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Connective K -theory and Adams operations

Olivier Haution and Alexander S. Merkurjev

Abstract. We investigate the relations between the Grothendieck group of coherent modules of an
algebraic variety and its Chow group of algebraic cycles modulo rational equivalence. Those are in
essence torsion phenomena, which we attempt to control by considering the action of the Adams
operations on the Brown–Gersten–Quillen spectral sequence and related objects, such as connective
K0-theory. We provide elementary arguments whenever possible. As applications, we compute the
connective K0-theory of the following objects: (1) the variety of reduced norm one elements in a
central division algebra of prime degree; (2) the classifying space of the split special orthogonal
group of odd degree.

1. Introduction

The goal of the paper is to illustrate the usefulness of the connective K0-groups of an
algebraic variety X and Adams operations for the study of relations between K-theory
and the Chow groups of X .

For every integer i , denote Mi .X/ the abelian category of coherent OX -modules with
dimension of support at most i . We have a filtration .Mi .X// of the category M.X/ of all
coherent OX -modules such that Mi .X/D 0 if i < 0 and Mi .X/DM.X/ if i � dim.X/.

The K-groups of M.X/ are denoted by K 0n.X/. The exact couple .D1
r;s; E

1
r;s/ of

homological type with

D1
r;s D KrCs.Mr .X// and E1r;s D

`
x2X.r/

KrCsF.x/;

where X.r/ denotes the set of points in X of dimension r , yields the Brown–Gersten–
Quillen (BGQ) spectral sequence`

x2X.r/

KrCsF.x/) K 0rCs.X/

with respect to the topological filtration

K 0n.X/.i/ D Im.Kn.Mi .X//! Kn.M.X///

on K 0n.X/.
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The group K 00.X/ coincides with the Grothendieck group of coherent OX -modules.
The terms E2i;�i D CHi .X/ of the second page are the Chow groups of classes of dimen-
sion i algebraic cycles on X . The natural surjective homomorphism

'i WCHi .X/� K 00.X/.i=i�1/ WD K
0
0.X/.i/=K

0
0.X/.i�1/

takes the class ŒZ� of an integral closed subvariety Z � X of dimension i to the class
of OZ . The kernel of 'i is covered by the images of the differentials in the spectral
sequence with target in CHi .X/.

The groups

CKi .X/ WD D2
iC1;�i�1 D Im

�
K0.Mi .X//! K0.MiC1.X//

�
are the connective K0-groups of X (see [2, §5.1]). These groups are related to the Chow
groups via exact sequences

CKi�1.X/! CKi .X/! CHi .X/! 0

In the present paper we study differentials in the spectral sequence with target in the
Chow groups via the connective K0-groups. In Sections 2 and 3 we introduce and study
the notion of an endo-module associated with an algebraic variety that locates a part of
the BGQ spectral sequence near the zero diagonal.

In Section 4 we introduce an approach based on the Adams operations of homological
type on the Grothendieck group. Compatibility of the Adams operations with the differ-
entials in the spectral sequence was proved in [13, Corollary 5.5] with the help of heavy
machinery of higher K-theory. We give an elementary proof of the compatibility with the
differential coming to the zero diagonal of the spectral sequence. The Adams operations
are applied in Section 5 to the study of the kernel of the homomorphism 'i , and of the rela-
tions between the Grothendieck group and its graded group with respect to the topological
filtration.

In Section 6 we consider the endo-module arising form the equivariant analog of the
BGQ spectral sequence. As an example we compute the connective K0-groups of the
classifying space of the special orthogonal group OCn with n odd and as an application
compute the differentials in the spectral sequence.

We use the following notation in the paper. We fix a base field F . A variety is a sep-
arated scheme of finite type over F . The residue field of a variety at a point x is denoted
by F.x/, and the function field of an integral variety X by F.X/. The tangent bundle of a
smooth variety X is denoted by TX .
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2. Endo-modules

Definition 2.1. Let R be a commutative ring and B� a Z-graded R-module. An endomor-
phism of B� of degree 1 is (an infinite) sequence of R-module homomorphisms

� � �
ˇi�2
���! Bi�1

ˇi�1
���! Bi

ˇi
��! BiC1

ˇiC1
���! � � �

We call the pair .B�; ˇ�/ an endo-module over R. If ˇ� is clear from the context, we
simply write B� for .B�; ˇ�/.

For an endo-module .B�; ˇ�/ set

Ai D Ker.ˇi / and Ci D Coker.ˇi�1/:

We have exact sequences

0! Ai
˛i
�! Bi

ˇi
�! BiC1

iC1
���! CiC1 ! 0

and (an infinite) diagram of R-module homomorphisms:

� � � Ai�1

˛i�1

��

Ai

˛i

��

AiC1

˛iC1

��

� � �

� � �
ˇi�2 // Bi�1

ˇi�1 //

i�1

��

Bi
ˇi //

i

��

BiC1
ˇiC1 //

iC1

��

� � �

� � � Ci�1 Ci CiC1 � � �

The compositions ıi D i ı ˛i WAi ! Ci are called the differentials.

The derivatives of the Bi ’s are the modules

B
.1/
i D Im.ˇi / � BiC1:

The derived endo-module
�
B
.1/
� ˇ

.1/
�

�
of .B�; ˇ�/ is defined by setting

ˇ
.1/
i D ˇiC1jB.1/i

:

For an integer s > 0we define the sth derived endo-module
�
B
.s/
� ; ˇ

.s/
�

�
of .B�; ˇ�/ induc-

tively as the derived endo-module of
�
B
.s�1/
� ; ˇ

.s�1/
�

�
, and call the modules B.s/i the sth

derivatives of the Bi ’s. Denoting by ı.s/i the differentials of the endo-module B.s/� , the sth
derivatives of the Ai ’s and Ci ’s are defined as:

A
.s/
i WD Ker

�
ˇ
.s/
i

�
' Ker

�
ı
.s�1/
iC1

�
;

C
.s/
i WD Coker

�
ˇ
.s/
i�1

�
' Coker

�
ı
.s�1/
i

�
:
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Example 2.2. Let .D1
r;s;E

1
r;s/ be an exact couple of R-modules (see [23, §5.9]) such that

D1
r;s D 0 if r C s < 0. The exact sequences

E1iC1;�i ! D1
i;�i ! D1

iC1;�i�1 ! E1iC1;�i�1 ! 0

for all i yield an endo-module Bi DD1
i;�i overR. The associatedR-module Ai coincides

with the image of the first homomorphism in the exact sequence and Ci D E1i;�i . The
differential

E1iC1;�i ! D1
i;�i ! E1i;�i

on the first page of the spectral sequence associated with the exact couple factors into the
composition

E1iC1;�i � Ai
ıi
�! Ci :

The derived endo-module of B� arises the same way from the derived exact couple. It
follows that the differential ı.s/ in the sth derived endo-module B.s/� correspond to the
differentials in the .s C 1/st page of the spectral sequence.

For an endo-module B� write H D H.B�/ WD colimBi . For every i , denote H.i/ the
image of the canonical homomorphism Bi ! H . We have a filtration

� � � � H.i�1/ � H.i/ � H.iC1/ � � � �

of H . We would like to compute the subsequent factor modules

H.i=i�1/ WD H.i/=H.i�1/

in terms of the Ci ’s.
There is a canonical surjective homomorphism

"i WCi D Coker.ˇi�1/� H.i=i�1/

defined via the commutative diagram

Bi

i
����

// // H.i/

����
Ci

"i // // H.i=i�1/:

We have H .1/ WD H
�
B
.1/
�

�
D H.B�/ D H andH .1/

.i/
D H.i/ for all i . The homomor-

phism "i factors into the composition

Ci � C
.1/
i

"
.1/
i
��! H

.1/

.i=i�1/
D H.i=i�1/:

We call the ".1/i the derivative of "i .
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Iterating we factor "i into the composition

Ci � C
.1/
i � C

.2/
i � � � �� C

.s/
i

"
.s/
i
��! H.i=i�1/

that yields an isomorphism
colim
s

C
.s/
i

�
! H.i=i�1/

for every i . Recall that C .s/i D Coker
�
A
.s�1/
i

ı
.s�1/
i
���! C

.s�1/
i

�
.

