =
T P+T N

T P+T N+FT +T N (2.2)

However, the accuracy suffers from different sources of bias. For example, if the nu-
merosity of the target classes are greatly unequal, accuracy can be very high, despite the
model does not actually performing well. To overcome this issue, more robust metrics can be
used, such as precision, which is intuitively the ability of the classifier to avoid classifying a
negative instance as positive, as in Eq. 2.3; and the recall, which quantifies the capacity of
the classifier to correctly label the positive instances as such, as in Eq. 2.4.

Precision =
T P

T P+FP (2.3)

Recall =
T P

T P+FN (2.4)

Finally, we define the F-measure as in Eq.2.5. When β = 1, the measure is the harmonic
mean of precision and recall, and is called F1 score.

Fβ =
(1+β

2) ⋅Precision ⋅Recall
(β 2 ⋅Precision)+Recall

(2.5)

All the indicators proposed above are bounded by [0,1], with 0 being the lowest perfor-
mance where all the data instances are misclassified, and 1 being the highest where all data
instances are correctly classified.
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3
eXplainable AI

There is a growing interest in the use of AI algorithms in many real-life scenarios and
applications. However, many AI algorithms - as in the case of machine learning - rarely
provide explanations or justifications to allow users understanding what the system really
learnt, and this might affect the reliability of the algorithms’ outcomes when these are used
for taking decisions. In order to engender trust in AI, humans must understand what an AI
system is trying to achieve, and which criteria guided its decision. A way to overcome this
problem requests the underlying AI process must synthesise explanations that are transparent
and comprehensible to the final user, so that she/he can consider the outcome generated by
the system as believable1 taking decisions accordingly. Not surprisingly, an aspect that still
plays a key role in machine learning relies on the quality of the data used for training the
model. In essence, we may argue that the well-known principle "garbage-in, garbage-out"
that characterises the data quality research field, also applies to machine learning ,and AI in
general, that is used to evaluated data quality on big data (see, e.g. [85, 4, 7, 86]) and perform
cleaning tasks as well (see, e.g. [84, 83, 12]).

Given the success and spread of AI systems, all these concerns are becoming quite
relevant enabling a wide branch of AI to emerge, with the aim of making AI algorithms
explainable for getting an improved trustability and transparency (aka Explainable AI (XAI)).

1Here the term believability is inherited from the definition of [127] intended as "the extent to which data
are accepted or regarded as true, real and credible".
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Defining XAI is not simple. Many different definitions exist, but many of them lack important
aspects or are too general. An interesting one is given by [6]:

Definition 3.0.1 (Explainable AI). "Given an audience, an explainable Artificial Intelligence
is one that produces details or reasons to make its functioning clear or easy to understand."

Though some research on explainable AI had already been published before DARPA’s
program that launched a call for XAI in 2016 (see, e.g., [118, 97]) XAI [57, 8, 90], effectively
encouraged a large number of researchers to take up this challenge. In the last couple
of years, several publications have appeared that investigate how to explain the different
areas of AI, such as machine learning [60, 108], robotics and autonomous systems [59],
constraint reasoning [41], sentiment analysis [21, 20], and AI planning [40], just to cite a few.
Furthermore, as recently argued in [8], a key element of an AI system relies on the ability to
explain its decisions, recommendations, predictions or actions as well as the process through
which they are made. Hence, explanation is closely related to the concept of interpretability:
systems are interpretable if their operations can be understood by a human, either through
introspection or through a synthesised explanation.

3.1 Different Kinds of Explanations

Explanations are not all equal. There are different dimensions of explanations, as explained
in [18]:

• Explanation Timing: ante-hoc if the model is created as interpretable since its
inception, or post-hoc if interpretability is added after training;

• Explanation Scope: local if the explanation is valid only for a single instance amd
(optionally) its neighbors, global if it is valid for the whole model;

• Explanation Applicability; model specific if the explanation can only be synthesised
for certain types of models, usually dependent on the type of algorithm used during
training, or model agnostic if the explanation can be synthesised with any kind of
model;

• Reliance on Data: data independent if no additional data is required to synthesise
explanations, or data dependent if a number of instances is required.

We focus on explanations that are, according to the above dimensions, post-hoc, global,
model agnostic and data dependent.
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3.1.1 Contrastive Explanations

As recently clarified by [89], the motivation behind contrastive explanations is that people
usually explain the reason for an event in relation - or in contrast - to some other event
that did not occur, rather than explaining the causes for that event. This means a human
explanation is more likely to answer a question like "Why P rather than Q?" instead of "Why
P?" even though Q is often implicit in the context. This is called contrastive explanation.
P is known as the target event and Q is a counterfactual contrast case that did not occur,
even if the Q is implicit in the question Furthermore, people usually ask for explanations
about events or outcomes that they consider abnormal or unexpected from their own point of
view. However, people usually expect to see a specific event to happen while another occurs,
making the observed event the fact and the expected event the foil. These kinds of contrastive
explanations were classified in [121], with a variation in their names based on whether they
are related to a single object, between multiple objects, and an object over time, namely
P-contrast, O-contrast and T-contrast. Specifically, we consider T-contrast explanation, that
[89] expressed as "Why does object a have property P at time t, but property Q at time t ′?".

In such a scenario, one more variation that one might consider is M-contrast, in
which the variation is caused by different classification models. The difference in the two
classification models could be caused by (i) a difference in the learning functions, either by
changes in the hyperparameters used by the classifiers or different types of models altogether;
or (ii) a difference in the data used for training, either by retraining a model with newly
acquired data instances, or using different substrata of the same dataset. Previous works
provide explanations regarding properties of single or multiple objects but do not aim to
explain the difference between two models. We answer the question "Why does object A has
property P under model l, but property Q under model l′?" in which the foil consists of the
properties of the model, i.e., the M-contrast case discussed above.

Many works in the field of XAI address contrastive questions, explanations and coun-
terfactual reasoning. In [60], the authors propose a textual counterfactual method which
explains the fact based on the missing features of the expected foil. A model capable of
interacting with users aiming at providing a contrastive explanation was introduced in [117].
In [33], authors present a model-agnostic method for structured data which can create con-
trastive explanations based on the features which should be absent and present in a specific
fact, while [100] proposes an algorithm that uses contrastive local explanations to generate
boolean clauses, which in turn are used to create a new dataset, to train a simple global
transparent model. In recent years, explaining in particular transformers models received
much attention. In [26], authors use Layer-wise Relevance Propagation to compute scores
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for each attention head and synthesise class-specific visualizations, while [128] proposes an
interface that allows users to explore the connections between attention weights in a graphical
form.

All the works mentioned above provide explanations regarding properties of single or
multiple objects without considering the effect of time, while in contrast, our method can
address the time element globally, as the cause of the altering properties. To do so, we answer
the question "Why does object A have property P at time t, but property Q at time t ′?" in
which the foil is not an expected and hypothetical event, but an event which occurred and
is compatible with the fact, i.e., the T-contrast case discussed above. Very recently [75]
proposed GraphShapley to compute meta-explanations for T-contrast questions, but different
from our work, their solution only works with graphical model inference.

3.1.2 Contrastive and Counterfactual

Another type of explanation is called counterfactual explanation, that is defined in [55] as:

Definition 3.1.1 (Counterfactual Explanation). Given a classifier ψ that outputs the decision
y = ψ(x) for an instance x, a counterfactual explanation consists of an instance x′ such that
the decision for ψ on x′ is different from y, i.e., ψ(x′) ≠ y, and such that the difference
between x and x′ is minimal.

In other words, a counterfactual explanation describes a causal situation, and answers
what kind of changes can lead the classifier to a different classification outcome. The changes
made to the data instance should be minimized; even though the concept of minimality is
not formalised by the authors of the definition, as its meaning may differ depending on the
application domain. For example, in the domain of word embeddings, we could describe
a minimal change as switching a word with the most similar alternative. In a tabular data
classification with binary attributes, a minimal change could be switching a single feature
from 0 to 1.

A canonical example of a counterfactual explanation is a bank customer asking for a
loan, who is then rejected. The explanation describes what attributes should have been
different in order for the loan to be accepted, e.g. the yearly income should have been higher.
Counterfactual explanations are not exclusive to a switch of the target class, but can also be
applied to an increased prediction probability, e.g. the probability of the loan being accepted
increases by 5%. [99] defines counterfactual as a three step process:

• Abduction: condition the latent exogenous variables used by the data generation
process, which led to a specific outcome;

• Intervention: force a change on an observable variable in the causal history;
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• Prediction: under the latent conditions of the abduction step that led to the factual
outcome, synthesise a new counterfactual example by propagating the intervention
through the data generating process.

[55] claims that, practically speaking, in XAI applications there is no difference between
counterfactual and contrastive explanations, since the purpose of them both is to find the
change in features that would affect the classification outcome. Difference being, one would
do so by altering the data instance, while the other by comparing it with another one that
belongs to an alternative class.

3.2 Global Explanations via Surrogate Models

The classifier ψ can be seen as a black box whose behaviour is hidden to the end-user,
requiring explanations. To connect our approach to the literature, we formalise a model
explanation problem on top of the definition provided by [56].

Definition 3.2.1 (Explanation Problem). Let ψ be a black box classifier and let D be a set
of documents classified through ψ , the model explanation problem consists of finding an
explanation e ∈ E through a global interpretable model pg = surr(ψ,D) synthesised from
the black box ψ and the documents D by means of some surrogate fitting surr(⋅, ⋅). Then, an
explainable model is obtained through the global interpretable predictor pg, that is exp(pg)
for some explanation logic exp(⋅) which reasons over pg.

Following [18], a function surr(⋅, ⋅) should solve the model fitting problem of approxi-
mating the black box classifier to a suitable interpretable classifier.

Definition 3.2.2 (White Box Surrogate Model Fitting). Let ψ be a black box text classifier
as in Definition 2.1.1, and pg a white box, interpretable model, as in Definition 2.1.2, the
surrogate model fitting the problem consists of approximating the black box classifier to a
suitable interpretable classifier by solving:

pg∗ = argmax
pg∈I

1
X ∑

x∈X

S(pg(x),ψ(x))

s.t.Ω(pg) ≤ Γ

(3.1)

where I represents a set of possible white box models to be chosen as surrogate, and
S is the fidelity of pg, i.e., a measure of how well the predictions of pg complies with the
predictions of the black box model ψ . In the global case, the surrogate model pg approximates
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ψ over the whole training set X taken from D or a subset of it which represents sufficiently
well the distribution of the predictions of ψ .

With respect to [18], we add a constraint on the complexity of the surrogate model in
order to keep it simple enough to be understandable and interpretable while maximising
the fidelity score. Ω(pg) ∶Rn

→R is a measure of the complexity of the model and Γ a
bounding parameter, where n is the number of the considered complexity dimensions. For
instance, for a decision tree Ω(pg) could be the number of leaf nodes, determined from its
maximum depth and width, while for a logistic regression, it could be the number of non-zero
coefficients. To solve the fidelity interpretability trade-off, another common approach is
to transform the fidelity maximisation problem into a loss minimisation problem, adding
a term Ω(pg) accounting for the complexity of the model, as [108] did in their model
LIME. However, our primary scope is to have the highest fidelity possible, as long as it is
interpretable. Therefore we let the user decide whether a surrogate model is interpretable or
not by setting an appropriate upper bound of complexity Γ.

Finally, our methodology relies on the definition of explanation provided by [108]
to implement the function exp(), that considers an explanation any “textual or a visual
artefact that provides a qualitative understanding of the relationship between the instance’s
components (e.g. words in a text, patches in an image) and the model’s prediction".

3.2.1 Evaluation Metrics

Despite the recent boom of XAI systems, there is a little consensus on how to evaluate
and benchmark explanations [94, 93], mainly because of the wide range of disciplines
they span, from humanities and social science to artificial intelligence, and their different
outputs. However, researchers tend to agree [105] that good explanations should satisfy
consider the consistency of the surrogate against the underlying black-box model. In post-
hoc explainability, the model has already been trained and its prediction accuracy is fixed.
Thus we should evaluate how the surrogate model is consistent with the underlying black
box model [93]. A widely used measure of consistency of post-hoc explanations is the
fidelity [93, 18]. It is a measure of how well the predictions of the surrogate comply with the
predictions of the black box model, as in Eq. 3.2.

Fidelity = Indicator(ψ(D), pg(D)) (3.2)

The indicator can differ, but the most commonly used ones are the accuracy, precision,
recall and F1 score described in Sec. 2.2. The difference being, the indicators are not

24



Chapter 3. eXplainable AI

0 1

c

0 1

b

1

0

a

0

1

Figure 3.1 A simple example of BDD for the function (a∧b)∨(a∧c), visualized. Solid lines represent presence
of a feature, while dashed lines represent its absence.

calculated between the ground truth and the black box predictions, instead between the black
box predictions and the corresponding ones of the white box surrogate model.

3.3 Binary Decision Diagrams

A BDD [1, 16] is a rooted, Directed Acyclic Graph (DAG) used to represent a Boolean
function. [16] defines it as:

Definition 3.3.1 (Binary Decision Diagram). A function graph is a rooted, directed graph
with vertex set V containing two types of vertices. A nonterminal vertex v has as attributes
an argument index index(v) ∈ 1, ...,n and two children low(v),high(v) ∈ V . A terminal
vertex v has as attribute a value value(v) ∈ 0,1. Furthermore, for any nonterminal vertex v,
if low(v) is also nonterminal, then we must have index(v) < index(low(v)). Similarly, if
high(v) is nonterminal, then we must have index(v) < index(high(u)).

Each non-terminal node (the decision node) represents a variable of the formula, and
the terminal nodes are either true (1) or false (0). As the binary in the name suggests, each
non-sink node, or internal node, has an out-degree of two (two outgoing edges). Each one
of those represents the value assigned to the corresponding variable, 1 or 0. The BDD in
Figure 3.1 represents the function f = (a∧b)∨ (a∧ c). Each path in the graph can be seen
as a sequence of assignments for the variables in the internal nodes. As an example, in
Figure 3.1, the right-most path represents the assignment [a ∶ 1,b ∶ 1].
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Figure 3.2 The S-deletion rule (i) and the merging rule (ii), taken from [35].

