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Abstract: There are numerous methods in the literature for Direction-of-Arrival (DOA) estimation,
including both classical and machine learning-based approaches that jointly estimate the Number
of Sources (NOS) and DOA. However, most of these methods do not fully leverage the potential
synergies between these two tasks, which could yield valuable shared information. To address this
limitation, in this article, we present a multi-task Convolutional Neural Network (CNN) capable
of simultaneously estimating both the NOS and the DOA of the signal. Through experiments on
simulated data, we demonstrate that our proposed model surpasses the performance of state-of-
the-art methods, especially in challenging environments characterized by high noise levels and
dynamic conditions.

Keywords: direction-of-arrival (DOA) estimation; convolutional neural networks; multi-task
learning; ordinal regression

1. Introduction

Direction-of-Arrival (DOA) estimation is a task that finds applications in various
fields, including acoustics, wireless communications, sonar, and radar [1–4]. To address
this problem, several methods have been proposed that can be grouped into traditional
methods [1,5,6] and learning-based methods, which are mainly based on deep learning
models [7,8]. DL methods have shown impressive advantages when the amount of data
used for training is sufficiently large and, most importantly, if the data used for training
are representative of the reference scenario [9]. From a strictly technical point of view,
DOA estimation is a regression problem where, in the most general case, the dimension of
the target is not known a priori. This makes it challenging to apply traditional machine
learning methods, which typically require training a model for each source. This issue
can be encountered in approaches that use models such as Support Vector Regressors
(SVRs) [10] or Support Vector Machine (SVM) [11]. There are also strategies that employ
Radial Basis Functions (RBFs) [12,13]. In the latter case, the Number of Sources (NOS)
is fixed and assumed to be known a priori, while in the former, which considers the 2D
scenario, the problem is addressed by dividing the DOA grid into spatial sub-regions.

Previous methods have relatively good performance in situations where the noise
power is very low, but the quality of the estimates degrades as the Signal-to-Noise Ratio
(SNR) decreases and approaches zero (i.e., when the noise power is similar to that of
the signal). Recently, several solutions have been proposed that utilize Deep Neural
Networks (DNNs) [14]. These solutions employ various types of architectures, including
Fully Connected Neural Networks (FCNNs) [9,15,16], Convolutional Neural Networks
(CNNs) [17–21], and Recurrent Neural Networks (RNNs) [8,22]. The different approaches
not only differ in the type of architecture, but also in the input used. Some solutions employ
the covariance matrix (separating real and imaginary parts), sometimes vectorized [23,24],
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or distributed over multiple channels using CNNs [18,25], while others utilize complex-
valued spatiotemporal neural networks [7]. Conversely, some methods directly use the
received signal or operate in the frequency domain [26,27]. Several methods combine the
source detection phase with the DOA determination phase or propose separate solutions for
performing the two tasks. Some of these methods assume the number of signals to be known
a priori [15,25]. In this regard, some neural models have been presented as replacements
for traditional model order estimation methods for identifying the NOS [28,29]. In [28],
two distinct types of input are evaluated: the real-valued vector consisting of the real and
imaginary parts of the signal, and the covariance matrix of the received signals. In [29],
the eigenvalues of the received signal’s covariance matrix are used as input for a regression
network (ERNet) and for a classification network (ECNet). A similar strategy can be
found in [26], where a neural regression model is implemented with multiple output
branches, one of which is specialized in identifying the NOS. The adoption of deep learning-
based approaches enhances performance and provides scalable, adaptable solutions that
seamlessly integrate with other DOA-related tasks like AESA beamforming [30].

In this paper, we present a novel CNN architecture designed to receive the covariance
matrix of the source waveform as input and perform simultaneous estimation of the
NOS and DOA. Our approach treats DOA estimation as a regression problem, while
NOS estimation leverages an ordinal regression technique. The use of ordinal regression
overcomes the limitation of previous methods by considering the relative distance between
an erroneously predicted data sample and its ground-truth label. The model is trained
end-to-end in a multi-task manner, enhancing its ability to utilize shared representations.
This is especially useful in complex settings where traditional methods falter due to variable
signal patterns, as it allows the model to understand and integrate the interactions and
dependencies between the NOS and DOA tasks. To thoroughly evaluate the robustness and
effectiveness of our proposed method, we conduct a comprehensive series of experiments.
These tests assess the model’s performance on simulated data with characteristics different
from those in the training dataset.

The rest of this paper is as follows. A review of DOA methods is given in Section 2.
Section 3 describes the signal model. Section 4 details the proposed multi-task CNN
for DOA estimation. Section 5 and Section 6 present simulation results and conclusions,
respectively.

2. Related Work

The beamforming method, a fundamental technique for DOA estimation, extends the
Discrete Fourier Transform (DFT) from the time domain to the spatial domain. However,
it becomes impractical when the beamwidth exceeds the spacing between the sources [1].
Following the development of beamforming, various methods based on spatial spectral
estimation and maximum likelihood [31] were introduced for DOA estimation. Notable
examples include the MUltiple SIgnal Classification (MUSIC) algorithm [5], the Estima-
tion of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithm [32],
and their variations. The MUSIC algorithm is widely used for DOA estimation, con-
structing spatial spectral peaks by separating the signal and noise subspaces, which are
orthogonal. The DOA can then be estimated from the corresponding spectral peaks using
this orthogonal property. The CS-MUSIC algorithm [33], a variant of MUSIC, combines
hybrid parametric minimization with MUSIC to address coherence limitations in DOA
estimation. ESPRIT, another popular method, splits the array into two identical subarrays
with corresponding elements paired at equal distances. This structure ensures that the
incident angle differs by only one rotationally invariant factor between the two subarrays,
allowing the DOA to be determined by solving for a generalized eigenvalue. Unitary
ESPRIT [34], a variant of ESPRIT, exploits the centrosymmetric property of isometric linear
matrices, transforming complex covariance matrices into real symmetric ones. This reduces
computational complexity and enhances accuracy in DOA estimation. Extended-Phase
Interferometry (EPI) combines phase and amplitude data to improve robustness in noisy
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environments. Using extended least-squares, EPI enhances accuracy over traditional phase
interferometry while keeping computational demands moderate [35]. In [36], a low-power
AoA estimation system has been proposed for IoT networks like LoRa. Phase data are
sent to the cloud for processing, enabling a lightweight, cost-effective design suited for
power-constrained applications with limited local processing. A fully digital, reconfig-
urable FPGA-based architecture for AoA estimation using phase interferometry, focused on
low-latency real-time processing, has been proposed in [37]. Its modular design minimizes
computational delays, making it ideal for applications needing rapid, precise updates,
especially in environments benefiting from hardware-based signal processing.

