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We show how to simulate exactly the asset price and the variance under the Hull and White 
stochastic volatility model. We derive analytical formulas for the Laplace transform of the time 
integral of volatility conditional on the variance level at the endpoint of the time interval 
and the Laplace transform of integrated variance conditional on both integrated volatility and 
variance. Based on these results, we simulate the model through a nested-conditional factorization 
approach, where Laplace transforms are inverted through the (conditional) Fourier-cosine (COS) 
method. Under this model, our approach can be used to generate unbiased estimates for the 
price of derivatives instruments. We propose some variants of the exact simulation scheme for 
computing unbiased estimates of option prices and sensitivities, a difficult task in the Hull and 
White model. These variants also allow for a significant reduction in the Monte Carlo simulation 
estimator’s variance (around 93-98%) and the computing time (around 22%) when pricing 
options. The performances of the proposed algorithms are compared with various benchmarks. 
Numerical results demonstrate the faster convergence rate of the error in our method, which 
achieves an 𝑂(𝑠−1∕2) convergence rate, where 𝑠 is the total computational budget, largely 
outperforming the benchmark.

1. Introduction

The exact simulation of stochastic volatility models is a standard topic in financial engineering since the seminal work of Broadie 
and Kaya (2006), which showed that the transition of the variance and the asset price processes can be simulated exactly (without 
any time discretization) in the Heston model. In later years, many authors proposed exact simulation schemes for various stochastic 
volatility models, as we illustrate later on. In this paper, we contribute to this stream of literature by developing an exact simulation 
scheme for the Hull and White (1987) stochastic volatility model (henceforth, HW-SV).

The possibility to simulate exactly a stochastic volatility model while avoiding time discretization is fundamental for many reasons 
(Broadie and Kaya, 2006): 𝑖) discretization introduces bias into the simulation output, causing serious problems when computing 
the prices or Greeks of derivative securities; 𝑖𝑖) it is not possible to determine a priori the number of time steps needed to reduce 
the discretization bias to an acceptable level; 𝑖𝑖𝑖) since the bias is unknown, the standard error may be a poor estimate of the actual 
error, and valid confidence intervals are not available; 𝑖𝑣) the convergence rate for exact simulation schemes is 𝑂(𝑠−1∕2), where 𝑠
is the total computational budget, whereas the error for a first-order method such as Euler discretization has 𝑂(𝑠−1∕3) convergence 
(Duffie and Glynn, 1995). For these reasons, exact simulation schemes have been proposed in the literature for various stochastic 
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Table 1

Literature review on exact simulation of stochastic volatility models.

Model 𝜎𝑆 (𝑆𝑡, 𝑉𝑡, 𝑡) 𝜇𝑉 (𝑉𝑡, 𝑡) 𝜎𝑉 (𝑉𝑡, 𝑡) 𝑌 𝑋 Literature

Heston 𝑆𝑡
√
𝑉𝑡 𝑘(𝜃 − 𝑉𝑡) 𝜎

√
𝑉𝑡 𝑉𝑇 ∫ 𝑇

0 𝑉𝑠𝑑𝑠 Broadie and Kaya (2006)

3∕2 𝑆𝑡
𝑏√
𝑉𝑡

𝑘(𝜃 − 𝑉𝑡) 𝜎
√
𝑉𝑡 𝑉𝑇 ∫ 𝑇

0
1
𝑉𝑠
𝑑𝑠 Baldeaux (2012)

SABR 𝑆
𝛽

𝑡

√
𝑉𝑡 𝜎2𝑉𝑡 2𝜎𝑉𝑡 𝑉𝑇 ∫ 𝑇

0 𝑉𝑠𝑑𝑠 Cai et al. (2017)

4∕2 𝑆𝑡

(
𝑎
√
𝑉𝑡 +

𝑏√
𝑉𝑡

)
𝑘(𝜃 − 𝑉𝑡) 𝜎

√
𝑉𝑡 𝑉𝑇 log𝑆𝑇 Grasselli (2017)

SV-OU 𝑆𝑡
√
𝑉𝑡 2𝑘

(
𝜎2

2𝑘
+ 𝜃
√
𝑉𝑡 − 𝑉𝑡

)
2𝜎
√
𝑉𝑡

(
𝑉𝑇 , ∫ 𝑇

0

√
𝑉𝑠𝑑𝑠

) ∫ 𝑇

0 𝑉𝑠𝑑𝑠 Li and Wu (2019)

HW-SV 𝑆𝑡
√
𝑉𝑡 𝜂𝑉𝑡 𝜎𝑉𝑡 𝑉𝑇 ∫ 𝑇

0

√
𝑉𝑠𝑑𝑠 This paper

volatility models. Despite each proposed exact simulation method is tailored to the specific model of interest, all these schemes are 
based on a nested-conditional factorization approach (Parrish, 1987, 1990): suppose to have two dependent random variables 𝑋 and 
𝑌 and one is interested to obtain a joint sample (𝑋, 𝑌 ), then a possible approach is to simulate 𝑌 first and then 𝑋 conditionally on 
𝑌 . Various stochastic volatility models can be simulated exactly by choosing appropriately 𝑋 and 𝑌 , which are typically functions 
of the variance process and its time integral. Then, the asset price process is simulated exploiting the fact that, conditionally on 𝑋
and 𝑌 , the log-asset price distribution is known. Under a suitably defined filtered probability space, a stochastic volatility model is 
given by the following couple of stochastic differential equations:

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡+ 𝜎𝑆 (𝑆𝑡,𝑉𝑡, 𝑡)(𝜌𝑑𝐵𝑡 +
√
1 − 𝜌2𝑑𝑊𝑡),

𝑑𝑉𝑡 = 𝜇𝑉 (𝑉𝑡, 𝑡)𝑑𝑡+ 𝜎𝑉 (𝑉𝑡, 𝑡)𝑑𝐵𝑡,

where 𝐵𝑡 and 𝑊𝑡 are independent standard Brownian motions, 𝑟 is the risk-less rate and 𝜌 ∈ [−1, 1]. The functions 𝜇𝑉 , 𝜎𝑉 , 𝜎𝑆 define 
a specific stochastic volatility model, as shown in Table 1 where we provide a schematic literature review on the exact simulation of 
stochastic volatility models. For notational convenience, we excluded from Table 1 the important contribution in Kang et al. (2017), 
where an exact simulation scheme for the Wishart stochastic volatility model is developed. It is worth noting that the simulation 
of (𝑋|𝑌 ) is performed by numerically inverting the conditional Laplace transform of (𝑋|𝑌 ) and then applying inverse transform 
sampling given the numerical estimate of the cumulative distribution function. As a result, some error is introduced in the simulation 
during the numerical inversion and the term “exact” may sound misleading. Nevertheless, following the standard literature indicated 
in Table 1, we will still refer to our methodology as exact.

In this paper, we aim to extend this important stream of literature by developing an exact simulation scheme for the HW-SV model. 
Let us denote with (𝑉𝑡)𝑡≥0 the variance process, we show that, for a fixed maturity 𝑇 > 0, the asset price process 𝑆𝑇 depends on 
the following triplet: variance (𝑉𝑇 ), its time integral (∫ 𝑇0 𝑉𝑠𝑑𝑠) and the time integral of the volatility (∫ 𝑇0

√
𝑉𝑠𝑑𝑠). Then, exploiting 

some theoretical results in Matsumoto and Yor (2005), we derive the conditional Laplace transforms of 
(
1∕∫ 𝑇0

√
𝑉𝑠𝑑𝑠|𝑉𝑇) and (∫ 𝑇0 𝑉𝑠𝑑𝑠| ∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇) and develop a nested-conditional factorization approach for the exact simulation of the transition of asset 

price and variance processes in the HW-SV model. More specifically, we perform the simulation in three steps: 𝑖) simulate (𝑉𝑇 |𝑉0); 𝑖𝑖)
simulate (∫ 𝑇0

√
𝑉𝑠𝑑𝑠|𝑉𝑇 ); 𝑖𝑖𝑖) simulate 

(
log𝑆𝑇 | ∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇). The first step is simple because 𝑉 is a geometric Brownian motion, 

while the second and third steps rely on knowledge of the aforementioned Laplace transforms. We use the Fourier-cosine (COS) 
method by Fang and Oosterlee (2009) to obtain the relevant cumulative distribution functions given the Laplace transforms, and then 
simulate using inverse transform sampling. The usage of the COS method deserves particular attention. The literature summarized 
in Table 1 follows a different approach for numerical inversion of the Laplace transforms and applies the algorithm in Abate and 
Whitt (1992). This choice is convenient because such an algorithm has a theory of error control that also performs well in practice. 
However, the COS method is a better alternative because it is known to perform exceptionally well in practice and it also presents an 
error control theory (Fang and Oosterlee, 2009, Section 4). To have a theoretical control of the error for the numerical inversion of 
the Laplace transforms involved in our simulation scheme using the COS method, as we demonstrate later in this paper, we need to 
find the so-called truncation range (Fang and Oosterlee, 2009, Section 5.3). To this end, we propose two different methodologies for 
properly computing the truncation range based on the conditional moments of some relevant distributions. We refer to later sections 
for more details. However, we anticipate that with our approach the error is controlled by only one parameter and that this error 
vanishes when the parameter is chosen sufficiently large.

