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Abstract: A new algorithm for solving equilibrium problems with differentiable bifunctions is provided.

The algorithm is based on descent directions of a suitable family of D-gap functions. Its convergence

is proved under assumptions which do not guarantee the equivalence between the stationary points

of the D-gap functions and the solutions of the equilibrium problem. Moreover, the algorithm does

not require to set parameters according to thresholds which depend on regularity properties of the

equilibrium bifunction. The results of preliminary numerical tests on Nash equilibrium problems with

quadratic payoffs are reported. Finally, some numerical comparisons with other D-gap algorithms are

drawn relying on some further tests on linear equilibrium problems.
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1 Introduction

In this paper, we consider the following equilibrium problem:

find x∗ ∈ C s.t. f(x∗, y) ≥ 0, ∀ y ∈ C, (EP)

where C ⊂ Rn is a nonempty, closed and convex set and the equilibrium bifunction f : Rn × Rn → R
satisfies f(x, x) = 0 for all x ∈ C. This format provides a rather general setting which includes several

mathematical models such as optimization, multiobjective optimization, variational inequalities, fixed

point and complementarity problems, Nash equilibria in noncooperative games and inverse optimization

(see e.g. [2, 6, 16]). Throughout all the paper we suppose also that f is continuously differentiable and

f(x, ·) is convex for all x ∈ C.

Many methods for computing equilibria have been developed, which can be divided into several

classes: fixed point and extragradient methods, descent methods, proximal point and Tikhonov-Browder

regularization methods (see the recent survey paper [2]). Often these methods extend those originally

conceived for optimization or variational inequalities to the more general framework of equilibrium prob-

lems, exploiting the underlying common structure provided by (EP).

In this paper we focus on the approach based on descent procedures. In general, descent methods

rely on the reformulation of the equilibrium problem as an optimization problem through suitable merit

functions. The so-called gap functions yield reformulations as constrained optimization problems (see [1,

3, 4, 9, 10, 12, 14, 15]), while the difference of two appropriate gap functions (D-gap function) leads to

reformulations as unconstrained optimization problems (see [8, 13, 23, 24, 25]).

The D-gap function approach was introduced for variational inequalities in [17, 22]. The first methods

were developed to solve strongly monotone variational inequalities via unconstrained optimization [11,

18, 19, 21, 22]. Later on, descent methods for monotone variational inequalities have been conceived

relying on steps of unconstrained minimization with a sequence of different D-gap functions as objective

function [20].
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In the framework of the equilibrium problem (EP) D-gap functions have been introduced in [13, 23]

and solution methods which exploit them have been developed in [8, 13, 24, 25]. These methods need

strong assumptions, in fact their convergence requires the strict or uniform strong monotonicity of the

gradient mappings ∇xf(x, ·): this assumption implies that all the stationary points of a D-gap function

coincide with its global minima and hence with the solutions of (EP) [23]. Furthermore, the parameters

of the algorithms in [8, 13] have to be set according to thresholds which depend on the constants of

strong monotonicity and Lipschitz continuity of the above gradient mappings. As these values have to

be known in advance, it is hard to implement these methods in a general framework.

To overcome these drawbacks, we develop a new solution method for (EP) relying on D-gap functions

in the same fashion of [20]. In particular, a whole family of D-gap functions is exploited in order to

preserve a sufficient decrease condition at each iteration of the algorithm, and this allows to deal with

stationarity issues. In fact, the convergence of the method requires just the monotonicity of the mappings

∇xf(x, ·): as a consequence, there may be stationary points of any given D-gap function which are not

global minima and therefore do not solve (EP). Furthermore, the method does not require Lipschitz

continuity assumptions and hence no a priori knowledge of constants/thresholds is needed. Thus, the

paper aims at providing a method which can be both easily implemented and applied to a wider class of

equilibrium problems.

The paper is organized as follows. Section 2 provides basic results which play a key role in devising

the method. In particular, bounds on the values of the D-gap functions are proved. Section 3 describes

the solution method, addressing also possible improvements in the choice of the parameters. Since the

convergence result requires the boundedness of the feasible region, conditions which allow to drop it are

also addressed. Finally, Section 4 provides preliminary numerical tests to analyse the sensitivity of the

algorithm with respect to its parameters and some numerical comparisons with other similar algorithms.

2 Gap and D-gap functions

A gap function for (EP) is a real-valued function which is non-negative on C and is 0 in C only at every

solution of (EP): its global minima over C coincide with the solution set of the equilibrium problem.

The a priori knowledge of the optimal value is a powerful information in devising solution methods.

Auxiliary bifunctions are generally exploited together with f to build gap functions with good regu-

larity properties. With this aim we consider a continuously differentiable bifunction h : Rn × Rn → R
satisfying the following conditions:

– h(x, y) ≥ 0 for all x, y ∈ Rn and h(x, y) = 0 if and only if x = y;

– h(x, ·) is strongly convex uniformly in x, i.e., there exists τ > 0 such that

h(x, z) ≥ h(x, y) + ⟨∇yh(x, y), z − y⟩+ τ ||z − y||2

holds for any x, y, z ∈ Rn;

– ∇yh(z, z) = 0 for all z ∈ Rn;

– ∇yh(x, ·) is Lipschitz continuous uniformly in x, i.e., there exists L > 0 such that

∥∇yh(x, y)−∇yh(x, z)∥ ≤ L ||y − z||

holds for any x, y, z ∈ Rn;

– ∇xh(x, y) = −∇yh(x, y) for all x, y ∈ Rn.

A bifunction with the above properties can be obtained just taking h(x, y) = g(y − x) for some strongly

convex function g : Rn → R+ with a Lipschitz gradient and g(0) = 0. The most typical choice is the

square of the Euclidean norm.
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Given any σ > 0, the value function

φσ(x) = −min { f(x, y) + σ h(x, y) : y ∈ C } (1)

is a gap function for (EP) (see, for instance, [15]). Since the objective function f(x, ·) + σh(x, ·) is

strongly convex, the above optimization problem has a unique optimal solution yσ(x) which therefore

satisfies the optimality condition

⟨∇yf(x, yσ(x)) + σ∇yh(x, yσ(x)), z − yσ(x)⟩ ≥ 0 ∀ z ∈ C. (2)

Moreover, f(x, x) = h(x, x) = 0 and the uniqueness of the optimal solution yσ(x) imply that the solution

set of (EP) coincides with the fixed points of yσ, i.e., x∗ solves (EP) if and only if yσ(x
∗) = x∗.

Furthermore, the mapping yσ is continuous and the gap function φσ is continuously differentiable (see

[2] and the references therein).

