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Higher-dimensional gauge theories from string theory.

Alessandro Tomasiello1,∗

We review some recent developments regarding su-
persymmetric field theories in six and five dimensions.
In particular, we will describe the classification of su-
persymmetric six-dimensional theories with a holo-
graphic IIA dual; they are “linear quivers” consisting
of chains of many SU (or SO/Sp) gauge groups con-
nected by hypermultiplets and tensor multiplets. We
will also describe the wider classification of supersym-
metric six-dimensional theories that can be engineered
in F-theory; these are also chains, but they include ex-
ceptional gauge groups and copies of a more exotic
“E-string” theory with a single tensor and E8 flavor sym-
metry. Finally we discuss some properties of these the-
ories under compactification to lower dimensions.

1 Introduction

There are many reasons to be interested in field theories
in higher dimensions (d > 4). Defining interacting mod-
els is an interesting theoretical challenge: many which
are sensible in four dimensions (and fewer) become sick
in higher dimensions. For example, the Yang–Mills La-
grangian has dimension four, and thus gYM in d > 4 be-
comes strong at high energies. This is a bit similar to the
notorious problem of the Einstein–Hilbert term in d > 2.

String theory gives several ways to construct theories
in higher dimensions. A famous example in six dimen-
sions is the theory living on a stack of M5-branes, which
has N = (2,0) supersymmetry [1–3]. Other old examples
of string-engineered higher-dimensional QFTs include
[4–13]. The M5 theory is also useful in understanding
physics in four dimensions: when compactified on a Rie-
mann surface Σ, it results in interesting N = 2 theories in
four dimensions whose Seiberg–Witten curve is Σ [14].

In the past few years, several developments have led
to renewed interest in field theories in six and five dimen-
sions. First, the recent breakthrough in understanding
the M2 action [15–18] was achieved by enlarging one’s
perspective to M2’s at singularities. This achieved weak
coupling by introducing a new parameter k, at the (tempo-

rary) cost of reducing supersymmetry. It is natural to won-
der whether we might similarly achieve progress about
the M5 theory by introducing more parameters and re-
ducing to (1,0) supersymmetry. Second, the physics of M5
compactifications on Riemann surfaces has turned out
to be even much richer than previously thought: among
the resulting N = 2 theories, many are non-Lagrangian
and have interesting duality properties [19–21]. Under-
standing compactifications of N = (1,0) theories might
similarly give rise to interesting results in N = 1 theories
in four dimensions. Finally (although we will not review
this here) localization techniques have progressed to the
point where they can compute for example the index of
the (2,0) theory [22, 23].

In this talk, we will review some recent progress.
We will begin in section 2 with some basics about six-
dimensional field theories, showing how one is led nat-
urally to a certain “linear quiver” structure. In section 3
we will see that these linear quiver theories in fact have
holographic duals in type IIA. In section 4 we will review
a classification of six-dimensional theories that can be
engineered in F-theory. Finally, in section 5, we will review
some old and new results about theories in five dimen-
sions, and about compactifications from six and five to
four dimensions.

2 6d supersymmetric field theories

Let us then start by considering supersymmetric theories
in six dimensions.

First let us consider so-called N = (1,0) supersymme-
try. This superalgebra has 8 (chiral) supercharges, and an
Sp(1)∼=SU(2) R-symmetry. Its multiplets are [24]:1
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– A vector multiplet, consisting of a gaugino λαa and of a
gauge vector Aµ.

– A hypermultiplet, consisting of four scalars qab and a
hyperino ψαb .

– A tensor multiplet, consisting of a single real scalar φ, a
tensorino χαa , and of a tensor potential bµν whose field
strength hµνρ ≡ 3∂[µbνρ] is self-dual.

The peculiar structure of the tensor multiplet looks a little
more natural if one notes that a self-dual three-form h
can also be written as a tensor with two symmetric spinor
indices hαβ; it is the representation of SU(4) with Dynkin
indices (2,0,0) and dimension 10. There is also of course a
gravity multiplet which includes an anti-self-dual tensor,
but we are interested in field theories and we will not
consider it. Notice that the gaugino has chirality opposite
to the hyperino and tensorino. Notice also that each of
the fermions has a symplectic-Majorana reality condition
that halves its degrees of freedom.

For N = (2,0) supersymmetry, the superalgebra has
16 chiral supercharges, and an sp(2)∼=so(5) R-symmetry. It
also has a tensor multiplet, which famously has 5 scalars
transforming in the fundamental of SO(5). This multiplet
describes the degrees of freedom of a single M5; the five
scalars parameterize the five transverse directions. This
(2,0) tensor decomposes under the (1,0) superalgebra as
a (1,0) tensor multiplet plus a hypermultiplet. The theory
describing a stack of N M5-branes is more mysterious; it is
thought to have N 3 degrees of freedom, but a Lagrangian
is not known. The same theory is also realized, via M-
theory/IIB duality, on R4/Zk singularities in IIB [1]. One
can consider more generally a singularity R4/Γ, where
Γ is a discrete subgroup of SU(2). Such subgroups are
associated to the Lie groups of the A, D and E series, and
one also uses these labels for the corresponding N = (2,0)
theories.

Let us see now how we can construct N = (1,0) the-
ories. As we mentioned in the introduction, a higher-
dimensional gauge theory becomes strongly coupled at
high energies; it is non-renormalizable. Even if we choose
to ignore this problem, a supersymmetric gauge theory
is plagued by a gauge anomaly, since the gaugino λαa is
chiral. We can try to cancel this anomaly by introducing
a hypermultiplet, which has a fermion ψαa of the oppo-
site chirality. The most straightforward possibility is to
take this hypermultiplet in the adjoint of the gauge group.
This basically leads to the N = (1,1) vector multiplet. A

tive) chirality; from the middle, such as µ, are bosonic. Indices
from the beginning of the Latin alphabet, such as a, refer to
the fundamental of Sp(1)R.

more imaginative possibility is to take the hypermultiplet
in a different representation. For example, if the gauge
group is U(nc), one can consider taking nf hypermulti-
plets in the fundamental. As usual, the anomaly I 1

6 can be
obtained by a form I8 in eight dimensions (a polynomial
in the gauge field strength two-form F ) via the descent
formulas I8 = d I7, δI7 = d I 1