We would like to find conditions on B� such that for every i the iterated derivative ".s/i
of sufficiently large order s is an isomorphism.

Definition 2.3. An endo-module B� is called d -stable for an integer d if Ai D 0 for
all i � d . We say that B� is stable if B� is d -stable for some d , B� is degenerate if B� is
d -stable for all d (equivalently, the homomorphisms Bi ! BiC1 are injective for all i , or
all Ai are zero) and B� is bounded below if Bi D 0 for i � 0.

The following properties are straightforward.

Lemma 2.4. Let B� be an endo-module.

(1) If B� is d -stable, then

(a) The sth derived endo-module B.s/� is .d � s/-stable,

(b) B
.s/
i D Bi and C .s/i D Ci for i � d ,

(c) "
.s/
i WC

.s/
i ! H.i=i�1/ is an isomorphism if i C s � d .

(2) If B� is stable and bounded below, then B.s/� is degenerate for s � 0.

(3) If B� is degenerate, then "i is an isomorphism for all i . The converse holds if B�
is bounded below.

(4) If B� is d -stable, bounded below and Ci D 0 for all i < d , then B� is degenerate.

3. The endo-module of a variety

3.1. The endo-module Bi .X/

Let X be a variety. We will denote by K 00.X/ (resp. K0.X/) the Grothendieck group of
the category M.X/ of coherent (resp. the category of locally free coherent) OX -modules.
The class of an OX -module M in either of these groups will be denoted by ŒM �. The
tensor product endows K0.X/ with a ring structure, and K 00.X/ with a K0.X/-module
structure. We will denote the latter by .a; b/ 7! a � b, where a 2 K0.X/ and b 2 K 00.X/.
For an integer i , we will denote by Mi .X/ the abelian category of coherent OX -modules
of support dimension at most i .
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Definition 3.1. We define an endo-module .B�.X/; ˇ�/ over Z associated with X as fol-
lows. Set

Bi .X/ D K0.Mi .X//

and let ˇi�1W Bi�1.X/ ! Bi .X/ be the homomorphism induced by the inclusion of
Mi�1.X/ into Mi .X/.

We haveBi .X/D 0 if i < 0 andBi .X/DK 00.X/ if i � d , so the endo-moduleB�.X/
is bounded below and d -stable. Also

Bi .X/ D colimK 00.Z/;

where the colimit is taken over all closed subvarieties Z � X of dimension at most i
with respect to the push-forward homomorphisms K 00.Z1/! K 00.Z2/ for closed subva-
rieties Z1 � Z2 (see [18, §7, (5.1)]). The groupH D colimBi .X/ coincides withK 00.X/
and H.i/ with the i th term K 00.X/.i/ of the topological filtration on K 00.X/.

The factor category Mi .X/=Mi�1.X/ is equivalent to the coproduct over all points
x 2 X.i/ of the categories M.Spec F.x// (see [18, §7.5]). The localization exact se-
quence [18, §7] looks then as follows:

Ci .X; 1/
@i
�! Bi�1.X/

ˇi�1
���! Bi .X/! Ci .X/! 0;

where

Ci .X; 1/ D
`

x2X.i/

F.x/� and Ci .X/ D Coker.ˇi�1/ D
`

x2X.i/

Z

is the group of algebraic cycles of dimension i . The groups Ai .X/ associated with the
endo-module B�.X/ are given then by

Ai .X/ D Ker.ˇi / D Im.@iC1/: (3.2)

If f W Y ! X is a proper morphism, there are homomorphisms f�WBi .Y /! Bi .X/.
There are also homomorphisms f�WCi .Y; 1/! Ci .X;1/, defined by letting the homomor-
phism F.y/� ! F.x/� be trivial unless f .y/ D x, in which case it is given by the norm
of the finite degree field extension F.y/=F.x/ (see [4, §1.4]). We have

@i ı f� D f� ı @i : (3.3)

If f W Y ! X is a flat morphism of relative dimension r , there are homomorphisms
f �W Bi .X/ ! BiCr .Y /. There are also homomorphisms f �W Ci .X; 1/ ! CiCr .Y; 1/,
defined by letting the homomorphism F.x/� ! F.y/� be trivial unless f .y/ D x, in
which case it is given by the inclusion F.x/ � F.y/ (see [4, §1.7]). We have

@iCr ı f
�
D f � ı @i : (3.4)
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3.2. Connective K -groups

Definition 3.5. The derivatives Bi .X/.1/ of Bi .X/ are the connective K-groups CKi .X/
and Ci .X/.1/ are the Chow groups CHi .X/ of classes of cycles of dimension i (see [2,
§4.3]).

We have the exact sequences

CKi�1.X/
ˇ
�! CKi .X/! CHi .X/! 0;

where ˇ D ˇ.1/i�1’s are called the Bott homomorphisms.
We can view the graded group CK�.X/ as a module over the polynomial ring ZŒˇ�. It

follows from the definition that

CK�.X/=ˇ CK�.X/ ' CH�.X/ and CK�.X/=.ˇ � 1/CK�.X/ ' K 00.X/: (3.6)

For every i � 0 the (surjective) homomorphism

'i WD "
.1/
i WCHi .X/� K 00.X/.i=i�1/

takes the class ŒZ� of an integral closed subvariety Z � X of dimension i to the class
of OZ . The relations between the groups CKi .X/, CHi .X/ and K 00.X/.i/ are given by a
commutative diagram

CKi .X/

i
����

// // K 00.X/.i/

����
CHi .X/

'i // // K 00.X/.i=i�1/:

The goal is to study the homomorphisms 'i . Recall that Ci .X/.1/ D CHi .X/ and the
groups Ci .X/.s/ are inductively defined via the exact sequences

Ai .X/
.s/

ı
.s/
i
��! Ci .X/

.s/
! Ci .X/

.sC1/
! 0:

Proposition 3.7. The homomorphism 'i factors as the composition

CHi .X/ D Ci .X/.1/� Ci .X/
.s/

"
.s/
i
��! K 00.X/.i=i�1/;

where ".s/i is an isomorphism if s � d � i .

Remark 3.8. The groups Bi .X/ and Bi .X/.1/ D CKi .X/ (but not Bi .X/.s/ in gen-
eral with s > 1), viewed as generalized homology theories, satisfy the localization prop-
erty [14, Definition 4.4.6] (see [2, Theorem 5.1] and its proof). The derivatives Bi .X/.s/

satisfy the extended homotopy property [14, Definition 5.1.3, (EH)] if s � 1 (this follows
easily from the case s D 1, which is treated in [2, Theorem 5.3]), but not if s D 0 (for
instance B�1.SpecF / D 0 while B0.A1F / ¤ 0). Thus, the first derivative (the connective
K-theory) is the only derivative that satisfies both localization and extended homotopy
properties.
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3.3. Generators for Ai .X/

Definition 3.9. LetL be a line bundle (locally free coherent OX -module of constant rank1)
over a variety X , and s 2 H 0.X; L/ a section. We denote by Z.s/ the closed subscheme
of X whose ideal is the image of s_WL_ ! OX , and by D.s/ its open complement. The
section s is called regular if the morphism sWOX ! L (or equivalently s_WL_ ! OX ) is
injective. In this case, the immersion Z.s/! X is an effective Cartier divisor.

If s is a regular section of a line bundle L over X , the exact sequence of OX -modules

0! L_
s_

�! OX ! OZ.s/ ! 0

shows that
ŒOZ.s/� D ŒOX � � ŒL

_� 2 K 00.X/: (3.10)

Notation 3.11. Let us write P1 D Proj
�
F Œx; y�

�
, and view x and y as sections of O.1/.