It is possible to reformulate (EP) as an unconstrained optimization problem, exploiting the difference

of two gap functions. In fact, the so-called D-gap function

φα,β(x) = φα(x)− φβ(x)

with 0 < α < β is non-negative on Rn and is 0 only at every solution of (EP) (see [13, 23]). Therefore,

its global minima on Rn coincide with the solution set of the equilibrium problem. Obviously, the D-gap

function φα,β inherits the properties of the gap function (1): in particular, it can be rewritten as

φα,β(x) = f(x, yβ(x))− f(x, yα(x)) + βh(x, yβ(x))− αh(x, yα(x)) (3)

and it is continuously differentiable with

∇φα,β(x) = ∇xf(x, yβ(x))−∇xf(x, yα(x))+

+β∇xh(x, yβ(x))− α∇xh(x, yα(x)).
(4)

The auxiliary bifunction h and the optimal solutions of the inner optimization problems provide the

lower and upper bounds for the D-gap function given below.

Lemma 2.1. The inequalities

φα,β(x) ≥ (β − α)h(x, yβ(x)) + α τ ∥yβ(x)− yα(x)∥2 (5)

and

φα,β(x) ≤ (β − α)h(x, yα(x))− β τ ∥yβ(x)− yα(x)∥2 (6)

hold for any x ∈ Rn and 0 < α < β.

Proof. The convexity of f(x, ·) and the strong convexity of h(x, ·) imply

f(x, yβ(x)) ≥ f(x, yα(x)) + ⟨∇yf(x, yα(x)), yβ(x)− yα(x)⟩

h(x, yβ(x)) ≥ h(x, yα(x)) + ⟨∇yh(x, yα(x)), yβ(x)− yα(x)⟩+

+τ ∥yβ(x)− yα(x)∥2,

and the optimality condition satisfied by yα(x) gives

⟨∇yf(x, yα(x)) + α∇yh(x, yα(x)), yβ(x)− yα(x)⟩ ≥ 0.

Therefore, (5) follows from the chain of inequalities and equalities

0 ≤ ⟨∇yf(x, yα(x)) + α∇yh(x, yα(x)), yβ(x)− yα(x)⟩

≤ f(x, yβ(x))− f(x, yα(x)) + αh(x, yβ(x))− αh(x, yα(x))+

−α τ ∥yβ(x)− yα(x)∥2

= φα,β(x) + (α− β)h(x, yβ(x))− α τ ∥yβ(x)− yα(x)∥2

where the equality holds thanks to (3). Exchanging the roles of yα(x) and yβ(x), the same argument

proves (6).
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The inequalities (5) and (6) improve the bounds given in [23, Proposition 3.1] and they extend those

given in [20] with h(x, y) = ||y − x||2/2 for variational inequalities to the more general equilibrium

problem (EP). Moreover, the reformulation of (EP) as an unconstrained optimization problem is a

straightforward consequence of these bounds: if x∗ solves (EP) or equivalently yα(x
∗) = yβ(x

∗) = x∗,

then (6) implies φα,β(x
∗) = 0 since φα,β is non-negative; vice versa, if φα,β(x

∗) = 0, then (5) implies

both h(x∗, yβ(x
∗)) = 0 and ∥yβ(x∗)− yα(x

∗)∥ = 0, hence yα(x
∗) = yβ(x

∗) = x∗. It is worth noting that

if the D-gap function is 0 at some point, the feasibility of the point itself is guaranteed while this is not

necessarily true for the gap function (1).

Inequality (5) guarantees also the inequality

h(x, yβ(x)) ≤ φα,β(x)/(β − α). (7)

Managing to make the right-hand side smaller and smaller would drive towards a solution of (EP). To

this aim further relationships between the auxiliary bifunction and the D-gap function come in to play.

Lemma 2.2. Let y∞(x) := argmin{ h(x, y) : y ∈ C }. Then, the relationships

lim
β′→+∞

yβ′(x) = y∞(x) (8)

and

lim
β′→+∞

φα,β′(x)/(β′ − α) = h(x, y∞(x)) ≤ φα,β(x)/(β − α) (9)

hold for any x ∈ Rn and 0 < α < β.

Proof. First, notice that yβ′(x) = argmin{β′−1f(x, y) + h(x, y) : y ∈ C} for any β′ > 0. The strong

convexity of h(x, ·) implies

h(x, yβ′(x)) ≥ h(x, y∞(x)) + ⟨∇yh(x, y∞(x)), yβ′(x)− y∞(x)⟩+

+τ ∥yβ′(x)− y∞(x)∥2.

Since y∞(x) minimizes h(x, ·) over C, the first order optimality conditions imply

⟨∇yh(x, y∞(x)), yβ′(x)− y∞(x)⟩ ≥ 0

and therefore we get

h(x, yβ′(x)) ≥ h(x, y∞(x)) + τ ∥yβ′(x)− y∞(x)∥2. (10)

On the other hand, we have

β′−1f(x, yβ′(x)) + h(x, yβ′(x)) ≤ β′−1f(x, y∞(x)) + h(x, y∞(x)).

Thus, the following chain of inequalities hold

τ ∥yβ′(x)− y∞(x)∥2 ≤ h(x, yβ′(x))− h(x, y∞(x))

≤ β′−1 [f(x, y∞(x))− f(x, yβ′(x))]

≤ β′−1⟨∇yf(x, y∞(x)), y∞(x)− yβ′(x)⟩

≤ β′−1 ∥∇yf(x, y∞(x))∥ ∥yβ′(x)− y∞(x)∥

taking into account the convexity of f(x, ·). As a consequence we have

∥yβ′(x)− y∞(x)∥ ≤ ∥∇yf(x, y∞(x))∥/τ β′.

and hence (8) follows just taking the limit as β′ → +∞.
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Taking into account that f and h are continuous, the equality in (9) follows:

lim
β′→+∞

φα,β′(x)/(β′ − α) = lim
β′→+∞

φα(x)− φβ′(x)/(β′ − α)

= lim
β′→+∞

(φα(x) + f(x, yβ′(x)) + β′h(x, yβ′(x)))/(β′ − α)

= h(x, y∞(x)).

Finally, (5) and (10) imply

φα,β(x)/(β − α) ≥ h(x, yβ(x))

≥ h(x, y∞(x)) + τ ∥yβ(x)− y∞(x)∥2

≥ h(x, y∞(x)),

i.e., the inequality in (9) holds.

If h is an actual (squared) distance between points, then y∞(x) is the corresponding projection of

x onto C. In any case, the properties of h guarantee y∞(x) = x for any x ∈ C: whenever a feasible

point is taken, the limit in (9) is 0 and choosing β large enough allows to make the right-hand side of

(7) as small as desired. Anyway, this is not enough to devise an algorithm: the above lemma requires

β → +∞ and (7) would simply provide the obvious statement h(x, y∞(x)) = 0 for a feasible x. A key

tool to overcome these issues is controlling the decrease of the D-gap function along search directions by

the value of the right-hand side of (7) at the current iterate within a descent type method (see Theorem

3.1(a) and condition (22) in the next section).

3 Solution method

Methods based on D-gap functions generally require the strict or strong monotonicity of the gradient

map ∇xf(x, ·) for any x ∈ Rn [8, 13, 24, 25]. Under this strict (strong) monotonicity assumption any

stationary point of φα,β is actually a global minimum and therefore solves (EP) (see [23, 24]) though φα,β

is not necessarily convex: therefore, in principle, any local minimization algorithm could be exploited.