6 . In our case it reads

I8 = TrF 4 −nf trF 4 , (1)

where Tr and tr denote the traces in the adjoint and fun-
damental representation respectively. The generators of

the two are related by T i j̄
adkl̄ = T i

f kδ
j̄

l̄
+δi

k T j̄

f l̄ ; so we get

TrF 4 = 2nctrF 4 +6(trF 2)2. We can cancel the term trF 4 by
choosing

nf = 2nc . (2)

(For N = 2 theories in four dimensions this condition
is imposed to get conformal invariance rather than for
anomaly cancellation.) However, we are still left with a
non-zero I8 = 6(trF 2)2. Fortunately, this is of the form
I8 = I 2

4 (I4 = trF 2), so we can use the Green–Schwarz–
West–Sagnotti (GSWS) [25, 26] mechanism. Defining this
time I4 = d I3, δI3 = I 1

2 (= tr(λ∧d A)), we see now that I7 =
I3∧ I4, δI7 = δI3∧ I4 = d I 1

2 ∧ I4, so that I 1
6 = I 1

2 ∧ I4. Hence
the residual anomaly can be canceled by adding to the
action a term∫

b2 ∧ I4 , (3)

where under a gauge transformation of parameter λ,
δb2 = I 1

2 = tr(λ∧d A). The gauge-invariant field-strength
h = db2 − I 1

2 now obeys the modified Bianchi identity

dh =−I4 =−trF 2 . (4)

So we can cancel the gauge anomaly, at the cost of
introducing a two-form potential b2 and a contribution (3)
to the action. Luckily the tensor multiplet indeed includes
such a field; so we can hope to cancel the anomaly while
still preserving N = (1,0) supersymmetry. However, such
a b2 is chiral, db2 = h =∗h; so the usual action

∫
h∧∗h in

fact vanishes. The most common reaction is to consider
it as a “pseudo-action”, in the sense that the constraint
h =∗h is added by hand after deriving all the equations
of motion; another possibility is to introduce a variant of
the PST mechanism [27]. If we choose the first possibility,
the term (3) modifies the equations of motion, so that
they now read d ∗h = −I4 = −trF 2. Fortunately this is
consistent with (4) above; this would not have worked
had I8 been simply factorized as I4∧ Ĩ4 (with two different
four-forms) rather than being a perfect square.

2 Copyright line will be provided by the publisher



Fortschritte der Physik, December 16, 2015

The next point would be to write a Lagrangian for
this theory. One problem we already mentioned is the
self-duality of h. If we bypass it by accepting to write a
pseudo-action, we can specialize the Lagrangians of [28],
setting to zero their Stückelberg terms and keeping their
“embedding tensor” connecting tensors and vectors. For
the theory we just discussed, the bosonic Lagrangian is
schematically

L ∼φTr(|F |2 −D2)+∂φ2 +|h|2

+∗ (b ∧Tr(F ∧F ))+|Dq |2 +q†σ ·Dq
(5)

where Dq is the appropriate covariant derivative of the hy-
permultiplet scalars qab , and D is a D-term triplet similar
to the one of an N = 2 vector multiplet in four dimen-
sions. | |2 denotes the norm of a form by index contrac-
tion. It is customary to summarize this Lagrangian by a
so-called quiver2 diagram like the one in figure 1(a); the
round node denotes the gauge field, the link denotes the
tensor multiplet and the hypermultiplets, and the square
node denotes the U(nf) flavor symmetry mixing the hy-
permultiplets.

Eq. (5) overlooks a crucial subtlety. In (1) we have ig-
nored terms containing trF ; such terms make the U(1)⊂
U(k) subgroup still anomalous, even after all the pro-
cedure we just explained. There is again a GSWS-like
mechanism that can cancel this anomaly [29]; it involves
this time introducing a term b0trF 3, with b0 a scalar
charged under gauge transformations. This requires a
term (∂b0+A)2 which makes the U(1)⊂ U(k) massive. This
b0 can be taken to be a combination of the qab [6], but
the full modification to (5) induced by this has not been
worked out to my knowledge.

It is easy to see how to generalize (5). We can imag-
ine for example gauging a subgroup of the flavor group
U(nf) = U(2nc). For example, we can gauge U(nf) ⊂ U(2nf)
by introducing a second gauge field. This leads to the
quiver in figure 1(b). If one repeats this process, one ob-
tains a chain of the type in figure 1(c).

One could also have chosen to gauge a different frac-
tion of the flavor symmetry at each step. One arrives in
this fashion at chains of gauge groups which are called
“linear quivers” (see figure 1(d)), where each horizontal

2 A quiver diagram should actually contain dots and arrows,
as the name indicates; such diagrams are useful for N =
1 theories in four dimensions. For N = 2 theories in four
dimensions and N = (1,0) theories in six dimensions, the
direction of the arrows is not important and can be dropped,
but the name “quiver” is usually retained.

link is again associated to a bifundamental hypermulti-
plet. The condition (2) should be obeyed for all gauge
groups, so that all terms trF 4

i in the anomaly polynomial
cancel. In some case this is achieved by adding some extra
hypermultiplets, the vertical links in figure 1(d). (In the
example in that figure, the first gauge group U(4) has 1+7
flavors, the second gauge group U(7) has 4+2+8 flavors,
and so on.) Let us call the gauge groups U(r1), U(r2). . . ,
and the vertical extra flavors f1, f2 . . .. Then (2) reads

2ri − ri+1 − ri−1 = fi . (6)

So in a sense the “discrete second derivative” of the ri

gives the extra flavors fi . Since these numbers are positive
by definition, the ri describe a convex function of the
position i . Thus the ri will rise, then reach a maximum
value k (equal to 10 in figure 1(d)), perhaps plateau there
for a while, and then go down again. All these data are
sometimes summarized visually by two Young diagrams
YL and YR; see figure 2. (For a review of this combinatorics,
see [30].) Thus we will label these theories as

T N
YL,YR

. (7)

By definition YL and YR will have the same total number k
of boxes; N will be larger than the sum of their two tallest
columns.

Once (6) is satisfied, the leftover gauge anomaly is of
the form Ci j trF 2

i trF 2
j , where Ci j is the Cartan matrix of

SU(N +1), with N = the number of gauge groups; it can
again be cancelled by a GSWS mechanism, involving N
tensor multiplets bi . (As we will see later, in the string
theory realization it is a little more natural to add an extra
decoupled “center of mass” tensor multiplet, and to asso-
ciate the resulting N +1 tensors to the horizontal links in
figure 1(d).) The resulting theory is very similar to (5) and
we will not write it here.