We also view x=y (resp. y=x) as a regular function on D.y/ (resp. D.x/). Mapping u to
that function induces an isomorphism between A1 D Spec

�
F Œu�

�
and D.y/ (resp. D.x/).

Lemma 3.12. We have @1.x=y/ D ŒOZ.x/� � ŒOZ.y/� in B0.P1/.

Proof. Restricting to the open subschemes D.x/;D.y/ induces an injective map

B0.P
1/! B0.D.x//˚ B0.D.y/:

Thus, we are reduced to proving that @1.u/ D ŒOZ.u/� 2 B0.A
1/ under the identification

A1 D Spec
�
F Œu�

�
. This is done, e.g., in [18, §7, Lemma 5.1].

Proposition 3.13. Let X be a variety and i 2 Z. The subgroup Ai .X/ � Bi .X/ is gen-
erated by the elements f�

�
ŒOZ.s1/� � ŒOZ.s2/�

�
, where

� f WY ! X is a proper morphism,

� Y is quasi-projective and integral of dimension i C 1,

� s1; s2 are regular sections of a common line bundle over Y .

Proof. Let Si .X/ � Bi .X/ be the subgroup generated by the elements

f�
�
ŒOZ.s1/� � ŒOZ.s2/�

�
as in the statement. For such s1; s2, we have

ŒOZ.s1/� D ŒOZ.s2/� 2 K
0
0.Y / D BiC1.Y /

by (3.10), and thus Si .X/ � Ai .X/.
It follows from (3.2) and (3.3) that the subgroup Ai .X/ � Bi .X/ is generated by the

push-forwards of elements @iC1.a/ 2 Bi .Z/, where a 2 F.Z/� with Z � X an integral
closed subscheme of dimension i C 1. Let U be a dense open subscheme of Z such
that a2H 0.U;OU /�F.Z/. Mapping u to a induces a morphism U!Spec

�
F Œu�

�
DA1.
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Composing with the morphism A1 ' D.y/ � P1 (using Notation 3.11), we obtain a
morphismU ! P1. We denote by S the closure in P1 of the image of the latter morphism,
endowed with the reduced scheme structure. Consider the graph of the morphism U!S

as a closed subset of U � S , and let Y 0 be its closure in Z � S , endowed with the reduced
scheme structure. By Chow’s lemma [6, (5.6.1)] we may find a proper birational morphism
Y ! Y 0, where Y is quasi-projective and integral. Then we have morphisms

Z
f
 � Y

g
�! S:

The morphism f is proper and birational, hence a admits a pre-image b under the isomor-
phism

f�WF.Y /
�
D CiC1.Y; 1/! CiC1.Z; 1/ D F.Z/

�:

The morphism g is dominant, hence flat by [7, III 9.7].
If dimS D 0 (i.e. a is algebraic over F ), then b D g�c for some c 2 F.S/�, and the

morphism g has relative dimension i C 1, so that, by (3.3) and (3.4)

@iC1.a/ D f� ı @iC1.b/ D f� ı g
�
ı @0.c/ � f� ı g

�B�1.S/ D 0:

Otherwise S D P1, and g has relative dimension i . Using Notation 3.11, we have
b D g�.x=y/. By Lemma 3.12 and (3.4), we have in Bi .Y /

@iC1.b/ D g
�
ı @1.x=y/ D g

�
�
ŒOZ.x/� � ŒOZ.y/�

�
D ŒOg�1Z.x/� � ŒOg�1Z.y/�:

The flatness of g implies that the sections s1 WD g�x and s2 WD g�y of g�O.1/ are regular,
and satisfy Z.s1/ D g

�1Z.x/ and Z.s2/ D g
�1Z.y/. Using (3.3), we deduce that

@iC1.a/ D f� ı @iC1.b/ D f�
�
ŒOZ.s1/� � ŒOZ.s2/�

�
in Bi .X/, and we have proved that Ai .X/ � Si .X/.

4. Homological Adams operations

4.1. K -theory with supports

Definition 4.1. Let X be a variety and Y � X a closed subscheme. We consider the
category of chain complexes of locally free coherent OX -modules

E� D � � � ! En ! En�1 ! � � �

satisfying Ei D 0 when i < 0 or i � 0. The full subcategory consisting of those com-
plexes whose homology is supported on Y will be denoted by CY .X/. We define the
group KY0 .X/ as the free abelian group generated by the elements ŒE��, where E� runs
over the isomorphism classes of objects in CY .X/, modulo the following relations:
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� If 0! E 0� ! E� ! E 00� ! 0 is an exact sequence of complexes in CY .X/, then

ŒE�� D ŒE
0
��C ŒE

00
� �

in KY0 .X/.

� If E� ! E 0� is a quasi-isomorphism in CY .X/, then

ŒE�� D ŒE
0
��

in KY0 .X/.

When P is a locally free coherent OX -module and i 2 N, we will denote the complex

� � � ! 0! P ! 0! � � � (4.2)

concentrated in degree i , by P Œi� 2 CX .X/. We will write 1 WD OX Œ0� 2 CX .X/.

Let X be a variety and Y � X a closed subscheme. There is a bilinear map

K0.X/ �K
Y
0 .X/! KY0 .X/I .a; ˇ/ 7! a � ˇ;

such that for any locally free coherent OX -modules P and E� 2 CY .X/ we have

ŒP � � ŒE�� D ŒP ˝OX E�� 2 K
Y
0 .X/:

If Z � X is another closed subscheme, there is a bilinear map

KY0 .X/ �K
0
0.Z/! K 00.Y \Z/I .˛; b/ 7! ˛ \ b;

such that for any E� 2 CY .X/ and M 2M.Z/ we have

ŒE�� \ ŒM � D
X
i2N

.�1/i ŒH i .E� ˝OX M/� 2 K 00.Y \Z/:

If f WX 0 ! X is a morphism, there is a pullback homomorphism

f �WKY0 .X/! K
f �1Y
0 .X 0/:

We will need the following basic compatibilities, which may be verified at the level of
modules (before applying the functor K 00).

Lemma 4.3. Let X be a variety and Y;Z closed subschemes of X . Let ˛ 2 KY0 .X/ and
b 2 K 00.Z/. Denote by i WZ ! X the closed immersion.

(a) Let Y 0 be a closed subscheme of X and ˛0 2 KY
0

0 .X/. Then

˛ \ .˛0 \ b/ D ˛0 \ .˛ \ b/ 2 K 00.Y \ Y
0
\Z/:

(b) Denote by f WY \Z ! X the closed immersion. For any e 2 K0.X/,

.e � ˛/ \ b D ˛ \ ..i�e/ � b/ D .f �e/ � .˛ \ b/ 2 K 00.Y \Z/:
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(c) Denote by gWY ! X the closed immersion. Then

˛ \ b D .g�˛/ \ b 2 K 00.Y \Z/:

(d) If Y � Z, then
˛ \ b D ˛ \ i�b 2 K

0
0.Y /:

(e) Assume that Y � Z, and denote by j WY ! Z the closed immersion. Then

j�.˛ \ b/ D z̨ \ b 2 K
0
0.Z/;

where z̨ is the image of ˛ under the “forgetful” map KY0 .X/! KX0 .X/.

Lemma 4.4 ([5, Lemma 1.9]). LetX be a regular variety and Y �X a closed subscheme.
Then the following map is an isomorphism:

KY0 .X/! K 00.Y /I ˛ 7! ˛ \ ŒOX �:

Definition 4.5. Let L be a line bundle over X , and s 2 H 0.X; L/ a section. We will
denote by K.s/ the complex of locally free coherent OX -modules

� � � ! 0! L_
s_

�! OX ! 0! � � �

concentrated in degrees 1; 0.

The homology ofK.s/ is supported on Z.s/, so that we have a class ŒK.s/�2KZ.s/
0 .X/.