We aim at developing a solution method under assumptions which do not guarantee the above prop-

erty. The method of this section requires just that ∇xf(x, ·) is monotone on C for any x ∈ Rn, i.e.,

⟨∇xf(x, y)−∇xf(x, z), y − z⟩ ≥ 0, ∀ x ∈ Rn,∀ y, z ∈ C. (11)

Indeed, condition (11) does not guarantee that stationary points are global minima. If (EP) is actually

a variational inequality, i.e. f(x, y) = ⟨F (x), y − x⟩ for some F : Rn → Rn, then (11) is equivalent to the

monotonicity of F .

Example 3.1. Consider (EP) with n = 2, f(x, y) = x1 − y1 + x2 − y2 and the ball B(0, 1) of center 0

and unitary radius as the feasible region C. It is easy to check that x∗ = (
√
2/2,

√
2/2) is the unique

solution of (EP). Notice that ∇xf(x, ·) is monotone but not strictly monotone since ∇xf(x, y) = (1, 1)

for any x, y ∈ R2.

Considering h(x, y) = ∥y − x∥2
2
/2, the gap function (1) reads

φσ(x) = max{y1 + y2 − σ[(y1 − x1)
2 + (y2 − x2)

2)]/2 : y ∈ C} − x1 − x2.

Since ŷσ(x) = (x1+1/σ, x2+1/σ) maximizes the objective function over the whole R2, yσ(x) = ŷσ(x) and

therefore φσ(x) = 1/σ hold if ŷσ(x) is feasible, i.e., if x ∈ B(zσ, 1) for zσ = (−1/σ,−1/σ). Consequently,

φα,β(x) = 1/α − 1/β holds whenever x ∈ B(zα, 1) ∩ B(zβ , 1) for any 0 < α < β. Taking any α ≥
√
2

and β > α or any α <
√
2 and α < β <

√
2α/(

√
2 − α), this intersection is not empty and has also a

nonempty interior. Therefore, any point x in the interior of B(zα, 1) ∩ B(zβ , 1) is stationary for φα,β

though it does not solve (EP).

Figure 1 shows the graph of φα,β for α =
√
2 and β = 2.
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Figure 1: The D-gap function φα,β with α =
√
2 and β = 2 in Example 3.1.
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The following theorem provide the key tool for devising a descent method which does not get trapped

into stationary points not solving (EP).

Theorem 3.1. Suppose (11) holds. Then,

(a) the inequalities

⟨∇φα,β(x), yα(x)− yβ(x)⟩ ≤

≤ ⟨β∇xh(x, yβ(x))− α∇xh(x, yα(x)), yα(x)− yβ(x)⟩ ≤ 0
(12)

hold for any x ∈ Rn and 0 < α < β.

(b) If x ∈ C does not solve (EP) and a minimum point y0(x) for f(x, ·) over C exists, then there are

ᾱ > 0 and β̄ > ᾱ such that yα(x)− yβ(x) is a descent direction for φα,β at x for all α ∈ (0, ᾱ) and

β > β̄.

Proof. (a) Condition (11) implies that

⟨∇φα,β(x), yα(x)− yβ(x)⟩ =

= ⟨∇xf(x, yβ(x))−∇xf(x, yα(x)), yα(x)− yβ(x)⟩+

+ ⟨β∇xh(x, yβ(x))− α∇xh(x, yα(x)), yα(x)− yβ(x)⟩

≤ ⟨β∇xh(x, yβ(x))− α∇xh(x, yα(x)), yα(x)− yβ(x)⟩.

The optimality conditions satisfied by yα(x) and yβ(x) guarantee

⟨∇yf(x, yα(x)) + α∇yh(x, yα(x)), yβ(x)− yα(x)⟩ ≥ 0,

⟨∇yf(x, yβ(x)) + β∇yh(x, yβ(x)), yα(x)− yβ(x)⟩ ≥ 0.
(13)

Since partial derivatives of h are related to each other and f(x, ·) is convex, (13) guarantees

⟨β∇xh(x, yβ(x))− α∇xh(x, yα(x)), yα(x)− yβ(x)⟩ =

= ⟨α∇yh(x, yα(x))− β∇yh(x, yβ(x)), yα(x)− yβ(x)⟩

≤ ⟨∇yf(x, yβ(x))−∇yf(x, yα(x)), yα(x)− yβ(x)⟩ ≤ 0.

(b) We have

⟨β∇xh(x, yβ(x))− α∇xh(x, yα(x)), yα(x)− yβ(x)⟩ =

= f(x, yα(x))− f(x, yβ(x))− α⟨∇xh(x, yα(x)), yα(x)− yβ(x)⟩

+f(x, yβ(x))− f(x, yα(x)) + β⟨∇xh(x, yβ(x)), yα(x)− yβ(x)⟩.

(14)

The convexity of f(x, ·), the relationships between partial derivatives of h and the optimality condition

satisfied by yβ(x) guarantee

f(x, yα(x))− f(x, yβ(x)) + β⟨∇xh(x, yβ(x)), yβ(x)− yα(x)⟩ ≥

≥ ⟨∇yf(x, yβ(x)), yα(x)− yβ(x)⟩+ β⟨∇xh(x, yβ(x)), yβ(x)− yα(x)⟩

= ⟨∇yf(x, yβ(x)) + β∇yh(x, yβ(x)), yα(x)− yβ(x)⟩ ≥ 0.

(15)

Therefore (14) and (15) imply

⟨β∇xh(x, yβ(x))− α∇xh(x, yα(x)), yα(x)− yβ(x)⟩ ≤

≤ f(x, yα(x))− f(x, yβ(x))− α⟨∇xh(x, yα(x)), yα(x)− yβ(x)⟩

= −φα(x)− f(x, yβ(x))+

+α [⟨∇xh(x, yα(x)), yβ(x)− yα(x)⟩ − h(x, yα(x))].

(16)
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Since x ∈ C does not solve (EP), for any α ≤ 1 we have

φα(x) ≥ φ1(x) > 0. (17)

Since x ∈ C, then (8) and the continuity of f guarantee

lim
β→+∞

f(x, yβ(x)) = f(x, y∞(x)) = f(x, x) = 0. (18)

The function f(x, ·) + αh(x, ·) is strongly convex, thus

f(x, y0(x)) + αh(x, y0(x)) ≥ f(x, yα(x)) + αh(x, yα(x))+

+⟨∇yf(x, yα(x)) + α∇yh(x, yα(x)), y0(x)− yα(x)⟩+ ατ ||y0(x)− yα(x)||2 ≥

≥ f(x, yα(x)) + ατ ||y0(x)− yα(x)||2,

where the last inequality is due to the positiveness of h and the optimality condition (2) with σ = α and

z = y0(x). Since f(x, y0(x)) ≤ f(x, yα(x)) holds by the choice of y0(x), then the inequality

||y0(x)− yα(x)||2 ≤ τ−1h(x, y0(x))

follows. Hence the sequence {yα(x)} is bounded as α → 0, and moreover yβ(x) → x as β → +∞ by

Lemma 2.2. Thus, the continuous differentiability of h guarantees

lim
α→0

β→+∞

α [⟨∇xh(x, yα(x)), yβ(x)− yα(x)⟩ − h(x, yα(x))] = 0. (19)

Thanks to (16), (17), (18) and (19) we get that there exist ᾱ > 0 and β̄ > ᾱ such that for all α ∈ (0, ᾱ)

and β > β̄ we have

⟨β∇xh(x, yβ(x))− α∇xh(x, yα(x)), yα(x)− yβ(x)⟩ < 0, (20)

hence yα(x)− yβ(x) is a descent direction by inequality (12).