A Reduced Order Binary Decision Diagram (ROBDD) is BDD’s canonical form, meaning
that given an identical ordering of input variables, equivalent Boolean functions will always
reduce to the same ROBDD. It also means that two functions are identical iff their ROBDDs
are identical, and unsatisfiable functions are reduced to zero. A formal definition is given
by [16]:

Definition 3.3.2 (Reduced Order Binary Decision Diagram). A function graph G is reduced
if it contains no vertex v with low(v) = high(v), nor does it contain distinct vertices v and v′

such that the sub graphs rooted by v and v′ are isomorphic.

The reduction algorithm for BDDs is based on two reduction rules, the S-deletion rule
(Shannon deletion rule) and the merging rule. A representation of the process is shown in
Figure 3.3. In [16] it is proven that those rules are sufficient to obtain the corresponding
ROBDD for every kind of function. The S-deletion rule applies to nodes where both outgoing
edges lead to the same node. This means that the node in question can be immediately
deleted without changing the functioning of the formula. The merging rule instead can be
applied if two nodes with the same label have the same 0-successor and the same 1-successor.
For clarity, examples of those rules are shown graphically in Fig 3.2. In short, ROBDDs are
created by merging isomorphic sub graphs and eliminating all nodes having two isomorphic
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Figure 3.3 Step-by-step example of the ROBDD reduction algorithm, taken from [35].

children. The above rules can be applied in any order, since the result is always the same.
However, to be most efficient, they need to be applied bottom-up.

The size of the resulting ROBDD depends on the size of the function represented, as
well as the chosen variable ordering. The latter is not a trivial task; in fact, finding the
optimal variable ordering is a NP-hard problem, and the number of nodes can be linear or
exponential depending on the variable ordering. In [129] it is proven that the number of
variable orderings that lead to a polynomial number of nodes in an ROBDD for a certain
function is exponentially small. It follows that the choice of variable order must not be
randomly selected.

The problem of finding a variable order that leads to minimum ROBDD size has been
tackled by many researchers, such as [44] using dynamic programming. The run time of
this algorithm is exponential, so only functions with a very limited number of features can
be computed. Since finding an optimal solution is not feasible for features with a large
number of features, heuristics are often used to find a surrogate solution. [46] proposes a
heuristic algorithm that, given a circuit, performs a depth-first search starting at the outputs,
and arranges the variables in the order in which they are found during the search. Other
heuristics have been proposed over the years, such as [61, 19, 47, 45].

ROBDDs have some multiple interesting properties, especially useful in our context:
i They provide compact representations of Boolean expressions, and there are efficient

algorithms for performing all kinds of logical operations on ROBDDs;
ii For any function f ∶ Bn

→ B there is precisely one ROBDD representing it, and this
allows testing whether it is true or false in constant time;

iii On each path of the ROBDD a variable can occur as the label at most once.
From here on, BDD will always be used to refer to Reduced Ordered Binary Decision
Diagram, ROBDD.
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In connection with XAI, recently [115] used BDDs for a model-specific local explanation
of Naïve Bayes classifiers. While the work of [115] is relevant and confirms BDDs can
encode the behaviour of a machine learning model, our approach differs in many respects,
as (i) we use global explanations instead of local ones, i.e. explaining the general decision-
making process of the model instead of focusing on a single instance, (ii) our approach is
model-agnostic while [115] is specific to Bayesian network classifiers, and (iii) we focus on
time and model-related explanations, rather than explaining classification predictions.
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Contrastive Explanations
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4
eXplainable AI for Contrastive

eXplanations

ContrXT, as proposed by [78], aims at explaining the differences in the behaviour of two
distinct text classifiers by encoding of the differences in the logic of ψ1 and ψ2 through BDDs
to produce T-contrast explanations. We extend the symbolic reasoning approach proposed
by ContrXT, to performing a pairwise comparison of two models, namely a left and a right
(or, in short, l and r), in spite of the time. An example might be the comparison of the same
algorithm trained on different substrata of a dataset to evaluate the effects of data on the
underlying learning function, as well as two distinct training algorithms trained on the same
data to assess how their logic differs, regardless of their accuracy. Furthermore, the use of
symbolic reasoning might be applied to continuous data through discretization to boolean or
ordinal features, as happens in the field of AI planning and control using symbolic model
checking (see, e.g. [17]). In this section, we describe the way ContrXT can deal with tabular
datasets and their encoding.

If Dl,r are datasets comprising tabular instances, then every feature must be discretized:
that is, every numeric variable must be partitioned into a number of sub-ranges, each such
sub-range treated as a category. Decision Tree algorithms, which are used to train the
surrogates in step (B), cannot handle continuous attributes directly [69].

We follow to the definition of [27] to formalise the meaning of discretization process: let
A be a continuous attribute, and let the domain of A be the interval [a,b]. A partition πa on
[a,b] is defined as the following set of k subintervals: πa = [a0,a1),[a1,a2)...,[ak−1,ak],
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Figure 4.1 Graphical overview of how the algorithm works.

where a0 = a, ai−1 < ai for i = 1,2...k, and ak = b. Thus, discretization is the process that
produces a partition πa on [a,b].

The reason why ContrXT does not automatically perform this step is that the discretization
method depends both on the problem to be learned as well as on the choice of the black box
learning algorithms. No discretization method always out-performs the others [123], despite
a wide variety of processes being available [69]. In the presence of a domain characterised
by continuous functions, discretizing the continuous functions according to the domain
characteristics has proved to be a good strategy that produces effective results (see, e.g. [17]).

Even if the discretization of the attributes often does not significantly change the accuracy
of a classifier [34], it is recommended that this step is performed by the machine learning
engineers responsible for the training of the black box models ψl,r. Rules with discrete
values are normally shorter and more understandable, and for explanation purpose, it is
recommended that the created intervals are reasonable in the subject domain.

4.1 Synthesising Contrastive Explanations

The proposed approach includes two steps, (1) Trace and (2) Explain. Figure 4.1 shows
a graphical representation of the process. The first step aims at tracing the logic of a
given black box model ψ while working on a dataset D. As one might note, to trace the
differences in the classification logic between two black box models over datasets D1 and
D2, Step 1 is performed twice: one for D1 and, in parallel for D2. In essence, Step 1
generates the classifiers’ patterns through a global interpretable predictor (i.e., surrogate
model) as explained in Sec. 3.2, then it transforms such a global interpretable predictor

32



Chapter 4. eXplainable AI for Contrastive eXplanations

Procedure 1 Contrastive Explanations via BDDs
Require: ψ1,ψ2, as in Def.2.1.1 ; D1,D2 docs ; step, threshold

1: Indicator ← {};BDD ←∅ //The explanation set E of Definition 3.2.1

2: coverage ← step; //incremental step. Default 10%

3: JD1 ← 0 ; JD2 ← 0 //Jaccard values init;
4: b1,prev ←∅ ; b2,prev ←∅;
5: repeat
6: D1s ← Sampling(D1,coverage)
7: D2s ← Sampling(D2,coverage)
8: for all c ∈C do
9: bc

1 ← Step1_Trace(ψ1,D1s,c) //BDDs of ψ over D1s on c

10: bc
2 ← Step1_Trace(ψ2,D2s,c) //BDDs of ψ over D2s on c

11: JDc
1
← jaccard(bc

1,prev,b
c
1) //Eq.4.10

12: JDc
2
← jaccard(bc

2,prev,b
c
2) //Eq.4.10

13: end for
14: JD1 ← mean(JDc

1
) ; JD2 ← mean(JDc

2
)

15: coverage ← coverage+ step
16: b1,prev ← b1 ; b2,prev ← b2
17: until (JD1 ∧ JD2 ≥ threshold)∨ (coverage > 100%)
18: for all c ∈C do
19: < Indicc

,BDDc
>← Step2_Explain(bc

1,b
c
2)

20: Indic ← Indic∪ Indicc ; BDD ← BDD∪BDDc

21: end for
22: return Indic,BDD

into the corresponding BDD. Step 2 takes as input the BDDs - that formalise the logic of
the two classifiers - to compute the BDDs encoding the differences between the two. The
pseudo-code is shown in Procedure 1.

4.1.1 Step 1: Trace the Black box

Step 1 Trace
Require: ψ classifier (Def.2.1.1), D documents and c class

1: ΨD,c ← ψ(D,c) //Get the predictions over D for class c

2: pc
g ← surr(ΨDt ,c,D) //Global predictor pg for c on D as in Definition 3.2.2

3: bc
← generate_BDD(pc

g) //Trace ψ over D through ROBDD

4: return bc
//ROBDD of ψ over D on c

The main goal of the first step is to build BDDs for each category. BDDs are synthesised
directly from the global interpretable predictor, encoding a compact representation of the
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logic used by the predictor over each class of the dataset processed. To allow the procedure
to scale on big datasets, Procedure 1 starts by iteratively sampling each dataset used during
training, with uniform incremental steps. In essence, lines (5-17) perform a sampling to build
the smallest sample that approximates the distribution of the original dataset appropriately.
In larger datasets, due to memory and time constraints, sampling may indeed be the most
feasible option for creating surrogate trees. The sampling procedure stops when either the
BDDs features remain mostly unchanged from the previous incremental step (using Jaccard
similarity, see Equation 4.10), or the whole dataset is covered.

Focusing on Step 1: Trace, line (1) uses the black box model ψ to perform single-label
classification of the instances of D. Then, line (2) implements the surr(⋅, ⋅) function of
Definition 3.2.1, to produce a rule-based predictor pc

g for a class c from which, given an
instance d ∈ D, it derives the criteria responsible for the classification of d by pc

g. Line (3)
synthesises the corresponding BDD from pc

g. In Step 2, we manipulate the BDDs generated
to provide explanations.

4.1.2 Step 2: Explain through Binary Decision Diagrams and Indicators

Step 2 implements the explanation logic exp(⋅) as in Definition 3.2.1. In essence, Step 2 ma-
nipulates the BDDs generated from Step 1 to explain how ψ1 and ψ2 differ (i) quantitatively
by calculating the distance metric defined below (aka, Indicators1), and (ii) qualitatively by
generating the BDDs of the added/deleted patterns over multiple datasets Dti , as we show in
Step 2 pseudo-code. As this is a key idea of our algorithm, we formalise the following.

Definition 4.1.1 (Contrastive explanations through BDDs). Given two formulas which
represent the classification paths of a class in two time steps, f1 ∶ B

n
→ B and f2 ∶ B

m
→ B,

we define:

f1 = f2 = ¬ f1∧ f2 (4.1)

f1 < f2 = f1∧¬ f2 (4.2)

fl =◯ fr = fl ∧ fr (4.3)

1Indicators usually refer to a type of performance measurement to evaluate the performance of a sys-
tem/service or of a particular activity (such as projects, programs, products and other initiatives) in which it
engages.
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The goal of the operator < (=) is to obtain a boolean formula that is true iff a variable
assignment that satisfies (falsifies) f1 is falsified (satisfied) in f2 given f1 ( f2). The operator
=◯ is true iff a variables assigment remains satisfied in both f1 and f2. Let b1 and b2 be two
BDDs generated from f1 and f2 respectively, we synthesise the following BDDs:

bb1,b2
= = b1 =b2 (4.4)

bb1,b2
< = b1 <b2 (4.5)

bbl ,br
=◯ = bl =◯br (4.6)

where b= (b<) is the BDD that encodes the reduced ordered classification paths that are
falsified (satisfied) by b1 and satisfied (falsified) by b2; b=◯ encodes the paths that are satisfied
in both b1 and b2.

Step 2 Explain

Require: bc
1,b

c
2 BDDs for class c on D1 and D2

1: bc
=,b

c
<,b

c
=◯ ← bc

l =bc
r,b

c
l <bc

r,b
c
l =◯bc

r //Apply Equation 4.4,4.5,4.6

2: kc
=,k

c
<,k

c
=◯ ← Add(bc

=),Del(bc
<),Still(bc

=◯) //Apply Eq.4.7,4.8,4.9

3: Indicatorc
←< kc

=,k
c
<,k

c
=◯ >

4: BDDc
←< bc

=,b
c
<,b

c
=◯ >

5: return Indicatorc
,BDDc

We also denote as:
• var(b) the variables of b;
• sat(bbl ,br

= ) all the true (satisfied) paths of bbl ,br
= removing var(bl)\ var(br);

• sat(bbl ,br
< ) all the true (satisfied) paths of bbl ,br

< removing var(br)\ var(bl);
• sat(bbl ,br

=◯ ) all the true (satisfied) paths of bbl ,br
=◯ .

All three of bbl ,br
= , bbl ,br

< and bbl ,br
=◯ encode the differences (or similarities) in the logic used

by b1 and b2 in terms of feature presence (i.e., classification paths). We recall that conjunction,
disjunction and negation operations between BDDs can be performed in polynomial-time as
for boolean functions, as well as the equivalence between BDDs [16]).

Indeed, bb1,b2
= (bb1,b2

< ) can be queried to answer a contrastive question like "Why does
a path on b1 had a true (false) value, but is false (true) in b2?". bbl ,br

< can be queried as
"Which satisfied paths remained unchanged in both bl and br?". Clearly, features discarded
(added) by b2 are removed from paths of bb1,b2

= (bb1,b2
< ) as they are used by ψ1. We also

exclude the features that b2 no longer uses from sat(bb1,b2
= ), and the features added by b2
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from sat(bb1,b2
< ). After using the operators (<,=, =◯), we check for zero occurrence rules,

and remove them if they are never satisfied in the original datasets d1 and d2.
We can now define indicators that estimate the differences between b1 and b2 in terms of

classification paths to true added and deleted by b2 given b1.