If the section s is regular, then

ŒK.s/� \ ŒOX � D ŒOZ.s/� 2 K
0
0.Z.s//: (4.6)

Lemma 4.7. LetL be a line bundle over a varietyX . Then the image of ŒK.s/� inKX0 .X/
does not depend on the choice of the section s 2 H 0.X;L/.

Proof. The commutative diagram with exact rows

0 // 0 //

��

L_

s_

��

id // L_ //

��

0

0 // OX
id // OX // 0 // 0

shows that the image of ŒK.s/� inKX0 .X/ is 1C ŒL_Œ1�� (see (4.2)). This element is visibly
independent of s.
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4.2. Bott’s class

From now on we fix a nonzero integer k 2 Z.

Lemma 4.8. Let L be a line bundle over a quasi-projective variety X . Then

1 � ŒL� 2 K0.X/

is nilpotent.

Proof. We may write LD A˝B_ where A;B are line bundles over X such that A_;B_

are generated by their global sections. If 1 � ŒA� and 1 � ŒB� are nilpotent, then so is

1 � ŒL� D
�
1 � ŒA�

�
� ŒB_�

�
1 � ŒB�

�
C ŒB_�

�
1 � ŒA�

��
1 � ŒB�

�
:

Thus, we are reduced to assuming that L_ is generated by its global sections. Pulling back
along the associated morphism X ! Pn, we reduce to X D Pn and L D OPn.�1/. We
prove by induction on n that �

1 � ŒL�
�nC1

D 0 2 K0.X/:

There is a regular section s of L_ such that Z.s/ D Pn�1 and LjZ.s/ D OPn�1.�1/. Let
i WZ.s/! X be the immersion. By (3.10) and the projection formula, we have in K 00.X/�

1 � ŒL�
�nC1

� ŒOX � D
�
1 � ŒL�

�n
� i�ŒOZ.s/� D i�

��
1 � ŒLjZ.s/�

�n
� ŒOZ.s/�

�
:

That element vanishes by induction. Since the natural homomorphism K0.X/! K 00.X/

is an isomorphism [18, §7.1], the claim follows.

Definition 4.9. Consider the power series (which is a polynomial when k > 0)

�k.c/ D
1 � .1 � c/k

c
2 ZJcK:

By Lemma 4.8 (when k < 0) and the splitting principle, there is a unique way to assign to
each vector bundle E over a variety X an element �k.E/ 2 K0.X/ so that:

� If L is a line bundle, then
�k.L/ D �k

�
1 � ŒL�

�
:

� If 0! E 0 ! E ! E 00 ! 0 is an exact sequence of vector bundles, then

�k.E/ D �k.E 0/�k.E 00/:

� If f WY ! X is a morphism and E a vector bundle over X , then

f ��k.E/ D �k.f �E/:
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The power series �k.c/ � k is divisible by c in ZJcK, and thus �k.c/ admits a multi-
plicative inverse in ZŒ1=k�JcK. We deduce, using Lemma 4.8 and the splitting principle,
that �k.E/ is invertible in K0.X/Œ1=k� for any vector bundle E over a variety X . Thus,
for every variety X , the association E 7! �k.E/ extends uniquely to a map

�k WK0.X/! K0.X/Œ1=k�

satisfying �k.a � b/ D �k.a/�k.b/�1 for any a; b 2 K0.X/.

For any variety X , we have �k.1/ D �k.0/ D k, and therefore

�k.n/ D kn for any n 2 Z � K0.X/: (4.10)

4.3. Adams operations

The classical Adams operation  k WK0.�/! K0.�/ is defined using the splitting princi-
ple by the following conditions:

� If L is a line bundle, then  k ŒL� D ŒL˝k �.

� For any a; b 2 K0.X/, we have  k.a � b/ D  k.a/ �  k.b/.

� If f WY ! X is a morphism, then  k ı f � D f � ı  k .

This construction may be refined to obtain an operation on theK-theory with supports:

Definition 4.11. Let X be a regular variety and Y � X a closed subscheme. Then the
group KY0 .X/ defined in (4.1) coincides with the one considered in [20], as they are
both canonically isomorphic to K 00.Y /. Thus the construction of [20] yields an Adams
operation  k WKY0 .X/! KY0 .X/.

The following properties follow from the construction given in [20].

Lemma 4.12. Let X be a regular variety and Y � X a closed subscheme.

(a) If f WX 0 ! X is a morphism and X 0 is regular, then

f � ı  k D  k ı f �WKY0 .X/! K
f �1Y
0 .X 0/:

(b) If k0 2 Z � ¹0º, then  k ı  k
0

D  kk
0

.

(c) For any a 2 K0.X/ and ˇ 2 KY0 .X/, we have  k.a � ˇ/ D . ka/ � . kˇ/.

(d) We have  k1 D 1 in KX0 .X/ (see (4.2)).

Definition 4.13. Any quasi-projective varietyX may be embedded as a closed subscheme
of a smooth quasi-projective variety W . By Lemma 4.4, there is a unique homomorphism

 k WK
0
0.X/Œ1=k�! K 00.X/Œ1=k�;

called the kth Adams operation of homological type, such that for any ˛ 2 KX0 .W /

 k
�
˛ \ ŒOW �

�
D . k˛/ \

�
�k.�T _W / � ŒOW �

�
:
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It follows from the Adams Riemann–Roch theorem without denominators that this oper-
ation is independent of the choice of W , and that it commutes with proper push-forward
homomorphisms (see [20, Théorème 7]).

Remark 4.14. We stick to the classical definition of Bott’s class �k (see, e.g., [1, §7]),
which coincides with one used in [20], but is dual to the one of [15]. Our class �k is the
dual of the “inverse Todd genus” of the operation  k , which explains the appearance of
the cotangent bundle (as opposed to the tangent bundle) in Definition 4.13.

We now explain how to remove the assumption of quasi-projectivity. An envelope is a
proper morphism f W Y ! X such that for each integral closed subscheme Z � X , there
is an integral closed subscheme W � f �1Z such that the induced morphism W ! Z is
birational. Any base change of an envelope is an envelope, and the composition of two
envelopes is an envelope [4, Lemma 18.3 (2), (3)].

Lemma 4.15. Let f W Y ! X be an envelope. Denote by p1; p2W Y �X Y ! Y the two
projections. Then the following sequence is exact

K 00.Y �X Y /
.p1/��.p2/�
��������! K 00.Y /

f�
�! K 00.X/! 0:

Proof. The sequence is clearly a complex. We proceed by noetherian induction on X .
Since push-forward homomorphisms along nilimmersions are bijective [18, §7, Proposi-
tion 3.1], we may assume that X is reduced. Assuming that X ¤ ¿, we may find a closed
subscheme X 0 ¨ X whose open complement U is such that f jU W V WD f �1U ! U

admits a section sWU ! V (letting X1; : : : ; Xn be the irreducible components of X , we
find Y1 � Y birationally dominating X1; then Y1 ! X1 restricts to an isomorphism over
a nonempty open subscheme U1 of X1, and we set U D U1 \ .X � .X2 [ � � � [ Xn//).
Let Y 0 D f �1.X 0/, and consider the commutative diagram with exact rows [18, §7.3]

K 01.V /
//

.f jU /�

��

K 00.Y
0/ //

.f jX 0 /�

��

K 00.Y /

f�

��

// K 00.V /

.f jU /�

��

// 0

K 01.U /
// K 00.X

0/ // K 00.X/ // K 00.U / // 0:

Each homomorphism .f jU /� is surjective, since it admits a section s�. The homomor-
phism .f jX 0/� is surjective by induction, and a diagram chase shows that f� is surjective.