When (EP) is a variational inequality, condition (12) with h(x, y) = ||y − x||22 collapses to the one

exploited in [20] (see equation (15) therein) while the right inequality in (12) reduces to Lemma 3.2 in [22].

Theorem 3.1(a) guarantees that the directional derivative of φα,β at x along the direction yα(x)− yβ(x)

is not positive, but this is not enough for achieving descent along the direction. Indeed, this is not nec-

essarily the case even when the gradient maps are strictly monotone since yα(x) = yβ(x) may still occur.

In fact, different directions have been exploited in [8, 13, 23, 24]. Anyway, according to Theorem 3.1(b),

the search direction yα(x)− yβ(x) is indeed a descent direction (therefore yα(x) ̸= yβ(x) must hold too)

if x is feasible and provided that α and β are chosen, respectively, small and large enough. Notice that

the assumption that a minimizer for f(x, ·) exists is always satisfied whenever C is bounded or f(x, ·) is
coercive on C.

The above results provide the basic idea for a solution method: given α and β, the D-gap function

φα,β is exploited until the search direction is no longer recognized as a descent direction, in which case

a null step is performed while the parameters α and β are updated. An analogous idea was already

exploited for gap functions in [1], but a substantial difference holds: the search direction yα(x)− yβ(x)

might be unfeasible, that is no stepsize might provide a feasible point moving away from the current

iterate along the search direction. Since all the global minima of the D-gap functions φα,β are feasible,

this is not a serious drawback: the search direction is exploited as long as a sufficient decrease condition

(see (22) below) is satisfied even if unfeasible iterates are generated; when a sufficient decrease is no

longer achieved, the current iterate is somehow replaced by a feasible point and the parameters α and β

updated in such a way that the required decrease is lowered (see (21) below).
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Algorithm

Step 0. Fix γ, η ∈ (0, 1), δ ∈ (0, η). Let {αk} and {εk} be two decreasing sequences going to zero,

choose any x0 ∈ C, β0 > α0 and set k = 1.

Step 1. If xk−1 ∈ C then set z0 = xk−1; else choose any z0 ∈ C. Set j = 0. Choose βk ≥ β0 such that

φαk,βk
(z0)/(βk − αk) ≤ εk. (21)

Step 2. Compute
yjαk

= argmin{ f(zj , y) + αk h(z
j , y) : y ∈ C },

yjβk
= argmin{ f(zj , y) + βk h(z

j , y) : y ∈ C }.

If yjαk
= zj then STOP, else set dj = yjαk

− yjβk
.

Step 3. If

⟨βk∇xh(z
j , yjβk

)− αk∇xh(z
j , yjαk

), dj⟩ ≤ −η φαk,βk
(zj)/(βk − αk), (22)

then compute the smallest s ∈ N such that

φαk,βk
(zj + γs dj)− φαk,βk

(zj) ≤ −δ γs φαk,βk
(zj)/(βk − αk),

set tj = γs, zj+1 = zj + tj d
j , j = j + 1 and goto Step 2

else set xk = zj , k = k + 1 and goto Step 1.

If the algorithm performs an infinite sequence of null steps, i.e., k → +∞, then αk necessarily goes

to 0 while βk is not forced to go to infinity. Convergence to a solution of (EP) is achieved considering

separately the case in which αk actually goes to 0 from the case in which the parameters are updated a

finite number of times.

Theorem 3.2. If f satisfies (11) and C is bounded, then either the algorithm stops at a solution of

(EP) after a finite number of iterations, or it produces either a bounded sequence {xk} or a bounded

sequence {zj} such that any of its cluster points solves (EP).

Proof. Lemma 2.2 guarantees that given any z0 ∈ C there exists a sufficiently large βk such that (21)

holds so that Step 1 is well-defined.

The line search procedure at step 3 is always finite. In fact, suppose by contradiction that there exist

k and j such that

φαk,βk
(zj + γs dj)− φαk,βk

(zj) > −δ γs φαk,βk
(zj)/(βk − αk)

holds for all s ∈ N. Taking the limit, we have

⟨∇φαk,βk
(zj), dj⟩ ≥ −δ φαk,βk

(zj)/(βk − αk).

On the other hand, Theorem 3.1 and condition (22) imply

⟨∇φαk,βk
(zj), dj⟩ ≤ −η φαk,βk

(zj)/(βk − αk),

and thus

(δ − η)φαk,βk
(zj)/(βk − αk) ≥ 0,

which is not possible since δ < η and φαk,βk
(zj) > 0.

If the algorithm stops at some zj after a finite number of iterations, then the stopping criterion

guarantees that zj solves (EP) since it is a fixed point of the mapping yαk
.

Now, suppose the algorithm produces an infinite sequence {zj} for some fixed k. Therefore, we can

set α = αk and β = βk as these values don’t change anymore. Since the sequence {φα,β(z
j)} is decreasing

9



and the sublevel sets of φα,β are bounded (see [23]), then the sequence {zj} is bounded. Let z∗ be any

of its cluster points: taking the appropriate subsequence {zjℓ}, we have zjℓ → z∗. By the continuity of

the mappings yα and yβ , z
jℓ → z∗ implies also djℓ → d∗ := yα(z

∗)− yβ(z
∗).

By contradiction, suppose that z∗ does not solve (EP), or equivalently φα,β(z
∗) > 0. By the step

size rule we have

φα,β(z
jℓ)− φα,β(z

jℓ+1) ≥ δ tjℓ φα,β(z
jℓ)/(β − α) ≥ 0.

Since {φα,β(z
jℓ)} is decreasing and bounded below by zero, we have

lim
ℓ→∞

[φα,β(z
jℓ)− φα,β(z

jℓ+1)] = 0,

and thus we get limℓ→∞ tjℓ = 0 since φα,β is continuous and zjℓ → z∗.

Moreover, we have

φα,β

(
zjℓ + tjℓ γ

−1 djℓ
)
− φα,β(z

jℓ) > −δ tjℓ γ
−1 φα,β(z

jℓ)/(β − α), ∀ ℓ ∈ N.

The mean value theorem guarantees

φα,β

(
zjℓ + tjℓ γ

−1 djℓ
)
− φα,β(z

jℓ) = ⟨∇φα,β(z
jℓ + θℓ tjℓ γ

−1 djℓ), tjℓ γ
−1 djℓ⟩,

for some θℓ ∈ (0, 1). Therefore, we have

⟨∇φα,β(z
jℓ + θℓ tjℓ γ

−1 djℓ), djℓ⟩ > −δ φα,β(z
jℓ)/(β − α).