An important difference between this paper and earlier references is that in the case of the HW-SV model the characteristic 
function of the log-asset price is unknown, precluding the possibility of pricing European options through standard Fourier inversion 
techniques (Carr and Madan, 1999, Fang and Oosterlee, 2009). Many attempts have been made in the literature for computing 
efficiently option prices in the HW-SV model. In the original paper, Hull and White (1987) propose to sample discrete approximations. 
More recently, Heston and Rossi (2017) propose to approximate the risk-neutral density of the log-returns through an orthogonal 
(logistic) polynomial expansion based on the moments of log-returns. However, these moments are difficult to evaluate numerically 
and it is not possible to check a priori if, for given model parameters, the approximated option price converges (or diverges) to 
the true option price when using more moments. An alternative approach based on orthogonal polynomial expansions has been 
proposed by Ackerer and Filipović (2020). However, also in their case, the computation of option prices is numerically unstable due 
2

to numerical precision difficulties, as pointed out by the same authors. Finally, Zeng et al. (2023) provide a general framework for 
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the exact simulation of stochastic volatility models. However, they conclude that the HW-SV model can not be simulated exactly 
through their method, and that only approximations are possible. The simulation approach proposed in the present paper is different 
(with respect to the one attempted in Zeng et al., 2023) and leads to an exact solution. The difference relies on the fact that Zeng 
et al. (2023) consider a two steps approach: 𝑖) simulate (𝑉𝑇 |𝑉0); 𝑖𝑖) simulate (log𝑆𝑇 |𝑉𝑇 ). In contrast, our approach is based on 
three steps: 𝑖) simulate (𝑉𝑇 |𝑉0); 𝑖𝑖) simulate 

(
1∕∫ 𝑇0

√
𝑉𝑠𝑑𝑠|𝑉𝑇); 𝑖𝑖𝑖) simulate 

(
log𝑆𝑇 | ∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇). The intermediate step allows 

deriving all the necessary Laplace transforms leading to an exact simulation scheme. Therefore, the new methodology presented in 
this paper can be exploited for pricing European options efficiently, extending the stream of literature concerned with the problem 
of pricing European options in the HW-SV model. In addition, we present some simple modifications of the original algorithm to 
compute Greeks in the HW-SV model, a problem which is, to the best of our knowledge, unstudied in the literature.

Despite implementation difficulties (such as the lack of the characteristic function of log-returns), the HW-SV model is important 
for several reasons (Heston and Rossi, 2017): 𝑖) it has been influential in derivatives valuation; 𝑖𝑖) performs well in empirical tests 
(Christoffersen et al., 2010a,b); 𝑖𝑖𝑖) it is the continuous time analog of the classic GARCH(1,1) model, which is one the main tools for 
the econometric analysis of volatility and has shown excellent performances in empirical studies (Duan, 1995; Hsieh and Ritchken, 
2005). Moreover, in Section EC.2 of the e-companion we present an econometric analysis where we compare the performances of the 
HW-SV model against the popular Heston model on various datasets including equity indices and commodity ETFs. We find that the 
HW-SV model provides a better fit to market data. This is due to the fact that the HW-SV model is non-affine, leading to expectantly 
better empirical performances with respect to affine models (Fulop and Li, 2019 and the references therein). This result is remarkable 
since the HW-SV model is also more parsimonious in terms of the number of model parameters with respect to the Heston model.

Our proposed exact simulation algorithm is flexible and can be modified in several ways according to specific needs, allowing 
for efficient variance reduction. First, we propose a conditional COS approach for computing European option prices, which reduces 
the variance of the Monte Carlo estimator by approximately 93-98%. We also show that, at the cost of increasing the computing 
time, variance can be further reduced (up to 99%) by employing antithetic sampling. These techniques allow for the generation 
of unbiased estimates for path-independent option prices with small variance. Second, we propose another variant of the proposed 
algorithm that allows for unbiased estimates for the Greeks. Following the standard literature listed in Table 1, we compare the 
performance of the proposed exact simulation method to that of a low-bias scheme (described in Section EC.6 of the e-companion). 
We find that the exact simulation scheme (in agreement with the literature indicated in Table 1) presents a faster convergence rate 
of the root mean squared error. To be more specific, our method recovers the 𝑂(𝑠−1∕2) convergence rate of an unbiased Monte Carlo 
estimator used to simulate derivative prices in the HW-SV model.

In summary, this paper contributes to the literature in four ways. 𝑖) We extend the literature on the exact simulation of stochastic 
volatility models, summarized in Table 1, to a new important model, i.e. the Hull-White stochastic volatility model. 𝑖𝑖) We propose 
a conditional COS formula for pricing European options under the Hull-White stochastic volatility model as a first variant of our 
simulation scheme. This approach can be combined with antithetic sampling to further reduce the estimator’s variance, resulting 
in unbiased estimates for European call option prices with extremely tight confidence intervals. 𝑖𝑖𝑖) Through a second variant of 
our simulation scheme, we derive unbiased estimates for the Greeks of European call options. 𝑖𝑣) Laplace transform inversions are 
performed through the well-known COS method. We show how to compute the truncation range (Fang and Oosterlee, 2009, Section 
5.3), which is fundamental in order to rely on the theory of error control, extending some results in Kyriakou et al. (2023).

The rest of the paper is organized as follows. In Section 2 we present the HW-SV model, in Section 3 we outline our exact 
simulation scheme, in Section 4 we propose conditional COS pricing formulas for European options, useful to reduce the variance of 
our unbiased price estimator and another variant to compute Greeks; in Section 5 we present numerical results, Section 6 concludes. 
Supplementary results are deferred to the e-companion.

2. Hull and White stochastic volatility model

Let (Ω,  , (𝑡)𝑡∈[0,𝑇 ], ℚ) be a filtered probability space, which supports all the processes we encounter in the sequel and satisfies 
usual assumptions. In the Hull and White (1987) stochastic volatility model (HW-SV) the asset price and variance processes under 
the risk-neutral measure ℚ are given by the solution of the following stochastic differential equations (SDEs):

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡+
√
𝑉𝑡𝑆𝑡

(
𝜌𝑑𝐵𝑡 +

√
1 − 𝜌2𝑑𝑊𝑡

)
, (1)

𝑑𝑉𝑡 = 𝜂𝑉𝑡𝑑𝑡+ 𝜎𝑉𝑡𝑑𝐵𝑡, (2)

where 𝑟 is the risk-less rate, 𝑊𝑡 and 𝐵𝑡 are independent standard Brownian motions and the parameter 𝜌 ∈ [−1, 1] controls the 
correlation between the asset price 𝑆𝑡 and its variance 𝑉𝑡. The parameters 𝜂 and 𝜎 are the drift and diffusion coefficients of the 
geometric Brownian motion driving the variance process.

Given a final date 𝑇 > 𝑡 > 0, the asset price, variance and volatility at time 𝑇 are

𝑆𝑇 = 𝑆0 exp
⎛⎜⎜⎝𝑟𝑇 − 1

2

𝑇

∫
0

𝑉𝑠𝑑𝑠+ 𝜌

𝑇

∫
0

√
𝑉𝑠𝑑𝐵𝑠 +

√
1 − 𝜌2

𝑇

∫
0

√
𝑉𝑠𝑑𝑊𝑠

⎞⎟⎟⎠ , (3)

((
𝜎2
) )
3

𝑉𝑇 = 𝑉0 exp 𝜂 −
2

𝑇 + 𝜎𝐵𝑇 , (4)
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𝑉𝑇 =

√
𝑉0 exp

((
𝜂 − 𝜎2

2

)
𝑇

2
+ 𝜎

2
𝐵𝑇

)
. (5)

An application of Itô’s lemma to 
√
𝑉𝑡 leads to

𝑑(
√
𝑉𝑡) =

(
𝜂

2
− 𝑣2

2

)√
𝑉𝑡𝑑𝑡+ 𝑣

√
𝑉 𝑡𝑑𝐵𝑡,

where 𝑣 = 𝜎

2 . Integrating both sides we get

𝑇

∫
0

𝑑
√
𝑉𝑠 =
(
𝜂

2
− 𝑣2

2

) 𝑇

∫
0

√
𝑉𝑠𝑑𝑠+ 𝑣

𝑇

∫
0

√
𝑉𝑠𝑑𝐵𝑠

𝑣

𝑇

∫
0

√
𝑉𝑠𝑑𝐵𝑠 =

√
𝑉𝑇 −

√
𝑉0 −
(
𝜂

2
− 𝑣2

2

) 𝑇

∫
0

√
𝑉𝑠𝑑𝑠.

Therefore, the conditional distribution of the log–price at time 𝑇 is

⎛⎜⎜⎝ln𝑆𝑇 |||𝑉𝑇 ,
𝑇

∫
0

𝑉𝑠𝑑𝑠,

𝑇

∫
0

√
𝑉𝑠𝑑𝑠,𝑉0, 𝑆0

⎞⎟⎟⎠ ∼ (𝑚,𝑠2), (6)

where 𝑚 = ln(𝑆0) + 𝑟𝑇 − 1
2 ∫ 𝑇0 𝑉𝑠𝑑𝑠 +

𝜌

𝑣

(√
𝑉𝑇 −

√
𝑉0 −

1
2

(
𝜂 − 𝑣2

) ∫ 𝑇0 √𝑉𝑠𝑑𝑠), 𝑠2 = (1 − 𝜌2) ∫ 𝑇0 𝑉𝑠𝑑𝑠, 𝑣 =
𝜎

2 and  denotes the 
normal distribution. In this paper, we show how to simulate exactly the asset price and variance processes (𝑆𝑇 , 𝑉𝑇 |𝑆0, 𝑉0).

3. Exact simulation scheme

Following standard literature on exact simulation of option pricing models, we rely on a nested-conditional factorization approach 
to sample (𝑆𝑇 , 𝑉𝑇 |𝑆0, 𝑉0): we first simulate 𝑉𝑇 , then we show how to sample 

(∫ 𝑇0 √𝑉𝑠𝑑𝑠|𝑉𝑇) and 
(
𝑋𝑇 | ∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇), where 

𝑋𝑇 ∶= log(𝑆𝑇 ∕𝑆0). These steps are performed by first numerically inverting the relevant conditional Laplace transforms and then 
implementing random numbers generation via the inverse transform method. Hence, we start by introducing the conditional Laplace 
transforms that are relevant to our approach. Then, we describe the COS method to obtain the necessary cumulative distribution 
functions. Finally, we summarize our proposed algorithm for the exact simulation of the HW-SV model. The usage of the COS method 
represents a remarkable difference with respect to the literature indicated in Table 1, where the numerical inversion of the Laplace 
transform is implemented through algorithms proposed in Abate and Whitt (1992, 1995). Nevertheless, more efficient algorithms 
exist for this purpose, such as convolution methods, FFT and COS. In this paper, we use the COS method, which is expected to perform 
better than alternatives (Fang and Oosterlee, 2009). In addition, we provide in this section detailed guidelines on how to implement 
this method in our context, where the characteristic functions depend on the random realization of other random variables. We 
define methodologies for calculating the domain truncation range, which is critical for theoretical error control (Fang and Oosterlee, 
2009; Junike and Pankrashkin, 2022).