Let now a 2 K 00.Y / be such that f�a D 0 in K 00.X/. Let bU 2 K 00.V �U V / be the
image of ajV 2 K 00.V / under the push-forward homomorphism along

.idV ; s ı f jU /WV ! V �U V;

and let b 2 K 00.Y �X Y / be a pre-image of bU . Then

.p1/�.b/jV D ajV and .p2/�.b/jV D 0:

Thus,
a � ..p1/� � .p2/�/.b/ 2 K

0
0.Y /
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is the image of an element c 2 K 00.Y
0/. Chasing the above diagram, we see that c may be

modified to satisfy additionally .f jX 0/�.c/D 0. By induction c is the image of an element
of K 00.Y

0 �X 0 Y
0/, whose push-forward d 2 K 00.Y �X Y / satisfies

a D ..p1/� � .p2/�/.b C d/:

This concludes the proof.

Since any variety X admits an envelope Y ! X where Y is quasi-projective (see [4,
Lemma 18.3 (3)]), combining Lemma 4.15 with [9, Proposition 5.2] yields:

Proposition 4.16. There is a unique way to define an operation

 k WK
0
0.X/Œ1=k�! K 00.X/Œ1=k�

for each variety X , compatibly with proper push-forward homomorphisms and agreeing
with Definition 4.13 when X is quasi-projective.

Using (4.12.a) and the surjectivity of push-forward homomorphisms along envelopes,
we see that the Adams operation k commutes with the restriction to any open subscheme.

Let k0 2 Z� ¹0º and let X be a quasi-projective variety. Note that for any a 2 K0.X/

�k.a/ � . k ı �k
0

.a// D �kk
0

.a/ 2 K0.X/Œ1=kk
0�I (4.17)

this is immediate when a is the class of a line bundle, and follows in general from the
splitting principle. Combining (4.17) with (4.12.b), (4.12.c) and (4.3.b), we deduce that

 k ı  k0 D  kk0 WK
0
0.X/Œ1=kk

0�! K 00.X/Œ1=kk
0�: (4.18)

By Proposition 4.16, this formula remains valid when X is an arbitrary variety.

Definition 4.19. Let X be a variety. Assume that there is a smooth variety W , and a
regular closed immersion i WX ! W , with normal bundle N . The element

TX WD ŒTW jX � � ŒN � 2 K0.X/;

does not depend on the choice of W and i , and is called the virtual tangent bundle of X
(see [4, B.7.6]).

Lemma 4.20. Let X be a regular quasi-projective variety. Then

 k ŒOX � D �
k.�T _X / � ŒOX � 2 K

0
0.X/Œ1=k�:

Proof. Let i WX ! W be a closed immersion, where W is smooth and quasi-projective.
Then i is a regular closed immersion, let N be its normal bundle. The Gysin homo-
morphism i�WK

X
0 .X/ ! KX0 .W / is by definition the unique map compatible with the

isomorphisms KX0 .X/! K 00.X/ and KX0 .W /! K 00.X/ of Lemma 4.4. Then,

.i�1/ \ ŒOW � D ŒOX �
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inK 00.X/ (see (4.2)). By (4.12.d) and the Adams Riemann–Roch theorem (see [20, Théo-
rème 3], where N should be replaced by N_), we have in K 00.X/Œ1=k�

 k ŒOX � D . 
k
ı i�1/ \

�
�k.�T _W / � ŒOW �

�
D
�
�k.N_/ � .i�1/

�
\
�
�k.�T _W / � ŒOW �

�
;

and the statement follows from (4.3.b).

Lemma 4.21. LetX be an integral variety of dimension d . Then there is a nonempty open
subscheme U of X such that  k ŒOU � D k�d ŒOU � in K 00.U /Œ1=k�.

Proof. Let U be a quasi-projective regular nonempty open subscheme of X . The virtual
tangent bundle TU 2 K0.U / may be written as ŒE�� ŒF �, where E;F are vector bundles
over U . Shrinking U , we may assume that E and F are trivial, so that T _U D d 2 K0.U /,
and the statement follows from Lemma 4.20 and (4.10).

4.4. Adams operations on divisor classes

Lemma 4.22. LetL be a line bundle over a quasi-projective varietyX . Let s 2H 0.X;L/.
Then we may find

� a closed immersion X ! W where W is smooth and quasi-projective,

� a line bundle M over W such that M jX D L,

� a regular section t 2 H 0.W;M/ such that t jX D s and Z.t/ is smooth.

Proof. By [4, Lemma 18.2], we may find a smooth quasi-projective variety V contain-
ing X as a closed subscheme, and a line bundle W ! V such that

W jX D L:

Let M D W �V W , and view M as a line bundle over W via the first projection. The
diagonal

W ! W �V W

may be considered as a regular section t of M whose vanishing locus is V (embedded
in W as the zero-section). We view X as a closed subscheme of W using the composite

X
s
�! L D W jX ! W;

where the last morphism is the base change of the immersion X ! V . The statements are
then easily verified.

Lemma 4.23. Let L be a line bundle over a quasi-projective variety X , and s a regular
section of L. Set Y D Z.s/. Then we have in K 00.Y /Œ1=k�

 k ŒOY � D ŒK.s/� \
�
�k.L_/ �  k ŒOX �

�
:
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Proof. Let us apply Lemma 4.22 and use its notation. By Lemma 4.4, there is an element
˛ 2 KX0 .W / such that

˛ \ ŒOW � D ŒOX � 2 K
0
0.X/: (4.24)

Let V D Z.t/ and j WV ! W be the closed immersion. We have in K 00.Y /

ŒOY � D ŒK.s/� \ ŒOX � by (4.6)

D ŒK.t/� \
�
˛ \ ŒOW �

�
by (4.24) and (4.3.c)

D ˛ \
�
ŒK.t/� \ ŒOW �

�
by (4.3.a)

D ˛ \ ŒOV � by (4.6)

D .j �˛/ \ ŒOV � by (4.3.c).

Since ŒTV � D ŒTW jV � � ŒM jV � in K0.V /, we have in K 00.Y /Œ1=k�

 k ŒOY � D  k
�
j �˛ \ ŒOV �

�
D  k.j �˛/ \

�
�k.�T _V / � ŒOV �

�
D . k˛/ \

�
�k.�T _V / � ŒOV �

�
by (4.3.c), (4.12.a)

D . k˛/ \
�
�k.M_jV /�

k.�T _W jV / �
�
ŒK.t/� \ ŒOW �

��
by (4.6)

D ŒK.t/� \
�
�k.L_/ �

�
. k˛/ \

�
�k.�T _W / � ŒOW �

���
by (4.3.a), (4.3.b)

D ŒK.s/� \
�
�k.L_/ �  k ŒOX �

�
by (4.3.c), (4.24).

Proposition 4.25. Let X be an integral quasi-projective variety of dimension d . Let L
be a line bundle over X , and s1; s2 regular sections of L. Then we may find a closed
subscheme Z ¨ X containing Z.s1/ and Z.s2/ as closed subschemes, and such that

 k
�
ŒOZ.s1/� � ŒOZ.s2/�

�
D k1�d

�
ŒOZ.s1/� � ŒOZ.s2/�

�
2 K 00.Z/Œ1=k�:

Proof. Since the sections s1; s2 are regular, we may find a nonempty open subscheme U
of X which does not meet Z.s1/ [ Z.s2/. Then LjU is trivial. Shrinking U , we may
assume that  k ŒOU � D k�d ŒOU � in K 00.U /Œ1=k� by Lemma 4.21. Let Z0 be the reduced
closed complement of U in X . The intersection of the ideal sheaves of Z0;Z.s1/;Z.s2/
in OX defines a closed subscheme Z � X whose open complement is U , and we have
closed immersions jnWZ.sn/!Z for n 2 ¹1; 2º. Since �k.L_jU /D k by (4.10), we have

�k.L_jU / �  k ŒOU � D k
1�d ŒOU � 2 K

0
0.U /Œ1=k�:

It follows from the localization sequence [18, §7, Proposition 3.2] that

�k.L_/ �  k ŒOX � D k
1�d ŒOX �C i�z 2 K

0
0.X/Œ1=k�; (4.26)

where z 2K 00.Z/Œ1=k�, and i WZ!X is the closed immersion. By Lemma 4.7, the image
� 2 KX0 .X/ of ŒK.sn/� 2 K

Z.sn/
0 .X/ does not depend on n 2 ¹1; 2º. For such n, we have
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in K 00.Z/Œ1=k�

 k ı .jn/�ŒOZ.sn/� D .jn/� ı  k ŒOZ.sn/�

D .jn/�
�
ŒK.sn/� \

�
�k.L_/ �  k ŒOX �

��
by Lemma 4.23

D k1�d .jn/�ŒOZ.sn/�C .jn/�
�
ŒK.sn/� \ i�z

�
by (4.6), (4.26)

D k1�d .jn/�ŒOZ.sn/�C � \ z by (4.3.d), (4.3.e):

The statement follows.