Since {djℓ} is bounded, taking the limit we get

⟨∇φα,β(z
∗), d∗⟩ ≥ −δ φα,β(z

∗)/(β − α).

Theorem 3.1 and condition (22) imply

⟨∇φα,β(z
jℓ), djℓ⟩ ≤ −η φα,β(z

jℓ)/(β − α),

and thus

⟨∇φα,β(z
∗), d∗⟩ ≤ −η φα,β(z

∗)/(β − α)

follows just taking the limit. Hence, we get

(δ − η)φα,β(z
∗)/(β − α) ≥ 0,

which is not possible since δ < η and φα,β(z
∗) > 0. Therefore, z∗ solves (EP).

Now, suppose that the algorithm produces an infinite sequence {xk}. Since

0 ≤ φαk,βk
(xk)/(βk − αk) ≤ φαk,βk

(z0)/(βk − αk) ≤ εk,

we have

lim
k→∞

φαk,βk
(xk)/(βk − αk) = 0. (23)

Moreover, condition (22) is not satisfied at xk, which reads

0 ≤ ⟨βk∇xh(x
k, yβk

(xk))− αk∇xh(x
k, yαk

(xk)), yβk
(xk)− yαk

(xk)⟩

< η φαk,βk
(xk)/(βk − αk),

where the left inequality is provided by (12). Thus, (23) implies

lim
k→∞

⟨βk∇xh(x
k, yβk

(xk))− αk∇xh(x
k, yαk

(xk)), yβk
(xk)− yαk

(xk)⟩ = 0. (24)

The lower bound (5) implies

0 ≤ h(xk, yβk
(xk)) ≤ φαk,βk

(xk)/(βk − αk),
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and thus

lim
k→∞

h(xk, yβk
(xk)) = 0

follows from (23). Since h(x, ·) is strongly convex, we get

h(xk, yβk
(xk)) ≥ h(xk, xk) + ⟨∇yh(x

k, xk), yβk
(xk)− xk⟩+ τ ∥yβk

(xk)− xk∥2

= τ ∥yβk
(xk)− xk∥2,

and thus

lim
k→∞

∥yβk
(xk)− xk∥ = 0.

Since C is bounded, then also the sequence {xk} is bounded. Let x∗ be any of its cluster points: taking

an appropriate subsequence {xkℓ}, we have xkℓ → x∗ and

lim
ℓ→∞

yβkℓ
(xkℓ) = x∗.

Since yβkℓ
(xkℓ) ∈ C for all ℓ ∈ N, we also have x∗ ∈ C. On the other hand, we also have

−f(xkℓ , y)− αkℓ
h(xkℓ , y) ≤ φαkℓ

(xkℓ) ≤

≤ ⟨βkℓ
∇xh(x

kℓ , yβkℓ
(xkℓ))− αkℓ

∇xh(x
kℓ , yαkℓ

(xkℓ)), yβkℓ
(xkℓ)− yαkℓ

(xkℓ)⟩+

−f(xkℓ , yβkℓ
(xkℓ))+

+αkℓ
[⟨∇xh(x

kℓ , yαkℓ
(xkℓ)), yβkℓ

(xkℓ)− yαkℓ
(xkℓ)⟩ − h(xkℓ , yαkℓ

(xkℓ))],

where the first inequality follows from the definition of φα while the second is actually (16). Taking the

limit, thanks to (24) we get

−f(x∗, y) ≤ 0 ∀ y ∈ C,

i.e., x∗ solves (EP).

Notice that convergence does not depend upon the way unfeasible iterates are replaced by feasible

points during the null steps. A straightforward choice is to take one of the minimizers yα or yβ computed

at Step 2 during the last iteration. Another reasonable choice is to take the projection of the current

iterate onto C, but it requires to solve a further optimization problem and it is therefore computationally

expensive. Actually, it is also possible to not replace an unfeasible xk−1 by some feasible point and

therefore set z0 = xk−1 all the same if the inequality

φαk,βk−1
(xk−1)/(βk−1 − αk) < εk

holds. In fact, Lemma 2.2 guarantees the existence of some βk satisfying (21) also in this case.

In order to slow down the decrease of αk towards 0, it is possible to keep it unchanged at a null step if

the current D-gap function is still making enough progress towards 0, namely if φαk−1,βk−1
(xk−1) ≤ µk−1

holds for some given sequence µk ↓ 0. If an infinite sequence of null steps is performed, either αk ↓ 0 or

αk = ᾱ definitely for some ᾱ > 0 may occur. In the latter case convergence is guaranteed by (5): in fact,

it guarantees both ∥yβk
(xk)− yᾱ(x

k)∥ → 0 and h(xk, yβk
(xk)) → 0 so that any cluster point x∗ of {xk}

satisfies yᾱ(x
∗) = x∗.

Furthermore, it is not necessary to fix the sequence {εk} a priori before running the algorithm.

Adaptive choices may be performed at each null step, for instance taking any εk such that

0 < εk ≤ σk + θkφαk−1,βk−1
(xk−1)/(βk−1 − αk−1) (25)

where σk ↓ 0 and 0 < θk < θ < 1 for some given θ. Indeed, if an infinite sequence of null steps is

performed, then the required condition εk → 0 holds also in this case.

11



3.1 Convergence in the unbounded case

The boundedness of C is a key tool to achieve the convergence of the algorithm. Indeed, it is exploited

to guarantee that the sequences {xk}, {yαk
(xk)} and {yβk

(xk)} as well as the sublevel sets

{x ∈ Rn : φα,β(x) ≤ ϵ} (26)

are bounded. Actually, even if C is unbounded, the boundedness of the sublevel sets (26) alone is enough

to achieve convergence, provided that the algorithm behaves in a such a way that {βk} is not bound to

go to infinity.

Theorem 3.3. Suppose f satisfies (11) and the sublevel set (26) is bounded for any ϵ ≥ 0 and 0 < α < β.

If the algorithm generates an infinite sequence {βk} bounded above, then the algorithm produces either

a bounded sequence {xk} or a bounded sequence {zj} such that any of its cluster points solves (EP).

Proof. If the algorithm produces an infinite sequence {zj} for some fixed k, then we can set α = αk

and β = βk as these values don’t change anymore. The sequence {zj} is bounded since the sequence

{φα,β(z
j)} is decreasing and the sublevel sets of φα,β are bounded. Therefore, the thesis follows just

arguing as in the proof of Theorem 3.2.

If the algorithm produces an infinite sequence {xk}, then the same arguments of the proof of Theo-

rem 3.2 show that (23) holds. Furthermore, any k ∈ N satisfies 0 < αk ≤ α0 and β0 ≤ βk ≤ β̄ for some

β̄ > 0, hence the inequalities

0 ≤ φα0,β0
(xk)/β̄ ≤ φαk,βk

(xk)/β̄ ≤ φαk,βk
(xk)/(βk − αk)

hold. Therefore, (21) implies φα0,β0
(xk) → 0. Since the sublevel sets of φα0,β0

are bounded, the sequence

{xk} is bounded. As a consequence, any cluster point x∗ of {xk} satisfies φα0,β0(x
∗) = 0, i.e., x∗ solves

(EP).