Another class of DOA estimation techniques relies on sparse representation. In [6],
a sparse representation-based method was proposed, using sensor measurements to pro-
mote sparsity and improve estimation accuracy via the l1-norm penalty. In [38], com-
pressive sensing was applied to DOA estimation, where the method estimates DOA by
reconstructing the sparse signal vector [39]. A gridless DOA estimation approach based
on a covariance fitting criterion was introduced in [40], offering continuous parameter
estimation over time. This method avoids the need for partitioning the angular space into
small grids, thus eliminating discretization issues.

In recent years, deep learning [41] has been applied to radio signal processing tasks,
including signal detection [42,43], modulation recognition [44–46], channel estimation [47],
and information recovery [48]. Similarly, deep learning-based methods have emerged as
promising alternatives to traditional Direction-of-Arrival (DOA) estimation techniques [24,49].
Many of these methods approach the problem through classification models [17,18,24,49–51].
In [24], the authors tackled DOA estimation using a Deep Neural Network (DNN) with the
lower triangular part of the covariance matrix as input for two signal sources. The network
was trained in parallel on two different datasets: one with randomly generated signal
angles and another with signal angles restricted to 1° intervals. A prediction was considered
successful if at least one of the two DNNs accurately estimated the DOAs. However, no
standardized procedure for selecting the appropriate DNN architecture for this problem
was proposed. In [49], another DNN was used for estimating the DOAs of two sources,
with four intermediate layers and nine possible choices for the number of units in each.
A total of 36 DNNs were trained, and the one yielding the highest accuracy was chosen
for DOA estimation. In [17], a deep convolutional network was employed to estimate
DOA under sparse prior conditions. This approach reconstructed the spatial spectrum by
analyzing the covariance matrix data, and a Convolutional Neural Network (CNN) was
trained to extract spectral features. Different activation functions were tested in the hidden
layers to optimize performance, while spatial sparsity was leveraged to improve accuracy
compared to earlier methods. The design and training of the network were further enhanced
by integrating prior information. The authors of [50] introduced CNN-based DeepMUSIC,
a deep learning framework that divides the DOA region into sub-regions, with each sub-
region handled by a specialized CNN for more precise DOA estimation. In [21], DOA is
formulated as a multi-label classification problem, where the angular space is discretized
into a grid of multiple classes, and a CNN is used to estimate the angles of arrival of the
incoming source signals. In [18], the challenge of DOA estimation in low-Signal-to-Noise
Ratio (SNR) conditions was addressed by using multichannel data as input, representing
the real part, imaginary part, and phase of the covariance matrix as three separate channels.
A 2D convolutional layer was used to extract meaningful features for more accurate DOA
estimation. In [51], an online DOA estimation method was proposed by combining CNN
with Long Short-Term Memory (LSTM) networks. This hybrid approach enhanced DOA
estimation by capturing temporal dependencies in the data.

Deep learning-based DOA estimation methods can also be designed by combining
encoders with neural networks. In [9], a method was introduced using a combination of
self-encoder and Fully Connected Neural Networks, specifically a Multilayer Perceptron
(MLP). This approach involved using a multilayer self-encoder to divide the signal into
spatial sub-regions, similar to a spatial filter, and employing a classifier for spatial spectrum



Sensors 2024, 24, 7390 4 of 17

estimation in each sub-region. The DNN model was trained with array-specific outputs,
making it robust against array imperfections. In [52], a model based on residual networks
(ResNet) was proposed to address array defects. The model detected signals within sub-
regions through a spatial classification network, followed by classification of outputs from
different sub-regions using ResNet, leading to improved accuracy in DOA estimation.

Finally, in [53], a compressed data-based neural network model was introduced,
which used joint training of an encoder and classifier for accurate DOA estimation. This
model took encoded data from each subarray as input to the classifier, enabling accurate
estimation even with limited data. To further simplify the process and avoid computing
the covariance matrix, Zheng et al. [54] proposed directly using the raw in-phase and
quadrature components of the signal as input to a DNN for DOA estimation.

3. Signal Model

Consider a Uniform Linear Array (ULA) composed of M physical sensors spaced at a
distance d from each other [55] as shown in Figure 1.

d d•••

!!(#)

%"(#)
&"

!#(#)!$(#)!%(#)
Figure 1. Uniform Linear Array (ULA); d is the distance between the sensors; θi is the angle of arrival
of the impinging signal, and M is the number of sensor array antennas.

