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Abstract
The adoption of smart device technologies is steadily increasing. Most of the smart devices in use today
have built-in sensors which measure motion, direction, and various environmental conditions. Sensors
are able to provide raw data with different quality and accuracy. A large group of smart devices forms
a mobile crowdsensing system which is capable of sensing, collecting and sharing the environmental
data to perform large scale sensing jobs. This paper aims to study and design an incentive mechanism
for a mobile crowdsensing system based on a one-leader multi-follower Stackelberg game. A platform
provider, as proponent of the sensing job, will act as the leader, while the mobile users will act as the
followers. The final goal is to devise an efficient mechanism able to motivate the smart device users to
participate in the sensing activity. Different from existing approaches, we propose a centralized method
where the platform provider can estimate users’ parameters very efficiently sending and receiving
a few messages. We formulate the optimization problem on the platform provider side as a mixed
integer nonlinear program with time constraints for each job and a budget constraint. Finally, a heuristic
algorithm based on the derivative-free directional direct search method is designed to solve the platform
optimization problem and achieve a close-to-optimal solution for the game. Results show that our
Stackelberg game solution is much more scalable than the approach proposed in the work by other
authors [1] as we can decrease the average number of messages by a factor between 53 to 80 and the
average running time between 23 and 650 times. Furthermore, we compared our heuristic algorithm
with BARON, a state of the art commercial tool for mixed integer global optimization, to solve the
platform optimization problem. Results demonstrated that our proposed algorithm converges to a
near-optimal solution much faster especially in large scale systems.

1. Introduction
Mobile crowdsensing (MCS) is a newly emerging

paradigm which uses smartphone technologies and capabili-
ties for environmental data collection and analysis. However,
the implementation of advanced environmental monitoring
applications can be costly and complex [2]. For example,
users equipped with portable devices are able to perform jobs
like measuring the noise level by microphones or quantifying
the environment visibility by built-in cameras [3, 4, 5], map
semantic labeling [6, 7, 8, 9, 10], perform road condition
monitoring [11, 12, 13], estimate pollution [14, 15] and
traffic [16], or they can collect crowd-source images [17, 18]
performing, e.g., target identification [19, 20, 21, 22, 23].
A new wave of applications is expected from the adoption
of augmented reality sensors, e.g., LIDAR available in new
generation phones and tablets [24].

Smartphone users, by using the embedded sensors in
their devices, act as “participants” to sense environmental
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data and share these data using the existing communication
infrastructure [25]. Therefore, MCS could be an appropriate
alternative to the traditional wireless sensor networks for
sensing, monitoring and coverage [26, 27, 28].

Generally, a mobile crowdsensing system consists of
two parts. The first part is the crowdsensing platform which
initiates many mobile crowdsensing jobs and provides some
related services, such as pushing crowdsensing tasks to users’
smartphones. The second part includes the set of users’
smartphones which provide sensing data according to the
crowdsensing task requirements published by the platform.
The most important challenge in MCS is that users have to
be encouraged to participate in the MCS system. To achieve
this goal, most existing works use an incentive mechanism
to motivate the users to participate. These incentive mech-
anisms only need to guarantee rationality, i.e., the income
of smartphone users will be more than their cost for sensing.
Several existing works use auction [29, 30, 31, 32] as an
incentive mechanism, while some others rely on game theory
[1, 33, 34, 35, 36].

Most of game-theory-based literature approaches con-
sider a quadratic function [1, 35, 36, 37, 38] as individual
user’s cost function and use a distributed algorithm to find an
equilibrium instead of solving the game in a central manner.
This is intuitive, since the user’s cost function parameters
are private and unknown to the platform. With respect to a
centralized approach, a distributed mechanism requires more
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time and resources especially if the number of users and
iterations are large. Indeed, at each iteration the platform
should communicate with all users to determine the price and
time allocation for the sensing task while, in a central manner,
most of this communication can be eliminated saving data
transfer and computation time. Moreover, many works’ goal
is the social welfare maximization [1, 35, 36, 39, 40, 41], but
the social welfare cannot be considered a good measurement
in a realistic situation because in practice a sensing process
is initiated by a platform which leads to a non-cooperative
model. Platform and users are going to maximize their profit
and minimize their costs (e.g., minimizing the total cost for
a sensing job is one of the platform goals while minimizing
the battery consumption is one of the users’ goal). Therefore,
from a technical point of view, finding the equilibrium in a
non-cooperative game is much more difficult and also more
realistic and important than maximizing the social welfare.