These linear quiver theories make sense classically,
but we now have to worry about their quantum properties.
Due to the presence of the gauge fields, one might think
the theories are simply non-renormalizable: Tr|F |2 =
1
2 TrFµνFµν has dimension four, which is less than the di-
mension of the spacetime (much like the Einstein-Hilbert
R has dimension two, which is less than the dimension
of the spacetime for d > 2). However, notice that in (5)
the gauge kinetic operator is actually φTr|F |2, so that
1/g 2

YM has been promoted to a scalar. Actually φ has di-
mension 2, so this new kinetic operator has dimension 6,
which at least sounds more promising. In the general lin-
ear quiver theories, this phenomenon also appears, with
kinetic terms φi Tr|Fi |2; alternatively, if one chooses to
associate tensor multiplets Φi to the quiver links as we
mentioned earlier, this reads (Φi −Φi+1)TrF 2

i .
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nc nF

2nc

=

nc 2nc

(a)

ncnc nc

if we rewrite it like this:

we can try to gauge
this flavor group:

nc nc ncnc

nc nc ncnc . . .

we can keep going:

$W�HDFK�QRGH� nF = 2nc

Another possibility:

. . .2 3 NN � 11

(b)

ncnc nc

if we rewrite it like this:

we can try to gauge
this flavor group:

nc nc ncnc

nc nc ncnc . . .

we can keep going:

$W�HDFK�QRGH� nF = 2nc

Another possibility:

. . .2 3 NN � 11

(c)

. . . . . .ri ri+1

fi+1fi

10 1010 10 10 10 109 98 874 46 2

1 1 1 12

A more complicated possibility…

{
“core”{

“tail”

{

“tail”

recent general classification 
of even more general structures: [Bhardwaj ’15] 

[classical actions!]

$W�HDFK�QRGH� nF = 2nc

(d)

Figure 1 In (a), the quiver summarizing the Lagrangian (5). Gauging an U(nc) subgroup of the flavor group U(2nc ) leads to the
theory in (b). Iterating the process leads to the chain in (c). In (d) we see a more general linear quiver; the condition (2) is met at
every node.

Figure 2 The Young diagrams YL and YR associated to the
theory in figure 1(d). Their columns are given by si = |ri −ri−1|
for both “tails” left and right of the central plateau.

When quantizing (5), one has to choose a vacuum ex-
pectation value 〈φ〉 ≥ 0; the space of such possibilities is
called “tensor” or sometimes “Coulomb” branch, since it
reduces to an ordinary Coulomb branch upon compactifi-
cation to four dimensions. For 〈φ〉 > 0, the gauge field will
now effectively have an ordinary gauge coupling 〈φ〉Tr|F |2,
and the theory will be non-renormalizable again. If we
choose 〈φ〉 = 0, we cannot conclude this; but it is not clear
how to set up perturbation theory around this vacuum.
Indeed, if one sees 〈φ〉 ∼ 1/g 2

YM, it is clear that 〈φ〉 = 0
corresponds to a strong coupling limit: we cannot really
use (5) reliably any more. The discussion for the linear
quivers is similar: the strong coupling point is now the
origin 〈φi 〉 = 0 of the tensor branch.

Fortunately, as we will see in the next section, the lin-
ear quiver theories can be engineered in string theory;
that engineering suggests that in fact 〈φi 〉 = 0 corresponds
to a CFT. Presumably this CFT has a tensor branch in its
moduli space of vacua; choosing a point in it breaks con-
formal invariance and triggers an RG flow to the linear
quiver Lagrangian with 〈φi 〉 > 0.

Even though we cannot directly give a Lagrangian
description of these CFTs, we can estimate its number
of degrees of freedom. The Weyl anomaly reads 〈T µ

µ 〉 ∝

aE +∑
i ci Ii ; E is the Euler density and Ii are combina-

tions of the Weyl tensor, of which there are three in six
dimensions. a is expected to be monotonic under RG
flows, just like in two [31] and four [32] dimensions. Since
Weyl transformations are in the same superalgebra as R-
and Poincaré symmetries, a is (linearly) related to the
R-symmetry and diffeomorphism anomaly [33] (similar
formulas can be obtained for the ci [34]). These in turn
can be computed reliably in the Lagrangian of the type (5),
since along the tensor branch flow described earlier nei-
ther R-symmetry nor diffeomorphisms are broken. This
was done in some particular case in [35, 36], and for gen-
eral linear quivers in [30]. An important contribution is
given by the GSWS term (3); in the limit where the number
N of gauge groups is large, it gives the dominant term:

a ∼ 192

7
C−1

i j ri r j , (8)

which goes roughly like N 3. As we will see, this is related to
the well-known scaling a ∼ 16

7 N 3 for the N = (2,0) theory
on multiple M5s.

Before we turn to the string embedding of these theo-
ries, it is natural to wonder if our construction can be gen-
eralized further. For example at some point we might have
tried to introduces “loops” or “branches” in the quiver, or
to use gauge groups other than SU(k). As we have seen, su-
persymmetry and anomaly cancellation impose tight con-
straints even at the classical level. A classification of the
possibilities was given recently in [37]; loops are impos-
sible, and branching structures are severely constrained.
Gauge groups other than SU(k) are possible; indeed some
of these also have a string theory embedding by adding
orientifold actions to the constructions of the next sec-
tion. The next step would be to try to analyze the actions
in [37] quantum-mechanically. As we saw, this is not so
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easy, and at present we have to rely on the presence of a
string theory embedding. We will review a classification
of F-theory-engineered theories in section 4.

3 Holographic duals

The linear quivers in the previous section can be real-
ized on a brane system [6, 7]. The configuration involves
N +1 NS5-branes extended along directions 0. . .5, a vary-
ing number of D6-branes extended along 0. . .6, and D8-
branes extended along all directions except 6. The combi-
natorial rules to extract the spectrum from such a config-
uration are similar to the ones in three [38] and four [14]
dimensions. For example, we give in figure 3 a brane con-
figuration which engineers the linear quiver in figure 1(d).
The stack of ri D6-branes on the segment between the i -
th and (i +1)-th NS5s gives rise to the SU(ri ) gauge group.
The i -th NS5 gives rise to a bifundamental hypermulti-
plet associated to the i -th horizontal link in the quiver,
and to the tensor multiplet Φi . The scalar in the latter
is identified with the position of the NS5 in direction 6;
so the conformal point Φi = Φi+1 on the tensor branch
corresponds to the point where the NS5 coincide (figure
4(a)).3 Finally, the D8’s give rise to the fi fundamental hy-
permultiplets associated to the vertical links (when they
are present).