Assuming a scenario where there are K coplanar far-field narrowband signals, s(t) =
[s1, s2, . . . , sK], coming from distinct directions θ = [θ1, θ2, . . . , θK] impinging on the array.
The signal received by the array at snapshot t is expressed as

xΩ(t) = AΩ(θ)s(t) + nΩ(t), t = 1, 2, . . . , T, (1)

where Ω = {Ω1, Ω2, . . . , ΩM} denotes the index set of array sensors with Ωm being the
position of the m-th sensor with ordered rank Ω1 < Ω2 < . . . < ΩM. s(t) ∈ RK×1 and
nΩ(t) ∈ RM×1 denote the transmitted signal and the additive Gaussian sensor noise at the
snapshot t, respectively. Let AΩ(θ) = [aΩ(θ1), aΩ(θ2), . . . , aΩ(θK)] be the M × K manifold
matrix of the signal direction vectors with

aΩ(θ) = [1, ej 2πd
λ sin θ , ej2 2πd

λ sin θ , . . . , ej(M−1) 2πd
λ sin θ ]⊤, (2)

being the M × 1 steering vector, where j =
√
−1, λ is the wavelength, and d is the array

interval. Therefore, the covariance matrix of the received signal xΩ(t) is

RΩ = E[xΩ(t)xH
Ω(t)] = AΩ(θ)Rss AH

Ω(θ) + Rnn, (3)

where E(·) and (·)H , respectively, denote the expectation operator and the Hermitian
transpose (conjugate transpose) of a matrix. Rss = E[s(t)sH(t)] denotes the covariance
matrix of the source waveform, and Rnn = σ2 IM represents the noise covariance matrix
with σ2 the noise power and IM the M × M identity matrix.

4. The Proposed Method

The proposed model is depicted in Figure 2. It takes a three-dimensional matrix
as input, where the spatial dimensions correspond to the covariance matrix, while the
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two channels represent the real and imaginary parts of the matrix. The model architec-
ture comprises three convolutional blocks, which are shared between two branches, each
specialized in distinct tasks. One branch is responsible for identifying the NOS, while the
second branch handles the DOA estimation.

In our method, DOA estimation is formulated as a regression problem, while source
counting is achieved by using ordinal regression. Specifically, we exploit the COnsistent
RAnk Logits (CORAL) framework [56]. The ground-truth NOS K̂ = |y| is first extended
into Kmax − 1 binary labels ŝ(1), . . . , ŝ(Kmax−1) such that ŝ(k) ∈ {0, 1} indicates whether ŝ(k)

exceeds rank rk. The predicted rank index is given by

K = 1 +
Kmax−1

∑
k=1

bk, (4)

where bk ∈ {0, 1} is the prediction of the k-th binary classifier in the output layer. The re-
quired rank-monotonicity is achieved by using a dense layer that maps features into a
single value and Kmax − 1 bias parameters.

The CORAL framework suits this application by treating NOS estimation as a ranked
prediction problem, where the model distinguishes ordinal categories of source counts. This
approach leverages ordinal relationships, capturing the incremental nature of source count
estimation and reducing prediction error by considering the distance between predicted
and actual counts, enhancing NOS estimation even in challenging cases.

Figure 2. Architecture of the proposed multi-task CNN for DOA estimation. The network processes
the signal covariance matrix through the backbone. The resulting feature vector is passed to two
branches: the Number-of-Source estimator predicts the Number of Sources b (i.e., a binarized version
of the logits s); the Direction-of-Arrival estimator provides multiple angles of arrival, denoted as d,
corresponding to the number of angles b predicted by the other branch. A compound loss L is used
to optimize the model based on the two task-specific losses.

4.1. Preprocessing

The covariance matrix RΩ is unknown and is usually replaced by its sampled estimate
R̂Ω which can be calculated according to the T snapshots. The input data R̄Ω of our model
are real-valued M× M× 2 tensors, where the third dimension represents different channels.
In particular, the first channel is the real part of R̂Ω:

R̄Ω[:, :, 1] = Re{R̂Ω}; (5)

the second channel is the imaginary part of R̂Ω:

R̄Ω[:, :, 2] = Im{R̂Ω}. (6)
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Compared to the input of the model in [18], we normalize the input by using a
1/||R̄Ω||2. This choice is motivated by the fact that, in this way, the model is more resilient
to variations in the input’s order of magnitude.

4.2. Architecture

In this section the architecture of the proposed method for DOA estimation is presented.
First, the backbone architecture is detailed, then a description of the Number-of-Source
estimator and the Direction-of-Arrival estimator is given.

4.2.1. Backbone

The backbone of the proposed model is a shared CNN between the two tasks, which
is formalized as follows:

fB(R̄Ω) = f3( f2( f1(R̄Ω))) = e. (7)

Each function { fi(·)}i=1,2,3 represents a series of layers: a 2D convolutional layer with
128, 64, and 64 filters, respectively, followed by batch normalization, and a ReLU activation.
The output of the last layer of the backbone, e, is flattened and passed to subsequent layers
for further processing. A detail of each processing step of the backbone is given in Table 1.

Table 1. The backbone architecture proposed in this work. Each row describes an operation by
specifying the input shape, operator type, number of output channels (c), stride (s), and output shape.
A dash “-” indicates that the operator does not require a value for the parameter.

Input Operator c s Output

2 × M × M Conv2d 128 2 128 × M/2 × M/2
128 × M/2 × M/2 BatchNorm2d - - 128 × M/2 × M/2
128 × M/2 × M/2 ReLU - - 128 × M/2 × M/2
128 × M/2 × M/2 Conv2d 64 1 64 × M/2 × M/2
64 × M/2 × M/2 BatchNorm2d - - 64 × M/2 × M/2
64 × M/2 × M/2 ReLU - - 64 × M/2 × M/2
64 × M/2 × M/2 Conv2d 64 1 64 × M/2 × M/2
64 × M/2 × M/2 BatchNorm2d - - 64 × M/2 × M/2
64 × M/2 × M/2 ReLU - - 64 × M/2 × M/2
64 × M/2 × M/2 Flatten - - 64 ∗ M/2 ∗ M/2

4.2.2. Number-of-Source Estimator

The branch that performs ordinal regression to identify the NOS takes as input
the feature vector calculated by the backbone and estimates the NOS, n = hNoS(e).
The NOS branch comprises four blocks. The first three blocks consist of a dense layer
with 1024, 512, and 256 channels, respectively, followed by a Swish activation function [57].
The branch ends with the CORAL rank predictor layer. This last layer outputs a vector
s = {s1, si, . . . , sKmax} with si ∈ R. The NOS K is obtained by applying Equation (4).
The binary predictions, b = {b1, bi, . . . , bKmax}, are obtained via bi = 1{si ≥ 0.5}.