3.1. Relevant conditional Laplace transforms

The following proposition provides the Laplace transform of 
(

1
∫ 𝑇0
√
𝑉𝑠𝑑𝑠

|||𝑉𝑇
)

.

Proposition 1. Given 𝑢 > 0 and 𝑉𝑇 as in Eq. (4) we have

1(𝑢) ∶= E

[
exp

(
− 𝑢

∫ 𝑇0
√
𝑉𝑠𝑑𝑠

)|||𝑉𝑇
]
= exp

⎛⎜⎜⎜⎜⎝
−
Ξ
(

1
4 log

𝑉𝑇

𝑉0
,

𝑢𝜎2

16
√
𝑉0

)2
−
(
1
4 log

𝑉𝑇

𝑉0

)2
𝑇
𝜎2

8

⎞⎟⎟⎟⎟⎠
, (7)

where Ξ(𝑥, 𝜆) = arcosh(𝜆𝑒−𝑥 + cosh(𝑥)).

Proof. See Section EC.1.1 of the e-companion. □

√

4

In the following proposition we present the conditional Laplace transform of ∫ 𝑇

0 𝑉𝑠𝑑𝑠 given ∫ 𝑇0 𝑉𝑠𝑑𝑠 and 𝑉𝑇 .
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Proposition 2. Given 𝑢 > 0, 𝑉𝑇 and 
√
𝑉𝑇 as in Eqs. (4)–(5), we have

2(𝑢) ∶=E
⎡⎢⎢⎣exp
⎛⎜⎜⎝−𝑢

𝑇

∫
0

𝑉𝑠𝑑𝑠

⎞⎟⎟⎠ |||
𝑇

∫
0

√
𝑉𝑠𝑑𝑠,𝑉𝑇

⎤⎥⎥⎦ =
𝜃(𝜙(𝑣⋆,𝑥⋆,

√
𝜆⋆), 𝑡⋆∕4)

𝜓
(𝜇⋆)
𝑡⋆

(𝑣⋆,𝑥⋆)
𝑒𝜇

⋆𝑥⋆−(𝜇⋆)2𝑡⋆∕2

×
√
𝜆⋆

4 sinh(
√
𝜆⋆𝑣⋆∕2)

exp
(
−
√
𝜆⋆(1 + 𝑒𝑥⋆ ) coth(

√
𝜆⋆𝑣⋆∕2)

)
, (8)

where

𝜙(𝑣,𝑥, 𝜆) =
2𝜆 exp(𝑥∕2)
sinh(𝜆𝑣∕2)

, 𝜓
(𝜇)
𝑡

(𝑣,𝑥) = 1
2𝑣
𝑒𝜇𝑥−𝜇

2𝑡∕2 exp
(
−2(1 + 𝑥)

𝑣

)
𝜃(4𝑒𝑥∕2∕𝑣, 𝑡∕4)

𝜃(𝑟, 𝑡) = 𝑟√
2𝜋3𝑡

∞

∫
0

𝑒
− 𝜉2

2𝑡 𝑒−𝑟 cosh(𝜉) sinh(𝜉) sin
(
𝜋𝜉

𝑡

)
𝑑𝜉

and 𝜆⋆ = 8𝑢𝑉0
𝜎2

, 𝑡⋆ = 𝑇 𝜎2

4 , 𝑥⋆ = 1
2 log

𝑉𝑇

𝑉0
and 𝑣⋆ = ∫ 𝑇0

√
𝑉𝑠𝑑𝑠√

𝑉0
4
𝜎2

, 𝜇⋆ = 2𝜂
𝜎2

− 1.

Proof. See Section EC.1.2 of the e-companion. □

Finally, exploiting Eq. (6), we derive the Laplace transform of 𝑋𝑇 given 𝑉𝑇 and ∫ 𝑇0
√
𝑉𝑠𝑑𝑠 as a function of 2(𝑢).

Proposition 3. Given 𝑢 > 0 we have

3(𝑢) ∶= E
⎡⎢⎢⎣𝑒−𝑢𝑋𝑇 |||𝑉𝑇 ,

𝑇

∫
0

√
𝑉𝑠𝑑𝑠

⎤⎥⎥⎦ = 𝑒−𝑢
(
𝑟𝑇+ 𝜌

𝑣

(√
𝑉𝑇 −
√
𝑉0−

1
2 (𝜂−𝑣

2) ∫ 𝑇0
√
𝑉𝑠𝑑𝑠

))
2

(
−
(1
2
+ 1

2
𝑢(1 − 𝜌2)

))
. (9)

Proof. See Section EC.1.3 of the e-companion. □

3.2. Random sampling using conditional COS

Given the Laplace transforms derived above, we assume that the related characteristic functions follow by setting 𝜑𝑗 (𝑢) ∶=𝑗 (−𝑖𝑢)
for 𝑗 = {1, 2, 3} and 𝑖 ∶=

√
−1. However, since the Laplace transforms derived in Section 3.1 are all derived based on the existing 

results in the real space, it is not known whether plugging −𝑖𝑢 into the results gives the required characteristic function. We discuss 
this problem in Section EC.3 of the e-companion.

For sake of generality, let us consider a generic random variable, 𝑌 , and denote its characteristic function according to 𝜑(𝑢) =
E[𝑒𝑖𝑢𝑌 ]. The probability density function (pdf in the following) of 𝑌 can be computed as

𝑓 (𝑦) = 1
2𝜋 ∫


𝑒−𝑖𝑢𝑦𝜑(𝑢)𝑑𝑢, (10)

where  is the domain of 𝑌 . Several algorithms can be used to solve the integral in Eq. (10), we refer to Fang and Oosterlee (2009)

for a review. Among them, we adopt in this paper the COS method, where the inverse Fourier integral in Eq. (10) is computed via 
cosine expansion and the pdf is approximated as

𝑓 (𝑦) =
∞∑
𝑘=1

𝐹𝑘 cos
(
𝑘𝜋
𝑦− 𝑎
𝑏− 𝑎

)
+ 1
𝑏− 𝑎

≈
𝑁−1∑
𝑘=1

𝐹𝑘 cos
(
𝑘𝜋
𝑦− 𝑎
𝑏− 𝑎

)
+ 1
𝑏− 𝑎

, (11)

where 𝐹𝑘 =
2
𝑏−𝑎Real

(
𝜑

(
𝑘𝜋

𝑏−𝑎

)
⋅ exp
(
−𝑖 𝑘𝑎𝜋

𝑏−𝑎

))
and [𝑎, 𝑏] ∈ is chosen such that

𝑏

∫
𝑎

𝑒𝑖𝑢𝑦𝑓 (𝑦)𝑑𝑦 ≈ ∫

𝑒𝑖𝑢𝑦𝑓 (𝑦)𝑑𝑦. (12)

In other words, in order to implement the COS method is necessary to truncate the domain of the pdf through a suitable choice of 𝑎
and 𝑏. We will discuss this issue in Section 3.3. Moreover, the infinite sum in Eq. (11) must be truncated; we will investigate how to 
5

choose 𝑁 efficiently in Section 5.
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Next, we aim to perform random numbers generation. We can compute the cumulative distribution function (cdf) from Eq. (11):

𝑐(𝑦) ≈

𝑦

∫
𝑎

𝑓 (ℎ)𝑑ℎ = 𝑦− 𝑎
𝑏− 𝑎

𝑁−1∑
𝑘=1

𝐹𝑘

(𝑏− 𝑎) sin
(
𝜋𝑘(𝑎−𝑦)
𝑎−𝑏

)
𝜋𝑘

. (13)

Then, we generate 𝑈 uniformly over [0, 1] and find 𝑦 such that 𝑈 = 𝑐(𝑦), using root finding algorithms (e.g. the built–in Matlab®

function fzero). We stress that 𝐹𝑘 does not depend on 𝑦, allowing to compute in advance all the needed values of 𝐹𝑘 before running 
the root finding algorithm. This facilitates implementation and increases the computational performances. The selection of the initial 
guess 𝑦0 for 𝑈 = 𝑐(𝑦) is discussed in Section 3.3.

3.3. Truncation range computation

We discuss, next, the choice of 𝑎 and 𝑏 in Eq. (12). We stress that this point is very important: if the interval [𝑎, 𝑏] is too wide, 
then one needs a larger 𝑁 to get sufficient accuracy; if the interval is too tight, the approximation in Eq. (12) may be inaccurate 
(Fang and Oosterlee, 2009). Moreover, in our context we need to compute a different truncation range for any random realization 
of 
(∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇), hence a stable and efficient procedure is needed to obtain high accuracy with small computing effort. Since 

the needed quantities are defined on different domains, we propose two different methodologies for 
(
𝑋𝑇 | ∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇) and (∫ 𝑇0 √𝑉𝑠𝑑𝑠|𝑉𝑇). These methodologies are based on the first two integer moments of 

(∫ 𝑇0 𝑉𝑠𝑑𝑠|𝑉𝑇 , ∫ 𝑇0 √𝑉𝑠𝑑𝑠) or 
(

1
∫ 𝑇0
√
𝑉𝑠𝑑𝑠
|𝑉𝑇). 

Hence, we first outline an efficient algorithm to compute such moments, then propose procedures for determining 𝑎 and 𝑏.