The traditional way of finding a holographic dual to a
brane-engineered theory consists in writing down a grav-
ity solution for the brane system, and performing a near-
horizon limit. In this case, this is challenging, because of
the notorious problems in finding localized gravity solu-
tions associated to intersecting branes. In the case without
D8s, one can consider the known solution for a stack of
M5 branes on a Zk singularity and reduce to IIA along a
Hopf- (or Taub–NUT-) like isometry; the resulting solution
describes an NS5-D6 system accurately in the near-D6 re-
gion. In M-theory, the near-horizon limit is AdS7 ×S4/Zk ;
in IIA, the near-horizon limit of the NS5-D6 system is
AdS7 ×S3, with two D6 stacks at the poles of the S3 [41,
Sec. 5.1]. This shows that it is possible for an NS5-D6 in-
tersection to have an AdS7 near-horizon limit; it is dual to
the theory in 1(c), which in the language of (7) has both
YL = YR = [N ] (a single vertical column). However, it is not

3 Irrespectively of our argument in section 2, the presence
of a CFT at this point in moduli space is also suggested by
the appearance of tensionless strings given by D2-branes
suspended between the NS5s. It is also possible to count the
states of such strings [39,40].

clear how to generalize the procedure in this paragraph
to include D8-branes.

Fortunately, there is a shortcut: AdS7 solutions were
classified in [41]. In IIB, it was found that there are no
solutions; but in IIA infinitely many were obtained, whose
analytic form was later uncovered in [42].4 Even if we
cannot follow the near-horizon process that takes us from
the brane configuration to the AdS7 solution, the data of
the solutions suggest a correspondence [45] that we will
now describe.

First we need a description of the AdS7 solutions them-
selves. The internal space M3 is topologically an S3; the
metric consists of a round S2, whose volume v(y) varies as
a function of an interval I 3 y , such that v goes to zero at
the two endpoints of the interval I . The simplest example
consists of the solution we mentioned earlier, obtained
by reduction from eleven dimensions. A more interesting,
and almost as simple, example is

d s2 = nD6

F0

√
y +2

(
4

3
d s2

AdS7

+ d y2

4(1− y)(y +2)
+ 1

3

(1− y)(y +2)

8−4y − y2 d s2
S2

)
;

(9)

in this case y ∈ [−2,1] = I . The active fluxes are F0 (the
so-called “Romans mass”), F2 ∝ volS2 , H ∝ volM3 . With
appropriate coordinate changes one can show that y = 1
is a regular point, while at y =−2 a stack of nD6 D6-branes
is present; these D6s are extended along AdS7. In figure 5
we see a sketch of M3 in this case.

More general solutions have D8-branes as well as D6-
branes. These D8s are again extended along AdS7, and
wrap the S2 at various particular values yi of y . Along the
S2 it is also possible to have a topologically non-trivial
worldsheet gauge bundle. A bundle on S2 is always direct
sum of bundles of rank 1; their first Chern class c1 ≡µ can
also be interpreted as the D6-charge of the D8. In other
words, each D8 is in fact a D8-D6 bound state. Supersym-
metry fixes the positions yi of the D8-branes in terms of
their D6-charges; so D8s with the same D6 charge µ will
be on top of each other. The condition dictates that the
radius of the S2 wrapped by the D8, divided by the string
coupling, must be proportional to µ; this is basically a
Myers effect [46]. In figure 4(b) we see a typical solution
with several D8-branes. The “creases” in the figure rep-
resent the D8s, where the metric has an angular point
(just like for a D8 in flat space); they give M3 a “crescent

4 For some earlier literature on AdS7 solutions with branes, see
for example [43,44].
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10 1010 10 10 10 109 98 874 46 2
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Figure 3 A brane configuration that engineers the linear quiver in figure 1(d). The dots represent NS5-branes, the horizontal
lines D6s, the vertical lines D8s.

N = 17

(a)

(b)

Figure 4 In (a), the brane configuration in 3 after one puts
the NS5s on top of each other. In (b), a sketch of the internal
space M3 for the corresponding AdS7 solution. The solution is
in IIA: there is no lift to eleven dimensions. The D8-branes are
still visible as loci where the metric has an angular point, while
the D6s have become magnetization on the D8 worldvolume
and the NS5 have dissolved into flux. Notice that the Young
diagrams YL and YR in figure 2 summarize visually the numbers
of D6s ending on the D8s in (a), the D6-charge of the D8s in
(b), and the positions of the D8s in figure 3.

roll”-like shape. (One can also include D6-branes, but in
the limit where the size of the M3 is large these can be
approximated by D8s with a very small µ.)

In fact one finds that the data characterizing these the-
ories are the same N , YL, YR that label the field theories
in (7), with the same restrictions mentioned there. This
suggests that the set of theories T N

YL,YR
should be holo-

graphically dual to each other [45].

Here is a rough picture of why such a correspondence

(a)

nc nF

2nc

=

nc 2nc

. . .2 3 NN � 11
(b)

Figure 5 In (a), a sketch of M3 in (9); in (b), the dual quiver.
The Young diagrams are [1N ] (single horizontal row) and [N ]
(single vertical column).

should be true. One has performed a near-horizon limit
on the brane configuration in figure 4(a); this limit gives
rise to an M3 such as the one depicted in figure 4(b). The
N +1 NS5s dissolve into flux: in other words, in the AdS7

solution one has a flux integer 1
4π2

∫
M3

H = N + 1. Each
D8 with µ D6’s ending on them becomes a D8-D6 bound
state with D6 charge equal to µ.5

As a cross-check of the proposed holographic duality,
notice that the presence of “vertical” fundamental flavors
fi corresponds to the presence of D8-brane stacks in the
AdS7 solution. For example, in figure 1(d) we see 5 non-
zero fi , which correspond to the five D8 stacks depicted
in figure 4(b). The value of F0 jumps across the D8s, as
it should; between two D8s related to two non-zero fi , it
is given by F0 = ri−ri−1

2π . In particular, the central plateau
in the quiver of figure 1(d) corresponds in figure 4(b) to
a central region where F0 = 0. Such a central region is
generically present, simply because setting to zero the
length of the central plateau is in a sense a fine tuning. For
a more detailed review of these aspects see [30].