4.2.3. Direction-of-Arrival Estimator

The branch that estimates the DOA consists of two dense blocks, similar to those in
the ordinal branch but with dropout layers (dropout rate of 0.2), followed by an output
dense layer. More in detail, the two dense layers have 1024 and 512 channels, respectively.
The last dense layer maps the 512-dimensional feature vector into Kmax real values to form
the vector d = {d1, di, . . . , dKmax} with di ∈ R of the angles of arrival. The final DOA
prediction is derived through element-wise multiplication between the binary vector of the
NOS, b, and the vector containing the arrival angles, d, as follows d = d ◦ b.
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4.3. Training Procedure

The proposed model is trained end-to-end for 200 epochs with a batch size of 32 sam-
ples by using the Adam optimizer [58], with an initial learning rate of 0.001, which is
reduced by 0.5 every ten epochs. The early stopping technique is implemented to terminate
training if the Root Mean Squared Error (RMSE), evaluated on the validation dataset, shows
no improvement for 20 consecutive epochs.

Our model is optimized by exploiting the following loss function:

L = λ1LMSE + λ2LBCE, (8)

where λ1 and λ2 are empirically set to 1.0 and 0.8, respectively. It consists of the Mean
Squared Error (MSE) calculated only on the angles predicted for the first K signals identified
by the NOS branch as follows:

LMSE(d, d̂) =
1

NK

N

∑
n=1

K

∑
k=1

(d̂(n)k − d(n)k )2, (9)

where N is the number of samples, K is the number of identified signals, and d and d̂ are
the predicted and the ground-truth angles, respectively. The second loss of Equation (8) is
the Binary Cross-Entropy (BCE), which is defined as follows:

LBCE(s, ŝ) =

− 1
NK

N

∑
n=1

Kmax−1

∑
k=1

log(s(n)k )ŝ(n)k + log(1 − s(n)k )(1 − ŝ(n)k ),
(10)

where N is the number of samples, Kmax is the maximum number of signals, s and ŝ are the
predicted and the ground-truth logits, respectively.

5. Simulations and Analysis of the Results
5.1. Simulation Settings

The samples used for training and evaluating the models are generated following the
data model presented in Section 3.

For the generation of a dataset sample, the number of signals K is first randomly gen-
erated from {1, . . . , Kmax}, then K angles are randomly sampled from [−θ◦,+θ◦]. The co-
variance matrix RΩ can be then estimated by exploiting the previous values and the fixed
parameters of the ULA. The label associated with the covariance matrix is y = [θ1, . . . , θK]
Hence, each sample consists of a pair (RΩ, y). The parameters used in our simulations are
designed to closely reflect real-world scenarios, incorporating appropriate approximations
as recommended in [59]. Specifically, the ULA in this work consists of 10 elements (M = 10)
with an inter-element spacing of d = 0.15, corresponding to a wavelength of λ = 0.3.
Additionally, we set the maximum number of impinging signals to Kmax = 3. We assume
a sampling rate twice the signal frequency, following the Nyquist criterion to prevent
aliasing [60]. We use a 32-bit ADC resolution. Finally, multipath components were set to
zero, focusing on direct line-of-sight signals to isolate DOA estimation performance under
controlled conditions.

We generate a dataset containing data samples with angles in the range [−60◦,+59◦],
affected by variable SNRs uniformly sampled from the intervals [−13,−7], [−3,+3],
and [+7,+13] dBs. Each sample consists of a total of T = 2000 snapshots.

The generation of data samples begins by generating the entire DOA grid in the range
of [−60◦,+59◦] with a step size of 1°. From this grid, all possible combinations of 1, 2, and
3 sources are created. For combinations involving two or three sources, the DOA sequences
are randomly permuted. This process yields a total of 288,100 DOA combinations. For each
DOA combination, three samples are generated for each one of the three SNR intervals.
Considering the DOA grid, the various SNRs and the three sample variants, the dataset
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comprises 2,592,900 samples. We randomly split this dataset into training and validation
sets, allocating 80% for training and 20% for validation. Consequently, the training set
consists of 2,074,320 samples, while the validation set contains 518,580 samples.

We then generate seven distinct test sets to assess the method’s performance on unseen
data and its capability to generalize to scenarios beyond those simulated in the training
set. These test sets incorporate varying conditions—such as phase shifts, modulation types,
and carrier frequencies—that impact both the signal waveform and the resulting covariance
matrix. Since the covariance matrix captures the correlation structure of signals received
across array sensors, these conditions affect the input to the proposed model in unique
ways, altering spatial and temporal correlations.

T1. Same characteristics as the training set

This test set is designed with the same characteristics as the training set.

T2. Different number of snapshots

This test set contains samples with the same characteristics as the training set in
terms of grid of arrival angles and noise levels but varies the number of snapshots T
with values {5, 100, 200, 500, 1000}. Testing with different snapshot counts is crucial to
assess the model’s performance under varying data availability, from limited snapshots
(e.g., T = 5) to more extensive datasets (e.g., T = 1000), simulating real-world conditions
and challenges.

T3. Various SNRs

This test set consists of samples generated by simulating signals with SNR levels differ-
ent from those used in the training set, specifically {−20,−15,−5, 5, 15, 20} dB. Testing with
unseen SNR levels is crucial to evaluate the model’s generalization ability in real-world sce-
narios, where signal quality can vary significantly. Low SNR levels (e.g., −20 dB) represent
highly noisy environments, challenging the model’s robustness and noise tolerance, while
higher SNR levels (e.g., 20 dB) simulate clearer signals where precision becomes key.