In this paper, we consider a platform issuing multiple
sensing jobs and a large number of mobile users with smart
devices randomly distributed in a wide area. We assume
that the platform knows the sensing quality of the mobile
users thanks to the users’ sensing information history [1, 42].
The platform has a budget constraint for all jobs and it also
defines lower and upper limits for the execution time and
cost of each job (indeed, a job needs a minimum time to be
considered trusted and accurate and has a maximum time
to avoid additional costs). Users also define time constraints
for their participation because their devices have some time-
dependent restrictions, such as battery consumption.

This paper aims to design an incentive mechanism that
motivates users to participate while maximizes the platform’s
utility. Contrary to other works, in this paper we consider
a model based on a one-leader multi-follower Stackelberg
game, where the platform estimates the users’ cost function
parameters by relying on Karush-Kuhn-Tucker (KKT) con-
ditions. Then, the game is solved in a central manner on the
platform side, saving computational time and resources.

We extend a previous work by other authors [1], which
proposed a distributed approach based on a dual decompo-
sition method to maximize the social welfare of the system.
The Stackelberg game is more realistic in practice and more
challenging from a technical perspective with respect to [1].
We solve the optimization problem from the users’ side
by solving the corresponding KKT system in closed form.
The KKT solution is used to develop a simple algorithm
to estimate the users’ parameters. In this way, the platform
can solve its optimization problem in a central manner
instead of a distributed one. Moreover, we use the users’
KKT systems to reformulate the Stackelberg game as a
mixed integer nonlinear program. Finally, we propose a
derivative-free heuristic algorithm which runs on the platform
side and we compare our centralized approach with the
distributed approach developed in [1]. We show that our
solution is faster and more cost effective even neglecting
the network time, since the number of messages exchanged
among the platform and its users is significantly reduced.
We also compare the proposed heuristic algorithm with the

commercial solver BARON [43] and we demonstrate that
our algorithm outperforms BARON especially for large scale
systems, since it converges much faster than BARON while
achieving almost the same solution.

In summary, the main contributions of this paper are the
following:

1. We formulate the interaction among multiple mobile
users and a platform as a one-leader multi-follower
Stackelberg game, where the platform is the leader and
the users are the followers.

2. We develop a method which allows the platform to
estimate the parameters of the users’ cost functions
by sending a few messages containing the prices and
receiving users time dedication as responses. We also
propose a derivative-free heuristic method for solving
the game on the platform side.

3. We finally evaluate the performance of the proposed
approach through extensive numerical experiments
providing also a comparison with another literature pro-
posal [1]. Experimental results show that our heuristic
algorithm can converge to the optimal solution quickly.
With respect to the work in [1], our approach obtains at
least 53x network saving and at least 23x computational
time reduction (event neglecting message transfer
time). Moreover, we also obtain a platform net utility
increase between 0.6% and 20.5%.

The remainder of this paper is organized as follows.
Related works are discussed in Section 2. Section 3 describes
the MCS system model and formulates the problem as a
Stackelberg game. In Section 4, we illustrate the algorithm
that allows the platform to estimate the users’ parameters.
In Section 5, we reformulate the Stackelberg game as a
mixed integer nonlinear program, while Section 6 presents
our heuristic approach to solve the Stackelberg game. Exper-
imental results are discussed in Section 7, while conclusions
are finally drawn in Section 8.