In any case, a strong check on the proposed correspon-
dence is provided by the holographic computation of the

5 In a sense, already in the brane picture it is better to under-
stand the D6–D8 system as a “fuzzy funnel”, described in
gauge theory terms by a “Nahm pole” [47].
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(a)

(b)

Figure 6 A solution with two D8s of opposite D6 charge, and
the corresponding quiver. The Young diagrams are both [1N ]
in this case.

a Weyl anomaly [30]. This can be done by adapting the
older computation for the N = (2,0) theory [48], and it
reduces to computing

∫
M3

e5A−2φvol3. (This is also propor-
tional to the coefficient dictating the behavior of the free
energy with the temperature, which is another possible
measure of the number of degrees of freedom). The result
of this integral can then be compared with the field theory
computation described around (8). One needs to identify
a holographic limit, namely a limit in which the gravity
solution is under control. For our linear quiver theories,
one has to take to infinity the number of gauge groups
N , rather than the size of the individual gauge groups
SU(ri ). This is less strange than it sounds, once one recalls
that the case without D8s lifts in eleven dimensions to the
theory of N +1 M5-branes, where N is indeed the num-
ber of gauge groups. Moreover, in order to keep the D8
from shrinking in this limit, one also needs to rescale the
positions of all the non-zero fi .

Consider for example the theory in figure 6(a). In this
case, the holographic limit is achieved by taking both N
and k to infinity, such that N /k remains fixed. The field
theoretic result in this case gives

a = 16

7
k2

(
N 3 −4N k2 + 16

5
k3

)
; (10)

since N and k are both large, all three terms are of the
same order. (Stringy corrections will give terms O(N ) or
O(k).) This result precisely matches the one obtained
holographically as explained above. (The example (10)
was already computed in [42]).

One can prove that the agreement works in general
[30]. A heuristic argument comes from (8): the Cartan ma-
trix C can be seen as a discrete second derivative, and its
inverse as a double primitive. One can then show that the
holographic integral for a can be written as

∫
α̈α, where

α̈ is a piecewise linear function that appears in the metric
which happens to interpolate between the ri .

There are several possible extensions. One could for
example take an O8 orientifold acting on y . This would
introduce an O8-plane at the equator of M3; on the field
theory side it would correspond to having an SO or Sp
gauge group at the end of the quiver. Or one could take
an O6 orientifold acting on the S2; this would include an
O6-plane at the poles, and would turn the SU quiver into
a chain of alternating SO and Sp gauge groups.

Instead of pursuing these generalizations, we will now
describe a much more general construction of field theo-
ries from F-theory.

4 F-theory engineering

We have seen that the SU linear quivers have an engineer-
ing in IIA in terms of NS5s on top of D6s. For the case
without D8s, we also mentioned that this can be lifted in
M-theory to a configuration of M5s on top of a line of Zk

singularities; see figure 7. We can read off the quiver in
this duality frame as well: M-theory on a R4/Zk singular-
ity realizes seven-dimensional SU(k) super-Yang–Mills,
and the M5s give boundary conditions that put this 7d
theory on a segment; just like in the Hanany–Witten con-
struction, we end up with a copy of six-dimensional super-
Yang–Mills for each segment. Instead of going to eleven
dimensions, from IIA we can T-dualize to IIB, say along
direction 7 (which was transverse to both D6s and NS5s).
In this case the D6s turn into D7-branes, but the NS5s
turn into geometry; each segment of D6s is now better
thought of as a D7 stack on a non-trivial two-cycle (see
again figure 7).

This picture works very similarly also for dihedral Dk

singularities; one now needs to introduce an O6 on the IIA
side. For G = Ek , however, we don’t have the IIA picture.
We still have the M-theory picture: the M5s are now placed
on a line of singularities given by quotienting R4 by ΓEk ,
the discrete group associated to Ek . The IIB picture is also
available as an F-theory configuration, where this time we
have exceptional seven-branes wrapping the non-trivial
two-cycles Σi . The two pictures are related by M/F-theory
duality; see figure 8.

However, while in the Ak case we know that the links
in the quiver represent a hypermultiplet plus a tensor
multiplet, in the Dk and the Ek case it is not clear what
they should represent.

This can be clarified on the F-theory side; we will il-
lustrate it in the case of a link joining to E8 nodes. The
geometry consists of R6 ×M4, where M4 contains a chain
of two-cycles Σi (as in the bottom of figure 8), on each
of which an E8 seven-brane is present (which is also ex-
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R � R4/Zk VLQJ�
. . .

M-theory

. . .

IIA
lift
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IIB

T-duality

�= . . .

Figure 7 Various ways of realizing the theory in figure 1(c).

. . .

M-theory

seven-branes

F-theory

R � R4/�G VLQJ�

. . .G G G G G

. . .

Figure 8 A generalization of the theory in figure 1(c) with ex-
ceptional gauge groups.

tended along R6). As is usual in F-theory, this means that
there is a certain non-trivial configuration for the axio-
dilaton τ = C0 + i e−φ, which is summarized by a torus
fibration M6 over M4, in the sense that the modular pa-
rameter for the torus fibre is equal to τ. The presence
of a seven-brane on the Σi means that the fiber degen-
erates in a certain way; the gauge group can be read off
from this degeneration. One often writes M6 as the locus
{y2 = x3+ f x+g }, where f and g are functions on M4, and
y , x are local coordinates on a patch of CP2 or a weighted
projective space, where the torus is embedded. The gauge
algebra can then be read off by looking at the local behav-
ior of f and g ; see for example [49, Table 1] (or [50] for
more details).

Near the intersection of two E8 seven-branes, the fibra-
tion reads y2 = x3+u5v5, where u, v are local coordinates

on M4 and the seven-branes are located at {u = 0} and
{v = 0}. Over this point, M6 has a singularity that goes
beyond the cases listed in [49, Table 1]; this means that
M6 cannot be resolved while staying a Calabi–Yau, which
in turn means that the equations of motion of F-theory
are not satisfied. In order to cure this problem, one has to
blow up this singularity; this generates a new two-cycle,
on which f and g again degenerate, this time in a way
corresponding to an F4 gauge group (see [49] for a de-
tailed description). Near the intersection of the E8 and F4

branes, after a change of coordinates, M6 now looks like
y2 = x3 +u5v4; this again needs to be blown up, generat-
ing a new two-cycle with a G2 gauge group. One has to
perform this process several more times, until one gets
a model where M6 is a Calabi–Yau; it contains a total of
eleven new two-cycles, most (but not all) of which have a
gauge group. One can finally read off the theory associated
to this brane configuration: it is illustrated in figure 9. This
result appeared in several contexts in F-theory, beginning
with [49, 51].