Add(bb1,b2
= ) =

∣sat(bb1,b2
= )∣

∣sat(bb1,b2
= )∣+ ∣sat(bb1,b2

< )+ ∣sat(bbl ,br
=◯ )∣

(4.7)

Del(bb1,b2
< ) =

∣sat(bb1,b2
< )∣

∣sat(bb1,b2
= )∣+ ∣sat(bb1,b2

< )+ ∣sat(bbl ,br
=◯ )∣

(4.8)

Still(bbl ,br
=◯ ) =

∣sat(bbl ,br
=◯ )∣

∣sat(bbl ,br
= )∣+ ∣sat(bbl ,br

< )∣+ ∣sat(bbl ,br
=◯ )∣

(4.9)

Finally, the similarity in terms of variables between b1 and b2 is computed with the well
known Jaccard similarity metric as:

Jaccard(b1,b2) =
∣var(b1)∩ var(b2)∣
∣var(b1)∪ var(b2)∣

(4.10)

4.1.3 Natural Language Explanations

As the reader might note, reading BDDs might be impracticable even for experts. [22] argues
that in many XAI-based systems, not enough attention has been paid to the "last mile", the
presentation of explanations to end-users. Though the main contribution of our tool relies
on encoding the logic that differentiates the behaviour of two classifiers (Eq. 4.7, 4.8, 4.9),
we enriched it with a BDD2Text module that exhibits the added/deleted paths derived from
b= and b< to final users, using natural language. To do so, we follow the six NLG tasks
described by [49] that allow us generating natural language explanations. According to Gatt
and Krahmer, generating a natural language text from data (which can be in various forms
like tabular, textual, vocal or visual) requires to follow some broad steps:

• Deciding about the information and concepts that are going to be included in the final
text and (Content determination);

• The order of Information (Text Structuring and Sentence Aggregation);
• Choosing the right words which are needed in order to show the chosen content from

the previous step (Lexicalisation);
• Synthesising descriptions of entities that enable the audience to identify entities in

their specific context (Referring Expression Generation);
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• Applying grammar rules in order to generate a text which is correct both syntactically
and morphologically (Linguistic Realisation).

The principal text generation steps of BDD2Text module are: (i) redundancy reduction by
identifying common criteria and aggregating those with a significant amount of shared criteria
using Frequent Itemsets technique (see, e.g. [106]); (ii) utilising dynamic templates similar
to [109]; (iii) as a post-processing step, similar to [71] which uses colours and font-size to
increase the soundness of the explanations, we use ASCII escape codes to improve the visual
aspect of the final results by adding colours that show the presence and absence of features.

As our input data provides both the required information to be included and their order,
the first three tasks of “content determination”, “text structuring” and "sentence aggregation"
are not done by BDD2Text. To perform the remaining three tasks described above, we first
reduced the redundancy of text by identifying common criteria and aggregate those with a
significant amount of shared criteria using Frequent Itemsets technique, and to combine all
phrases together we performed "linguistic realisation" by utilising dynamic templates similar
to [109, 3, 98]. As the post-processing steps, similar to [71] which uses colours and font-size
to increase the soundness of the explanations, we use ASCII escape codes to improve the
visual aspect of the final results by adding colours that show the presence and absence of
features.

4.2 Working Example

The following example should help in clarifying the matter. Let us consider two binary
classifiers ψ1 and ψ2 as in Definition 2.1.1 trained on D1 and D2 respectively, as in Step 1. The
output of Step 1 is two BDDs, namely b1 and b2, encoding the (reduced) classification paths
synthesised from ψ1 and ψ2 on D1 and D2 (Figure 4.2a, and 4.2b). For the sake of simplicity,
we can assume b1 and b2 encode two distinct boolean formulae like f1 = (a∧b)∨ (a∧ c)
and f2 = ¬b∧ (c∨d). Then, the BDD computed as bb1,b2

= would represent all the reduced
paths (i.e., classification rules) that ψ2 used to classify instances of D2 that have not been
applied by ψ1 while classifying D1 (Figure 4.2c). Conversely, bb1,b2

< would represent all the
paths that ψ2 applied to classify instances of D2 but ψ1 did not use for classifying items of
D1 (Figure 4.2d). From those BDDs we can compute:
• sat(bb1,b2

= ) as all the true paths in bb1,b2
= that were either false paths in b1 or not present in

b1. Looking at Figure 4.2c, sat(bb1,b2
= ) = [b ∶ 0,c ∶ 1∣b ∶ 0,c ∶ 0,d ∶ 1]. This means ψ2

added (i) a true path in case of b ∶ 0 and c ∶ 1, in spite of the value of a, and (ii) a new
true path [b ∶ 0,c ∶ 0,d ∶ 1] that does not depend on the value of a anymore;
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• sat(bb1,b2
< ) as all the true paths in bb1,b2

< that were either false paths in b2 or not present
in b2. Looking at Figure 4.2d, sat(bb1,b2

< ) = [a ∶ 1,b ∶ 1]. This means ψ2 removed the
path leading to true instances classified through ψ1.

Therefore, the Add (Del) as in Equation 4.4 (4.5) is the ratio of added (deleted) paths over
the total number of paths which have been added or deleted. In our example, ψ2 mainly
changed three paths: 2 out of 3 paths were added as true paths whilst the remaining one was
removed.

0 1

c

0 1

b

1

0

a

0

1

(a) b1

0 1

d

0 1

c

1

0

b

1

0

(b) b2

01

d

01

c

1

0

b

1

0

c

1

0

b

1

0

a

0 1

(c) bb1,b2
=

0 1

b

0 1

a

0

1

(d) bb1,b2
<

Figure 4.2 ROBDDs for the working example. Each node indicates a feature. A solid line means that the feature
is present, while a dashed line that the feature is not present.

4.3 Time Complexity

The complexity of a single algorithm iteration, as in Procedure 1, depends on (i) the cost of
Trace and (ii) the cost of Explain steps, multiplied by the number of classes of the domain
(i.e., ∣C∣). The cost of Trace, in turn, depends on the time needed for generating the surrogate
plus the cost of generating the ROBDD from it. The former, in case of building a balanced
Decision Tree (DT), is O(nsamples ⋅n f eatures ⋅ lognsamples) while the latter is bounded by the
cost of reducing the BDD. Remember that the ROBDD encodes the logic of the surrogate,
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that mimics the original model by solving the Equation 3.1. This means the surrogate, and in
turn, the ROBDD is composed by fewer features, i.e. m f eatures << n f eatures, where m f eatures

is the number of features of the ROBDD. Hence, following [16] the cost of building such
a ROBDD is O(m f eatures ⋅ logm f eatures). Since nsamples >> n f eatures >> m f eatures, the cost
of Trace is bounded by O(nsamples ⋅ n f eatures ⋅ lognsamples). On the other side, the Explain
step depends on the cost of computing Equation 4.4, 4.5, 4.7, and 4.8, that requires (i)
to manipulate two ROBDDs to compute Definition 4.4, 4.5, and (ii) to compute sat(⋅, ⋅)
as argument of Equation 4.7, 4.8 over them. According to [16], the cost of the apply
operator, needed for computing Equation 4.4, 4.5 is O(mb1

f eatures ⋅m
b2
f eatures) while the cost

of computing sat(⋅, ⋅) is O(m f eatures). Then, the cost of the Explain step is bounded by
O(mb1

f eatures ⋅mb2
f eatures). Recalling m f eatures << n f eatures, the cost of a single iteration is

bounded by the cost of generating the surrogate, that leads the cost of running the algorithm
over all C classes to O(∣C∣ ⋅nsamples ⋅n f eatures ⋅ lognsamples).
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5
Experimental Results for Text

5.1 Datasets and Settings for Reproducibility

20newsgroups is a well-established benchmark used in [65] to build a reproducible text
classifier, and in [108], to evaluate LIME’s effectiveness in providing local explanations. It
is composed of 18,446 newsgroup documents, partitioned evenly across 20 different topics
(classes). The inputs D1 and D2 are organised by date, and their size is 11,314 and 7,532
news records, respectively, whilst the number of classes is 20 classes (i.e., multiclass).

In terms of running time, ContrXT never required more than 2 minutes to run on 20news-
group.

ContrXT is model-agnostic, as it can deal with any supervised machine learning al-
gorithm.. We evaluated ContrXT in terms of approximation quality (i.e., the fidelity of
the surrogate) to the input model to be explained. To this end, we ran ContrXT over dif-
ferent classifiers, trained through the most used algorithms, such as Linear Regression
(LR), Random Forest (RF), Support Vector Machine (SVM) with RBF, Naive Bayes (NB),
Bidirectional Gated Recurrent Unit (bi-GRU) [28] with a single hidden layer of dimension
100 and dropout, and Bidirectional Encoder Representations from Transformers (BERT) [32]
(bert-base-uncased) with a sequence classification layer on top. Results are shown in Ta-
ble 5.1. Hyperparameter selection was automated with a grid search. For each model, the
best performing parameters were selected using 5-fold cross validation. The following
set of hyper parameters were selected: (LR) {L2 penalty, no penalty}, (RF) max depth
∈ {5,10,20,100}× number of estimators ∈ {50,100}, (SVM) C ∈ {1,10,100}× gamma ∈
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{auto, scale}, (NB) α ∈ {0.1,0.01,0.001}, (bi-GRU) epochs ∈ {5,10,20,40}× batch size
∈ {8,16,32,64} optimiser ∈ {Adam,RMSprop}, (BERT) learning rate ∈ {5e−5,2e−5}×
eps ∈ {1e−8,1e−5}× optimiser ∈ {Adam,AdamW}. To select the surrogate algorithms to
implement within ContrXT, we considered and evaluated all the global surrogate models
surveyed by [18], presenting the state of the art. Clearly, approaches whose outcome is
limited to the feature importance values (e.g., SP-LIME [108] and k-LIME [58]) fall outside
the goal of ContrXT, therefore, they were not considered. Unfortunately, we found that
many papers surveyed by [18] do not provide the code freely available, thus they were
discarded (e.g., [9, 66, 112]). Compared to the models providing code and using decision
rules, ContrXT relies on decision trees to build the surrogate, though it might be extended to
include additional surrogate algorithms in the future.

5.2 Evaluation on Benchmark

Table 5.1 ContrXT on 20newgroups (Dt1 , Dt2 from [65]) varying the ML algorithm.
• is the best surrogate.

ML Algo Model F1 weighted Surrogate Fidelity F1 weighted
Dt1 Dt2 Dt1 Dt2

LR 0.88 0.83 0.76 (±0.06) 0.78 (±0.07)
RF 0.78 0.74 0.77 (±0.06) 0.79 (±0.07)

SVM 0.89 0.84 0.76 (±0.06) 0.78 (±0.06)
NB 0.91 0.87 0.76 (±0.06) 0.78 (±0.06)

bi-GRU 0.79 0.70 0.77 (±0.06) 0.78 (±0.06)
BERT 0.84 0.72 0.78 (±0.05) • 0.83 (±0.06) •

5.2.1 Analysis of Results

ContrXT provides to users (i) BDDs, (ii) indicators that estimate the change in the classifica-
tion criteria, and (iii) BDD2Text to allow users reading the changes through text.

Indicators estimate the differences among the classification paths of the two BDDs through
the ADD and DEL values (see Equation 4.7 and 4.8). To compare ADD and DEL across
classes, we compute the ADD_Global (DEL_Global) as the number of paths to true in b=

(b<) over the corresponding maximum among all the bc
= (bc

<) with c ∈C. In the case of a
multiclass classifier, as for 20newsgroup, ContrXT suggests focusing on classes that went
through major alterations from ψ1 to ψ2, distinguishing between three groups according to
their ADD and DEL values being above or below the 75th percentile.
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Figure 5.1 Indicators for the changes in classification paths from t1 to t2 for each 20newsgroup class, using a
DT surrogate to explain a BERT classifier. On the x-axis we present the classification classes and on the y-axis
the ADD/DEL indicators presented in Section 4.1.2.

Group 1 (55%) contains classes below both 75th percentile thresholds, showing the classi-
fier did not change its criteria significantly;

Group 2 (40%) contains classes that have either ADD_Global or DEL_Global above the
third quartile. This means there are some classes for which the classifier either added
or deleted a number of criteria above the threshold;

Group 3 (5%) contains classes having both ADD_Global and DEL_Global values above
the threshold. Those classes might have classification criteria which very differently
with respect to the past.

One might inspect how the classification changes from ψ1 to ψ2 for each class, i.e., which
are the paths leading to class c in b1 (before) that lead to other classes at time b2 (now) (added
paths) and those who lead to c in b2 that were leading to other classes in b1 (deleted paths).
Some examples are provided in Figure 5.2, showing classes having higher/lower of ADD
and DEL values as in Figure 5.1. Specifically, one might concentrate on the class atheism
that is provided in Figure 5.2a, as for this class, the number of deleted paths is higher than
the added ones (Figure 5.1). Since a path (or classification rule) is a combination of criteria
(or splitting rules) from the root to a leaf of the BDDs (b= and b<), different paths can share
one or more criteria. For example, the presence of the word bill leads the ψ2 classifier to
assign the label atheism to a specific record whilst the presence of such a feature was not
a criterion for the ψ1 classifier. Conversely, the BDD2Text demonstrates that ψ1 used the
feature keith to assign the label, whilst ψ2 discarded this rule. Actually, both terms refer to
the name of the posts’ authors: Bill’s posts are only contained within Dt2 whilst Keith’s ones
are more frequent in Dt1 rather than Dt2 . On the other side, ψ2 discarded the rule having
political_atheist that was sufficient for ψ1 for classifying the instance.
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BDD2Text allows the user to discover that regardless of BDD2Text allows discovering
that though the accuracy of ψ1 and ψ2 is high, the underlying learning functions (i) learned
terms that might be discarded during the preprocessing (e.g., the name of the posts’ authors
to decide whether a post is about atheism), (ii) ψ2 persists in relying on those terms, which
are changed after retraining (using bill instead of keith), and (iii) having political_atheist is
no longer enough to classify in the class.