The boundedness of the sublevel sets (26) is guaranteed if ∇yf is Lipschitz continuous and G(x) =

∇yf(x, x) is strongly monotone [8, Corollary 3.4] or if the mappings ∇yf(·, y) are strongly monotone

uniformly in y ∈ C [24, Theorem 4.1]. Instead of strong monotonicity, some kind of coercivity could be

exploited. Indeed, a further result can be achieved relying on the condition

∃ y ∈ C s.t. lim
∥x∥→+∞

f(x, y)/∥x∥ = −∞, (27)

which implies the well-known coercivity condition [7]:

∃ r > 0, ∃ y ∈ C with ∥y∥ ≤ r s.t. f(x, y) < 0, ∀ x ∈ C with ∥x∥ > r.

As a consequence, it guarantees also the existence of solutions (see, for instance, [2]). Moreover, (27)

holds whenever f is strongly monotone: in fact, there exists µ > 0 such that the inequalities

f(x, y) ≤ −f(y, x)− µ∥x− y∥2

≤ −f(y, y) + ⟨∇yf(y, y), x− y⟩ − µ∥x− y∥2

≤ ∥∇yf(y, y)∥∥x− y∥ − µ∥x− y∥2

hold for any x, y ∈ Rn (thanks to to strong monotonicity, the convexity of f(x, ·) and the Cauchy-

Schwarz inequality). Therefore, (27) follows immediately choosing any y ∈ C, since ∥x− y∥/∥x∥ → 1 as

∥x∥ → +∞.

Condition (27) guarantees the boundedness of the sublevel sets (26) if paired with the condition

lim sup
∥x∥→+∞

∥∇yf(x, x)∥/∥x∥ < +∞, (28)

which, roughly speaking, requires that the gradient of f(x, ·) at x does not grow faster than x itself as

∥x∥ → +∞.
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Proposition 3.1. If f satisfies (27) and (28), then the sublevel set (26) is bounded for any ϵ ≥ 0 and

0 < α < β.

Proof. Ab absurdo, suppose there exists a sequence {xk} such that ∥xk∥ → ∞ and φα,β(x
k) ≤ ϵ for

some fixed ϵ ≥ 0 and 0 < α < β.

The uniform strong convexity of h(x, ·) and inequality (5) provide the following inequalities

τ (β − α) ∥xk − yβ(x
k)∥2 ≤ (β − α)h(xk, yβ(x

k)) ≤ φα,β(x
k) ≤ ϵ,

which guarantee ∥xk − yβ(x
k)∥ ≤

√
ϵ/[τ (β − α)] := M . Hence, the bound ∥yβ(xk)∥ ≤ M + ∥xk∥ follows

as well.

Let y ∈ C be provided by (27). The following chain of inequalities holds

f(xk, yβ(x
k))− f(xk, y) ≤ ⟨∇yf(x

k, yβ(x
k)), yβ(x

k)− y⟩
≤ β ⟨∇yh(x

k, yβ(x
k)), y − yβ(x

k)⟩
≤ β ∥∇yh(x

k, yβ(x
k))∥ ∥y − yβ(x

k)∥
≤ β L ∥xk − yβ(x

k))∥ ∥y − yβ(x
k)∥

≤ β LM ∥y − yβ(x
k)∥

≤ β LM (∥y∥+M + ∥xk∥).

The first inequality is due to the convexity of f(x, ·), the second follows from the optimally condition (2),

the third is the Cauchy-Schwarz inequality, and the forth follows from the uniform Lipschitz continuity

of the functions ∇yh(x
k, ·) taking into account that ∇yh(x

k, xk) = 0. Therefore, the inequality

f(xk, yβ(x
k))− f(xk, y) ≤ 2β LM∥xk∥ (29)

holds whenever k is large enough (precisely, whenever ∥xk∥ ≥ ∥y∥+M). Furthermore, the convexity of

f(x, ·) and the Cauchy-Schwarz inequality imply

f(xk, yβ(x
k)) ≥ ⟨∇yf(x

k, xk), yβ(x
k)− xk⟩

≥ −∥∇yf(x
k, xk)∥ ∥yβ(xk)− xk∥

≥ −M ∥∇yf(x
k, xk)∥.

Therefore, (28) guarantees f(xk, yβ(x
k)) ≥ −M̂∥xk∥ for some M̂ > 0 whenever k is large enough.

Consequently, (27) implies

[f(xk, yβ(x
k))− f(xk, y)]/∥xk∥ ≥ −M̂ − f(xk, y)/∥xk∥ → +∞,

contradicting (29).

Notice that the so-called linear equilibrium problem, that is (EP) with

f(x, y) = ⟨Px+Qy + r, y − x⟩ (30)

for some r ∈ Rn and some P,Q ∈ Rn×n where Q is positive semidefinite, fulfills the growth condition

(28) since ∇yf(x, x) = (P + Q)x + r. Furthermore, it fulfills also the coercivity condition (27) if P is

positive definite, since f(·, y) turns out to be quadratic and strongly concave.

Proposition 3.1 is neither weaker nor stronger than Theorem 4.1 of [24] and Corollary 3.4 of [8].

Though the uniform strong monotonicity of the mappings ∇yf(·, y) implies the strong monotonicity

of f (see [5, Theorem 3.1 b)]) and hence condition (27), no other assumption is required by Theorem

4.1 unlike the above Proposition 3.1. The Lipschitz continuity of ∇yf implies condition (28), but the

strong monotonicity of G(x) = ∇yf(x, x) and condition (27) are independent of each other (the former

is stronger than the latter for variational inequalities, vice versa it is weaker for linear equilibrium

problems).
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4 Numerical results

Some preliminary tests have been run to analyse the sensitivity of the algorithm with respect to its

parameters. Afterwards, another set of numerical tests has been run to compare it with other algorithms

which exploit D-gap functions. The algorithms have been implemented in MATLAB 7.10.0. The built-in

functions fmincon and quadprog from the Optimization Toolbox were exploited to evaluate the D-gap

functions φα,β and to compute yα(x) and yβ(x), choosing the regularizing bifunction h(x, y) = ∥y−x∥22/2.

4.1 Preliminary tests

We tested the algorithm on some noncooperative games with quadratic payoffs. Each player i has a set

of feasible strategies Ki ⊆ Rni and aims at maximizing an utility function which depends also on the

strategies of the other players, namely fi : C → R with C = K1 × · · · × KN where N is the number

of players. Finding a Nash equilibrium amounts to solving (EP) with the Nikaido-Isoda aggregate

bifunction:

f(x, y) =

N∑
i=1

[fi(x)− fi(x(yi))] ,

where x(yi) denotes the vector obtained from x by replacing xi with yi (see, for instance, [2, 6]).