As one can see, there are some “empty nodes”, where
there is no gauge group. When such a node is marked by
a 2, it indeed just means the absence of a gauge group;
the tensor multiplets that would be associated to the links
are still there, and the node is a placeholder, so to speak.
An empty node marked by a 1, however, has a different
meaning; it describes a certain peculiar N = (1,0) CFT6

that we have not discussed so far, called “E-string”. This is
a non-Lagrangian theory without gauge groups, with an
E8 flavor symmetry, and with a single tensor multiplet. It
appears for example when describing M5-branes on an E8

Hořava–Witten wall [4, 11, 52]. (Recall that here, however,
the origin of the E8 is the ΓE8 singularity; there is no E8

wall.) Notice that such a 1 node also appears inside the
diagram in figure 9, where no E8 is visible: in this example,
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6S(1) G2 F4 G2 6S(1)E8 E8

1 2 1 1 12

Figure 9 The “conformal matter”
theory obtained by repeatedly re-
solving the contact point between
two E8 seven-branes in F-theory; it
represents one of the links in the
quiver in figure 8, for G = E8.

it is connected to an F4 and a G2 gauge groups. This means
that we have gauged a F4 ×G2 subgroup of the E8 flavor
symmetry of the E-string theory.

Thus, in the quiver with gauge groups G = E8 of fig-
ure 8, each link is actually to be understood as one of the
chains in figure 9. The results for G = E6, E7, Dk can be
computed similarly; the resulting chains have 5, 3, 1 inner
nodes (rather than 11 as figure 9) respectively and can
be found in [49, 51, 53]. These chains are thus “building
blocks” that make it possible to construct linear quivers
with gauge groups more general than the SU(k)’s of the
previous section. This is illustrated by the simple quiver in
figure 8, but these building blocks keep appearing promi-
nently in the classification we will soon review. For this
reason, it is natural to call these chains “conformal mat-
ter” theories. According to this terminology, the theory in
figure 9 is thus (E8,E8) conformal matter.

Before we go on to more elaborate theories, it is in-
teresting to try to interpret the resolution process in M-
theory. Since so far “links” were associated to M5s or NS5s,
it is natural to think [53] that the chain in 9 corresponds
to a single M5 splitting in 12 “fractional M5s”; see figure
10. Similarly for E7, E6, Dk we would have 6, 4, 2 fractions;
for Ak no fractionation occurs. (The Dk case is similar to
a phenomenon where NS5s split in two half NS5s along
an orientifold [54].) While at this point this idea might
look speculative, it can be checked in several ways. For
example [55, Sec. 3] if one compactifies three directions
of the M5s on a T 3, making it very small, one ends up
in M-theory again with a dual large T 3; the M5 on the
singularity line becomes an M2 realized as a gauge the-
ory instanton on R×T 3. The fractional M2s can now be
thought of as domain walls connecting different values of
the Chern–Simons invariant on the T 3. (Such values are
described by “triples” [56].) An alternative understanding
was also given in [57, 58].

One can also wonder what happens if in the IIA config-
uration of figure 7 one were to include D8s. The M-theory
understanding is a bit mysterious, because of the noto-
rious problems in incorporating the Romans mass F0 in
M-theory — see for example [59]. (On the other hand, in a
simpler configuration, D8s can be realized as Wilson lines
on the M-theory E8 walls [60].) One can try to go directly
to IIB, however, again T-dualizing along direction 7; now

6S(1) G2 F4 G2 6S(1)E8 E8

1 2 1 1 12

M5 R � R4/�E8
VLQJ�

 fractional M5s

Figure 10 The M-theory interpretation of the repeated blow-up
process in F-theory: a single M5 has broken up in 12 “fractional
M5s”.

both the D6s and the D8s become D7s. However, just as
one can argue that the D6–D8 system is in fact a single
“Nahm pole” (see footnote 5 and figure 2), the two types of
D7 after this T-duality are more likely to fuse into a single
nontrivial D7. This was conjectured in [53] to be described
by a “Hitchin pole”; in F-theory this is known as a T-brane
[61]. Recall that the theories in section 2 were labeled by
two Young diagrams (see (7)). The two “ramps” in ri left
and right of this plateau can be thought of as two T-branes
attached to the central region with F0 = 0, labeled by the
Young diagrams YL and YR.

Even in the more general case where the IIA picture is
not available, it is possible to decorate the quiver in figure
8 with a T-brane on each side; now the T-brane data are
no longer labeled by a Young diagram, but by a nilpotent
element in G . It would be interesting to identify these
theories explicitly.

We have seen so far that F-theory can generalize
the linear quiver theories we saw in section 2 and 3. In
fact, a classification was recently obtained [62, 63] of six-
dimensional theories that can be engineered in F-theory.

The strategy of the classification is the following. Re-
call from section 3 that the tensor multiplet scalars φi ,
which parameterize what we called the tensor branch of
the theory, represent in the string theory realization the
distances between the NS5s in the direction where the
D6s are extended (the horizontal direction in figure 3).
The conformal point was realized at the origin {φi = 0},
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where all the NS5s are on top of each other. In the IIB
dual the NS5s become geometry: they become the points
where the non-trivial two-cycles Σi of figure 7 are touch-
ing. Thus, the tensor branch is now parameterized by the
sizes of the two-cycles, and the conformal point is where
all the two-cycles are shrunk to zero.

To engineer a more general theory in F-theory (rather
than simply IIB), we want to put seven-branes on an M4

with several two-cycles, and shrink all the two-cycles si-
multaneously to reach a conformal point. As it turns out,
this is not always possible. Once one finds a T 2-fibration
M6 over M4 which has the desired degeneration proper-
ties on each two-cycle (as briefly reviewed at the begin-
ning of this section), the moduli space of M6 may or may
not have a point where all the two-cycles Σi in M4 shrink
simultaneously. As pointed out in [62], algebraic geom-
etry demands that the intersection matrix Σi ·Σ j of the
two-cycles should be negative-definite. In any case, the
classification is now a geometrical problem.