The example of Figure 5.2a sheds light on the goal of ContrXT : providing to the final
user a way to investigate why ψ2 classified documents to a different class with respect to ψ1,
as well as monitoring future changes. The generated explanations help the user in answering
the driving questions we draw in Chapter 1, that are (Q1) observing the classification logic
of a machine learning-based system over multiple training phases (Q2) for understanding
why the newly trained model is classifying data differently after retraining on Dt2 through
natural language (Q3).

ADD/DEL is not correlated with the Accuracy of the models. All classifiers perform
well in terms of F1-score (see Table 5.1). To assess the presence of a correlation between
ADD/DEL and the change in performance of the classifiers in terms of F1-score, we compute
the Spearman’s ρ between the ADD of every class and its change in F1-score between the
two classifiers, and the equivalent for the DEL. The correlation values are not significant,
p = 0.21, ρ = −0.14 for ADD and p = 0.21, ρ = 0.14 for DEL1. This confirms that ADD and
DEL are not related to the F1-score of the trained model. Instead, they estimate its behaviour
change handling new data, considering which classification paths have been added or deleted
with respect to the past.

5.3 Evaluation through Human Subjects

User Study Design. We designed a study to assess if - and to what extent - final users can
understand and describe what differs in the classifiers’ behaviour by looking at BDD2Text
outputs. We recruited 152 participants from prolific.co [96], an online service which provides
participants for research studies. Prolific has been preferred to Amazon MTurk as the latter
only has the US and Indian participants, lacking European ones. Participants were asked to
look at four BDD2Text textual explanation and to select one (or more) statements according
to the meaning they catch from BDD2Text. For example, a participant is asked to select
among the following statements as they emerge from Figure 5.2a.

1Notice the two ρ values are mutual as ADD + DEL = 1
2Each participant is compensated £10
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(a) alt.atheism (b) misc.forsale

(c) misc.forsale (d) rec.sport.baseball

Figure 5.2 The ContrXT output in the multiclass case using the BERT model of Table 5.1 for (a) alt.atheism;
(b) misc.forsale; (c) rec.sport.baseball; (d) talk.religion classes, using the BERT model of Table 5.1.

(A) Not having neither "atheists" nor "political_atheists" alone indicates a classification rule
that applies in both t1 and t2;

(B) Together with other criteria, having "keith" can indicate both added and deleted paths

(C) Having "bill" but neither "atheists" nor "political_atheists" has been used in t2 but not
in t1.

In the example above, only (C) can be derived from Figure 5.2a whilst (A) and (B) should
be considered as erroneous, as they are not reflected in Figure 5.2a. Results showed that
the participants understood the BDD2Text format and answered with an 89% accuracy on
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average, and an F1-score of 87%. For the sake of transparency, the complete survey, along
with the results of the survey and the transaction ids have been made publicly available on
the github repo of ContrXT.

Do Subjects agree on the evaluation? Finally, we computed Krippendorff’s alpha coeffi-
cient, which is a statistical measure of the extent of agreement among users. We reached
an alpha value of 0.7, which Krippendorff considers as acceptable to positively assess the
subjects consensus [70].
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Experimental Results for Tabular

6.1 Datasets and Settings for Reproducibility.

Experiments have been carried out on eight different tabular benchmark datasets. Basic
information about each and citations are provided in Table 6.1. We divide the experiments in
two kinds of M-contrast: (i) varying the learning function while keeping the underlying data
unchanged, and (ii) varying the training data while keeping the learning function unchanged.
In the case of varying data, each dataset has been split in two, Dl and Dr based on the value
of one attribute. The decision of which attribute and its value depends on each dataset:
Adult [68] The Adult dataset aims to predict whether a person earns more than $50k yearly

based on the available socio-economic attributes. The split was performed on the
person’s age being above or below median.

Bank Marketing [91] Bank marketing’s goal is to predict if a bank client will subscribe a
term deposit. Split on two different marketing campaigns.

Wisconsin Breast Cancer [87] is a popular benchmark for cancer prognosis. Split on breast
position (left/right).

Compas In Compas, each defendant is classified as a low, medium or high risk individual,
given its criminal history and demographics. Split on age above or below median.

Cover [10] Cover classifies forest cover type from cartographic variables. Split on two
different wilderness areas.
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Occupancy [23] Occupancy is a binary classification dataset that estimates room occupancy
from light, humidity, temperature and C02 values. Split on time of the day - between 8
am and 8 pm, or the opposite.

OnlineShoppers [110] OnlineShoppers collects user website sessions and aims to predict
the intent to purchase an item. Split on day of the week, whether it is the weekend or
not.

TD [103] TD classifies whether a patient is affected by thyroid disease. Split on age above
or below median.

Table 6.1 Statistics and references about the datasets used for the experimental study.

Dataset # Instances # Classes URL Source Bib

Adult 48,000 2 UCI ML Repository [68]
Bank Marketing 45,000 2 UCI ML Repository [91]
Breast Cancer 286 2 UCI ML Repository [87]
Compas 37,000 3 ProPublica Data Store N/A
Cover 581,000 4 UCI ML Repository [10]
Occupancy 20,000 2 UCI ML Repository [23]
Online Shoppers 12,000 2 UCI ML Repository [110]
TD 7,000 3 UCI ML Repository [103]

ContrXT is model-agnostic, validated on its ability to replicate and explain any black
box model. To this end, we ran ContrXT over different classifiers, trained through the
most used algorithms, such as linear regression (LR), random forest (RF), support vector
machines with RBF (SVM), Naive Bayes (NB) and eXtreme Gradient Boosting (XGB).
Hyperparameter selection was automated with a grid search. For each model, the best
performing parameters were selected using 5-fold cross validation. The following set of hyper
parameters were selected: (LR) {L2 penalty, no penalty}, (RF) max depth ∈ {5,10,20,100}×
number of estimators ∈ {50,100}, (SVM) C ∈ {1,10,100}× gamma ∈ {auto, scale}, (NB)
α ∈ {0.1,0.01,0.001}, (XGB) default hyperparameters. After training the black box models,
we have chosen the best performing one for each dataset, shown in Table 6.2. We also note
the performances on each split with the F1 weighted score, which are in line with what is
presented in the literature.

Due to ContrXT’s requirement of having only binary or ordinal variables as inputs,
categorical attributes were represented with an one-hot encoding. In the case of continuous
variables, a discretization step need to be applied beforehand. This has been implemented
as a one-hot encoding in quantiles, with the number of quantiles being different for each
dataset.
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6.2 Consistency: Fidelity of Surrogate Models

Table 6.2 ContrXT experimental results on tabular datasets, varying the underlying data. Performance in terms
of F1 weighted score (F1w) on each dataset (left, right) of the best performing ML algorithm and its surrogates.
Mean and standard deviation of surrogate models are calculated over each class of the dataset.

Dataset Best Algo Model F1w Surrogate Fidelity F1w
l r l r

Adult RF 0.94 0.87 0.89 (±0.00) 0.86 (±0.00)
Bank Marketing XGB 0.89 0.89 0.87 (±0.00) 0.86 (±0.00)
Breast Cancer LR 0.77 0.68 0.94 (±0.00) 0.87 (±0.00)

Compas SVC 0.67 0.47 0.92 (±0.03) 0.86 (±0.05)
Cover RF 0.86 0.85 0.87 (±0.07) 0.84 (±0.06)

Occupancy SVC 0.97 0.99 0.99 (±0.00) 0.99 (±0.00)
Online Shoppers NB 0.86 0.87 0.94 (±0.00) 0.95 (±0.00)

TD XGB 0.92 0.90 0.93 (±0.01) 0.95 (±0.01)

Tabs. 6.2 and 6.3 show the average fidelity of the surrogates built by ContrXT, in the form
of F1 weighted score; the first during the experiments varying the data, the latter varying the
learning function. Hyperparameters for each model used in Table 6.3 noted in footnote 1.
This confirms the ability to consistently replicate the decisions of the black box model, as the
fidelity is in all cases high, with up to 99% in the case of models trained on simple datasets
such as the case of Occupancy.

The fidelity does not correlate with the discretization selected The hyperparameters of
the surrogate model have a significant effect on fidelity. The maximum depth of the decision
tree is the most significant one, as a more complex model has higher fidelity, but is also
harder to explain. We have found a positive correlation between the two using an OLS linear
regression (p=0.002). The second parameter we are interested in is the discretization method;
in this case by modifying the number of quantiles in which the continuous variables are split.
We have tested 2, 4 or 10 quantiles for each dataset. In this case, the fidelity does not seem to
have a significant correlation with the number of quantiles in a OLS regression (p=0.069).
We deduct that the discretization of continuous variables are not to be chosen automatically,
it is dependent on the dataset and requires expert knowledge to be chosen. For example, for

1(a) C: 1, gamma: scale, kernel: rb, (b) C: 10, gamma: auto, kernel: rb, (c) C: 10, gamma: scale, kernel:
rb, (d) C: 100, gamma: auto, kernel: rb, (e) alpha: 0.001, (f) alpha: 0.01, (g) alpha: 0.1, (h) max depth: 10, n
estimators: 100, (i) max depth: 20, n estimators: 100, (j) max depth: 20, n estimators: 50, (k) penalty: l2, (l)
Default hyperparameters

49



Chapter 6. Experimental Results for Tabular

an "age" attribute, a specific domain could split the variable between children, middle aged
people and elderly, while a different one might require a different approach.

Figure 6.1 Global Natural Language Explanation for the Occupancy dataset, using tree surrogates.

6.3 Evaluation on Benchmark

In order to highlight the usefulness of ContrXT, in this section we show its output on the
benchmark dataset Occupancy [23], varying the underlying data. The dataset deals with the
prediction of occupancy in an office room using data from light, temperature, humidity and
CO2 sensors.

We split the original dataset in two: Dl comprises data obtained during daytime, between
8 AM and 8 PM, while Dr contains the remaining data obtained during nighttime. The
accuracy of our trained black box models is high for both classifiers, as shown in tab 6.1, and,
even after the numerical variables being discretised, it is comparable to the best performing
model shown in the original paper - a Linear Discriminant Analysis (LDA) with 99.33%
accuracy. The fidelities of the surrogate models are also very high, as the classifier is able
to estimate the occupancy with few variables and a simple CART surrogate can mimic the
original black box almost perfectly.

Our main objective by using ContrXT is to understand the differences between the two
classifiers. The best way to do that is to inspect figure 6.1, which shows the output of the
Natural Language Explanation from ContrXT . We can inspect the differences between the
classification paths of the BDD generated by the two classifiers: one path has not changed
between ψl and ψr; an high level of light, in the 4th quartile, means that the room is well lit
and is the best indicator for showing whether it is occupied or not. There is also one added
path in ψr: having the light variable in the 3rd quartile now leads to a positive classification,
which was not true in ψl . We comment this by pointing out that during daytime the light in
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this 3rd quartile would not have been sufficient to positively classify a data instance, but it is
so during nighttime.

6.3.1 Dealing with Ordinal Attributes and Different Surrogate Models

Figure 6.2 Global Natural Language Explanation for the Occupancy dataset, using the RuleFit surrogate model
and encoding the continuous variables with an ordinal discretisation.

ContrXT was only able to deal with the boolean presence or absence of a feature -
which is adequate in the context of a text classifier, where features are words. In a tabular
dataset, however, every continuous variable requires discretisation into an ordinal partition,
and subsequently a one-hot encoding to transform it into multiple boolean attributes. For
example, if the variable Age is split in four quartiles, ContrXT could find added decision
paths such as "the target class is now positive if the age is not in the third quartile"; lacking
any information about the other quartiles, as seen in Figure 6.1.

By not applying the one-hot encoding and keeping the attribute as an ordinal feature,
ContrXT is now able to give more insightful explanations on continuous data. Using the
same example of the Occupancy dataset, in Figure6.2 it is shown how the classification
rules now have ordering. The new rules are not identical to Figure 6.1 as the underlying
data encoding is different, however, it seems that the overall logic is similar, light being the
common feature in both.

In this example we have also used the RuleFit [43] algorithm, that is available only for
tabular classifiers, as it does not support the large number of features of text classifiers. If
required, we remind that it is also possible to implement additional types of surrogate models.
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Figure 6.3 Heatmap showing a pairwise evaluation of the Add, Del, Still indicators with ContrXT , varying the
Machine Learning model and hyperparameters used.

6.3.2 Get Rule Examples

The NLE shows the differences between the two models. However, a user might also wish to
see example instances in the datasets where these rules apply.

To do so, ContrXT provides the get_rule_examples function, which requires the user to
specify a rule to be applied and the number of examples to show. ContrXT applies the rule
to Dl and Dr, specifying the number of document classified by that rule and provides some
examples, highlighting the portion in which the rule applies, as in Figure 6.5.

Notice this function is also useful to check the consistency of a specific rule, that is, for
an add rule, its prevalence should be higher in Dl , for a del rule the opposite, while for a still
rule the should be roughly equivalent in both Dl and Dr.

6.3.3 Indicators

ContrXT also summarises quantitatively the changes through Add/Del indicators as presented
in step (D). Since Add_Global and Del_Global are applicable only in the multiclass case,
in Figure 6.4 we show the results for the Cover dataset, a multiclass example. One can
inspect which classes have changed the most, focusing on the ones that went through major
alterations.
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Figure 6.4 Indicators for the changes in classification paths from Dl to Dr for each class in the Cover dataset,
using a DT surrogate to explain the change in two Random Forest classifiers. On the x-axis we present the
classification classes and on the y-axis the Add/Del indicators Step (E).