3.3.1. Moments computation given a Laplace transform

Kyriakou et al. (2023) propose an efficient methodology for computing moments of some unknown distribution given only the 
knowledge of the Laplace transform. Suppose to be interested in computing the moments of an unknown distribution 𝑌 defined on 
ℝ+. Given the knowledge of the analytical expression of its Laplace transform (𝑢) = E[𝑒−𝑢𝑌 ], a first intuitive method is to proceed 
with analytical differentiation:

𝜇𝑚 = E[𝑌 𝑚] = (−1)𝑚 𝜕
𝑚

𝜕𝑢
(𝑢)|||𝑢=0. (14)

However, this method is not always applicable in practice since the Laplace transform may present very complicated expression 
(Kyriakou et al., 2023 for more details). To circumvent this problem we calculate the moments using the numerical inversion of 
adaptively modified moment generating function algorithm introduced by Choudhury and Lucantoni (1996). The authors show that 𝜇𝑚
can be computed according to

𝜇𝑚 = 𝑚!
2𝑚𝑙𝑟𝑚

𝑚
𝛼𝑚
𝑚

⋅

(
(𝛼𝑚𝑟𝑚) + (−1)𝑚(−𝛼𝑚𝑟𝑚) + 2

𝑚𝑙−1∑
𝑗=1

Real
((𝛼𝑚𝑟𝑚𝑒𝜋𝑖𝑗∕𝑛𝑙)𝑒−𝜋𝑖𝑗∕𝑙))− 𝑒, (15)

where 𝑒 indicates the discretization error (the analytical expression can be found in the original paper) and the function 𝑟𝑚 is chosen 
to bound the discretization error, in particular 𝑟𝑚 = 10−

𝛾̄

2𝑚𝑙 allows to achieve accuracy of order 10−𝛾̄ . We will adopt 𝛾̄ = 11 following 
Choudhury and Lucantoni (1996) and Kyriakou et al. (2023). In Algorithm 1 we summarize the procedure to obtain the first 2
moments and to compute the variables 𝑙 and 𝛼𝑚. This algorithm has been also successfully applied in other related studies such as 
Brignone (2022); Brignone et al. (2023).

Algorithm 1 Numerical inversion of adaptively modified moment generating function.

Input: 𝛾̄ , (⋅)
Output: {𝜇𝑚}2𝑚=1
1: Set 𝑙 = 𝛼1 = 1 and compute 𝜇1 according to Eq. (15)

2: Compute 𝛼2 = 1
𝜇1

and 𝜇2
3: Set 𝑙 = 1 ∨ 2 and 𝛼1 = 𝛼2 = 2𝜇1

𝜇2
and compute new values for 𝜇1 and 𝜇2 from Eq. (15)

3.3.2. Domain truncation for 
(
𝑋𝑇 | ∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇)

Since 𝑋𝑇 is defined on ℝ, we follow Fang and Oosterlee (2009, Section 5.3), which suggest choosing 𝑎 and 𝑏 according to

𝑎 = 𝑐1 − 12
√
𝑐2, 𝑏 = 𝑐1 + 12

√
𝑐2, (16)

where 𝑐𝑗 denotes the 𝑗-th cumulant of the risk–neutral distribution of log–returns. We show, next, how to apply Eq. (16) in our 
context, where we need to determine 𝑐𝑗 . First, we define the conditional moments of 𝑋𝑇 , 𝜇̃𝑚 ∶= E 

[
𝑋𝑚
𝑇
| ∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇 ]. Then, by 
6

iterated expectations and using Eq. (14) we get
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𝜇̃𝑚 = E
⎡⎢⎢⎣
⎛⎜⎜⎝(−1)𝑚 𝜕𝑚

𝜕𝑢𝑚
E
⎡⎢⎢⎣𝑒−𝑢𝑋𝑇

|||||𝑉𝑇 ,
𝑇

∫
0

√
𝑉𝑠𝑑𝑠,

𝑇

∫
0

𝑉𝑠𝑑𝑠

⎤⎥⎥⎦
|||||𝑢=0
⎞⎟⎟⎠
|||||

𝑇

∫
0

√
𝑉𝑠𝑑𝑠,𝑉𝑇

⎤⎥⎥⎦ ,
where, from Eq. (6), the inner expectation is

E
⎡⎢⎢⎣𝑒−𝑢𝑋𝑇 |||𝑉𝑇 ,

𝑇

∫
0

√
𝑉𝑠𝑑𝑠,

𝑇

∫
0

𝑉𝑠𝑑𝑠

⎤⎥⎥⎦ = 𝑒−𝑢
(
𝑟𝑇+ 𝜌

𝑣

(√
𝑉𝑇 −
√
𝑉0−

1
2 (𝜂−𝑣

2) ∫ 𝑇0
√
𝑉𝑠𝑑𝑠

))
+𝑢
(
1
2 +

1
2 𝑢(1−𝜌

2)
) ∫ 𝑇0 𝑉𝑠𝑑𝑠.

Solving the derivative, taking expectation and defining 𝜇⋆
𝑚
∶= E 

[(∫ 𝑇0 𝑉𝑠𝑑𝑠

)𝑚 ||| ∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇 ], we get

𝜇̃1 = 𝛾 −
1
2
𝜇⋆1 , 𝜇̃2 = (1 − 𝜌2)𝜇⋆1 +

(
𝛾2 − 𝛾𝜇⋆1 + 1

4
𝜇⋆2

)
, (17)

𝑐1 = 𝜇̃1, 𝑐2 = 𝜇̃2 − 𝜇̃21 , (18)

where 𝛾 = 𝑟𝑇 + 𝜌

𝑣

(
−1

2

(
𝜂 − 𝑣2

) ∫ 𝑇0 √𝑉𝑠𝑑𝑠−√𝑉0 +√𝑉𝑇). Therefore, we have expressed the conditional cumulants of 𝑋𝑇 in terms 

of the conditional moments of ∫ 𝑇0 𝑉𝑠𝑑𝑠, which can be computed easily given Eq. (8) through Algorithm 1. Finally, we recover the 
conditional moments and cumulants from Eqs. (17)–(18).

Given conditional moments, we can also find efficient starting points for root finding algorithms necessary to implement random 
numbers generation and sample 

(
𝑋𝑇
||| ∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇). More specifically, the initial guess for 𝑦 in Eq. (13) is calculated using the 

inverse normal distribution function with the mean and standard deviation of the correct distribution.

3.3.3. Domain truncation for 
(∫ 𝑇0 √𝑉𝑠𝑑𝑠|𝑉𝑇)

Formula (16) is mainly suited for distributions defined on ℝ. Here we suggest a different approach for 
(∫ 𝑇0 √𝑉𝑠𝑑𝑠|𝑉𝑇), 

which is obviously defined on ℝ+. First of all, moments are easier to compute in this case, since we can apply directly Al-

gorithm 1 to the Laplace transform in Eq. (7) and get the first two integer moments of 
(

1
∫ 𝑇0
√
𝑉𝑠𝑑𝑠
|𝑉𝑇), which we denote by 

𝜇̂𝑚 ∶= E 
[(

1
∫ 𝑇0
√
𝑉𝑠𝑑𝑠

)𝑚 |𝑉𝑇 ]. Since 
√
𝑉𝑇 is a geometric Brownian motion, then its time integral has an unknown distribution. How-

ever, this distribution has received a lot of attention in the literature since it is important in the context of Asian option pricing. 
In particular, Milevsky and Posner (1998) show that the infinite sum of correlated lognormal random variables is distributed as a 
reciprocal gamma and, based on this, they suggest to approximate the integrated geometric Brownian motion through a reciprocal 
gamma random variable, whose shape and scale parameters are found by moment matching. Accordingly, we suggest to approximate (

1
∫ 𝑇0
√
𝑉𝑠𝑑𝑠

|||𝑉𝑇
)

with a moment-matched gamma distribution. In this way, we can approximate through simple formulas the extreme 

event probabilities and compute the truncation range in such a way that the error coming from Eq. (12) is negligible in practice. 
More specifically, let us define with  the moment-matched gamma distribution, i.e.  is a gamma random variable with shape 
parameter 𝛼 and scale parameter 𝛽. We obtain 𝛼 and 𝛽 via moment matching:

{
𝜇̂1 = 𝛼𝛽
𝜇̂2 − 𝜇̂21 = 𝛼𝛽

2 ⇒

⎧⎪⎨⎪⎩
𝛼 =

𝜇̂21
𝜇̂2−𝜇̂21

𝛽 =
𝜇̂2−𝜇̂21
𝜇̂1

. (19)

Hence, we choose 𝑎 and 𝑏 in Eq. (12) in such a way that the probability of  ≤ 𝑎 is 10−12 and probability that  ≤ 𝑏 is 1 − 10−12. 
As a result, 𝑎 and 𝑏 are found quickly from the inverse cdf of the gamma distribution. We investigate the accuracy of the proposed 
procedure in Section 5.

In the same way, we exploit the knowledge of the inverse cumulative distribution function of the moment-matched gamma 

distribution to select an efficient initial guess for 𝑦 when sampling 
(

1
∫ 𝑇0
√
𝑉𝑠𝑑𝑠

|||𝑉𝑇
)

by solving numerically 𝑈 = 𝑐(𝑦), with 𝑐(𝑦) as in 

Eq. (13).

3.4. Final algorithm

The proposed exact simulation algorithm can be summarized in three main steps:

• Step 1: Simulate 𝑉𝑇 from Eq. (2);

• Step 2: Simulate 
(

1
∫ 𝑇0
√
𝑉𝑠𝑑𝑠

|||𝑉𝑇
)

and recover 
(∫ 𝑇0 √𝑉𝑠𝑑𝑠|||𝑉𝑇) by taking the reciprocal;( √ )
7

• Step 3: Simulate 𝑋𝑇
||| ∫ 𝑇0 𝑉𝑠𝑑𝑠,𝑉𝑇 .
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Algorithm 2 Exact simulation of the HW-SV model.