5. Applications of the Adams operations

5.1. Inverting small primes

For every nonzero integer k, the homological operation  k on the groupsK 00.Z/Œ1=k� for
all closed subschemes Z � X yields an operation (still denoted by  k) on

Bi .X/Œ1=k� D colimdimZ�i K
0
0.Z/Œ1=k�

that commutes with the Bott homomorphisms ˇi . Thus, B�.X/Œ1=k� is an endo-module
over the ring ZŒ1=k�Œt �, where t acts via  k .

Proposition 5.1. The operation  k acts on the derivative Ai .X/.s/Œ1=k� via multiplica-
tion by k�s�i and on Ci .X/.s/Œ1=k�, CHi .X/Œ1=k�, and K 00.X/.i=i�1/Œ1=k� via multipli-
cation by k�i for every i .

Proof. We first claim that  k acts on Ci .X/Œ1=k� via multiplication by k�i . To see
this, we may assume that X is integral of dimension i . Then Ci .X/ is the free abelian
group generated by the image of ŒOX � 2 Bi .X/ D K 00.X/, and the claim follows from
Lemma 4.21.

Now it follows from Propositions 4.25 and 3.13 that  k also acts on Ai .X/Œ1=k�
via multiplication by k�i . To conclude, note that Ai .X/.s/ is a submodule of AsCi .X/,
thatCi .X/.s/ is a factor module ofCi .X/, that CHi .X/DCi .X/.1/ and thatK 00.X/.i=i�1/
is a factor module of CHi .X/.

It follows from Proposition 5.1 that for every nonzero integer k and a2Ai .X/.s/Œ1=k�,
we have

k�i � ı
.s/
i .a/ D  k.ı

.s/
i .a// D ı

.s/
i . k.a// D k

�s�i
� ı
.s/
i .a/;

hence every element in

Im
�
Ai .X/

.s/
ı
.s/
i
��! Ci .X/

.s/
�
D Ker

�
Ci .X/

.s/� Ci .X/
.sC1/

�
is killed by km.ks � 1/ for some m � 0.
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We consider supernatural numbers k1.ks � 1/ (see [19, I.1.3]) and write

Ns WD gcd k1.ks � 1/

over all k > 1. For a prime integer p and integer i > 0 the group .Z=piZ/� is cyclic of
order .p � 1/pi�1 unless p D 2 and i � 3 in which case this group is of exponent 2i�2.
It follows that Ns D 2 if s is odd and

Ns D 2 �
Q
pvp.s/C1;

if s is even, where the product is taken over the set of all prime integers p such that p � 1
divides s (here vp is the p-adic valuation). These integers are related to the Bernoulli
numbers, see, e.g., [16, Appendix B]. The first few values for s even are listed in the
following table:

s 2 4 6 8 10 12 14 16 18 20 22

Ns 24 240 504 480 264 65520 24 16320 28728 13200 552

We proved the following:

Proposition 5.2. Let s be a positive integer and X a variety. Then every element in the
kernel of the homomorphism Ci .X/

.s/� Ci .X/
.sC1/ is killed by Ns .

Write Z.p/ for the localization of Z by the prime ideal pZ. Note that if p is a prime
divisor of Ns , then p � 1 divides s. It follows from Proposition 5.2 that

Ci .X/
.s/
˝ Z.p/� Ci .X/

.sC1/
˝ Z.p/

is an isomorphism if p � 1 does not divides s. We have proved:

Corollary 5.3 (see [15, Theorem 3.4]). All the differentials in the sth derived endo-
module of B�.X/˝ Z.p/ are trivial if s is not divisible by p � 1.

It follows from Proposition 3.7 that the kernel of 'i is killed by the product

N1N2 � � �Nd�i�1:

Every prime divisor p of the product is such that p � 1 divides an integer s � d � i � 1,
hence p � d � i . We have proved:

Theorem 5.4. Let X be a variety of dimension d . Then for every i D 0; 1; : : : ; d , the
map 'i is an isomorphism when localized by .d � i/Š .

Remark 5.5. If X is a smooth variety of dimension d , an application of Chern classes
and Riemann–Roch theorem imply that .d � i � 1/Š �Ker.'i /D 0 for every i > 0 (see [4,
Example 15.3.6]).



O. Haution and A. S. Merkurjev 154

Proposition 5.6. Let X be a variety. Then the kernel of the Bott homomorphism

CKi .X/! CKiC1.X/

is killed by N1N2 � � �NiC1 for every i � 0. In particular, the Bott homomorphism is injec-
tive when localized by .i C 2/Š.

Proof. We need to prove that Ai .X/.1/ is killed by N1N2 � � �NiC1. By induction on i we
show that Ai .X/.s/ is killed by NsNsC1 � � �NsCi for every s � 1. The statement is clear
if i < 0 since Ai .X/.s/ D 0 in this case.

.i � 1/) i : The factor group Ai .X/.s/=Ai�1.X/.sC1/ is isomorphic to the kernel of
Ci .X/

.s/ � Ci .X/
.sC1/ and hence is killed by Ns by Proposition 5.2. By induction,

Ai�1.X/
.sC1/ is killed by NsC1 � � �NsCi . The result follows.

Corollary 5.7. Let X be a variety of dimension d . Then the associated endo-module
CK�.X/ degenerates when localized by dŠ.

5.2. Direct sum decompositions

Theorem 5.8. For every variety X and integer i � 0, the homomorphism

K 00.X/.i/Œ1=.i C 1/Š�� K 00.X/.i=i�1/Œ1=.i C 1/Š�

admits a section, compatibly with proper push-forward homomorphisms.

Proof. For every integer k > 1, let

rk D k �
iQ

jD1

.kj � 1/ 2 ZŒ1=.i C 1/Š�:

If p > i C 1 is a prime integer and k > 1 is such that the congruence class k C pZ is a
generator of .Z=pZ/�, then since p � 1 > i , the integer rk is not divisible by p. It follows
that the elements rk for k > 1 generate the unit ideal in ZŒ1=.i C 1/Š�.

Let M D K 00.X/.i/Œ1=.i C 1/Š�. For each integer k > 1, consider the endomorphism

�k WD
i�1Q
jD0

 k � k
�j

k�i � k�j
WMŒ1=rk �!MŒ1=rk �:

Let N D K 00.X/.i�1/Œ1=.i C 1/Š�. It follows from Proposition 5.1 that each �k vanishes
on NŒ1=rk � and coincides with the identity modulo NŒ1=rk �. Thus, for any k; k0 > 1,
we have �k D �k ı �k0 and �k0 D �k0 ı �k on MŒ1=rkrk0 �. Since �k commutes with �k0
by (4.18), we deduce that �k and �k0 coincide onMŒ1=rkrk0 �. By Zariski descent, there is a
unique endomorphism ofM whose localization is �k for each k > 1. That endomorphism
vanishes on N and coincides with the identity modulo N , hence induces the required
section. The functoriality follows from that of the operations  k .
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Theorem 5.8 provides a functorial decomposition

K 00.X/.i/Œ1=.i C 1/Š� '
ì

jD0

K 00.X/.j=j�1/Œ1=.i C 1/Š�: (5.9)

Taking appropriate colimits, we get the following:

Corollary 5.10. Let X be a variety. Then for every i � 0 there are subgroups

CKi .X/Œj � � CKi .X/Œ1=.j C 1/Š�

for all j D 0; 1; : : : ; i , functorial with respect to proper morphisms and such that

CKi .X/Œ1=.i C 1/Š� D
ì

jD0

CKi .X/Œj �Œ1=.i C 1/Š�:

Moreover, the localized Bott homomorphism

CKi�1.X/Œ1=.i C 1/Š�! CKi .X/Œ1=.i C 1/Š�

maps CKi�1.X/Œj �Œ1=.i C 1/Š� into CKi .X/Œj �Œ1=.i C 1/Š� for all j D 0; 1; : : : ; i � 1.