6.3.4 ContrXT helps understanding the coherence between machine
learning models

Different machine learning models might have similar performances on the same data, but
this does not guarantee their decision function are similar as well. For instance, in Table 6.3
we can observe that for the dataset Adult the worst machine learning models present a an
F1-weighted of 0.744, but this does not mean that at least 74.4% of the instances have
been classified with the same rules by all the classifiers. In this section, we want to show
how ContrXT can be used to understand how much the behaviour of two machine learning
classifiers is similar, beyond their performances. To this aim, we trained 19 machine learning
models on the same dataset, Adult, and we perform a pairwise evaluation of them using
ContrXT. In Figure 6.3 we present two heatmaps. In the first one, we show the Add of the
model on the row in green in the lower triangular matrix and its Del in red in the upper
triangular. In the second matrix, which is symmetric, we show the Still. As we can see,
those value vary considerably across the different models. For instance, when we train on the
same dataset two NB classifiers only changing the value of alpha from 0.1 to 0.01, we would
expect the model will behave in a similar way. Indeed, the still is 1 (i.e., the rules found
by ContrXT for the two models are the the same) and consequently there are no added or
deleted rules. This also shows that if two models are coherent, the explanations generated
from ContrXT are coherent as well. For other models, the behaviour is completely different.
For instance, the NB models add 29% of the rules w.r.t the logistic regression, and delete 9%
of the rules. As a consequence, the Still between those models is 0.62. In some cases the still
is even lower than 0.5, with a minimum of 0.2 between the RF with 50 estimators and max
depth of 5 and the SCV with C=100, meaning than training those two models on the same
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Figure 6.5 ContrXT shows examples in which a rule applies in the Occupancy dataset.

dataset, even if they have similar performances, they might learn largely different decision
functions. This confirms the fact that in some cases the similarity of the performances is not
enough to evaluate the similarity between different models, and that the model contrastive
explanations generated by ContrXT capture those difference and might help humans to better
understand the difference between classification models.
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Table 6.3 ContrXT experimental results, varying the underlying learning function. Performance in terms of F1
weighted score (F1w) on each dataset (left, right) of each ML algorithm and its surrogates.

Model Contr F1w Surr. F1w
Dataset l r l r l r

Adult

LRk

RF j

.845

.839

.90 (±0)
.85 (±0)

SVCa .744 .89 (±0)
NBg .793 .92 (±0)
XGBl .843 .86 (±.01)

RF j
SVCa

.839
.744

.85 (±0)
.89 (±0)

NBg .793 .92 (±0)
XGBl .843 .86 (±.01)

SVCa NBg

.744 .793
.89 (±0) .92 (±0)

XGBl .843 .86 (±.01)
NBg XGBl .793 .843 .92 (±0) .86 (±.01)

BankMarketing

LRk

RFi

.920

.920

.96 (±.01)
.87 (±.02)

SVCa .781 .78 (±.02)
NBe .893 .94 (±0)
XGBl .913 .89 (±0)

RFi
SVCa

.920
.781

.87 (±.02)
.78 (±.02)

NBe .893 .94 (±0)
XGBl .913 .89 (±0)

SVCa NBe

.781 .893
.78 (±.02) .94 (±0)

XGBl .913 .89 (±0)
NBe XGBl .893 .913 .94 (±0) .89 (±0)

BreastCancer

LRk

RFi

.752

.748

.86 (±0)
.69 (±.08)

SVCd .734 .71 (±.05)
NBg .749 .95 (±.07)
XGBl .702 .65 (±.03)

RFi
SVCd

.748
.734

.69 (±.08)
.71 (±.05)

NBg .749 .95 (±.07)
XGBl .702 .65 (±.03)

SVCd NBg

.734 .749
.71 (±.05) .95 (±.07)

XGBl .702 .65 (±.03)
NBg XGBl .749 .702 .95 (±.07) .65 (±.03)

Compas

LRk

RFh

.669

.647

.87 (±.07)
.86 (±.06)

SVCa .582 .85 (±.06)
NBg .658 .91 (±.03)
XGBl .628 .84 (±.05)

RFh
SVCa

.647
.582

.86 (±.06)
.85 (±.06)

NBg .658 .91 (±.03)
XGBl .628 .84 (±.05)

SVCa NBg

.582 .658
.85 (±.06) .91 (±.03)

XGBl .628 .84 (±.05)
NBg XGBl .658 .628 .91 (±.03) .84 (±.05)
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Table 6.3 ContrXT experimental results, varying the underlying learning function (continued).

Model Contr F1w Surr. F1w
Dataset l r l r l r

Cover

LRk

RFi

.719

.758

.92 (±.10)
.78 (±.18)

SVCa .740 .66 (±.38)
NBg .666 .88 (±.09)
XGBl .760 .90 (±.12)

RFi
SVCa

.758
.740

.86 (±.12)
.66 (±.38)

NBg .666 .84 (±.12)
XGBl .760 .78 (±.15)

SVCa NBg

.740 .666
.66 (±.38) .92 (±.04)

XGBl .760 .89 (±.09)
NBg XGBl .666 .760 .84 (±.12) .78 (±.15)

Occupancy

LRk

RF j

.976

.980

1.00 (±0)
.99 (±0)

SVCb .980 .99 (±0)
NBg .951 .99 (±0)
XGBl .981 .99 (±0)

RF j
SVCb

.980
.980

.99 (±0)
.99 (±0)

NBg .951 .99 (±0)
XGBl .981 .99 (±0)

SVCb NBg

.980 .951
.99 (±0) .99 (±0)

XGBl .981 .99 (±0)
NBg XGBl .951 .981 .99 (±0) .99 (±0)

OnlineShoppers

LRk

RFi

.888

.892

.93 (±0)
.85 (±.01)

SVCb .893 .96 (±0)
NB f .855 .95 (±0)
XGBl .886 .90 (±.01)

RFi
SVCb

.892
.893

.85 (±.01)
.96 (±0)

NB f .855 .95 (±0)
XGBl .886 .90 (±.01)

SVCb NB f

.893 .855
.96 (±0) .95 (±0)

XGBl .886 .90 (±.01)
NB f XGBl .855 .886 .95 (±0) .90 (±.01)

TD

LRk

RF j

.941

.934

.93 (±.01)
.81 (±.07)

SVCc .928 .89 (±.07)
NBg .935 .93 (±.01)
XGBl .928 .82 (±.06)

RF j
SVCc

.934
.928

.81 (±.07)
.89 (±.07)

NBg .935 .93 (±.01)
XGBl .928 .82 (±.06)

SVCc NBg

.928 .935
.89 (±.07) .93 (±.01)

XGBl .928 .82 (±.06)
NBg XGBl .935 .928 .93 (±.01) .82 (±.06)
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The tool has been implemented as a Python library, and can be installed with the standard
pip package installer.

The input parameters that users needs to specify are as follows:
• (Required) the feature data (can be training or test, labelled or unlabelled). Text data

must be in the form of a list of documents, while tabular data as a Pandas dataframe;
• (Required) the corresponding labels predicted by the classifier;
• (Optional) a save path where to save all the results, as .csv files and images. You can

choose with different parameters whether you want to save the fidelities as .csv files,
the surrogate model paths, and the BDD represented as images

• (Optional) whether you want to perform an hyperparameter selection on the surrogate
models, and if so, you can specify the grid search parameters;

• (Optional) the surrogate algorithm to use (CART is the default);
• (Optional) the coverage of the dataset to be used (100% as default), otherwise a

sampling procedure is used (as in Procedure 1, lines 5-16);
• (Optional) the Γ value (as in Definition 3.2.2) as a measure of complexity of the

surrogate, e.g. the max number of decision rules (leaf nodes) in case of DT.
The tool automatically checks if the couple (data type, surrogate algorithm is viable. For

example, using the Rulefit algorithm with text data is not recommended, because of the long
computation times due to large number of features, and the user will be warned.
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7.1 Implementation

The tool is implemented in two main classes, called Trace and Explain, as described by
Sec. 4.1.1 and 4.1.2. They contain the main logic described in the algorithm. In this section,
we will explain in detail their technical implementation in Python.

7.1.1 Trace

The Trace class deals with generating surrogate models and the corresponding BDDs for
each category from input data, as in Sec. 4.1.1. First, it assigns internally input parameters,
such as the grid search hyperparameter settings, what kind of output data and images to save
and the path where they should be located, the surrogate to use and the type of data (text or
tabular). The training data and labels are saved in the DataManager class, a support class.
Depending on the type of data, a TextDataManager or TabularDataManager class can be
instantiated. Both inherit the same functions from DataManager, but the implementation is
not equal, due to the intrinsic differences in the data types. Two instances of DataManager
are instantiated during the Trace step, one for each dataset D. This class performs some
useful functions:

• First, it checks if the column names are valid. Since they are used as feature names
in the BDDs, they should not contain some special characters which could interfere
with the implementation in Python. The pyEDA 1 library is later used for synthesising
BDDs, and it does not accept some type of character in the feature names, e.g. the
question mark. When using textual data, this check is performed on the training corpus,
since the words in the documents will become BDD features;

• Then, it performs a sampling of the dataset if requested by the user. The percentage
of data is an input parameter, defaulted to 1, meaning no sampling will be performed
without being explicitly asked to do so;

• It organises the data by assigning the training data and black box labels for each
c ∈ C in a dictionary. If the data is composed of text documents, they must also be
transformed to a one-hot encoded sparse matrix.

The tool uses the scikit-learn [101] or Rulefit [43] libraries for generating surrogates.
Those are implemented respectively in the SklearnSurrogate and RulefitSurrogate classes,
both inheriting from the base class GenericSurrogate. In the future it is possible to eas-

1https://github.com/cjdrake/pyeda
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ily extend the tool to add other surrogate algorithms, by adding new children classes to
GenericSurrogate. The main functions to implement are:

• Hyperparameters selection using 5-fold cross validation, as explained in Sec. 2.2. The
grid search parameters can be chosen by the user;

• Fit the surrogate model to the available data and black box predictions using the
parameters with the highest fidelity from the previous step;

• Compute the fidelity score between the surrogate predictions and the original black
box labels to evaluate the performance;

• Transform the interpretable model to a BDD string parsable by pyEDA;
• Optionally save the surrogate model for inspection, for example with a visualization.
The implementation differs based on the surrogate used, for example the transformation

of the surrogate to a BDD string using scikit-learn decision trees is shown in Listing 7.1.

1 d e f s u r r o g a t e _ t o _ b d d _ s t r i n g ( s e l f ) :
2 ’ ’ ’ Trans fo rm a s c i k i t − l e a r n s u r r o g a t e d e c i s i o n t r e e t o BDD s t r i n g

u s i n g d e p t h f i r s t s e a r c h .
3 ’ ’ ’
4 s t a c k = [ ]
5 s e l f . bdd = [ ]
6

7 d e f _ t r e e _ r e c u r s e ( node ) :
8 i f s e l f . t r e e . f e a t u r e [ node ] == TREE_UNDEFINED :
9 # Leaf node , ba se c a s e

10 v a l u e = np . argmax ( s e l f . t r e e . v a l u e [ node ] [ 0 ] )
11 i f v a l u e == 1 :
12 p a t h = ’ & ’ . j o i n ( s t a c k [ : ] )
13 s e l f . bdd . append ( p a t h )
14 s e l f . p a t h s [ p a t h ] = s e l f . t r e e . n_node_samples [ node ]
15 r e t u r n
16

17 # R e c u r s i o n c a s e
18 name = s e l f . f e a t u r e _ n a m e s [ s e l f . t r e e . f e a t u r e [ node ] ]
19 s t a c k . append ( f ’ ~{name} ’ )
20

21 # Recur se t o t h e l e f t c h i l d r e n
22 _ t r e e _ r e c u r s e ( s e l f . t r e e . c h i l d r e n _ l e f t [ node ] )
23

24 s t a c k . pop ( )
25 s t a c k . append ( name )
26

27 # Recur se t o t h e r i g h t c h i l d r e n
28 _ t r e e _ r e c u r s e ( s e l f . t r e e . c h i l d r e n _ r i g h t [ node ] )
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29

30 s t a c k . pop ( )
31

32 # S t a r t w i th t h e r o o t o f t h e t r e e
33 _ t r e e _ r e c u r s e ( 0 )
34 s e l f . bdd = ’ | ’ . j o i n ( s e l f . bdd )

Code 7.1 Transforming a scikit-learn decision tree to a BDD string.

The algorithm traverses the tree using depth-first search to write a pyEDA valid string.
A valid string is in the form of ”a & ∼ b ∣ a & b & ∼ c”, where & defines logical AND, ∣
defines logical OR, ∼ defines logical NOT, and the literals represent feature names. Line
4 and 5 instantiate two lists, the first being a stack that keeps track of which features are
visited in the currently evaluated classification paths, the second is a list that records already
visited paths. The procedure begins at the root of the tree, node 0, and uses recursion to
navigate each classification path until its end, first to the left child of the current node and
then to the right. Every downward traversal adds a feature to the stack, moving to left child
represents a negation on the feature, while the right child includes a positive feature. The
base case of the recursion corresponds with a leaf, that is implemented in scikit-learn as a
node where the feature is equal to the TREE_UNDEFINED value. Since it represents the
end of a classification path, the features that have been collected are joined by the & symbol
and are appended to the list of paths. Only the paths that result in the positive class are added
to form a valid pyEDA string. Finally, after traversing the whole tree, the list of paths are all
joined with the ∣ operator.

To recap, the Trace class is responsible for creating a surrogate for each c ∈C, using the
surrogate models and the data managers, converting them to pyEDA strings as described
above and saving the results for the following Explain phase. Table 7.1 shows a potential
output of the Trace step.

Table 7.1 An example output of the Trace step. Some columns are not shown for shortness: dataset, runtime
(seconds), percentage of data, hyperparameter settings of the surrogate. additional fidelity indicators e.g.
accuracy score.

Class ID BDD String F1 Score Recall Precision

Atheism ∼God & Atheists | God & PoliticalAtheists 0.969 0.944 0.995
Graphics Image & Format | Graphics & ∼Image 0.989 0.981 0.998
Windows ∼Windows & Dos | Windows & Microsoft 0.949 0.91 0.991
Hardware ∼Pc & Motherboard | ∼Drive & ∼Card & Pc 0.978 0.962 0.995
Mac Mac & Apple | ∼Mac & Centris 0.97 0.95 0.99
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7.1.2 Explain

The Explain step can be executed after Trace, as explained in Sec. 4.1.2. It deals with
manipulating the BDDs generated to explain how ψ1 and ψ2 differ/similar.