In our test we chose to consider 3 players, each of them controlling 2 variables (ni = 2) in the following

intersection of a box and a ball

Ki = [−5, 5]2 ∩B
(
0, 5(1 +

√
2)/2

)
in order to maximize the following type of quadratic utility function

fi(x) =
1

2
⟨xi, Aiixi⟩+

N∑
j=1
j ̸=i

⟨xi, Aijxj⟩+ ⟨bi, xi⟩,

where the squared matrices A11, . . . , ANN are symmetric and negative semidefinite while AT
ij = −Aji for

all i ̸= j. In this setting, the key assumption (11) of the algorithm is satisfied. In fact, we have

∇xf(x, y) = Dx− Sy + b,

where

D =


A11 0 . . . 0

0 A22 . . . 0
...

. . .
...

0 . . . . . . ANN

 , S =


0 AT

21 . . . AT
N1

−A21 0 . . . AT
N2

...
. . .

...

−AN1 −AN2 . . . 0

 , b =


b1
...
...

bN

 ,

and therefore

⟨∇xf(x, y)−∇xf(x, z), y − z⟩ = −⟨y − z, S(y − z)⟩ = ⟨y − z, S(y − z)⟩ = 0

holds for any y and any z since S is a skew-symmetric matrix. Thus, the mapping ∇xf(x, ·) is monotone,

but it is not strictly/strongly monotone and the algorithms from [8, 13, 24, 25] can not be exploited.

Instances have been produced relying on the generator of uniformly distributed pseudorandom num-

bers of MATLAB to choose the coefficients of the utility functions fi and the starting point of the algo-

rithm. In particular, Aii = −Bi B
T
i while Aij with i ̸= j are taken from the matrix (B −BT )/2, where

Bi ∈ R2×2 and B ∈ R6×6 are matrices with pseudorandom elements drawn from the uniform distribution

on [0, 1]; similarly, the components of the vectors bi are uniform pseudorandom values in the range [0, 5].

Finally, the starting point is the Euclidean projection on the ball B
(
0, 5(1 +

√
2)/2

)
of a vector whose

components are uniform pseudorandom values in the range [−5, 5].
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At step 1, we set z0 = yαk
for the yαk

computed at previous iteration whenever xk−1 is not feasible,

and we took

βk = min{β′
i : β′

i ≥ βk−1 and β′
i satisfies (21)},

for a given increasing sequence {β′
i} which goes to +∞. The value 10−2 was used as the threshold for

the stopping criterion at step 2, more precisely the algorithm stopped whenever ∥yαk
− zj∥∞ ≤ 10−2. A

preliminary set of tests on random instances suggested to set the parameters of the algorithm in following

way: γ = 0.4, δ = 0.4, η = 0.9, αk = 1/3k, εk = 1/3k, β′
i = 99 + 3i.

Afterwards, computational tests have been carried out to show the behaviour of the algorithm with

different values of the parameters. First, we ran the algorithm for different choices of the parameters

γ, δ, η and different kinds of sequences {β′
i} on a set of 100 random instances. Results with respect

to different values of γ, δ and η are given in Tables 1 and 2: each row reports the average number of

iterations, null steps, number of updates of β which have been performed and the average number of

optimization problems which have been solved for each instance. The results suggest that the choice of

these 3 parameters does not have a relevant impact on the performance of the algorithm.

Table 1: δ = 0.4, η = 0.9, αk = 1/3k, εk = 1/3k, β′
i = 99 + 3i

γ iterations null steps β updates opt. pbs

0.1 19.91 1.78 1.10 39.86

0.2 19.36 1.80 1.13 38.75

0.3 19.36 1.78 1.10 38.30

0.4 19.24 1.78 1.10 37.84

0.5 19.30 1.79 1.11 39.08

0.6 19.24 1.78 1.10 37.86

0.7 19.28 1.78 1.10 37.94

0.8 19.81 1.78 1.10 39.32

0.9 19.64 1.78 1.10 39.14

Table 2: γ = 0.4, αk = 1/3k, εk = 1/3k, β′
i = 99 + 3i

δ η iterations null steps β updates opt. pbs

0.2 0.3 20.61 1.90 1.22 40.82

0.2 0.5 20.19 1.90 1.22 39.52

0.2 0.7 19.95 1.90 1.22 39.05

0.2 0.9 19.81 1.90 1.22 38.87

0.4 0.5 20.16 1.90 1.22 40.19

0.4 0.7 19.94 1.90 1.22 39.28

0.4 0.9 19.79 1.90 1.22 38.94

0.6 0.7 19.97 1.90 1.22 39.76

0.6 0.9 19.78 1.90 1.22 38.98

0.8 0.9 19.80 1.90 1.22 39.42

Table 3 reports the performance of the algorithm when different sequences {β′
i} are chosen. The

results show that the exponential growth provides a better performance than the quadratic growth with
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Table 3: γ = 0.4, δ = 0.4, η = 0.9, αk = 1/3k, εk = 1/3k

β′
i iterations null steps β updates opt. pbs

2 + i2 23.89 4.16 9.69 53.87

10 + i2 24.40 4.34 8.97 54.09

100 + i2 20.00 2.01 3.79 41.92

1 + 3i 23.18 3.66 4.04 48.96

9 + 3i 23.23 3.93 3.62 47.37

99 + 3i 19.40 1.96 1.21 38.19

respect to all the considered indicators. Higher values of β′
0 produce better results both in the exponential

and quadratic case.

To test the algorithm when null steps do occur, we ran it for different sequences {αk} and {εk} on a

set of 100 random instances in which at least 1 null step is performed. Table 4 shows that {εk} impacts

on the performance of the algorithm more than {αk} and that exponentially decreasing sequences seem

to be the best choice for both parameters.

Table 4: γ = 0.4, δ = 0.4, η = 0.9, β′
i = 99 + 3i.

αk εk iterations null steps β updates opt. pbs

1/(1 + k2) 1/(1 + k2) 135.51 105.47 4.36 173.43

1/3k 1/(1 + k2) 135.64 105.42 4.33 171.28

1/(1 + k2) 1/3k 31.20 8.40 5.43 63.81

1/3k 1/3k 29.76 8.40 5.42 60.80

Finally, we tested the adaptive rule (25) for εk at step 1 taking precisely the upper bound, namely

εk = σk + θkφαk−1,βk−1
(xk−1)/(βk−1 − αk−1),

for different sequences {σk} and {θk}. Table 5 shows that the number of iterations and the number of

optimization problems significantly decrease as the rate of convergence of {σk} increases, and actually

the best results are achieved for {σk} ≡ 0. The impact of {θk} seems to be less relevant, anyway notice

that the non-adaptive rule ({θk} ≡ 0) provides worse results than the best choices for the adaptive rule.

4.2 Comparison with other D-gap algorithms

Two other algorithms rely on D-gap functions [8, 13, 24, 25]. Actually, they are both based on the

minimization of a single D-gap function φα,β for some fixed values of α and β. Another meaningful

difference with the algorithm of this paper is that they exploit search directions other than yα(x
k) −

yβ(x
k).