T4. Off-grid angles

This test set comprises samples with arrival directions that are not part of the training
grid (off-grid angles), specifically [−59.7◦,+58.3◦]. Experimenting with off-grid signals is
essential for evaluating the model’s ability to generalize beyond predefined scenarios and
handle real-world conditions where signal arrival angles rarely align perfectly with the
training grid.

T5. Combination of T2, T3 and T4

This test set combines the characteristics of the T2, T3, and T4 test sets, meaning all
challenging conditions are present simultaneously. This makes the evaluation data highly
realistic, as they reflect real-world scenarios where such conditions often co-occur.

T6. Various phases

This test set consists of signals with phase shifts in the range [45◦, 90◦, 180◦], which
are not present in the training set or the T1 test, where the phase is fixed at 0◦. Testing
with varying phase values is essential to assess the model’s robustness to phase variations,
a common occurrence in real-world communication and radar systems due to factors like
signal propagation and modulation schemes.

T7. Various frequencies

This test set is designed to evaluate the robustness of the models with respect to
changes in signal frequency. The same parameters as in T1 were used, except that the
frequency varies. Different carrier frequencies were applied while keeping the sensor
positions fixed. Each frequency has its own wavelength and wavenumber, meaning the
inter-element spacing is not normalized to each signal’s wavelength. Four subsets were cre-
ated, each with signals at a different frequency: 2.4 GHz, 3 GHz, 5 GHz, and 10 GHz. These
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frequencies were selected due to their widespread use across various applications. Higher
frequencies (5 GHz and 10 GHz) are typically better suited for short-range, high-bandwidth
applications, while lower frequencies (2.4 GHz and 3 GHz) offer greater coverage and
signal penetration.

T8. Modulation types

This test set is similar to T1, except that different modulation types are applied to
simulate a variety of signal behaviors. Amplitude Modulation (AM) introduces a variation
in the signal’s amplitude over time, creating fluctuations in strength that can be detected
and analyzed. Frequency Modulation (FM) produces a signal with a varying instantaneous
frequency, altering how rapidly the signal’s phase evolves, which affects its spectral proper-
ties. Phase Shift Keying (PSK) changes the signal’s phase according to a specific modulation
scheme, typically used to encode information in discrete phase shifts, making it ideal for
digital communication.

5.2. Results

The performance of the proposed model for DOA estimation is compared with five
state-of-the-art DOA methods that have publicly available implementations. MUltiple SIg-
nificant Classification (MUSIC) identifies DOAs in correspondence with the pseudo-spectra
identified on a predefined grid [5]. Root MUSIC (R-MUSIC) estimates the angular direc-
tions from the solutions of higher-order polynomials [61]. The aforementioned methods are
covariance-based techniques that demand sufficient data snapshots for accurate DOA esti-
mation and often assume known NOS. To ensure consistency with the experimental setup
of other methods where the NOS is unknown, we applied the Akaike Information Criterion
(AIC) to estimate the NOS before performing DOA estimation [62]. Multi-snapshot New-
tonized Orthogonal Matching Pursuit (MNOMP) uses Newton refinement and feedback
strategy for DOA estimation, leveraging Fast Fourier Transform (FFT) to keep computation
complexity low [63]. The Multi-Task Autoencoder with Parallel multilayer Classifiers
(MTAPC) model effectively estimates spatial spectra in complex scenarios, primarily thanks
to the enhanced representation achieved by the multi-task autoencoder [9]. DNNDOA [18]
is a CNN designed for DOA estimation in the low-SNR regime as a multi-label classification
task, considering an on-grid approach.

The Cramér–Rao Lower Bound (CRLB) provides a theoretical benchmark for the mini-
mum variance of unbiased estimators, making it an essential measure for complementing
and validating the results obtained by existing methods in DOA estimation. Comparing
DOA methods with the CRLB helps assess their proximity to optimal performance, high-
lighting both efficiency and unbiasedness. Since the CRLB accounts for factors such as noise
and sensor configuration, it serves as a crucial reference for validating results on simulated
data under various conditions. Methods that approach the CRLB reach the theoretical
performance limit, while those that exceed it reveal areas for improvement [64]. Therefore,
we include the CRLB in our comparison of results.

The results are presented using RMSE to evaluate the precision of DOA estimation,
while accuracy is employed to estimate the NOS, measured as the fraction of correctly
estimated sources. RMSE is calculated using the following equation [26]:

RMSE =

√√√√ 1
K

K

∑
k=1

min
j
(dk − d̂j)2, (11)

where dk indicates the predicted angle, d̂j represents the ground-truth angle, and K is the
number of signals. Ground-truth and predicted signals are paired using a nearest-neighbor
metric, ensuring that each predicted angle is compared to its closest ground-truth angle,
resulting in a more accurate and lower RMSE value. When the number of predicted sources
does not match the number of ground-truth sources, special handling is required for RMSE
computation. Table 2 provides an example to demonstrate how these cases are addressed.
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Table 2. Samples illustrating how RMSE is computed when the number of predicted sources differs
from the number of ground-truth sources. In these examples, d̂ represents the ground-truth DOA,
and d represents the predicted DOA.