The pyEDA library is a Python library for electronic design automation that features sym-
bolic Boolean algebra with a selection of function representations, such as logic expressions,
truth tables with three output states (0, 1, “don’t care”), and BDDs. It is used to perform the
logical operations Add, Del and Still described in Eq.4.7, 4.8 and 4.9. Listing 7.2 shows their
simple implementation, where s1 and s2 are two strings as shown in Table 7.1:

1 from pyeda.inter import expr , expr2bdd
2

3 f = expr2bdd(expr(s1))
4 g = expr2bdd(expr(s2))
5

6 f_add = ~f & g
7 f_del = f & ~g
8 f_still = f & g
9

10 sat_add = len(list(f_add.satisfy_all ()))
11 sat_del = len(list(f_del.satisfy_all ()))
12 sat_still = len(list(f_still.satisfy_all ()))

Code 7.2 Using PyEDA to manipulate BDDs.

The operations above are performed for each c ∈ C. Table 7.2 shows an example of
the indicators output of the Explain step. Other metrics are saved, such as the number of
features in each BDD, their union and Jaccard similarity as in Eq. 4.10. The Add, Del and
Still BDDs can be visualized using the Graphviz software, an example of this output is seen
in Figure 3.1.

Table 7.2 An example output of the Explain step. Some columns are not shown for shortness: number of features
(nodes) in each BDD, their union and Jaccard similarity, runtime (seconds).

Class ID Add Del Still Sat Add Sat Del Sat Still

Atheism 0,667 0,167 0,167 4 1 1
Graphics 0,333 0,333 0,333 2 2 2
Windows 0,2 0,2 0,6 1 1 3
Hardware 0,333 0,333 0,333 2 2 2
Mac 0,333 0,667 0 1 2 0

Each path of the resulting BDDs is a rule that can be used to find the number of occur-
rences matching it in the whole dataset, in the subset of the expected class and it can be used
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Figure 7.1 Showing examples of a particular rule in the data.

to find some relevant examples for further inspection. Figure 7.1 shows examples that match
the rule "Developer & ∼TeachLead & ∼Project". The user can choose the number of rules to
show, up to the maximum of instances that match the rule in the dataset. This function can
highlight the consistency of a specific rule.

Finally, Natural Language Explanations (NLE) exhibits the added/deleted paths derived
from b=, b< and b=◯ to final users through natural language. Our methodology uses the last
four steps of six NLG tasks described by [49], responsible for microplanning and realisation.
In our case, the structured output of BDDs obviates the necessity of document planning
which is covered by the first two steps.

The explanation is composed of three main parts, corresponding to Add, Del and Still
paths. Content of each part is generated by parsing the BDDs, extracting features, aggregating
them using Frequent Itemsets technique [106] to reduce the redundancy, inserting the related
parts in the predefined sentences [109] and finally, adding colours and styling to increase
the comprehensibility of the explanations by the final users. A post-processing step is also
implemented in the NLE, which aggregates redundant variables - e.g., if a rule states that a
certain variable has to be at the same time less than 5 and less than 4, then only the more
inclusive constraint of being less than 5 is shown to the user. This improves the readability of
the explanation and decreases its length.

7.2 Installation

ContrXT is available on PyPi2. Simply run:

1 pip install contrxt

2https://pypi.org/project/contrxt/
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Or clone the Github repository and run:

1 pip install .

The PyEDA package is required but has not been added to the dependencies. This is due
to installation errors on Windows. If you are on Linux or Mac, you should be able to install
it by running:

1 pip3 install pyeda

However, if you are on Windows, we found that the best way to install is through
Christophe Gohlke’s pythonlibs3 page. For further information, please consult the official
PyEDA installation documentation4.

To produce the PDF files, a Graphviz installation is also required. Full documentation on
how to install Graphviz on any platform is available at https://graphviz.org/download/.

Basic unit tests are provided. To run them, after installation, execute the following
command while in the main directory:

1 python -m unittest discover

7.3 eXplainable AI as a Service

The usability of the tool by non-technical users plays a crucial role in the design of our
approach. For this reason We provide REST API [39] to generate explanations for any text
classifier, similar to [24] which provide an API for XAI Planning.

Our API enables users to get the outcome of ContrXT, i.e. Indicators and BDD2Text
explanations without installing and configuring ContrXT locally. As for the ContrXT tool,
the required input from user are the training data and the predicted labels by the classifier of
their choice. The detail of such input is described below.

The API is written using Python and the Flask library [54]. Users are required to upload two
csv files for time 1 and 2 (see Chapter 7) for which the schema is shown in the following
JSON.

1 schema = {
2 "type" : "csv",
3 "columns" : {
4 "corpus" : {"type" : "string"},
5 "category" : {"type" : "string"},

3https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyeda
4https://pyeda.readthedocs.io/en/latest/install.html
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(a) MRT (median response time , green)

(b) The Request per Seconds (throughput, green) and the number of failures (requests reached the 5 min timeout, red)

Figure 7.2 Load testing provided by Locust.io: (a) MRT (median response time); (b) The Request per Seconds
and the number of failures

6 "predicted" : {"type" : "string"},
7 },
8 }

Code 7.3 API schema

To validate this schema we use the jsonschema package5. According to Code 7.3, each
csv is expected to have three columns respectively for corpus (texts to be classified), label
(the true label for each text) and predicted (the outcome of the classifier). The API can be
invoked using a few lines code shown in Code 7.4.

1 import requests , io
2 from zipfile import ZipFile
3 files = {
4 ’time_1 ’: open(t1_csv_path , ’rb’),
5 ’time_2 ’: open(t2_csv_path , ’rb’)
6 }
7 r = requests.post(’[see the URL and port on github repo]’,files=files

)
8 result = ZipFile(io.BytesIO(r.content))

Code 7.4 Complete Python code to call ContrXT API

5https://python-jsonschema.readthedocs.io/en/stable
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7.3.1 Load Testing

A load testing has been performed using Locust6 to measure the quality of service of the API
deployed and accessible to the community7. Specifically, we followed [82] to determine the
number of users/requests our API web server can tolerate in order to guarantee an acceptable
response time (set to 5 minutes) while increasing the throughput, i.e., requests per second.

According to [82], a load testing is valid if the virtual users’ behaviour is similar to those
of actual users. Then, to allow for reproducibility, we restricted our load testing to add a
virtual user every 10 seconds, executing the whole procedure for the 20newsgroups dataset
for each8. The results show our architecture has a throughput of 2.55 users per second (see
Figure 7.2. Above this value, the API service keeps working, putting additional requests into
a queue.

6locust.io
7see the github repository for connection details
8Time needed to upload/download datasets and to generate PDF versions of the BDDs are not considered
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Chapter 7.

Over the past several years, the growth of web services has been making available a
massive amount of structured and semi-structured data in different domains. An example
is the web labour market, with a huge number of Online Job Advertisements. An Online
Job Advertisement (OJA, aka, job offers, job vacancy) is a document containing a title - that
shortly summarises the job position - and a full description, usually used to advertise the
skills a candidate should hold. available through web portals and online applications. The
problem of processing and extracting insights from OJAs is gaining researchers’ interest in
the recent years, as it allows modelling and understanding complex labour market phenomena
(see, e.g. [132, 131, 13, 30]).

In this chapter, we discuss applications applying AI and contrastive explanations to
OJAs that aim to explain the evolution of the labour market and help experts understand the
undergoing changes.
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8
Contrastive Explanations in a Real-life
Scenario: The Case of Online Job Ads

8.1 The practical significance of applying AI to Job Ads

In recent years, the European labour demand conveyed through specialised web portals and
services has grown exponentially. This also contributed to introducing the term "Labour
Market Intelligence" (LMI), which refers to the use and design of AI algorithms and frame-
works to analyse labour market data for supporting decision making (see, e.g., [51, 119, 64,
11, 53, 132]).

Nowadays, the problem of monitoring, analysing, and understanding labour market
changes (i) timely and (ii) at a very fine-grained geographical level has become practically
significant in our daily lives. Recently, machine learning has been applied to compute the
effect of robotisation within occupations in the US labour market [42] as well as to analyse
skill relevance in the US standard taxonomy O*Net [2], just to cite a few. In 2016 the EU
Cedefop agency - aimed at supporting the development of European Vocational Education
and Training - has launched a European tender for realising a machine-learning-based
system able to collect and classify Web job adverts from all 28 EU country members using
the ESCO hierarchy for reasoning over the 32 languages of the Union [25], see [11, 13]).
From a statistical perspective, in 2016, the EU and Eurostat launched the ESSnet Big Data
project [37], involving 22 EU member states to integrate big data in the regular production of
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official statistics. In the late 2020, EUROSTAT and Cedefop have joined forces announcing
a call for tender [38] aimed at establishing results from [25] fostering AI and Statistics to
build up the European Hub of Online Job Ads.

As one might note, the use of classified OJAs and skills, in turn, enables several third-
party research studies to understand and explain complex labour market phenomena. To
give few recent examples, in [30] we used OJAs for estimating the impact of AI in job
automation and measuring the impact of digital/soft skills within occupations; In [50, 51] we
used classified OJAs to identify new emerging occupations. In [50] we used classified OJAs
to build a recommendation system of skills for citizens, while in [50] we implemented the
first graph database of the European labour market to be explored through graph-traversal
queries.

In May 2020, the EU Cedefop Agency has been started using those OJAs to build an
index named Cov19R that identifies workers with a higher risk of COVID-19 exposure, who
need greater social distancing, affecting their current and future job performance capacity1.

All these initiatives and research studies elucidate the importance of explaining the
rationale behind the classification process for decision-makers. Specifically, a crucial aspect
is related to the explaining of the rationale over time, that is, explaining if - and to what extent
- a retrained classifier is still working coherently with respect to the past, plays a crucial role
to guarantee the trustworthiness of the analyses.

8.2 Analysis of ContrXT Results on OJA Dataset

We applied ContrXT on an OJA dataset composed of 100,000 documents, partitioned evenly
across the 50 most popular ESCO codes (i.e., multiclass). The size of the inputs D1 and D2

is organised by date, with D1 belonging to 2016 and D2 to 2018, that is 50,000 records for
each dataset.
As the indicators described in Section 5.2, we distinguish the classes in three groups.

Group 1 (30%) contains classes below both thresholds, showing the classifier did not
change its criteria significantly;

Group 2 (22%) contains classes that have either ADD_Global or DEL_Global above the
third quartile. This means there are some classes for which the classifier either added
or deleted a number of criteria above the threshold;

1https://tinyurl.com/cedefop-covid
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Figure 8.1 Indicators for the changes in classification paths from t1 to t2 for each OJA class, using a DT
surrogate to explain a Random Forest classifier. On the x-axis, we present the classification classes and on the
y-axis, the add/del indicators are presented in Section4.1.2. To access the full name of the concept, add the
prefix http://data.europa.eu/esco/ isco/C to the class code.

Group 3 (48%) contains classes having both ADD_Global and DEL_Global values above
the threshold. Those classes might have been classified very differently with respect to
the past.

Table 8.1 ContrXT on OJA dataset varying the ML-algorithm. • is the best surrogate.

ML Algo Model F1 weighted Surrogate Fidelity F1 weighted
Dt1 Dt2 Dt1 Dt2

LR 0.79 0.78 0.86 (±0.06) 0.85 (±0.06)
RF 0.76 0.77 0.89 (±0.07) • 0.87 (±0.06) •

SVM 0.79 0.82 0.84 (±0.08) 0.82 (±0.07)
NB 0.73 0.73 0.84 (±0.06) 0.83 (±0.06)

bi-GRU 0.80 0.86 0.86 (±0.06) 0.82 (±0.07)
BERT 0.81 0.88 0.85 (±0.06) 0.83 (±0.07)

Similarly to Sec. 5.2, the ADD/DEL is not correlated with the accuracy of the models.
All classifiers perform well in terms of F1-score (see Table 8.1). To assess the presence of
a correlation between ADD/DEL and the change in performance of the classifiers in terms
of F1-score, we compute the Spearman’s ρ between the ADD of every class and its change
in F1-score between the two classifiers. The correlation values are not significant, p = 0.14,
ρ = −0.10 for ADD and p = 0.14, ρ = −0.10 for DEL2. This confirms that ADD and DEL
are not related to the F1-score of the trained model. Instead, they estimate its behaviour
change handling new data, considering which classification paths have been added or deleted
regarding the past.

2Notice the two ρ values are mutual as ADD + DEL = 1
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Figure 8.2 ADD and DEL BDDs for the class vs class case. The ADD/DEL BDD for the class 2512 - Software
Developers, reported in figure, in the class vs class case are equivalent to the DEL/ADD ROBDDs for the other
class, 2511 - Systems Analysts

BDD2Text. Also, in the case of OJA, the BDD2Text module enables one to identify the
underlying changes in classification paths between ψ1 and ψ2.
Class vs Class. For the class vs class case, we chose the classes 2511, systems analysts, and
2512, software developers, and we compare them to each other. We show both ADD and
DEL BDDs for these in Figure 8.2. Given the symmetry of the problem, the ADD of one
class is equivalent to the DEL of the other and vice versa.

Figure 8.3 shows the BDD2Text for class 2512, software developers vs 2511, systems
analysts. From the BDD2Text, it emerges that at time t2 having the words engineer, or
developer, or Java Developer makes the model classify a job ad as a software developer
(class 2512), rather than a system analyst (class 2511), while it does not hold for the classifier
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Figure 8.3 The output for 2512, Software Developers vs 2511, Systems Analysts in the class vs class case using
a DT to explain the RF model of Table 8.1.

at t1, that used instead the two deleted rules that are not used at time 2. It is worth to
notice that, because this is the BDD2Text of the Class vs Class case, those rules does not
characterise software engineers in general, with respect to all the other occupations in the
OJAs, but specifically against system analysts.

8.3 A Novel Methodology for Evaluating Occupation Clas-
sification

The following work is part of an ongoing EU project, "Towards the European Web Intelligence
Hub - European system for collection and analysis of online job advertisement data (WIH-
OJA)" [38], and has been presented during the CEDEFOP Annual Expert workshop and
development of the methodology for improving occupation classification.