Combining (5.9) with Theorem 5.4, we obtain

Corollary 5.11. If X is a variety of dimension d , we have

CH.X/Œ1=.d C 1/Š� ' K 00.X/Œ1=.d C 1/Š�:

These isomorphisms are compatible with proper push-forward homomorphisms.

Remark 5.12. The homomorphism K 00.X/.d/� K 00.X/.d=d�1/ certainly admits a sec-
tion, since its target is freely generated by the classes ŒOZ � where Z runs over the d -dim-
ensional irreducible components of X . Therefore, in fact

CH.X/Œ1=dŠ� ' K 00.X/Œ1=dŠ�:

However, these isomorphisms are not compatible with proper push-forward homomor-
phisms in general. For instance, let X be the Severi–Brauer variety of a central division
algebra of prime degree p over F . Then d D p � 1 and K 00.X/! K 00.SpecF / is sur-
jective (as �.X;OX / D 1), but CH.X/Œ1=.p � 1/Š� ! CH.Spec F /Œ1=.p � 1/Š� is not
(because X has no closed point of degree prime to p).

The functoriality in Corollary 5.11 implies the following statement (see [8, Theo-
rem 5.1 (ii)], or [3, Proposition 1.2] for the smooth case):

Corollary 5.13. Let X be a complete variety of dimension d . Then

� the set of Euler characteristics �.X;F / of coherent OX -modules F , and

� the set of degrees of closed points of X

generate the same ideal in ZŒ1=.d C 1/Š�.
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5.3. Connective K -groups of smooth varieties

Let X be a smooth variety. We will adopt cohomological notation (upper indices, graded
by codimension) and write CKi .X/, CHi .X/,Ai .X/,B i .X/,C i .X/, etc. The sth derived
endo-module of B�.X/ will be denoted by B�.X/.s/. The graded group CK�.X/ has a
structure of a commutative ring (see [2, §6.4]). The Bott homomorphisms are multiplica-
tions by the Bott element ˇ 2 CK�1.X/. By (3.6), there are canonical ring isomorphisms

CK�.X/=.ˇ/ ' CH�.X/ and CK�.X/=.ˇ � 1/ ' K0.X/:

Example 5.14. Let A be a central division algebra of prime degree p over F and G D
SL1.A/ the algebraic group of reduced norm 1 elements in A. ThenK0.G/ D Z (see [21,
Theorem 6.1]) and CH�.G/ D ZŒ��=.p�; �p/, where � 2 CHpC1.G/, by [11, Theo-
rem 9.7]. In other words,

CHi .G/ D

�
Z; if i D 0;
.Z=pZ/�j ; if i D .p C 1/j and j D 1; 2; : : : ; p � 1;
0; otherwise.

By Corollary 5.3, all differentials in the sth derived endo-module B�.G/.s/ are trivial
if 1 � s < p � 1. It follows that

Ai .G/.p�1/ D A
i�pC2.G/.1/

for every i , and

A.pC1/j .X/.p�1/ � B
.pC1/j .X/.p�1/ D ˇ

p�2B.pC1/j .X/.1/ D ˇ
p�2 CK.pC1/j .X/;

C .pC1/j .X/.p�1/ D C
.pC1/j .X/.1/ D CH.pC1/j .X/ D .Z=pZ/�j :

for every j D 1; 2; : : : ; p � 1.
By [11, Lemma 3.4], the differential

ApC1.X/.p�1/ ! CpC1.X/.p�1/ D CHpC1.X/ D .Z=pZ/�

is surjective. Choose a pre-image � 2 ApC1.X/.p�1/ of � . Since

ApC1.X/.p�1/ � ˇ
p�2 CKpC1.X/

we have � D ˇp�2� for some � 2 CKpC1.X/. The image of � under the natural homo-
morphism CKpC1.X/! CHpC1.X/ is equal to � . Since

� 2 ApC1.X/.p�1/ � A
3.X/.1/;

we have ˇp�1� D ˇ� D 0 in CK2.X/.
As ˇ��j�1 D 0, we have ��j�1 2 A.pC1/j .X/.p�1/ and the image of ��j�1 under

the differential

A.pC1/j .X/.p�1/ ! C .pC1/j .X/.p�1/ D CH.pC1/j .X/ D .Z=pZ/�j

is equal to �j .
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We proved that the differentials Ai .G/.p�1/ ! C i .G/.p�1/ in the .p � 1/th derived
endo-moduleB�.G/.p�1/ are surjective for all i > 0. As a consequence, C i .G/.p/D 0 for
all i > 0. SinceAi .G/.p/D 0 for all i � 0, by Lemma 2.4(4), the pth derived endo-module
B�.G/.p/ degenerates, i.e., Ai .G/.p/ D 0 for all i .

It follows that the differentials

Ai�pC2.G/.1/ D A
i .G/.p�1/ ! C i .G/.p�1/ D C

i .G/.1/ D CHi .G/

are isomorphisms for all i > 0. As a consequence we get the following calculation:

Ak.G/.1/ D

´
Z=pZ; if k D 3C .p C 1/j for j D 0; 1; : : : ; p � 2;

0; otherwise.

It implies that for every j D 0; 1; : : : ; p � 2 we have a sequence of isomorphisms

CK.pC1/j .G/
ˇ
�!
�

CK.pC1/j�1.G/
ˇ
�!
�
� � �

ˇ
�!
�

CK3C.pC1/.j�1/.G/

' A3C.pC1/.j�1/.G/.1/ D Z=pZ:

In particular, the natural homomorphism CKpC1.G/ ! CHpC1.G/ is an isomorphism
and hence the element � in CKpC1.G/ is unique. Our calculation yields:

CKi .G/ D

˚
Z; if i � 0;
.Z=pZ/ˇk�j ; if i D .p C 1/j � k for 1 � j � p � 1, 0 � k � p � 2;
0; otherwise.

All in all, we have the following formula:

CK�.G/ D ZŒˇ; ��=.p�; �p; ˇp�1�/:

6. Equivariant connective K -theory

LetG be a linear algebraic group andX aG-variety over F . Considering theK-groups of
the categories ofG-equivariant coherent OX -modules with support of bounded dimension
(see [10, §3]) one gets an exact couple leading to a BGQ type spectral sequence and
an endo-module B�.G; X/ with the first derivative groups CK�.G; X/ the equivariant
connective K0-groups of X . The endo-module B�.G; X/ is stable but it is not bounded
below in general.