The first algorithm (see [8, 13]) performs an inexact line search along the direction yα(x
k)−yβ(x

k)+

ρs(xk) for some suitable fixed ρ > 0, where the additional term s(xk) = α[xk − yα(x
k)]− β[xk − yβ(x

k)]

is needed to guarantee descent without changing α and β. Since it was the first method to be developed,

it will be referred to as the “basic algorithm”.

The other algorithm (see [24, 25]) tries to exploit the same direction dk = yα(x
k)− xk which is used

by the algorithms based on gap functions (see, for instance, [2]). If xk + dk provides a large enough

improvement of the value of the D-gap function, it is taken as the new iterate; otherwise, an inexact line
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Table 5: γ = 0.4, δ = 0.4, η = 0.9, αk = 1/3k, β′
i = 99 + 3i.

σk θk iterations null steps β updates opt. pbs

1/(1 + k2) 0 135.77 105.56 4.31 171.56

1/(1 + k2) 0.5 182.81 150.64 4.28 218.84

1/(1 + k2) 1/[1 + (k + 1)2] 136.14 105.92 4.32 171.95

1/(1 + k2) 1/3k+1 135.77 105.56 4.31 171.56

1/3k 0 29.99 8.41 5.41 61.42

1/3k 0.5 32.81 9.18 4.85 64.22

1/3k 1/[1 + (k + 1)2] 30.09 8.44 5.44 61.62

1/3k 1/3k+1 29.99 8.41 5.41 61.42

0 0.5 18.06 1.00 6.00 41.12

0 1/[1 + (k + 1)2] 18.06 1.00 7.00 42.12

0 1/3k+1 18.06 1.00 7.09 42.21

search along either dk or −∇φα,β(x
k) is performed. Since the algorithm combines together features of

both the gap and D-gap function approaches, it will be referred to as the “hybrid algorithm”.

In order to converge to a solution of (EP) both algorithms require the boundedness of the sublevel sets

of φα,β (see also Section 3.1). In addition, the basic algorithm requires that the mappings ∇xf(x, ·) are
strongly monotone and Lipschitz continuous uniformly with respect to x ∈ Rn, while the hybrid algorithm

requires that the mappings ∇xf(x, ·) are strictly monotone. As a consequence, the noncooperative games

of the previous subsection can not be used as test problems to compare the three algorithms, since the

mappings ∇xf(x, ·) are monotone but neither strictly nor strongly monotone.

We tested the algorithms on the so-called linear equilibrium problems, that is (EP) with f given by

(30) for some r ∈ Rn and some matrices P,Q ∈ Rn×n such that Q is positive semidefinite. Asking for

PT −Q to be positive definite guarantees the desired properties. In fact, the equality

∇xf(x, y)−∇xf(x, z) = (PT −Q)(y − z)

guarantees that the mappings ∇xf(x, ·) are uniformly strongly monotone and Lipschitz continuous, with

the minimum eigenvalue of the symmetric part of PT − Q and ∥PT − Q∥ providing the corresponding

moduli of uniformity µ and L.

Instances have been produced relying on the generator of uniformly distributed pseudorandom num-

bers of MATLAB to choose P , Q and r. In particular, Q = AAT and P = Q+aB BT + b I+ c (S−ST ),

where A, B and S are matrices with pseudorandom elements drawn from the uniform distribution on

[0, 1] and the parameters a, b and c have been exploited to control µ and L. Finally, the components of

r are uniform pseudorandom values in the range [−1, 1].

Test have been made considering C = [−5, 5]n and taking a vector with uniform pseudorandom

components in the range [−5, 5] as the starting point, while the same stopping criterion of the previous

subsection has been exploited for all the three algorithms. A preliminary set of tests has been run to set

the parameters. Afterwards, we ran each algorithm on a set of 1000 random instances for given values

of µ and L. When an algorithm did not stop before solving 1000 optimization problems, we considered

it a failure.

Tables 6 and 7 report the performances of the algorithms on instances with n = 5 and n = 10,

respectively. Each row corresponds to a choice of µ and L and reports the percentage of failures and

the average number of optimization problems required by a single instance. Both tables show that our

algorithm performs better than the two others when the modulus of strong monotonicity of ∇xf(x, ·) is
close to zero, while it behaves at least comparably with them in the other situations.
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Table 6: n = 5.

our algorithm basic algorithm hybrid algorithm

µ L % fail opt. pbs % fail opt. pbs % fail opt. pbs

0.001 0.01 0.4 78.86 90.1 579.39 40.9 80.97

0.001 0.05 0.4 77.32 4.0 258.00 36.1 78.46

0.001 0.1 0.3 77.18 0.0 103.71 30.3 78.87

0.01 0.1 0.3 73.80 1.6 342.00 17.5 72.73

0.01 0.5 0.0 62.21 0.0 58.49 2.8 58.28

0.01 1 0.0 56.81 0.0 53.78 1.1 52.77

0.1 0.2 0.0 45.57 2.2 240.51 0.0 43.41

0.1 0.5 0.0 41.77 0.0 64.74 0.0 39.73

0.1 1 0.0 37.79 0.0 36.13 0.0 35.67

0.3 0.5 0.0 23.93 0.0 70.14 0.0 22.06

0.3 1 0.0 22.55 0.0 61.63 0.0 20.65

0.3 1.5 0.0 21.73 0.0 20.92 0.0 19.71

0.5 0.6 0.0 16.77 0.0 44.31 0.0 14.93

0.5 1 0.0 16.36 0.0 32.42 0.0 14.42

0.5 1.5 0.0 15.94 0.0 31.74 0.0 13.77

Table 7: n = 10.

our algorithm basic algorithm hybrid algorithm

µ L % fail opt. pbs % fail opt. pbs % fail opt. pbs

0.001 0.01 0.8 92.67 99.8 956.00 52.3 91.41

0.001 0.05 0.4 92.20 15.4 522.63 53.2 85.70

0.001 0.1 0.2 91.08 0.1 174.27 53.0 84.60

0.01 0.1 0.5 85.34 24.6 630.38 33.9 84.60

0.01 0.5 0.3 78.32 0.0 73.77 5.8 75.92

0.01 1 0.0 73.05 0.0 68.89 1.1 69.06

0.1 0.2 0.0 51.06 31.6 673.82 0.0 47.32

0.1 0.5 0.0 48.47 0.6 220.35 0.0 44.58

0.1 1 0.0 45.47 2.2 94.32 0.0 41.46

0.3 0.5 0.0 26.91 0.0 211.62 0.0 22.95

0.3 1 0.0 26.08 0.0 73.65 0.0 22.15

0.3 1.5 0.0 25.44 0.0 34.47 0.0 21.39

0.5 0.6 0.0 19.59 0.0 77.62 0.0 15.31

0.5 1 0.0 19.25 0.0 25.26 0.0 15.03

0.5 1.5 0.0 18.99 0.0 31.80 0.0 14.66
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