The workshop provides a platform for presenting the latest developments in the data
production system and developing a new methodology for improving the occupation clas-
sification. One of the critical issues in the analysis of OJAs is misclassification, which can
affect some specific occupations/languages. We, as CRISP (Interuniversity Research Centre
for Public Services, the research group I’m currently a part of) are developing an innovative
approach to identify and correct misclassification. Instead of correcting the wrong outcome,
it generalizes the rules that the algorithm uses to classify occupations, going therefore at
the root of the problem. As this method will involve the expertise of International Country
Experts (ICEs), the workshop events will be used to explain and clarify the methodology.
Moreover, as the methodology is innovative and still in the experimental stage, it will be
developed and tested on a subset of countries (8) in order to collect the information needed
to design a full scale system. The approach is applied in the following countries: IT, DE, CZ,
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Figure 8.4 Key differences between the approach used today by WIH to classify OJA, and the proposed approach.

ES, PL, RO, UK, and HU. Therefore the workshop main aim is to present and develop a new
method for understanding and validating the classification rationale and, in turn, improving
provides insights to improve the occupation classification. A graphical overview of the
contribution that the approach would give is depicted in Figure 8.4. We aim to answer the
following questions:

• Which words – including their combination – are used by the WIH to classify job ads?
• Can we summarise the main words that led to an ESCO occupation through natural

language?
• Is there a way to identify the existence of misleading classification terms?
• Can we focus on the classification rules as a whole, rather than checking OJAs manually

and randomly?
We apply the techniques described in Sec. 3.2 to derive the classification rules used

to classify Online Job Ads over the IV ESCO classification code. ICEs can look at the
main-rules (terms and combinations of terms) used to classify OJAs rather than individual
OJAs, and can check if the classifier is using words that are not related with the ESCO
occupation, looking at OJAs for which the rule applies. Rules are expressed through natural
language. ICEs can have a global view of the classification criteria that cover > 80% of the
OJAs, rather than looking at randomly selected ones. For each rule, the ICE can look at 5
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examples to check job ads title and description used by the WIH classifier for classifying
that ESCO code.

To allow for comparability and reproducibility, the method will run on a audit dataset
produced by CEDEFOP-Eurostat, that is built to be representative of the WIH dataset as
well. The total number of OJAs is 2,290,855, across 423 different ISCO LV4 codes. A set
of ESCO occupations (IV digit) is identified in common among all languages and selected
according to (i) frequencies of ESCO codes, (ii) coverage of the ESCO level I hierarchy, and
(iii) sectorial characteristics of occupations as well. The list of ESCO occupations will be
defined according to CEDEFOP.

Each ICE of the involved eight countries will be asked to evaluate an Excel file containing
the top rules (one for each row) used by the WIH to classify OJA. For each rule (row), the
ICE is expected to evaluate – on a Likert scale – if and to what extent the rule is considered
sound with the corresponding ESCO occupation code. If the ICE considers a rule (or a part
of) either misleading or critical, the ICE is asked to mark the rule and provide a “correction”,
intended as feedback to be used in further activities to improve the classification process
accordingly. At the end of the evaluation process, the ICE will return the initial Excel file
filled with Likert values (for each row) and comments/corrections for those rules considered
as erroneous or critical.

The file provided to ICEs is comprised of the following data:
(i) Classification Rule: The rule summarised and applied by the WIH classifier on the

Eurostat audit sample benchmark;
(ii) Quartile: The position of the Occupation in the sampling process;

(iii) ISCO LV4 N. OJAs: number of OJAs in the audit dataset classified by the WIH classifier
as a certain ISCO LV4;

(iv) Overall Rule Impact: number of OJAs where the rule applies in the whole audit dataset;
(v) Class Rule Impact: number of OJAs where the rule applies in the corresponding ISCO

class;
(vi) Class % Incidence: percentage ratio of Class Rule Impact / Overall Rule Impact. The

higher the value, the more specific the rule is;
(vii) Rule Impact (%): percentage ratio of Class Rule Impact / ISCO LV4 N. OJA. The

higher the value, the more widespread the rule in the ISCO code. In essence, this is the
importance of the rule for the class.

The outcome of the new approach is twofold:
• It will provide an estimate of the effectiveness of the new method in evaluating and

improving occupation classification and in identifying misclassification errors in terms
of criteria rather than examples.
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Figure 8.5 Total count of OJAs by country. All languages are considered.

• The method also allows tracking of the ICE rules validation activity, and this is helpful
to perform a cost-benefit analysis to decide whether and how to extend the method to
more countries and classes.

There are multiple benefits to this approach. It is rigorous, deterministic, and can be
reproduced at anytime (same input will lead you to same results). It is trasparent, as it aks
ICEs to concentrate – and then to validate - the rationale, rather than validating singular
OJAs. Identified rules can act as a "bug-hunter" to check if further WIH improvement solved
the misclassification, reducing time, ICE efforts and costs. As rules and classes are selected
on the basis of frequency, the probability to encounter a misclassification is much higher if
compared with the probability of looking at a randomly selected missclassified OJA.

Although the new methodology will initially be applied to only 8 countries, it will be
presented and explained during the workshop so that all ICEs will grasp it in order to be
ready for its scaling up. Figure 8.5 shows the distribution of the OJAs in each country.

Subsequently, for each of the defined 8 countries/languages a sample of classes of
occupations will be selected. ICEs of these 8 countries will be required to perform the
validation of the rules. They will then present the results of their work interacting with
other ICEs. In this way, all ICEs will have a clear understanding of the methodology for
improving the classification system. After having assessed the validity of the approach, it
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will be extended in the future to all the other countries/occupations. Table 8.2 describes in
detail the number of OJAs after class sampling, number of rules found, and the percentage of
OJAs covered by a rule.

Table 8.2 Number of Online Job Advertisements considered by country, including the total, number of OJAs
present in the considered classes, count and percentage of instances correctly covered by a rule.

Country Tot. N. OJAs Sampled N. OJAs N. Rules Rule Impact

UK 719,506 181,230 571 150,516 (83.0%)
DE 507,298 100,516 529 84,759 (84.3%)
IT 383,408 77,244 429 62,087 (80.4%)
ES 253,995 45,053 393 34,023 (75.5%)
PL 177,873 35,080 302 30,180 (86.0%)
RO 94,526 12,500 223 10,915 (87-3%)
HU 84,721 16,139 245 13,803 (85.5%)
CZ 69,528 13,062 201 11,465 (87.8%)

To provide examples and show the results of our approach, we will focus on United
Kingdom. The total number of OJAs for UK is 719,506 – of those, 677,835 (94%) are in
english, while the others in various different languages, which are discarded. There are 410
different ISCO LV4 codes in this dataset. However, many codes have a limited number of
instances, with some having less than ten. We choose to remove all those ISCO LV4 codes
that classify less than 100 OJAs, removing 61 codes. 349 (85%) codes are kept. We also
remove all the occupations labeled as "not elsewhere classified", for example, "Software
and applications developers and analysts not elsewhere classified", as they are too general
and cannot be classified properly. We exclude ISCO LV1 digit 6, "Skilled agricultural,
forestry and fishery workers", since those occupations are usually not recruited via online
advertisements. For each ISCO LV1, with the exception of digit 6, we sample 8 different
ISCO LV4 codes, for a total of 64 different ones. The code sampling is based on quartile
numerosity distribution: counting the number of ISCO LV4 for each each LV1, the two most
common LV4 are picked for each quartile. This is done to provide a fair sampling, not based
on just the most common codes. 181,230 OJAs are kept after these filtering and sampling
steps. Figure 8.6 shows the numerosity distribution of the remaining class codes.

Figure 8.7 shows two classes as result examples. First is class Software developers in
Figure 8.7a. The most common rules involve the terms Developer and Development, but ex-
clude some non-software related term such as Business Development and Sales Development.
Just those two rules conjoined match 1888 OJAs, or 25% of all Software developers in the
dataset. It can be noted, however, that their Class % Incidence is quite low, at 43.5% and
25.8% respectively. This means that the rule is not highly specific to the class, and it is also
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Figure 8.6 Distribution of number of United Kingdom OJAs between each ISCO LV4 class. Plots are grouped
by first ISCO digit.
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matched in other codes. Other rules, such as Having Software Engineer and Having Senior
Estimator, are much more specific, although they are less common. It is also to be noted
that some rules can highlight classification errors, such as Having Senior Chef. Those are
considered software engineers by the WIH classifier. However, after reviewing the relative
OJAs, it can be seen that many of these are clearly classification errors and should belong to
another class, as the "chef" in question seems to often be required in a kitchen3.

The second example in Figure 8.7b, Primary school teachers, shows another interesting
set of rules. The first one, Having Teacher, is simple but requires many negative terms to
disambiguate primary school teachers from other kinds of teachers that belong to other ISCO
codes. It is also interesting to note that Primary Teacher is negated in the second rule despite
being so close to the class label, since it is (surprisingly) a term most commonly used by
"Advertising and marketing professionals". Other rules are more specific but less widespread,
such as Key Stage Teaching, which is the phase of primary education for pupils aged 5 to 7 in
England.

The ICEs are not expected to validate the accuracy of the classifier, but to inspect the
classification rules to identify misleading/wrong terms, clear misclassifications and OJAs that
cannot be classified only by looking at job titles. They will be asked the following questions
for each derived rule: (Q1): Looking at a each class rule, do you think is there any term that
is not related with the ESCO class? (Y/N) If so, which one and why? Specify and Comment.
(Q2): To what extent the class-rule is coherent with the corresponding ESCO class? 1-5
Likert scale, the higher, the better.

As this is an ongoing project, ICEs have not yet finished their evaluation. They have been
already presented with the methodology, and are interested, as it is a structured approach to
look at criteria rather than a randomly selected job ads sample (as they previously operated).
Another interesting and planned activity will be to upgrade the WIH classifier using the
expert evaluation, and then compare the current and enhanced versions using the ContrXT
approach.

3Chef is also a DevOps automation software, but the OJAs in question are indeed looking for a chef in the
more common sense.
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Figure 8.7 UK results for two different ISCO classes, in the final Excel format, as presented to the experts.
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9
Real World Projects in Need of XAI

In this chapter, we show additional works that inspired work on XAI here reported. Although
they do not employ contrastive explanations (yet), they have laid the ground for pursuing
eXplainable AI in this work, and inspired the ideas that led to the techniques presented in
the Thesis. Because of that, we believe they are strongly related to the subject matter, and
will now be briefly illustrated. Both of these real-world applications, as part of ongoing EU
research projects, require explainability. The explanation techniques researched in the Thesis
will be applied on those projects in the future.

9.1 NEO: A System for Identifying New Emerging Occupa-
tion from Job Ads

We propose NEO, a tool for automatically enriching the European Occupation and Skill
Taxonomy (ESCO) with terms that represents new occupations extracted from million Online
Job Advertisements (OJAs). NEO proposes (i) a novel metric that allows one to measure the
semantic similarity between words in a taxonomy, and (ii) a set of measures that estimate the
adherence of new terms to the most suited taxonomic concept, enabling the user to evaluate
the suggestions. To test its effectiveness, NEO has been evaluated over 2M+ 2018 UK job ads,
along with a user-study to confirm the usefulness of NEO in the taxonomy enrichment task.
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9.1.1 Introduction

Unlike the automated construction of new taxonomies from scratch, which is a well-
established research area [124], the augmentation of existing hierarchies is gaining in im-
portance, given its relevance in many practical scenarios (see, e.g. [122, 77]). To date, the
most adopted approach to enrich or extend standard de-jure taxonomies - that cannot be
constructed from scratch - lean on expert panels, that identify and validate which term has
to be added to a taxonomy. This process totally relies only on human knowledge, making
it costly, time-consuming and error prone, besides suffering from sparse coverage. Those
challenges need the development of automated methods for taxonomy enrichment.

9.1.2 Overview of NEO

NEO [51] aims at enriching the European standard labour market taxonomy ESCO [36]
with new potential occupations derived from real Online Job Advertisements (OJAs). It is
developed as part of the research activity of an ongoing EU grant aimed at realising the first
EU real-time labour market monitoring system, by collecting and classifying OJAs over
all 27+1 EU countries and 32 languages [25, 11]1. Novel occupations are usually intended
as mentions that deserve to be represented within the taxonomy, as they might represent
either an emerging job (e.g., SCRUM master) or a new alternative label characterising an
existing job (e.g., Android developer). This activity is crucial to allow economists and policy
makers to observe up-to-date labour market dynamics using standard taxonomies as a lingua
franca, overcoming linguistic boundaries (see, e.g. [42, 51, 30]). NEO relies on distributional
semantics to extract semantic information from the OJAs, exploiting the characteristics that
words occurring in similar context tend to have a similar meaning. Our approach is composed
of three steps: (i) synthesise word embeddings, (ii) suggest new entities, (iii) vote and enrich
(Figure 9.1).
(Step 1) Synthesise Word Embeddings resorts to Deep Learning to learn a vector representa-
tion of words in the corpus, preserving the semantic relationships expressed by the taxonomy
itself. To select the best representing vectors, we rely on three distinct sub-tasks, that are the
following: T1.1: train three different word embedding models (Word2Vec, GloVe, FastText),
T1.2. construct measure of pairwise semantic similarity between taxonomic elements, namely
Hierarchical Semantic Relatedness (HSR) [51]. Compared with HSR, state-of-the-art metrics
for semantic similarity (see Aouicha et al. [5] for a survey) suffer of two main drawbacks.
First, when a word has multiple senses, those methods compute a value of similarity for each

1https://tinyurl.com/skillovate
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Figure 9.1 A representation of the NEO workflow highlighting the main modules. Taken from [51]

word sense and then consider only the highest, which is the self-information of the least
frequent lowest common ancestor. As a consequence, more specific senses will have a higher
value of similarity, but this does not reflect the use of words in advertising job positions;
second, though they consider the structure of the taxonomy (i.e., the relationship between
concepts) they do not take into account the number of child entities (i.e., words) belonging
to those concepts. This is crucial in our case as ESCO includes generic concepts that, in
turn, contain many different occupations. On the contrary, some very specific concepts
can be represented by a few occupations which are highly informative. The aim of HSR
is to overcome these limitations to work with the ESCO taxonomy. T1.3. Evaluate the
embeddings in terms of correlation between the HSR and the cosine similarity between pair
of terms in the taxonomy.
(Step 2) Suggest New Entities is aimed at extracting new occupation terms from the corpus
of OJAs, and to suggest the most suitable concepts under which they could be added in
the taxonomy T . First we select a starting word w0 from T . Then we consider the top-5
mentions in the corpus of documents D with associated the highest score value S with
w0, where is S a function that quantifies how similar a new mention m is in relation to
w0. The most suitable concepts for m are identified on the basis of four measures, namely
GASC (Generality, Adequacy Specificity, and Comparability, formally defined in Giabelli
et al. [51]), that estimate the fitness of a concept c for a given m. Generality quantifies
how similar a mention is to all the other unrelated concepts; Adequacy quantifies how
much the mention is overall a good candidate as an entity of the concept, considering both
Specificity and Generality; Specificity quantifies how similar a mention is to the related
concept; Comparability quantifies how similar two occupations are in term of the number of
skills shared between them.
(Step 3) Vote and Enrich allows validating the outcome of the previous steps - which is
fully automated - by asking: (Q1) whether the mentions extracted from the corpus are valid
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Figure 9.2 Evaluation of the ESCO concept candidate where the mention business intelligence analyst should
be added

emerging occupations and (Q2) to what extent the concepts suggested as entry for a new
mention are appropriate for it (by looking at skills-gap).