Input: {𝑆0, 𝑟, 𝜂, 𝜎, 𝜌} (Model parameters), 𝑇 (maturity),  (number of simulations)

Output:
{(
𝑆

(𝑖)
𝑇
, 𝑉

(𝑖)
𝑇

)}
𝑖=1

Notes: Φ(⋅, 𝜇, 𝜎) and 𝐺(⋅, 𝛼, 𝛽) denote respectively the cumulative distribution functions of a normal distribution with mean 𝜇 and standard deviation 𝜎 and gamma 
distributions with parameters 𝛼 and 𝛽
1: for 𝑖 = 1 ∶ do

2: Draw {𝑈 (𝑖)
𝑗
}3
𝑗=1 uniformly over [0, 1]

3: Compute  =Φ−1(𝑈 (𝑖)
1 , 0, 1)

√
𝑇 and 𝑉 (𝑖)

𝑇
= 𝑉0 exp

((
𝜂 − 𝜎2

2

)
𝑇 + 𝜎)

4: Define 1(⋅) as in Eq. (7) and compute 𝜇̃1 and 𝜇̃2 using Algorithm 1

5: Given 𝜇̂1 and 𝜇̂2 compute 𝛼 and 𝛽 solving Eq. (19)

6: Set 𝜖 = 10−12 and compute 𝑎 =𝐺−1(𝜖, 𝛼, 𝛽) and 𝑏 =𝐺−1(1 − 𝜖, 𝛼, 𝛽)
7: Compute initial guess 𝑦0 =𝐺−1(𝑈 (𝑖)

2 , 𝛼, 𝛽)
8: Define 𝜑1(𝑢) = 1(−

√
−1𝑢), compute {𝐹𝑘}𝑁−1

𝑘=1 as in Eq. (11)

9: Find 𝑦 such that 𝑈 (𝑖)
2 = 𝑐(𝑦), with 𝑐 as in Eq. (13) and set (∫ 𝑇

0

√
𝑉𝑠𝑑𝑠)(𝑖) =

1
𝑦

10: Given 
(
(∫ 𝑇

0

√
𝑉𝑠𝑑𝑠)(𝑖), 𝑉

(𝑖)
𝑇

)
, define 2(⋅) as in Eq. (7) and compute 𝜇⋆1 and 𝜇⋆2 using Algorithm 1

11: Compute the conditional cumulants 𝑐1 and 𝑐2 of 𝑋𝑇 from Eqs. (17)–(18) and [𝑎, 𝑏] as in Eq. (16)

12: Compute initial guess 𝑦0 = Φ−1(𝑈 (3), ̃𝑐1, 
√
𝑐2)

13: Define 𝜑3(𝑢) ∶= 3(−
√
−1𝑢), with 3(𝑢) as in Eq. (9), compute {𝐹𝑘}𝑁−1

𝑘=1 as in Eq. (11)

14: Find 𝑦 such that 𝑈 (3) = 𝑐(𝑦), with 𝑐 as in Eq. (13), set 𝑋(𝑖)
𝑇

= 𝑦 and 𝑆(𝑖)
𝑇

= 𝑆0𝑒
𝑋

(𝑖)
𝑇

15: end

Step 1 is very easy to implement, indeed, from Eq. (4) we know that 𝑉𝑇 is log-normally distributed with known mean and 
variance. Hence, Step 1 is performed by means of simple standard normal random numbers generators.

For Step 2 we first compute the moments of 
(

1
∫ 𝑇0
√
𝑉𝑠𝑑𝑠
|𝑉𝑇) using Algorithm 1 and the conditional Laplace transform 1(𝑢) in 

Eq. (7). Given moments, we implement moments matching as in Eq. (19) and then compute 𝑎 and 𝑏 in Eq. (12) from the inverse 
cumulative distribution function of the moment-matched gamma distribution. Then, we compute {𝐹𝑘}𝑁−1

𝑘=1 using Eq. (7), we draw 𝑈
as uniform on the interval [0, 1] and implement inverse transform sampling, where the equation 𝑈 = 𝑐(𝑦) is solved numerically and 
the initial guess for 𝑦 is found through the inverse cumulative distribution function of the moment-matched gamma distribution.

For Step 3 we first compute the moments of 
(∫ 𝑇0 𝑉𝑠𝑑𝑠

||| ∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇) using 2(𝑢) and Algorithm 1, then we obtain conditional 
moments of 𝑋𝑇 and related cumulants from Eqs. (17)–(18). We apply formula (16) for domain truncation and implement again 
inverse transform sampling to generate a random sample for 

(
𝑋𝑇
||| ∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇). More specifically, we compute {𝐹𝑘}𝑁−1

𝑘=1 using 
Eq. (9), we draw a new 𝑈 as uniform on the interval [0, 1] and solve 𝑈 = 𝑐(𝑦) numerically. The initial guess for 𝑦 is found through 
the quantile function of a moment-matched normal distribution.

By implementing Steps 1–3 one gets a sample from (𝑆𝑇 , 𝑉𝑇 |𝑆0, 𝑉0). The proposed exact simulation scheme is summarized in 
Algorithm 2.

We remark that, when the truncation range is computed accurately (e.g. as suggested in Formula (16)), we can rely on the theory 
of error control developed in Fang and Oosterlee (2009, Section 4). In particular, they show that if the truncation range is chosen 
as in Eq. (16), the truncation error is around 10−12 for 0.1 < 𝑇 < 10. The error is controlled by the parameter 𝑁 . We will study the 
behavior of the error for varying 𝑁 in Section 5.

3.5. Computational issues

We conclude this section by mentioning a possible computational issue with our method: the Laplace transform in Eq. (8) depends 
on the function 𝜃(𝑟, 𝑡). The problem of numerically computing 𝜃(𝑟, 𝑡) is related to evaluating the Hartman-Watson density:

𝑓H-W(𝑟, 𝑡) = 𝑒𝜋
2∕(2𝑡)

𝐼0(𝑟)
𝜃(𝑟, 𝑡),

where 𝐼0(𝑟) is the modified Bessel function of the first kind. As originally observed in Yor (1992), Cai et al., 2017 and the references 
therein, 𝑓H-W(𝑟, 𝑡) is difficult to compute numerically when 𝑡 tends to 0. Indeed, the component 𝑒𝜋2∕(2𝑡) outside the integral grows 
exponentially to infinity and multiplies an integral where the integrand function is highly oscillating due to the term sin

(
𝜋𝜓

𝑡

)
. To 

reduce numerical error to an acceptable level, high-precision computations must be employed (Boyle and Potapchik, 2006). However, 
the computational problem in our context is greatly reduced because the element 𝑒𝜋2∕(2𝑡) does not appear in our Laplace transform 
due to simplifications, facilitating the numerical evaluation. Nevertheless, numerical issues are still present due to the presence of ( )
8

sin 𝜋𝜉

𝑡
in the integrand function when 𝑡 ≪ 0.1. However, we may wonder whether or not the situation with small 𝑡 is likely to 
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Algorithm 3 Conditional COS for European option pricing in the HW-SV model.

Input: {𝑆0, 𝑟, 𝜂, 𝜎, 𝜌} (Model parameters), 𝑇 (maturity),  (number of simulations), 𝐾 (strike price)

Output: 𝐶 (call option price)

1: for 𝑖 = 1 ∶ do

2: Draw {𝑈 (𝑖)
𝑗
}2
𝑗=1 uniformly over [0, 1]

3: Repeat Steps 3–11 in Algorithm 2

4: Define 𝜑3(𝑢) ∶= 3(−
√
−1𝑢), with 3(𝑢) as in Eq. (9) and compute 𝐶 (𝑖) from Eq. (20)

5: end

6: Compute the European call option price: 𝐶 = 1

∑
𝑖=1 𝐶

(𝑖)

appear in practice. To better understand this aspect, in Section EC.2 of the e-companion we estimate the parameter 𝜎 on time series 
of spot returns of four different assets. Note indeed that, from Eq. (8), 𝜃 depends on 𝑡 = 𝜎2𝑇

16 . We find that for the S&P 500 the 
parameter 𝜎 is approximately equal to 4. This means that 𝜃(𝑟, 𝑡) must be evaluated in 𝑡 ≈ 𝑇 . As a result, we do not expect numerical 
issues unless 𝑇 ≪ 1

10 . Finally, if one is interested in the case where 𝑇 ≪ 1∕10, alternative, more efficient numerical techniques, such 
as the Gaver-Stehfest or Bondesson Laplace inversion algorithms, which can increase the accuracy for small levels of 𝑡, are available 
in the literature. We refer to Section EC.4 of the e-companion for more details.

4. Variants of Algorithm 2 for variance reduction, option pricing and computation of the Greeks

We have so far focused on the problem of generating exact samples for the couple (𝑆𝑇 , 𝑉𝑇 |𝑆0, 𝑉0). This is a very general approach 
that can be applied for many different purposes, for example, generating trajectories observed at discrete dates (useful for pricing 
path dependent options) or simulating extensions of the HW-SV models with jumps. However, this is not the primary scope of 
this research. Therefore, we relegate to Section EC.9 of the e-companion the pricing of path dependent derivatives. Adding Lévy 
jumps is straightforward and can be tackled exactly as in Broadie and Kaya (2006, Section 6). We focus instead on two fundamental 
applications: efficient pricing of European options and unbiased estimation of the Greeks. These are not trivial problems since in 
the HW-SV model the characteristic function of log-returns is unknown, making standard Fourier methods (Carr and Madan, 1999) 
unfeasible.

As discussed in the introductory section, no exact methodologies exist for pricing European options (and compute greeks) in the 
HW-SV model. We show that a simple variant of Algorithm 2 can be used to produce unbiased estimates of European option prices 
(and also Greeks). Indeed, if the purpose of simulation is to price European options, instead of simulating 

(
𝑋𝑇 | ∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇), we 

can compute directly the conditional option price, i.e. the option price conditional on the random realization of 
(∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇). 