To make the task more manageable, originally [62] con-
sidered theories that are “minimal”. This means that they
cannot be Higgsed, and that they have no “unnecessary
elements”, as we will explain shortly. So far we have only
discussed the tensor branches of our theories, but in gen-
eral a theory might have Higgs branches, or mixed Higgs-
tensor branches, similarly to what happens for N = 2
theories in four dimensions. For example we can con-
sider giving expectation values to the hypermultiplets we
had in our linear quivers of section 2. In the simple chain
of figures 1(c) and 7, this corresponds to taking an NS5
off the D6 stack. On the IIB side, it corresponds to “fus-
ing” two neighboring two-cycles into a single one. This
can be achieved by a complex structure deformation. For
F-theory seven-branes, more generally Higgsing corre-
sponds to a complex structure deformation that fuses
together two seven-branes.

Crucially, [64] obtained a classification of which non-
Higgsable quiver theories can be obtained in F-theory.
These theories can be “connected” via the E-string CFT we
introduced earlier, again by the mechanism of gauging a
subgroup of E8 (as for the F4×G2 in figure 9). The theories
classified in [62] are all the possible CFTs obtained in this
way, without introducing any more such E-string theories
than necessary. Interestingly, for all these theories the
base in the singular limit is a quotient

C2/Γ (11)

with Γ is a discrete subgroup of U(2). In type II theories
Γ usually acts as a subgroup of SU(2), such that the quo-
tient C2/Γ is supersymmetric and the resulting space is
a singular Calabi–Yau; we mentioned these singularities
at the beginning of section 2. In F-theory, however, M4

Figure 11 The structure of a general CFT6 obtained from F-
theory, from [63].

need not be Calabi–Yau, essentially because of the pres-
ence of the varying axio-dilaton τ; for this reason Γ can
act as a more exotic subgroup of U(2), to produce a so-
called “Hirzebruch–Jung singularity”. The precise action
is related to the data of the theory under consideration.

From these minimal theories one can in principle pro-
duce all the others by making the gauge groups bigger,
adding matter fields or more E-string CFTs. This was tack-
led in [63] in a very detailed way; here we will only point
out a couple of interesting features of this classification.

One is that the structure of the theories is basically
still “linear”, with some optional decoration towards the
end (see figure 11). Notice that the gauge groups Gi in
that figure are now only either of D or E type; all the other
possible gauge groups are included in the links. In fact
each link can be a very long quiver itself, such as one of the
conformal matter theories we mentioned earlier (e.g. the
(E8,E8) one in figure 9). The possible links are listed in
[63]. Another interesting point is that the Gi satisfy

G1 ⊆ . . . ⊆Gm ⊇ . . . ⊇Gk ; (12)

the gauge groups go “up and then down”. This is reminis-
cent of the structure we found for the SU(ri ) gauge groups
in section 2 (see for example figure 1(d)).

5 Five and four dimensions

We will now comment a bit about what happens if we go
to lower dimensions.

First let us consider five-dimensional theories. Many
ideas are similar to six-dimensional ones, and we will
be brief. We will be interested in the minimal amount
of supersymmetry, N = 1, which (as in six dimensions)
already has SU(2) R-symmetry. Both the tensor and the
vector multiplets in six dimensions reduce to the vector
multiplet in five dimensions, which has a gauge field Aµ,
a gaugino λα and a scalarφ. On the other hand, the hyper-
multiplet in six dimensions reduces to a five-dimensional
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multiplet also called hypermultiplet, with four scalars and
a single spinor.

The description of possible N = 1 vector multiplet
Lagrangians in d = 5 is very similar to N = 2 in d = 4;
they can also be summarized by a prepotential F (Ai ),
where Ai are the vector superfields, but now F can be
at most cubic [12]. With a single vector multiplet and a
purely cubic F , the Lagrangian reads schematically

φTr|F |2 +φ(∂φ)2 +∗Tr(A∧F ∧F ) . (13)

Notice that the gauge kinetic term is just like in the La-
grangian (5) in six dimensions. Again it makes the dimen-
sion of the operator match that of the spacetime: normally
a scalar in five dimensions would have dimension 3/2, but
in (13) the scalar kinetic term is also unconventional; as a
result φ has dimension 1, and φTr|F |2 has dimensions 5.
The last term is a Chern–Simons-like coupling.

In any case, once again the promising point is 〈φ〉 = 0,
where (13) is strongly coupled and we might find inter-
esting physics. Once again we can ask whether we can
engineer such a situation in string theory, and argue that
indeed 〈φ〉 = 0 (or a generalization thereof, in more com-
plicated theories) corresponds to a CFT.

Fortunately there are many ways to engineer five-
dimensional theories in string theory. One is to consider
[12] a D4-brane (and its image) near an O8-plane, with
n < 8 D8-branes on top. This produces an SU(2) gauge the-
ory with n flavors; the single scalar φ parameterizes the
distance from the O8–D8. The metric for an O8–D8 system
depends (as any D-brane or O-plane metric in flat space)
on a single harmonic function H of the transverse direc-
tions; since there is only one such transverse direction φ,
this H is linear, H = H0 + (n −8)φ. The constant H0 can
be tuned to zero; in this situation one recovers the gauge
kinetic term φTr|F |2 in (13). This string-theoretic embed-
ding tells us there is indeed a CFT atφ= 0. In fact a duality
chain also allows to show that this theory has enhanced
flavor symmetry equal to En+1 flavor symmetry (with a
suitable definition for n < 6; for example, E5 = Spin(10),
E4 = SU(5)).

Another possible string theory realization of five-
dimensional theories is obtained by considering (p, q)-
fivebranes, sometimes including also (p, q)-sevenbranes
(see for example [65,66]). These branes are extended along
directions 0. . .4: the field theory will live here. They are
all transverse to directions 7,8,9: these will realize the
SU(2)R. Each (p, q)-fivebrane is further extended along
a linear combination of directions 5 and 6 dictated by
p and q (when the zero-form potential C0 = 0, it is sim-
ply px5 + qx6). The fivebranes can meet and merge, or
split, paying attention however that around each such

(a)

(b)

Figure 12 Examples of (p, q)-fivebrane webs. The square
dots denote (p, q)-sevenbranes.

intersection charges are conserved (see for example fig-
ure 12). Additionally, each (p, q)-fivebrane may end on
a (p, q)-sevenbrane (with the same p and q). These are
in a sense a bit optional for many configurations: a semi-
infinite fivebrane can be replaced with a fivebrane that
ends on a sevenbrane, with no change in the engineered
five-dimensional field theory.