In the caseXDSpec.F /we write CK�.BG/ for CK�.G;X/, CH�.BG/ for CH�.G;X/,
etc. The category of G-equivariant coherent OX -modules in this case is the category of
finite dimensional representations of G and henceK 00.BG/ coincides with the representa-
tion ring R.G/ of G. In particular, we have surjective homomorphisms

'i WCHi .BG/� R.G/.i=iC1/;



O. Haution and A. S. Merkurjev 158

where CHi .BG/ are the equivariant Chow groups (defined by Totaro in [22]). The (topo-
logical) filtration on R.G/ was defined in [12]. In this section, we illustrate how the
calculation of equivariant connective groups CKi .BG/ allows us to determine the dif-
ferentials in the endo-module. We will use the following formula:

Lemma 6.1. Let G be a linear algebraic group and X a G-variety over F . Let E be a
G-equivariant vector bundle overX of rank r . For any i 2 Z and j 2 ¹0; : : : ; rº, we have,
as homomorphisms CKi .G;X/! CKi�j .G;X/

cj .E
_/ D ŒdetE� �

rX
lDj

.�1/l
�
l

j

�
ˇl�j cl .E/:

Proof. We use the notation and terminology of [10], but write CKp and fCKp instead of
CKp;�p and fCKp;�p . For anyG-equivariant vector bundleM of rank s over aG-variety Y ,
consider the homomorphism

�.M/ D ŒdetM� �

sX
lD0

.�1 � ˇ/lcl .M/WCK.G; Y /! CK.G; Y /:

The conclusion of the lemma may be reformulated as c.E_/ D �.E/. If

0!M 0 !M !M 00 ! 0

is an exact sequence of G-equivariant vector bundles of constant ranks, then

c.M_/ D c.M 0_/ ı c.M 00_/ and �.M/ D �.M 0/ ı �.M 00/:

Thus, by the splitting principle (the projective bundle theorem holds for equivariant con-
nective K-groups [10, Remark 3.11]), we may assume that r D 1 and j 2 ¹0; 1º.

Let nD dimX � i C 2, pick an n-friendly space V , and set vD dimV . As the scheme-
theoretic support of anyG-equivariant coherent module is aG-invariant closed subscheme,
the group fCKiCv.G; XV / is generated by the images of the groups fCKiCv.G; Z/ under
the push-forward homomorphisms, whereZ runs over theG-invariant closed subschemes
of XV having dimension at most i C v. For any such subscheme Z and p 2 ¹0; 1º, we
have a commutative diagram

CKi�p.G;X/ fCKi�pCv.G;XV / // fCKi�pC2v.G;XV�V / CKi�pCv.G;XV /

fCKi�pC2v.G;Z/ //

OO

fCKi�pC2v.G;ZV /

OO

CKi�pCv.G;Z/:

OO

The upper horizontal composite is an isomorphism by [10, Lemma 3.6]. Since the Chern
classes are compatible with pull-backs and push-forwards, we conclude that we may
replace X with Z, and i with i C v. We have thus come to the situation where i � dimX ,
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in which case the homomorphism CKi�j .G; X/ ! K 00.G; X/ is injective (recall that
j 2 ¹0; 1º). Since it is also compatible with the Chern classes in the respective theories, it
will suffice to prove that, as endomorphisms of K 00.G;X/,

id D ŒE� � .id � c1.E// and c1.E
_/ D �ŒE� � c1.E/:

This follows at once from the formula c1.L/ D 1 � ŒL_� 2 K0.G; X/, valid for any
G-equivariant line bundle L over X (in particular for L D E and L D E_).

Assume that char.F / ¤ 2 and G D OCn the split special orthogonal group of odd
degree n. It is known (see [17, Theorem 5.1]) that

CH.BG/ D ZŒcCH
2 ; cCH

3 ; : : : ; cCH
n �=

�
2cCH

odd

�
:

and

R.G/ D ZŒcK2 ; c
K
4 ; : : : ; c

K
n�1�;

where cCH
i and cKi are the classical and K-theoretic Chern classes of the tautological

G-representation respectively. The term R.G/.i/ of the topological filtration on R.G/ is
generated by monomials in the Chern classes of degree at least i . The homomorphism

'�WCH�.BG/� R.G/.�=�C1/

takes cCH
i to the class of cKi if i is even and to 0 if i is odd. In particular, Ker.'�/ is

generated by cCH
i with i � 3 odd (see [12, Example 5.3]).

The same reasoning to prove that the ring CH.BG/ is generated by Chern classes
in [22, §15] can be applied to show that CK.BG/ is also generated by the CK-theoretic
Chern classes c1; c2; : : : ; cn of the tautological G-representation. We determine the rela-
tions between these Chern classes.

For every i � 1, let Qi be the subgroup of CKi .BG/ generated by ˇj ciCj over
all j �0. Write Qi

even for the subgroup of Qi generated by ˇj ciCj with i C j even.
Obviously, ˇQi � Qi�1 and ˇQi

even � Q
i�1
even.

Proposition 6.2. For every odd i D 1; 3; : : : ; n,

(1) Qi�1 D Qi�1
even,

(2) there is an element zci 2 ci CQi
even such that 2zci D 0 and ˇzci D 0.

Proof. We proceed by descending induction on i . Let i D n. The tautologicalG-represent-
ation is isomorphic to its dual and has trivial determinant, hence Lemma 6.1 implies that

cn D �cn and cn�1 D cn�1 � nˇcn;

i.e., nˇcn D 0. Setting zcn D cn we deduce that 2cn D 0 and ˇcn D 0 since n is odd.
The group Qn�1

even is generated by cn�1 and Qn�1 is generated by cn�1 and ˇcn D 0,
hence

Qn�1
D Qn�1

even :
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.i C 2/) i : It follows from Lemma 6.1 and the induction hypothesis that

2ci 2 ˇQ
iC1
D ˇQiC1

even D Q
i
even;

thus
2ci D

X
even j>i

ajˇ
j�icj with aj 2 Z:

Mapping to R.G/ we see that 2cKi D
P
aj c

K
j in R.G/. On the other hand,

cKi 2 R.G/ D Z
�
cK2 ; c

K
4 ; : : : ; c

K
n�1

�
;

hence all aj are even, therefore, 2ci 2 2Qi
even. We deduce that there is zci 2 ci CQi

even
such that 2zci D 0.

Lemma 6.1 for ci�1 yields

iˇci 2 ˇ
2QiC1

D ˇ2QiC1
even � Q

i�1
even

and therefore, iˇzci 2 Qi�1
even. As Qi�1

even maps injectively to R.G/ and ˇzci maps to zero
(since ˇzci is 2-torsion and R.G/ is torsion-free), we have iˇzci D 0. But i is odd, hence

ˇzci D 0:

It follows from zci 2 ci CQi
even and ˇzci D 0 that ˇci 2 ˇQi

even � Q
i�1
even. Finally,

Qi�1
D Zci�1 C Zˇci C ˇ

2QiC1
D Zci�1 C Zˇci C ˇ

2QiC1
even � Q

i�1
even:

Note that since the Bott map CK1.BG/! R.G/ is injective and R.G/ is torsion free,
the element zc1 is trivial. It follows from Proposition 6.2 that the ring CK.BG/ is generated
by c2; zc3; c4; : : : ; zcn and ˇ. Write zci D ci for all even i .

Under the natural homomorphism CK.BG/! CH.BG/ the class zci goes to cCH
i . The

obvious homomorphism

Z
�
zc2; zc3; : : : ; zcn; ˇ

�
=.2zcodd; ˇzcodd/

! Z
�
cK2 ; c

K
4 ; : : : ; c

K
n�1; ˇ

�
� Z

�
cCH
2 ; cCH

3 ; : : : ; cCH
n

�
=.2codd/

D R.G/Œˇ� � CH.BG/

is injective, and factors through a surjective homomorphism

Z
�
zc2; zc3; : : : ; zcn; ˇ

�
=.2zcodd; ˇzcodd/! CK.BG/

that is therefore an isomorphism. In other words, the relations 2zci D 0 and ˇzci D 0 are
the defining relations for the zci ’s in CK.BG/.

The endomorphism of the endo-moduleB�.BG/ is multiplication by ˇ. It follows from
the description of CK.BG/ that the kernel of multiplication by ˇn on CK.BG/ if n � 1
is equal to the kernel of multiplication by ˇ. It follows that multiplication by ˇ on the
second derivative of B�.BG/ is injective, i.e., the second derivative degenerates.
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