In what follows, we focus on European call options, the case of put can be obtained via the standard put-call parity. Let us de-

note with Π(𝑆𝑇 ) the generic (discounted) payoff of a path-independent derivative instrument. The corresponding price is given 
by E[Π(𝑆𝑇 )] where expected value is taken with respect to the risk–neutral measure. For an European call option we have 
Π(𝑆𝑇 ) ∶= 𝑒−𝑟𝑇 max(0, 𝑆𝑇 −𝐾). Let us denote by 𝐶 ∶= 𝑒−𝑟𝑇E[max(0, 𝑆𝑇 −𝐾)] the price of the call option, assuming that log

(
𝐾

𝑆0

)
> 𝑎, 

from Eq. (11) we get

𝐶 ≈ 𝑒
−𝑟𝑇

𝑏− 𝑎

𝑏

∫
log
(
𝐾

𝑆0

) (𝑆0𝑒
𝑦 −𝐾)𝑑𝑦+ 𝑒−𝑟𝑇

𝑁−1∑
𝑘=1

𝐹𝑘

𝑏

∫
log
(
𝐾

𝑆0

) (𝑆0𝑒
𝑦 −𝐾) cos

(
𝑘𝜋
𝑦− 𝑎
𝑏− 𝑎

)
𝑑𝑦

= 𝑒
−𝑟𝑇

𝑏− 𝑎

(
−(𝑏+ 1)𝐾 + 𝑒𝑏𝑆0 +𝐾 log

(
𝐾

𝑆0

))
+
𝑁−1∑
𝑘=1

𝐹𝑘

𝑒−𝑟𝑇
(
−(𝑏+ 1)𝐾 + 𝑒𝑏𝑆0 +𝐾 log

(
𝐾

𝑆0

))
𝑏− 𝑎

+ (𝑎− 𝑏)𝑒−𝑟𝑇
(
−𝑒𝑏𝑆0((𝑏− 𝑎) cos(𝜋𝑘) + 𝜋𝑘 sin(𝜋𝑘)) +𝐾(𝑏− 𝑎) cos(𝜁) + 𝜋𝑘𝐾 sin(𝜁)

(𝑎− 𝑏)2 + 𝜋2𝑘2
+ 𝐾(sin(𝜋𝑘) − sin(𝜁))

𝜋𝑘

)
, (20)

where 𝜁 =
𝜋𝑘

(
𝑎−log

(
𝐾

𝑆0

))
𝑎−𝑏 and 𝐹𝑘 is as in Eq. (11) and thus depends on some characteristic function. If we plug 𝜑3 into Eq. (11) then 

𝐶 denotes the price of the European call option conditional on 
(∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇). Hence, as a first variant of Algorithm 2, we propose 

the simpler approach to sample first 
(∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇) using Steps 1 and 2 in Section 3.4 and then perform directly option pricing 

through Eq. (20). This approach (which we label conditional COS) presents an important advantage with respect to Algorithm 2: 
since we do not sample 𝑋𝑇 , we remove the additional Monte Carlo variance due to Step 3. Therefore, conditional COS can be used 
as a variance reduction technique when the purpose is to price European options, allowing to obtain unbiased estimates with tight 
confidence interval at a small computational cost. In the course of our numerical studies, we will show that the variance of the Monte 
9

Carlo estimator is reduced by roughly 93-98%. We summarize this option pricing approach in Algorithm 3.
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Algorithm 4 Option pricing in the HW-SV model through Conditional COS and Antithetic Sampling.

Input: {𝑆0, 𝑟, 𝜂, 𝜎, 𝜌} (Model parameters), 𝑇 (maturity),  (number of simulations), 𝐾 (strike price)

Output: 𝐶 (call option price)

1: for 𝑖 = 1 ∶ do

2: Draw {𝑈 (𝑖)
𝑗
}2
𝑗=1 uniformly over [0, 1]

3: Repeat Steps 3–11 in Algorithm 2

4: Define 𝜑3(𝑢) ∶= 3(−
√
−1𝑢), with 3(𝑢) as in Eq. (9) and compute 𝐶 (𝑖,1) from Eq. (20)

5: Compute 𝑈̄ (𝑖)
1 = 1 −𝑈 (𝑖)

1 and 𝑈̄ (𝑖)
2 = 1 −𝑈 (𝑖)

2

6: Repeat Steps 3–11 in Algorithm 2 using 𝑈̄ (𝑖) instead of 𝑈 (𝑖)

7: Define 𝜑3(𝑢) ∶= 3(−
√
−1𝑢), with 3(𝑢) as in Eq. (9) and compute 𝐶 (𝑖,2) from Eq. (20)

8: end

9: Compute 𝐶1 =
1

∑
𝑖=1 𝐶

(𝑖,1) and 𝐶2 =
1

∑
𝑖=1 𝐶

(𝑖,2)

10: Compute the European call option price: 𝐶 = 𝐶1+𝐶2
2

Algorithm 5 Greeks estimation in the HW-SV model: the case of Δ = 𝜕𝐶

𝜕𝑆0
.

Input: {𝑆0, 𝑟, 𝜂, 𝜎, 𝜌} (Model parameters), 𝑇 (maturity),  (number of simulations), 𝐾 (strike price)

Output: Δ (Delta of the call option price)

1: for 𝑖 = 1 ∶ do

2: Draw {𝑈 (𝑖)
𝑗
}2
𝑗=1 uniformly over [0, 1]

3: Repeat Steps 3–11 in Algorithm 2

4: Define 𝜑3(𝑢) ∶= 3(−
√
−1𝑢), with 3(𝑢) as in Eq. (9) and compute Δ(𝑖) from Eq. (21)

5: end

6: Compute the Δ of the call option price: Δ = 1

∑
𝑖=1 Δ

(𝑖)

Next, we propose another modification to Algorithms 2 and 3 to further reduce the variance of the Monte Carlo estimator. More 
specifically, we suggest the usage of antithetic sampling. Since this approach is well known (Glasserman, 2004), we simply illustrate 
how it can be adapted to our framework into Algorithm 4. In the numerical studies, we will show that antithetic sampling can 
produce extremely small standard errors and tight confidence intervals.

In addition, through our proposed approach, we also obtain unbiased estimates for the Greeks in the HW-SV model, a problem 
that is, to the best of our knowledge, unstudied in the literature. Exploiting Eq. (20), we can take the derivatives of the European call 
option price with respect to various parameters. For example, the Δ can be computed as

Δ= 𝜕𝐶

𝜕𝑆0
=
𝑒−𝑟𝑇
(
𝑒𝑏 − 𝐾

𝑆0

)
𝑏− 𝑎

+
𝑁−1∑
𝑘=1

𝐹𝑘(𝑎− 𝑏)𝑒−𝑟𝑇

×
⎛⎜⎜⎜⎝
𝜋2𝑘2𝐾 cos(𝜁)
𝑆0(𝑎−𝑏)

− 𝜋𝑘𝐾(𝑏−𝑎) sin(𝜁)
𝑆0(𝑎−𝑏)

− 𝑒𝑏((𝑏− 𝑎) cos(𝜋𝑘) + 𝜋𝑘 sin(𝜋𝑘))

(𝑎− 𝑏)2 + 𝜋2𝑘2
− 𝐾 cos(𝜁)
𝑆0(𝑎− 𝑏)

⎞⎟⎟⎟⎠ . (21)

This is just an example, other Greeks can be also estimated through our approach. Formulas for the elasticity and higher order 
sensitivities are reported in Section EC.5 of the e-companion. The scheme for computing unbiased estimates for the Δ in the HW-SV 
model is summarized into Algorithm 5.

5. Numerical studies

In this section we discuss performances of the various simulation algorithms described above. All the computations are done 
using Matlab® (Version R2022a) in Microsoft Windows 10® running on a machine equipped with Intel(R) Core(TM) i7-9750HQ CPU 
@2.60 GHz and 16 GB of RAM. We start by identifying the sources of error implicit in our approach and how to deal with them. Then, 
we compare our proposed simulation schemes with a benchmark. The typical benchmark in the literature summarized in Table 1

is the classic Euler scheme. However, due to the high values of the parameter 𝜎 (see below), it presents very poor performances in 
the HW-SV model. Indeed, despite the variance process follows a geometric Brownian motion, it can reach negative values when 
using Euler approximation. Therefore, we consider a different (more competitive) benchmark, which we label “low-bias” scheme 
(in analogy with Chen et al., 2012). In order to save space, we relegate to Section EC.6 of the e-companion the description of the 
benchmark methodology, as well as the variants allowing for variance reduction and greeks computation, the numerical study of 
bias convergence rate and the optimal choice of the number of time discretization steps.

For all the experiments in this section we consider four different parameter sets, reported in Table 2. These parameters are chosen 
10

similar to those estimated on real data in Section EC.2 of the e-companion.
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Table 2

Parameter settings for testing the accuracy of the exact simulation methods along with the price 
of the corresponding at the money European call option price.

𝑉0 𝜂 𝜎 𝜌 𝑆0 𝑟 𝑇 true price Underlying

Set A 0.01 0.1 4 -0.6 100 0.02 1 3.5515 S&P 500

Set B 0.01 0.2 4.5 -0.7 100 0.02 1 3.3464 Eurostoxx 50

Set C 0.04 0.2 2 -0.2 100 0.02 1 8.0361 USO

Set D 0.01 0.15 3 -0.5 100 0.02 1 4.0743 FTSE 100

Notes. USO denotes the “United States Oil” fund. See Section EC.2 of the e-companion for more 
details.

Notes. Cumulative distribution functions of 
(

1
∫ 𝑇

0
√
𝑉𝑠𝑑𝑠

|||𝑉𝑇
)

(blue line) and the moment–matched gamma distribution (red line) for three different values of 𝑉𝑇 . 𝑥–axis 
is truncated at 𝑎 and 𝑏 computed as in Section 3.3. Parameters as in Set A in Table 2.