These webs are in a sense the closest analogue to the
six-dimensional theories we considered in section 2 and
to the similar theories in three [38] and four [14] dimen-
sions; the procedure to extract the field theory is simi-
lar. For example, the configuration in figure 12(a) can be
thought of as two horizontal D5s which have been sus-
pended between two vertical NS5s; outside the contact
points, the vertical D5s have been “bent” and have be-
come oblique. This is similar to the logarithmic bending
pointed out in [14], except that in this case it is linear
rather than logarithmic because 1/gYM2 has dimension
mass. Thus in the end 12(a) engineers pure N = 1 SU(2).

A third way of engineering five-dimensional theories
is by compactifying M-theory on a Calabi–Yau M6 (see
for example [13]). Just like in the six-dimensional case,
one expects a CFT in limits where M6 develops singular-
ities. When M6 is toric, one can reduce along the torus
directions, ending up in IIB. Where the torus directions
degenerate, T-duality gives rise to (p, q)-fivebranes; in fact
one can see that the toric diagram becomes exactly a five-
brane web [67].

In fact, also the D4–O8–D8 configuration we reviewed
earlier can be dualized to a fivebrane web [66, 68] (one
uses the fact that an O7 splits into a (1,1) and a (1,−1)-
sevenbrane). But with brane webs one can engineer more
complicated quivers. In general one expects CFTs when
the inner regions (e.g. the rectangle in figure 12(a)) shrink
to a point.
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One can also wonder about the holographic duals of
five-dimensional CFTs. Unfortunately, few AdS6 solutions
are known. In IIA, there is a solution AdS6×S4 [69], proven
to be unique in [70], up to orbifolds. This has been pro-
posed to be dual to some simple quivers [68]. Since five-
brane webs in IIB seem to be a more promising source of
CFTs, one may think it more promising to look for AdS6

solutions in IIB. A general analysis was performed in [71];
the problem was reduced to two PDEs, and the geom-
etry of the internal four-manifold was shown to be an
S2-fibration over a two-dimensional space, somewhat
similarly to the solutions in section 3. However, only two
solutions are known: they have been obtained by abelian
and non-abelian [72–74] T-duality from the IIA solution.

Let us now consider some of the many relations be-
tween theories in six, five and four dimensions. These
relations come about because of dimensional reduction.
They can both clarify the higher-dimensional theories,
and define new interesting lower-dimensional ones.

First of all let us consider going from six to four di-
mensions. This can be achieved by compactifying on a
Riemann surfaceΣ. Let us first consider the N = (2,0) the-
ory living on the worldvolume of an M5 stack. For Σ= T 2,
we simply get N = 4 super-Yang–Mills. For different Σ,
this leads to the so-called “class S” theories [19]. These are
N = 2 theories described by “generalized” quivers, which
together with the usual nodes and links also have certain
special “vertices” representing a certain TN theory. This
is a non-Lagrangian theory (for a recent review see [75]).
Each generalized quiver corresponds to a pants decompo-
sition of Σ; the Seiberg–Witten curve is a branched cover
of Σ. The TN theory in particular is associated to compact-
ifying on a sphere with three punctures. On each puncture
one has an additional piece of data: a Young diagram (or
partition) that summarizes the structure of the branched
covering around it. The AdS5 gravity duals of these the-
ories are obtained from the AdS7 × S4 solution (dual to
the M5 stack) by replacing AdS7 with AdS5 ×Σ, distorting
S4 in a certain way, and fibering it over Σ [20, 76]. A more
general fibration can produce N = 1 theories [76, 77].

There are also class S theories of type D and E , ob-
tained compactifying the D and E N = (2,0) theories (the
ones which arise from IIB on a R4/Γ singularity). In this
case, the punctures are parameterized by nilpotent ele-
ments [78, 79] in the G Lie group corresponding to Γ (just
like for T-branes; see section 4).

The compactifications of the N = (1,0) theories on
Riemann surfaces should also give rise to interesting the-
ories in four dimensions. For Σ = T 2, we should obtain
N = 2 theories. These were studied in [55, 80, 81]. In [55]
it was pointed out that the T 2 compactification of the
“conformal matter” theories described in section 4 (for

example 9) coincide with the class S theory with three
punctures (two of which “maximal”, one “minimal”). [81]
found that, in absence of Wilson lines, the compactifica-
tion of the theory T N

YL,YR
often contains an infrared-free

vector; so it is not a CFT. This does not happen when one
of the two Young diagrams is [N ] (a single vertical col-
umn). On the other hand, [80] include Wilson lines and
find plenty of CFT’s in four dimensions.

Compactifications of N = (1,0) theories on different
Riemann surfaces Σ should give N = 1 theories in four
dimensions; they are less understood. [82] initiated this
study for the theory T N

[N ],[N ] in figure 1(c), whose corre-
sponding gravity solution has F0 = 0 everywhere. On the
other hand, in [83] an analytic AdS5 solution was found
associated to each of the solutions of section 3. The so-
lutions are similar in spirit to the ones described earlier
for the N = (2,0) theory [76]: namely, AdS7 is replaced
by AdS5 ×Σ, and the internal M3 is fibred over Σ. The lat-
ter is however assumed to have genus g ≥ 2 and to have
no punctures. It was later shown that a holographic RG
flow connects the AdS7 and AdS5 ×Σ solutions, using a
consistent truncation approach [84].

Let us now go from six to five dimensions. For the
N = (2,0) theory on an M5 stack, reduction on an S1

gives N = 1 super-Yang–Mills in five dimensions. It was
even conjectured [85–88] that the solitons of this theory
are already the KK states needed to go back to six dimen-
sions. Interestingly, more recently other theories have
been found which seem to already include KK modes
among their solitons [89, 90]. On the other hand, reduc-
tions of the theories in sections 2 and 4 generically give an
extra five-dimensional vector multiplet with finite gauge
coupling related to the compactification scale [81].

Finally, going from five to four, it is interesting to note
that the TN theories can be obtained from five dimen-
sions as well [91]. For example, the fivebrane web in figure
12(b) happens to reduce to T3, which is the E6 Minahan–
Nemeschansky theory [92].
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