Case Direction RMSE

|d̂| < |d| d̂ = {15,−19} √
(15−15)2+(−19+20)2

2 = 0.71d = {−20, 15, 32}

|d̂| > |d| d̂ = {−19, 42, 15} √
(−19+20)2+(42−15)2+(15−15)2

3 = 15.60d = {−20, 15}

For test set T1, we report results in Table 3. As it is possible to see, the proposed
method achieved the best performance with respect to the competitors. On the other hand,
MNOMP achieves the worst RMSE and accuracy. From the perspective of efficiency, we
evaluate methods based on inference time, computational complexity, and the number of
parameters. In terms of inference time, deep learning methods are noticeably slower than
traditional approaches like MUSIC, R-MUSIC, and MNOMP. When measuring computa-
tional complexity in Mega-FLOPS (MFLOPS), these traditional methods again prove more
efficient than deep learning approaches. Among the deep learning methods, DNNDOA
has the highest computational complexity, reaching 2.43 MFLOPS. Despite the fact that our
proposed method has significantly more parameters than MUSIC, R-MUSIC, and MTAPC,
Figure 3 demonstrates its superior performance in both RMSE and accuracy. Interestingly,
DNNDOA, which has a similar parameter count to our model, performs the worst in terms
of accuracy. In Figure 4, the RMSE is decomposed by the number of sources and varying
SNR. Notably, the RMSE value for three sources, shown in panel (c), is higher than that for
one and two sources. Among the algorithms evaluated, DNNDOA exhibits the greatest
sensitivity to high SNR values.

02468101214
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Figure 3. Ball chart reporting the RMSE versus accuracy. The size of each ball corresponds to the
number of model parameters.
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Table 3. Results reported in terms of RMSE, accuracy (%), inference time (ms) and computational
complexity (MFlops) for the test set with the same configuration as the training set. The best result
for each metric is shown in boldface.

Method RMSE (↓) Accuracy (↑) Inference
Time (↓)

Computational
Complexity (↓)

DNNDOA [18] 6.56 ± 15.55 64.10 40.46 2.43
MNOMP [63] 13.76 ± 18.39 53.37 1.92 0.01
MTAPC [9] 1.91 ± 7.36 73.87 40.27 1.61
MUSIC [5] 1.32 ± 2.56 91.20 1.45 0.02
R-MUSIC [61] 0.60 ± 1.37 93.45 0.74 0.02
Our 0.27 ± 0.21 99.58 40.22 1.11

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
SNR

100

RM
SE

DNNDOA
MNOMP
MTAPC
MUSIC
RootMUSIC
Our

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
SNR

100
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SE
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MNOMP
MTAPC
MUSIC
RootMUSIC
Our

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
SNR

100

101

RM
SE

DNNDOA
MNOMP
MTAPC
MUSIC
RootMUSIC
Our

(a) (b) (c)

Figure 4. The DOA estimation performance for the T1 test set at varying SNRs divided by (a) one
signal only, (b) two signals, and (c) three signals.

In the T2 test set (see Table 4), performance declines with shorter snapshots for all
methods. Our method outperforms others, with RMSE and accuracy of 11.81 and 47.04
(T = 5) compared to 0.32 and 99.58 (T = 1000). In the T3 test set, as seen in Table 5, the
methods exhibit comparable RMSE performance, with the exception of DNNDOA. MTPAC
achieves the lowest error, followed by R-MUSIC and MUSIC, with our method close behind.
This suggests that the other methods demonstrate slightly better generalization to noise
levels not covered in the training set.

Table 4. RMSE and accuracy for different T snapshots. The best result for each metric is shown
in boldface.

Method 5 100 200 500 1000
RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑)

DNNDOA [18] 30.71 ± 17.32 6.41 14.65 ± 19.53 40.64 11.17 ± 18.28 49.60 8.07 ± 16.61 58.30 7.05 ± 15.92 61.87
MNOMP [63] 48.56 ± 25.25 6.76 38.05 ± 24.54 42.27 36.07 ± 24.30 55.40 35.92 ± 23.93 59.70 31.73 ± 22.18 66.31
MTAPC [9] 16.19 ± 10.02 32.51 2.40 ± 7.49 63.23 2.23 ± 7.53 68.76 2.07 ± 7.49 72.45 1.98 ± 7.42 73.44
MUSIC [5] 19.42 ± 20.85 2.01 3.05 ± 1.27 0.00 1.73 ± 0.96 0.01 0.61 ± 1.74 11.75 1.30 ± 1.66 85.34
R-MUSIC [61] 19.72 ± 21.29 1.03 3.12 ± 2.10 0.00 1.79 ± 0.86 0.01 0.56 ± 0.51 11.75 1.25 ± 1.42 85.45
Our 11.81 ± 9.59 47.04 2.24 ± 3.29 91.46 1.13 ± 0.86 97.57 0.47 ± 0.45 99.46 0.32 ± 0.31 99.58

Table 5. RMSE and accuracy for various SNRs (i.e., −20, −15, −5, 5, 15, 20) and off-grid angles (i.e.,
between −59.7◦ and +58.3◦). The best result for each metric is shown in boldface.

Method Various SNRs Off-Grid Angles
RMSE (↓) Accuracy (↑) RMSE (↓) Accuracy (↑)

DNNDOA [18] 29.82 ± 15.46 4.52 8.31 ± 16.90 51.17
MNOMP [63] 34.69 ± 31.16 12.62 9.98 ± 7.51 56.20
MTAPC [9] 2.24 ± 7.18 61.52 1.72 ± 6.39 73.66
MUSIC [5] 6.02 ± 14.55 74.67 0.34 ± 0.68 90.81
R-MUSIC [61] 6.02 ± 14.62 74.73 0.32 ± 0.39 92.34
Our 8.47 ± 14.04 87.77 0.26 ± 0.23 99.57
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The performance of the T4 test set is presented in Table 5. As before, it clearly demon-
strates that the proposed method outperforms the other methods. In a broader context,
when comparing these results with those in Table 3, it turns out that off-grid angles have a
minimal impact on the performance of the methods under consideration. Analyzing the
results presented in Table 6 for the T5 test set, it is evident that the proposed method’s
RMSE performance remains relatively stable across varying snapshot lengths. In fact, our
method outperforms the competitors in most cases, with the exception of RMSE at T = 1000.
It is worth noting the stark underperformance in estimating the NOS by the MUSIC and
R-MUSIC methods when dealing with snapshots of fewer than 500, with rates as low as
0.00%. In Table 7, it achieves the lowest RMSE and high accuracy across all phases, proving
robust against phase variability, while other methods like DNNDOA and MNOMP display
variable performance with higher RMSE, particularly at 45° and 90° phases. In Table 8,
the proposed method excels across the frequency spectrum, especially at higher frequencies
(5 GHz and 10 GHz), where it achieves an RMSE of 18.56 and nearly 93% accuracy. While
MUSIC and R-MUSIC maintain high accuracy, they show slightly higher RMSE, indicating
some limitations at high frequencies. Table 9 shows that the proposed method also leads in
handling different modulation types, particularly FM and PSK, achieving low RMSE and
high accuracy.