2. Related work
With the development of smart devices and wireless net-

works in people’s lives, mobile crowdsensing has become an
extensive research area [44]. Incentive mechanism design is
one of the most important issues in order to attract mobile
users to participate in MCS systems and common methods
to incentivize mobile users include auction, reverse auction,
game theory, etc.

Feng et al. [39] designed a framework based on reverse
auctions called TRAC for modeling the interactions among
the platform and the mobile users in which mobile users
are the sellers and the platform is the buyer (buying sensing
services).

In [45, 46] authors considered two system models, a
crowdsourcer-centric model and a user-centric model, with-
out considering, however, a budget constraint for the crowd-
sourcer. In the crowdsourcer-centric model, the authors

Hamta Sedghani: Preprint submitted to Elsevier Page 2 of 18



An Incentive Mechanism for Mobile Crowdsensing

proposed a Stackelberg game-based incentive mechanism,
where the crowdsourcer is the leader while the users are
the followers. In the first step, the crowdsourcer declares its
reward 𝑅, therefore 𝑅 is the strategy of crowdsourcer. In the
second step, users announce their sensing time which is their
strategy to maximize their own utility. Authors proved that the
game has a unique equilibrium and designed a mechanism
for computing it. In this way, the crowdsourcer is able to
maximize its utility while all users are playing their best
response strategy. In the user-centric model, authors proposed
an incentive mechanism based on auction, which is profitable,
truthful, computationally efficient and individually rational.

Luo et al. [47] designed an incentive mechanism based on
asymmetric auction for heterogeneous crowdsourcing, which
accommodates an arbitrary number of heterogeneous users
with incomplete information. They demonstrated that the
mechanism persuades the self-interested users to make their
best effort while minimizing the cost of the crowdsourcer,
and outperforms traditional mechanisms that consider a fixed
price in both symmetric and asymmetric auction.

There are many works based on game theory to design
an incentive mechanism for MCS. Wang et al. [33] have
proposed a two-level pricing scheme which is time-sensitive
and location-dependent with random users arrivals to balance
the participation of users among tasks. At the first level, the
reward for each task is different from others and it depends
on popularity of tasks which can be obtained from spatio-
temporal inequality of tasks. At the second level, the reward
of each task to each user will dynamically change when the
demand of a user changes. Moreover, authors proved that the
task allocation problem for randomly arriving users with time
budget is NP-hard, and proposed some greedy algorithms to
solve such a problem.

Peng et al. [34] have designed a bilateral competition
framework where crowdsourcers compete for the limited
sensing service and smart devices compete for the limited
budget of the crowdsourcers. Each crowdsourcer has to select
an “optimal” budget that can attract enough smart devices to
participate. Each smart device participator has to decide the
crowdsourcer to join.

Zhan et al. [35] designed an incentive mechanism and
analyzed the interaction among the crowdsensing platform
and the smart device users relying on Nash bargaining theory
for the platform-centric mobile crowdsensing. They also
designed a distributed algorithm based on dual decomposition
method which can keep the participators’ privacy and reduce
the sensing-platform’s computation load.

Nie et al. [48] have proposed an incentive model based
on two-stage Stackelberg game and achieved the equilibrium
by backward induction. They considered the social network
effects among users and, based on that, they have developed
discriminatory incentive and uniform incentive mechanisms,
obtaining the closed-form expression for the optimal incen-
tive. Furthermore, they have analyzed the interaction between
the platform and mobile users where the social structure
information, i.e., the social network effects, is uncertain and

formulated as a Bayesian Stackelberg game with incomplete
information.

Duan et al. [36] designed a distributed algorithms to
compute the Walrasian equilibrium and they used a dual
decomposition method to solve the social welfare maximiza-
tion problem. They assumed that the platform pays the same
price to all the participators in the same sensing area.