Fig. 1. Truncation range and cumulative distribution function of 
(

1
∫ 𝑇

0
√
𝑉𝑠𝑑𝑠

|||𝑉𝑇
)

. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

5.1. Error control

We start by discussing the sources of error implicit in our proposed algorithms and how to deal with them. Indeed, exact simulation 
schemes are unbiased only in theory but not in practice (Broadie and Kaya, 2006, Section 3.2 and Li and Wu, 2019, Section 3.2 and 
Table 1) due to the necessity of using numerical techniques for inverting the various Laplace transforms involved and performing 
inverse transform sampling given the numerical estimate of the cdf. This fact is implicit in all the simulation schemes proposed in 
literature for stochastic volatility models (see Table 1) and is reflected also in our simulation algorithms. However, since we consider 
a different technique (with respect to existing literature) to invert the Laplace transform, it is of interest to study in more detail the 
accuracy and the computational efficiency of our proposed methodology. We identify two sources of error in the approach outlined 
in Section 3: 𝑖) truncation of the actual domain as in Eq. (12); 𝑖𝑖) truncation of infinite sums in Eq. (11) at the 𝑁 -th element. We 
discuss, next, how to control the error implicit in our method.

To illustrate the accuracy in the computation of the truncation range we present the following experiment. We consider three 
different realizations of 𝑉𝑇 corresponding to the 25-th, 50-th and 75-th percentile of its distribution. Then, we compute the true 

cumulative distribution function of 
(

1
∫ 𝑇0
√
𝑉𝑠𝑑𝑠

|||𝑉𝑇
)

and the moment–matched gamma approximation. The two cdfs are reported in 

Fig. 1 for Set A. We can see that the difference is very small, especially in the tails of the distributions. Moreover, 𝑥–axis in the figure 
are truncated exactly at 𝑎 and 𝑏 computed as in Section 3.3. As a result, through the inverse cumulative distribution function of 

the moment–matched gamma we obtain a good approximation for small tail probability of 
(

1
∫ 𝑇0
√
𝑉𝑠𝑑𝑠

|||𝑉𝑇
)

, entailing high accuracy 

when implementing the approximation in Eq. (16). Furthermore, the closeness of the two densities ensures that the initial guess 
for implementing root finding algorithms needed for inverse transform sampling is quite close to the final solution, implying that 
only few iterations are necessary to solve the equation. The robustness of accuracy with respect to parameter choice, as well as the 
closeness of the initial guesses to the final solution, are illustrated in Section EC.7 of the e-companion. Similar results are available 
for the truncation range of the domain of 

(
𝑋𝑇
||| ∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇), however, since we are applying the same formula suggested in Fang 

and Oosterlee (2009), we do not provide them here in the interest of saving space.

Regarding the choice of 𝑁 in Eq. (11), we perform the following experiment: we simulate 109 random realizations of ( √ )

11

∫ 𝑇0 𝑉𝑠𝑑𝑠,𝑉𝑇 and, for each couple, we compute the conditional option price using Eq. (20) for various 𝑁 . Then, we take the 



Journal of Economic Dynamics and Control 163 (2024) 104861R. Brignone and L. Gonzato

Notes. The price is computed using 109 simulations, black horizontal lines represent the true option price as reported in Table 2.

Fig. 2. European call option price computed through Eq. (20) for various 𝑁 .

average across simulations obtaining an unbiased estimate of the European call option price. We plot in Fig. 2 the option prices 
computed in this way for various 𝑁 and for various sets of parameters. We see that the option price converges to the true value 
quickly. The results of this experiment agree with Fang and Oosterlee (2009, Figure 2) showing that the sum in Eq. (11) presents 
exponential convergence. In general, we have found across different parameter sets that by setting 𝑁 = 70 the error is negligible and 
smaller than the fourth significant decimal place when pricing options.

5.2. Performances of Algorithms 2–5

First of all, we need to identify a benchmark and quantify its accuracy. We use a “low-bias” simulation scheme which is described 
in Section EC.6 of the e-companion. To evaluate its accuracy we follow standard literature (e.g. Broadie and Kaya, 2006; Glasserman 
and Kim, 2011; Cai et al., 2017; Kang et al., 2017; Li and Wu, 2019; Kyriakou et al., 2023). If 𝐶 is the simulation estimator used for 
the European call option price and 𝐶true is the true price, then the bias and the variance of the estimator are

bias = (E[𝐶] −𝐶true), variance = E[(𝐶true − E[𝐶])2].

The Root Mean Squared Error (RMSE) is then defined as

RMSE =
√

bias2 + variance

 ,

where  denotes the number of simulations. The bias for the benchmark discretization scheme with a specific number of time steps 
can be estimated using a very large number of simulations to estimate E[𝐶] and then taking difference with the true price (similar 
reasoning applies for the computation of the variance). We compute the bias for various numbers of time discretization steps, i.e. 
𝑛 = {138, 241, 420, 731, 1273} steps using 109 simulations. These are chosen following the optimal allocation rule suggested in Duffie 
and Glynn (1995) (see Section EC.6 of the e-companion for more details). Results are reported in Table 3. The true option prices 
of at the money European call options (which are computed through Algorithm 4 with 5 × 108 simulations) are reported for each 
parameter sets in Table 2. We conventionally set the bias of our exact scheme to 0 as in Broadie and Kaya (2006); Cai et al. (2017); 
Kang et al. (2017); Li and Wu (2019); Bernis et al. (2021).

We start by examining the performance of Algorithm 2 and compare with the low-bias scheme in terms of RMSE and running 
time in seconds. Results are reported in Table 3. The bias of the low-bias scheme obviously decreases with the number of time 
discretization steps. In addition to Table 3, we also report the same results in log–log scale in Fig. 3. It is clear that our exact 
simulation outperforms the benchmark, presenting a steeper downward slope than the low-bias scheme and, as a consequence, a 
faster convergence rate of the RMSE.

Having tested the simulation scheme, we now focus on the usage of variance reduction techniques for pricing European options. 
We start with Algorithm 3. In order to have a comparable benchmark, we follow Willard (1997) and compute the option price by 
simulating paths only for the variance process. Then, given the discrete path of variance and volatility, we compute the integrals with 
the trapezoidal rule and compute option price through the conditional Black–Scholes formula (see Section EC.6 of the e-companion). 
12

This benchmark is more suitable for comparisons than the crude low-bias scheme because, exactly as Algorithm 3, it eliminates the 
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Table 3

Speed-accuracy profiles of Algorithm 2 (plain exact simulation scheme) and the low-bias scheme for parameter sets in Table 2: the case of European 
plain vanilla option.

Set A Set B

low-bias Algorithm 2 low-bias Algorithm 2

 𝑛 bias RMSE time RMSE time 𝑛 bias RMSE time RMSE time

4 × 104 138 0.0140 0.0233 0.57 0.0189 2.92 138 0.0135 0.0205 0.58 0.0154 3.29

16 × 104 241 0.0077 0.0124 4.02 0.0094 11.80 241 0.0072 0.0106 4.06 0.0077 13.54

64 × 104 420 0.0039 0.0061 29.28 0.0047 47.05 420 0.0036 0.0052 29.33 0.0039 49.42

256 × 104 731 0.0023 0.0033 208.48 0.0024 187.89 731 0.0020 0.0028 209.04 0.0019 193.81

1024 × 104 1273 0.0012 0.0017 1480.37 0.0012 748.47 1273 0.0010 0.0014 1481.58 0.0010 754.76

Set C Set D

low-bias Algorithm 2 low-bias Algorithm 2

 𝑛 bias RMSE time RMSE time 𝑛 bias RMSE time RMSE time

4 × 104 138 0.0297 0.0862 0.57 0.0720 3.59 138 0.0162 0.0316 0.58 0.0257 3.34

16 × 104 241 0.0158 0.0397 4.02 0.0360 14.67 241 0.0087 0.0150 4.07 0.0128 13.29

64 × 104 420 0.0076 0.0193 29.37 0.0180 53.76 420 0.0047 0.0079 29.99 0.0064 50.17

256 × 104 731 0.0050 0.0103 209.11 0.0090 211.65 731 0.0026 0.0040 213.67 0.0032 195.44

1024 × 104 1273 0.0025 0.0052 1503.21 0.0045 825.72 1273 0.0014 0.0022 1516.83 0.0016 761.09

Notes. All computing times are expressed in seconds. The choice of 𝑛 for the low-bias scheme is discussed in Section EC.6 of the e-companion.

Notes. Algorithm 2: plots with red diamond markers; benchmarks: plots with blue circle markers. All computing times are expressed in seconds.

Fig. 3. Speed-accuracy comparisons of Algorithm 2 (plain exact simulation scheme) and competent benchmark (low-bias scheme) for different parameter sets: the 
case of European plain vanilla option.

variance associated to the simulation of the asset price. Numerical results are reported in Table 4 and (in log–log scale) in Fig. 4. The 
superiority of Algorithm 3 with respect to the benchmark is evident with a faster convergence rate of the RMSE. Monte Carlo variance 
is reduced by approximately 93-98% (see also the discussion below). Further, we observe a reduction of the running time because 
we can directly price the option without simulating 

(
𝑋𝑇 | ∫ 𝑇0 √𝑉𝑠𝑑𝑠,𝑉𝑇). For example, for 1024 × 104 simulations the reduction is 

approximately 24%.

Next, we aim to assess the performances of Algorithm 4. Since it employs antithetic sampling, as benchmark we consider in this 
case the low-bias scheme with antithetic sampling and conditional Black–Scholes formula. Numerical results are reported in Table 5

and Fig. 5. Also in this case, Algorithm 4 presents a faster convergence rate of the RMSE and outperforms the benchmark. Algorithm 4

is slower than Algorithm 3 since we have to repeat some steps twice. However, the variance is drastically reduced, as we discuss 
later on.

To better illustrate the variance reduction when implementing Algorithms 3 and 4, we perform the following experiment: we run 
13

the various algorithms for  = 1024 ×104 simulations, then we compute the variance of the Monte Carlo estimator for at the money 
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Table 4

Speed-accuracy profiles of Algorithm 3 (conditional COS) and the low-bias scheme (with conditional Black-Scholes formula) for parameter sets in 
Table 2: the case of European plain vanilla option.