Table 6. RMSE and accuracy for the test set with different T snapshots, off-grid angles and vari-
ous SNRs. The best result for each metric is shown in boldface.

Method 5 100 200 500 1000
RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑)

DNNDOA [18] 32.60 ± 14.31 1.94 29.91 ± 15.46 4.35 29.68 ± 15.31 4.46 29.60 ± 15.27 4.47 29.59 ± 15.26 4.46
MNOMP [63] 46.28 ± 25.24 9.02 32.54 ± 23.70 37.07 30.84 ± 23.33 44.93 30.18 ± 23.28 48.45 28.38 ± 16.75 54.19
MTAPC [9] 17.16 ± 12.53 31.82 13.61 ± 11.70 50.60 13.08 ± 11.15 51.90 12.54 ± 10.61 54.82 12.23 ± 10.37 57.95
MUSIC [5] 20.34 ± 21.47 1.03 18.83 ± 18.44 0.00 18.48 ± 16.17 0.00 20.02 ± 15.98 14.93 15.76 ± 14.11 70.26
R-MUSIC [61] 20.91 ± 18.39 0.02 18.71 ± 16.02 0.00 18.44 ± 16.95 0.00 20.31 ± 15.84 14.69 15.81 ± 14.43 70.32
Our 12.20 ± 9.78 44.68 8.74 ± 13.90 65.78 8.39 ± 13.23 66.23 7.90 ± 12.73 76.69 6.31 ± 11.61 85.44

Table 7. RMSE and accuracy for various phases of test set T6. The best result for each metric is shown
in boldface.

Method 0 45 90 180
RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑)

DNNDOA [18] 6.56 ± 15.55 64.10 27.78 ± 17.86 46.25 32.79 ± 17.87 49.29 22.77 ± 15.82 42.36
MNOMP [63] 13.76 ± 18.39 53.37 62.67 ± 20.12 34.67 58.91 ± 18.29 32.02 71.01 ± 18.09 38.02
MTAPC [9] 1.91 ± 7.36 73.87 22.97 ± 15.29 56.59 29.10 ± 12.29 51.42 18.91 ± 11.01 58.12
MUSIC [5] 1.32 ± 2.56 91.20 21.87 ± 15.20 91.71 24.09 ± 12.09 92.01 18.83 ± 12.51 90.98
R-MUSIC [61] 0.60 ± 1.37 93.45 27.38 ± 11.05 91.71 29.12 ± 11.42 92.61 34.10 ± 15.21 89.08
Our 0.27 ± 0.21 99.58 7.12 ± 9.12 92.18 15.91 ± 14.61 92.61 19.06 ± 13.24 90.49

Table 8. RMSE and accuracy for various frequencies. The best result for each metric is shown
in boldface.

Method 1 GHz 2.4 GHz 3 GHz 5 GHz 10 GHz
RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑)

DNNDOA [18] 6.56 ± 15.55 64.10 28.57 ± 16.89 47.01 27.39 ± 17.69 45.28 26.97 ± 18.02 47.86 27.20 ± 17.83 45.35
MNOMP [63] 13.76 ± 18.39 53.37 34.91 ± 21.21 49.12 34.20 ± 18.91 51.21 32.00 ± 23.11 48.03 31.93 ± 21.43 39.55
MTAPC [9] 1.91 ± 7.36 73.87 21.12 ± 15.22 52.86 19.78 ± 13.17 52.57 20.55 ± 13.00 52.00 20.44 ± 13.47 49.88
MUSIC [5] 1.32 ± 2.56 91.20 22.76 ± 14.64 92.88 23.11 ± 16.37 91.56 24.52 ± 16.45 90.63 24.80 ± 17.13 91.38
R-MUSIC [61] 0.60 ± 1.37 93.45 31.43 ± 11.56 92.22 30.92 ± 9.76 91.56 31.81 ± 9.64 90.63 32.53 ± 9.63 91.52
Our 0.27 ± 0.21 99.58 24.52 ± 13.78 92.45 21.46 ± 12.80 93.01 19.91 ± 12.46 94.63 18.56 ± 10.82 92.74
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Table 9. RMSE and accuracy for three modulation types in test set T8. The best result for each metric
is shown in boldface.