9.1.3 Experimental Results on 2M+ UK Job Ads

Experimental settings. The corpus, a subset of the data collected for the project [25], contains
2,119,025 OJAs published in the United Kingdom in 2018. The best performing model is
the following: architecture=fastText, algorithm=CBOW, size=300, epochs=100, learning
rate=0.1.

As a first step, the user selects the starting word w0 among the occupations already in
ESCO. Then, NEO prompts the 5 mentions with associated the highest score with w0. The
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Figure 9.3 Skill relevance between the new term business intelligence analyst and the parent ESCO concept
suggested data warehouse designer

user can therefore select a new mention m (business intelligence analyst)2 to evaluate to
which extent it fits as an entity of the starting word’s ESCO concept, and as an entity of other
two ESCO concepts selected (i.e., data warehouse designer. For each one of these three
pairs mention < m,concept > NEO provides the GASC measures (Figure 9.2), along with a
comparison of the rca [2] of skills for both the mention and the concept (Figure 9.3). These
skills, together with the GASC measures, support the user in evaluating if the suggested entry
is appropriate as an entity of a concept. A user evaluation involving 10 final users reveladed
that 88% of the mentions (43 out of 49) were successfully evaluated to be new occupations,
while the correlation (Spearman’s ρ and Kendall’s τ) between the Likert values and GASC
values is positive and statistically significant.

2Remember those occupations are not included in the ESCO taxonomy though requested by the market
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9.1.4 Conclusion

We have shown NEO, a system developed within the research activities of an ongoing EU
tender for monitoring EU labour market (see, [11, 14]).

NEO allows identifying potential new occupations as they emerge from job ads through
deep learning, suggesting the suitable concept to enrich the European standard occupation
taxonomy by means of (i) a novel semantic similarity metric and (ii) a set of measures that
estimate the adherence of new terms to the concept. Though NEO can be used with any
OJA dataset and EU language, here it has been trained on a 2M+ 2018 UK advertisements
identified 49 novel occupations, 43 of which were validated as novel occupations by a panel
of 10 experts as final users. Two statistical hypothesis tests confirmed the correlation between
the proposed GASC metrics of NEO and the user judgements.
A demo is provided at https://tinyurl.com/NEO-aaai2021.

9.2 Skills2Job: A Recommender System that Encodes Job
Offer Embeddings on Graph Databases

We propose a recommender system that, starting from a set of users skills, identifies the
most suitable jobs as they emerge from a large text of Online Job Advertisements (OJAs).
To this aim, we process 2.5M+ OJAs posted in three different countries (United Kingdom,
France and Germany), generating several embeddings and performing an intrinsic evaluation
of their quality. Besides, we compute a measure of skill importance for each occupation in
each country, the Revealed Comparative Advantage (rca). The best vector models, together
with the rca, are used to feed a graph database, which will serve as the keystone for the
recommender system. Finally, a user study of 10 validates the effectiveness of skills2job,
both in terms of precision and nDGC.

9.2.1 Introduction

Given the very high number of job positions and applicants on online job portals, the problem
of person-job fit [102, 134] has become relevant in recent literature, both as a skill measuring
system [131] and job recommendation system [133, 79]. Recommender systems in the labour
market domain rely strongly on handcrafted features and expert knowledge, which make
them costly, difficult to update and error-prone. For that reason, we propose skills2job,
a knowledge poor and data driven job recommendation system, which can be adapted to
different countries/industries and easily updated over time. Moreover, skills2job is the
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Figure 9.4 Workflow of steps for building skills2job

first system that organises labour market information, automatically extracted from a large
corpus of OJAs, in a graph database which can be queried to recommend the most suitable
occupations for an user based on its skills. skills2job uses ESCO (https://ec.europa.eu/
esco) as a target taxonomy to organise occupations and skills, to allow querying the graph
using 27 languages. skills2job was realised as part of the research activity of an EU
project3 (see [13]), which aims at realising the first EU real-time labour market monitor, by
collecting and classifying OJAs from all 27+1 EU countries.

9.2.2 An Overview of skills2job

The workflow of skills2job, presented in Figure 9.4, can be divided in five main steps:
S.1 To extract linguistic patterns from OJAs, we train multiple embedding models through
FastText, a library for representation learning which builds word embeddings considering sub-
word information by representing each word as the sum of its character n-gram vectors; S.2
we compute measure of pairwise semantic similarity between taxonomic elements, namely
HSS (developed in [51] and previously called Hierarchical Semantic Relatedness (HSR)).

Compared with HSS , previous measures of semantic similarity in taxonomies (see
Aouicha et al. [5] for a survey) suffer of two main limitations. First, when a word has
multiple senses, those methods compute a value of similarity for each word sense and then
consider only the highest, which is the self-information of the least frequent lowest common
ancestor. As a consequence, more specific senses will have a higher value of similarity,
but this does not reflect the use of words in advertising job positions; second, though they
consider the structure of the taxonomy (i.e., the relationship between concepts) they do not
take into account the number of child entities (i.e., words) belonging to those concepts. This
is crucial in our case as ESCO includes generic concepts that, in turn, contain many different

3CEDEFOP 2014. Real-time Labour Market information on skill requirements: feasibility study and
working prototype". https://goo.gl/qNjmrn
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occupations. On the contrary, some very specific concepts can be represented by a few
occupations which are highly informative. The aim of HSS is to overcome these limitations
to work with the ESCO taxonomy. Since we want to encode semantic information from a
semantic hierarchy built from human experts into our vector model, we adopt those values as
a proxy of human judgements. S.3 To select the embedding that better preserves taxonomic
relations, we perform an intrinsic evaluation by computing the Pearson correlation of the
cosine similarity between each couple of skills and their corresponding HSS. As one might
easily imagine, the simple use of the skill frequency to compute the relevance of a skill within
a given set of OJAs might be highly inaccurate. S.4 We employ co-occurrence statistics, using
a normalised count based measure of skill-relevance, the Revealed Comparative Advantage
(rca) [2]. S.5 The information extracted through word embeddings and rca is stored in our
graph database, called S2JGraph, which is formalised as a directed labelled multi-graph
and the formalisation is inspired by [50]. Note that both the rca and the best embedding are
computed for each country, capturing the difference between the requested skills and the
occupation terms as they are used in different countries.

Distinguishing between the starting country and the target country allows us to catch the
differences between ICT occupations in UK, Germany, and France focusing on skills set,
hence discovering the characteristics of local Labour Markets.

9.2.3 Skill Based Recommendations

Table 9.1 Example of query (ii) rcaB matching part

Rank
Arriving occu-
pation

4 skills rcaNORM

0.56
Web
Technicians

C# 0.3996
implement front-end website design 0.5967
use markup languages 0.6066
CSS 0.6264

0.2
Applications
programmers

C# 0.3293
implement front-end website design 0.143
use markup languages 0.1832
CSS 0.1265

0.18
Software
developers

C# 0.3145
implement front-end website design 0.1327
use markup languages 0.1614
CSS 0.130
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Table 9.2 User evaluation results for the two methods. P@3-N indicates that a user score of at least N is
considered a true positive.

rcaB cosB

P@3-3 0.823 0.763
P@3-4 0.610 0.570
nDCG 0.985 0.984

The graph database, S2JGraph, is used as a keystone for several recommendations tasks
using the Cypher query language. Given a set of starting skills S, a starting occupation oS, a
starting country cS, a target country cA and a target skill sT provided by the user, skills2job
returns:
(i) The relevance of each s ∈ S for oS in cS;
(ii) A list of occupations O in cA and for each oi ∈ O: (a) The relevance of each s ∈ S for oi;
(b) A list of skills that oi requires different from those in S and relevant for oi (namely, the
skill gap).
(iii) A set of skills recommended to the user given S and sT .

The main use case - query (ii) - recommends a series of occupations in a target labour
market based on the user’s skills, matching all the occupations in the target country cA which
require at least one of the starting skills in S. Then the query matches all the skills which
are required by the target occupation with a rca > α and which have a cosine similarity with
all of the starting skills in S < β . These are the skill gap, which are relevant for the target
occupation (high rca) and different enough from the starting skills (low cosine similarity).
Those are skills that she/he should acquire to do that job in the target country.

An example of query (ii) is reported in Table 9.1 (α = 0.6, β = 0.7). The starting
parameters are the following: S =["implement front-end website design", "CSS","C#", "use
markup languages"]; oS ="Web and multimedia developers"; cS = UK: cA = DE; sT =

"Python".

9.2.4 User Evaluation and Conclusion Remark

The results of skills2job were evaluated through a user study following [67]. We asked
10 Labour Market experts belonging to the European Network on Regional Labour Market
Monitoring to judge whether the starting skills are relevant for the occupations provided
by the system or not, using a Likert scale. As 3 recommendations were presented for each
item, we decided to use Precision@3 (P@3), assuming either a user score of at least 3 as
a true positive (P@3-3), or of at least 4 (P@3-4). The normalised Discounted Cumulative
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Gain (nDCG) has also been computed, which measures the usefulness of an item based on
its position in the result list. The results (see Table 9.2) show a high degree of correlation
between the user evaluation and the recommendation ranking.

In conclusion, skills2job identifies the most suited job on the basis of a set of user’s
skills, encoding the skill relevance as emerges from real-labour market demand. It can
process any OJA dataset in any EU language. Here we used 2.5M+ advertisements processed
trough distributional semantics and co-occurrence statistics, organised in a graph database. A
user evaluation made by experts show the system is effective in identifying the correct job
given a set of user skills.

We have been working to extend skills2job to all 27+1 EU Countries, enabling policy-
makers to observe the labour market demand at skill level.
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We presented a novel model-agnostic approach to globally explain how a black box
text classifier change its learning criteria with regard to the past (T-contrast) and different
models (M-contrast) by manipulating BDDs. The approach has been implemented as a
tool, namely ContrXT . It first traces the behaviour of the surrogate classifiers through
BDDs; then it manipulates them to generate further BDDs that encode the logic changes of
the classifiers, along with the classification paths added, deleted or unchanged, providing
contrastive explanations for each category. Finally, it summarises and presents those changes
through ADD/DEL/STILL indicators and natural language explanations. Both helps the user
answering the questions we draw in Chapter 1, which are (Q1) observing the classification
logic of a machine learning-based system over multiple training phases (Q2) to understand
why the newly trained model is classifying data differently after retraining (Q3) through
natural language.

The evaluations have been performed on several multiclass benchmarks, i.e., 20newsgroup
and a real-life application deployed as an Online Job Ads multiclass classifier (50 classes, see,
e.g. [11, 51]) in an EU project [25]. We trained our models using different learning algorithms,
showing ContrXT can work with the state-of-the-art learning algorithms, reaching an high F1
surrogate fidelity. The Spearman correlation test revealed the accuracy is not correlated with
the ADD/DEL indicators, confirming they provide additional insights beyond the quality of
the trained models.

Secondly, we extended the approach by generating model-contrastive explanations from
any tabular or text classifier. Our approach allows users to understand how -and to what
extent- two distinct models differ, despite their accuracy. To do so, we generalised and
enhanced the methodology proposed above and in [78] to deal with (i) model-contrastive
explanations, despite the time, (ii) tabular data through an ordinal or boolean discretisation
process and (iii) multiple types of surrogate models. The approach has been evaluated using
well-established benchmarks to allow the reproducibility of results. Finally, the approach
has been implemented as a pip-python tool and an API, and it is available to the whole
community.

Third, we have shown real-world applications of XAI in the LMI domain, framed within
multiple ongoing EU projects, aiming to explain to international experts the constant evolution
in the labour market.

9.3 Future Research Directions

The work presented in the Thesis opens multiple novel research directions. First, we are
applying ContrXT on a machine learning classifier that classifies job ads for all the 27+1
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countries of the EU [11] framed within an EU project [25] that aims at monitoring the
changes in the labour market, its lexicon and new professions [51, 77].

The tool is constantly being worked on, and updated with new features. An interesting
and important development is the addition of new surrogate types, which can be easily
implemented in the Trace phase.

ContrXT is also being used in another EU project, "Towards the European Web Intelli-
gence Hub - European system for collection and analysis of online job advertisement data
(WIH-OJA)" [38], as described in Sec. 8.3. This is an ongoing work, and International
Country Experts are currently working to assess the quality of the extracted decision rules.
Once the WIH classifier will be updated, the ContrXT Explain approach will also be used to
assess the differences between the current classifier and its next version.
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