Set A Set B

low-bias Algorithm 3 low-bias Algorithm 3

 𝑛 bias RMSE time RMSE time 𝑛 bias RMSE time RMSE time

4 × 104 138 0.0140 0.0145 0.47 0.0037 2.29 138 0.0135 0.0141 0.48 0.0041 2.22

16 × 104 241 0.0077 0.0079 3.26 0.0019 9.51 241 0.0072 0.0075 3.41 0.0020 8.88

64 × 104 420 0.0039 0.0040 23.69 0.0009 35.62 420 0.0036 0.0037 23.86 0.0010 36.71

256 × 104 731 0.0023 0.0024 168.17 0.0005 143.74 731 0.0020 0.0021 168.63 0.0005 142.74

1024 × 104 1273 0.0012 0.0012 1197.60 0.0002 567.88 1273 0.0010 0.0010 1195.31 0.0003 571.44

Set C Set D

low-bias Algorithm 2 low-bias Algorithm 2

 𝑛 bias RMSE time RMSE time 𝑛 bias RMSE time RMSE time

4 × 104 138 0.0297 0.0317 0.47 0.0110 2.46 138 0.0162 0.0166 0.48 0.0037 2.40

16 × 104 241 0.0158 0.0168 3.26 0.0055 9.99 241 0.0087 0.0089 3.39 0.0018 9.56

64 × 104 420 0.0076 0.0081 23.72 0.0028 39.70 420 0.0047 0.0048 24.43 0.0009 39.46

256 × 104 731 0.0050 0.0052 177.29 0.0014 160.51 731 0.0026 0.0026 173.02 0.0005 155.66

1024 × 104 1273 0.0025 0.0026 1231.46 0.0007 643.04 1273 0.0014 0.0015 1229.25 0.0002 621.72

Notes. All computing times are expressed in seconds. The choice of 𝑛 for the low-bias scheme is discussed in Section EC.6 of the e-companion.

Notes. Algorithm 3: plots with red diamond markers; benchmarks: plots with blue circle markers. All computing times are expressed in seconds.

Fig. 4. Speed-accuracy comparison of Algorithm 3 (conditional COS) and competent benchmark (low-bias scheme with conditional Black-Scholes formula) for different 
parameter sets: the case of European plain vanilla option.

European call option price. In Table 6 we report the Monte Carlo variance obtained in this way and the reduction in % with respect 
to Algorithm 2. Results show that Algorithm 3 allows for a reduction of the variance around 93 − 98% overall, while Algorithm 4 by 
more than 98-99%. As a result, both algorithms provide viable ways for obtaining unbiased estimates of European call option prices 
under the HW-SV model with tight confidence intervals.

We conclude by illustrating the performances of Algorithm 5 for the unbiased estimation of the Δ. Following Willard (1997) and 
Broadie and Kaya (2006), as benchmark we implement the low-bias discretization, we compute integrated variance and volatility us-

ing the trapezoidal rule and then we obtain the Δ through a conditional Black-Scholes formula (see Section EC.6 of the e-companion). 
Results are reported in Table 7 and Fig. 6 and show that, as expected, Algorithm 5 presents a faster convergence rate and outperforms 
14

the benchmark.
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Table 5

Speed-accuracy profiles of Algorithm 4 (conditional COS with antithetic sampling) and the low-bias scheme (with conditional Black-Scholes formula 
and antithetic sampling) for parameter sets in Table 2: the case of European plain vanilla option.

Set A Set B

low-bias Algorithm 4 low-bias Algorithm 4

 𝑛 bias RMSE time RMSE time 𝑛 bias RMSE time RMSE time

4 × 104 138 0.0140 0.0142 1.02 0.0021 4.32 138 0.0135 0.0136 1.03 0.0016 4.74

16 × 104 241 0.0077 0.0077 7.16 0.0011 17.41 241 0.0072 0.0072 7.23 0.0008 19.02

64 × 104 420 0.0039 0.0039 51.84 0.0005 68.88 420 0.0036 0.0036 52.03 0.0004 71.40

256 × 104 731 0.0023 0.0024 367.09 0.0003 275.90 731 0.0020 0.0021 367.32 0.0002 281.67

1024 × 104 1273 0.0012 0.0012 2652.36 0.0001 1098.85 1273 0.0010 0.0010 2655.38 0.0001 1108.84

Set C Set D

low-bias Algorithm 5 low-bias Algorithm 5

 𝑛 bias RMSE time RMSE time 𝑛 bias RMSE time RMSE time

4 × 104 138 0.0297 0.0301 1.01 0.0050 4.83 138 0.0162 0.0164 1.02 0.0024 4.72

16 × 104 241 0.0158 0.0160 7.21 0.0025 19.10 241 0.0087 0.0088 7.25 0.0012 19.33

64 × 104 420 0.0076 0.0077 51.89 0.0013 72.72 420 0.0047 0.0047 51.94 0.0006 71.88

256 × 104 731 0.0050 0.0050 367.30 0.0006 284.60 731 0.0026 0.0026 367.31 0.0003 284.56

1024 × 104 1273 0.0025 0.0025 2653.58 0.0003 1127.98 1273 0.0014 0.0015 2656.59 0.0002 1118.70

Notes. All computing times are expressed in seconds. The choice of 𝑛 for the low-bias scheme is discussed in Section EC.6 of the e-companion.

Notes. Algorithm 4: plots with red diamond markers; benchmarks: plots with blue circle markers. All computing times are expressed in seconds.

Fig. 5. Speed-accuracy comparisons of Algorithm 4 (conditional COS with antithetic sampling) and competent benchmark (low-bias scheme with conditional Black-

Scholes formula and antithetic sampling) for different parameter sets: the case of European plain vanilla option.

Table 6

Variance (and reduction in %) of the Monte Carlo estimators for at the 
money European call option price using Algorithms 2– 4 in the various 
parameter sets.

Set A Set B Set C Set D

Algorithm 2 14.2279 9.5146 207.2956 26.3971

Algorithm 3 0.5556 0.6585 4.8603 0.5466

(-96.09%) (-93.08%) (-97.66%) (-97.93%)

Algorithm 4 0.2200 0.1768 1.0079 0.2336

(-98.45%) (-98.14%) (-99.51%) (-99.12%)

Notes. Elements between parenthesis denote the variance reduction with 
15

respect to Algorithm 2.
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Table 7

Speed-accuracy profiles of Algorithm 5 and the low-bias scheme for parameter sets in Table 2: the case of the Δ of the European plain vanilla option.

Set A Set B

low-bias Algorithm 5 low-bias Algorithm 5

 𝑛 bias RMSE time RMSE time 𝑛 bias RMSE time RMSE time

4 × 104 138 0.0013 0.0016 0.49 0.0010 3.02 138 0.0008 0.0013 0.47 0.0011 3.10

16 × 104 241 0.0007 0.0009 3.31 0.0005 11.86 241 0.0004 0.0007 3.27 0.0005 12.34

64 × 104 420 0.0003 0.0004 23.85 0.0002 47.85 420 0.0002 0.0004 23.88 0.0003 49.25

256 × 104 731 0.0002 0.0002 170.85 0.0001 191.43 731 0.0002 0.0002 169.87 0.0001 195.56

1024 × 104 1273 0.0001 0.0001 1216.00 6.18E-05 761.04 1273 0.0001 0.0001 1215.80 6.74E-05 779.82

Set C Set D

low-bias Algorithm 5 low-bias Algorithm 5

 𝑛 bias RMSE time RMSE time 𝑛 bias RMSE time RMSE time

4 × 104 138 0.0177 0.0177 0.48 0.0004 3.19 138 0.0039 0.0040 0.48 0.0009 3.25

16 × 104 241 0.0097 0.0097 3.27 0.0002 12.48 241 0.0021 0.0021 3.31 0.0005 13.12

64 × 104 420 0.0050 0.0050 23.75 9.42E-05 49.99 420 0.0011 0.0011 23.77 0.0002 52.16

256 × 104 731 0.0024 0.0024 173.29 4.71E-05 199.44 731 0.0005 0.0005 169.25 0.0001 208.58

1024 × 104 1273 0.0010 0.0010 1249.36 2.36E-05 793.12 1273 0.0002 0.0002 1211.00 5.68E-05 790.10

Notes. Elements between parenthesis denote the variance reduction with respect to Algorithm 2. The choice of 𝑛 for the low-bias scheme is discussed in 
Section EC.6 of the e-companion.

Notes. Algorithm 5: plots with red diamond markers; benchmarks: plots with blue circle markers. All computing times are expressed in seconds.

Fig. 6. Speed-accuracy comparisons of Algorithm 5 and competent benchmark for different parameter sets: the case of the Δ of plain vanilla option.

6. Conclusions

In this paper, we develop an exact simulation scheme for the Hull and White (1987) stochastic volatility model. This contribution 
extends a large stream of literature concerned with the exact simulation of stochastic volatility models. More specifically, we first 
derive expressions for some relevant Laplace transforms, and then we perform random sampling by the inverse transform method, 
where the numerical estimate of the cumulative distribution function is obtained via the Fourier-cosine (COS) method. We propose 
efficient methodologies for computing the truncation range for the domain of the various random variables involved based on their 
conditional moments. This is important for the practical implementation of the suggested exact simulation scheme since it allows for 
a theoretical control of the error based on the results in Fang and Oosterlee (2009, Sections 4 and 5.1). We propose some variants of 
the exact simulation scheme that allow for the computation of unbiased estimates of European option prices and their sensitivities. In 
addition, these variants can be used to reduce the computational time (in the case of Algorithm 3) and the variance of the Monte Carlo 
estimator (for example, our Algorithm 4 allows for a variance reduction of around 99% with respect to the standard exact simulation 
scheme when pricing European options). Therefore, our methodologies can be used to obtain unbiased estimates of the European call 
16

option price and sensitivities with tight confidence intervals. In this sense, we significantly extend the stream of literature concerned 
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with European option pricing under the HW-SV model, for which only approximations have been proposed so far (Heston and Rossi, 
2017; Ackerer and Filipović, 2020; Zeng et al., 2023). We test the proposed algorithms throughout various realistic parameter sets 
calibrated on real data and compare their performances with the low-bias (and variants) discretization scheme. The results are 
striking: the proposed approaches present a faster convergence rate of the root mean squared error and outperform the benchmarks.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jedc .2024 .104861.
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