Method AM FM PSK
RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑) RMSE (↓) Acc. (↑)

DNNDOA [18] 22.22 ± 12.83 48.38 26.02 ± 17.82 45.41 49.11 ± 21.82 43.34
MNOMP [63] 36.82 ± 23.60 44.12 31.69 ± 29.14 47.23 51.11 ± 11.29 49.92
MTAPC [9] 19.43 ± 8.48 62.88 22.91 ± 10.17 49.89 29.08 ± 15.22 53.24
MUSIC [5] 18.42 ± 11.15 91.37 22.84 ± 13.02 93.92 29.83 ± 17.12 91.38
R-MUSIC [61] 26.53 ± 9.63 91.37 27.91 ± 11.01 92.82 32.53 ± 9.63 91.38
Our 16.57 ± 11.76 92.74 19.82 ± 10.05 92.22 23.57 ± 12.97 91.43

The boxplots in Figure 5 illustrate the CRLB index distributions for the different test
sets and snapshot counts. In the first plot (T1, T3, T4), the CRLB values are concentrated
between 10−3 and 101 degrees squared. T3 shows a larger spread, indicating more vari-
ability in estimation error. In the second plot (T2), as the number of snapshots increases,
the CRLB decreases significantly, reflecting improved estimation accuracy with more data.
At 1000 snapshots, the CRLB is concentrated between 10−2 and 10−3. The third plot (T5)
follows a similar trend, though with higher overall CRLB values compared to T2, indicating
more challenging estimation conditions for T5. Overall, more snapshots lead to a lower
and narrower CRLB, highlighting improved performance.

(a) (b) (c)

Figure 5. Boxplots showing CRLB index distributions for (a) test sets T1, T3, and T4, (b) various
snapshots within T2, and (c) various snapshots within T5.

By comparing CRLB values with those achieved by the proposed method on the
various test sets, it is possible to notice that as snapshot count increases, the RMSE of the
proposed DOA estimation method converges toward the CRLB, indicating more efficient
performance with larger data samples. At low snapshot counts (5 and 100), the RMSE is
notably higher than the CRLB, reflecting increased estimation uncertainty with limited
data. However, with more snapshots (200, 500, and especially 1000), the RMSE closely
approaches the CRLB, demonstrating the method’s ability to achieve near-optimal accuracy
when sufficient data are available. For instance, with 1000 snapshots in T2, the RMSE of
0.32 is close to the CRLB of 0.22, and in T5, the RMSE of 5.31 is near the CRLB of 5.72.

To obtain a scenario-independent comparison of each method’s relative performance,
we normalize the RMSE of each method by the CRLB for the corresponding scenario. Since
the CRLB represents the best possible performance achievable in a given scenario, dividing
the squared error by this bound yields a normalized measure, which is independent of
the specific scenario’s characteristics. This normalization minimizes the impact of scenario
variability on the RMSE, thus reducing the overall uncertainty when averaging performance
across scenarios. The result is an effectiveness metric for each method, defined as the ratio
of RMSE to CRLB, averaged over all scenarios. As seen in Figure 6, our approach more
accurately reflects the performance disparities among estimators, making it evident how
each one approaches or deviates from the theoretical CRLB limit.



Sensors 2024, 24, 7390 14 of 17

DNNDOA MNOMP MTAPC MUSIC R-MUSIC Our
Method

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

To
ta

l p
er

fo
rm

an
ce

Figure 6. Scenario-independent total performance comparison.

5.3. Ablation Studies

In this section, we present the results of two ablation studies to evaluate the impact
of training the proposed method in stages and varying the weights of the loss functions.
In the first experiment, the learning process is divided into two steps. First, only the
backbone and NOS branch are trained. Then, in the second step, the DOA branch is
trained, leveraging the weights previously learned by the backbone and NOS estimator,
without fine-tuning them. This incremental training approach allows us to evaluate the
potential disadvantages of two-step training for DOA estimation compared to multi-task
training, where shared features are learned simultaneously. In the second experiment, we
explore various configurations of the λ1 and λ2 weights in Equation (8) to assess their
impact on optimization and accuracy. To this end, we present results for two configurations
that significantly differ from the optimal one: λ1 = 0.2, λ2 = 1.0, and λ1 = 1.0, λ2 = 0.4.

Results from the T1 test set, i.e., data with the same characteristics as the training set,
are reported in Table 10. As it is possible to see, the two-step training approach results in
a significantly higher RMSE (32.99) compared to the multi-task approaches, suggesting
that learning the shared features simultaneously, as in multi-task training, leads to better
performance for DOA estimation. The two configurations with different λ1 and λ2 weights
show substantial differences in RMSE values. The configuration with λ1 = 0.2 and λ2 = 1.0
results in a higher RMSE (0.75) compared to the configuration with λ1 = 1.0 and λ2 = 0.4
(0.68), indicating that adjusting the balance of loss functions can improve optimization and
reduce error. The proposed method (“Our” model version) achieves the best performance,
with the lowest RMSE (0.27) and the highest accuracy (99.58%), suggesting that the specific
configuration used in the final model optimally balances the training dynamics and yields
the most accurate predictions.

Table 10. Ablation results. The best result for each metric is shown in boldface.

Model Version RMSE Accuracy

Two-step training 32.99 ± 9.61 98.86
Loss function with λ1 = 0.2 and λ2 = 1.0 0.75 ± 0.40 98.64
Loss function with λ1 = 1.0 and λ2 = 0.4 0.68 ± 0.38 99.13
Our 0.27 ± 0.21 99.58
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6. Conclusions

In this paper, we proposed a deep multi-task CNN for joint NOS and DOA estimation.
Compared with methods in the literature, the proposed method considers the estimation
of the NOS as ordinal regression and the estimation of DOA as regression. The previous
choices demonstrate the effectiveness of the proposed method even under challenging
conditions. As future work, we aim to improve the proposed method by incorporating
additional signal properties, such as noise statistics, signal coherence, and temporal snap-
shot information, to enhance the model’s ability to capture complex data relationships
and improve DOA estimation accuracy in challenging environments, as seen in classical
detection theory methods. While our current tests include varying SNRs, off-grid angles,
and snapshots, future experiments will also involve environmental factors such as multi-
path propagation, receiver sampling ratio, and ADC quantization bits. Additionally, we
plan to validate the method using real-world data, where obstacles and reflections are
harder to simulate but crucial for practical applications. This will help refine our approach
for real-world scenarios and ensure robustness in diverse environments.
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