Conversely, the authors in [1] considered different prices
for different quality of the sensed data contributed by individ-
ual users due to the influence of various factors (e.g., sensor
quality, noise, etc.). They considered multiple platforms but
they assumed that each platform has a single job. Authors
also assumed that the sensing quality of mobile users is
known by the sensing platforms, while the cost functions
of the mobile users and utility parameters for the sensing
platforms are their own private information. Therefore, they
proposed to maximize the social welfare of the system, since
the private nature of the mobile users makes it impossible to
solve the problem in a central manner. Then, they developed
a distributed iterative method based on dual decomposition to
divide the social welfare maximization problem into sensing
platforms’ local optimization problems and mobile users’
local optimization problems. The distributed algorithm, based
on an iterative gradient descent method, is designed to achieve
the close-to-optimal solution. Since the method requires to
solve an optimization problem in both platform and users
side for each iteration, it is very time consuming and also
needs to exchange many messages (that leads to significant
resource consumption).

Similarly to [1], in this work we consider a sensing
area including many users where the platform will issue the
sensing jobs. The mobile users are characterized by different
sensing quality devices and the sensing platform will consider
these different qualities when it employs them to participate
in the mobile crowdsensing application. Contrary to previous
literature proposals, we do not maximize the social welfare
of the whole system because the platform can estimate the
private parameters of the users and therefore we do not have to
use a distributed method. After the parameters estimation, we
apply a derivative-free direct search algorithm to maximize
the platform net profits.

3. Problem formulation
In this section, we introduce the MCS system model (Sec-

tion 3.1) and formulate the MCS problem as a Stackelberg
game (Section 3.2) detailing both the platform and users
underlying optimization problems.
3.1. Basic settings

We consider a MCS system consisting of a platform 𝑃
and a set 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑁} of users with smart devices
(smartphones, tablets, etc.) connected to the platform via
Internet. The sensing platform wants to incentivize the users
to participate in completing its sensing jobs set indexed by
𝐽 = {1, 2,… , 𝐾} by paying some money. We suppose each
user 𝑢𝑖 selects a subset 𝐽𝑖 ⊆ 𝐽 of jobs she/he will perform
and spends 𝑡𝑖𝑘 time units for completing job 𝑘.
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Different jobs have different prices per time unit due to
their intrinsic characteristics such as complexity and cost. For
example, users expect more returns when performing jobs
that require graphic or video information than those that only
require audio information [1]. Besides, a job can be performed
in a specific location with different prices for different users
(due, e.g., to the quality of information provided by users
and/or users’ regional differences, and/or by their relative
importance). Therefore, the quality of user not only depends
on his/her smart device, but also the location of the job
execution. For example, if we are interested in sensing data
for noise pollution monitoring, then data from a noisy region
is more important than data from relatively noiseless areas.
Indeed, in a noiseless region few samples might be sufficient
for the analysis of interest, while in a noisy environment,
which might be characterized, e.g., also by some variability
in the noise level, higher quality sensing might be relevant.
So, for the aforementioned reasons, we consider different
prices for different jobs and users and we denote with 𝑝𝑖𝑘 the
price per time unit that the platform pays to user 𝑢𝑖 for job 𝑘.
Remark 1. Each job considered in this paper will be executed
on one specific location with a specified coverage radius.
Similar to other literature proposals [1, 36, 40, 41, 45], we
assume that all mobile users, who received the platform
payment, will execute the jobs. In other words, all volunteers
who want to participate in MCS do not move from the
coverage area while performing their task. Vice versa, if
the mobility matters, we assume that the users do not move
during all the phases of our framework including: estimating
the parameters of users, running the heuristic algorithm to
obtain the optimal times and prices, and executing the sensing
jobs. Since, as will be discussed in the experimental section,
our proposed approach converges quickly (for example, for a
1000 users scenario, the total time required by our approach
is less than 52 seconds), we argue that such assumptions are
reasonable in several scenarios of practical interest.
3.2. A Stackelberg game model

In the system under study, the platform has to determine
the optimal prices 𝑝𝑖𝑘 in order to maximize its own net utility,
in such a way all jobs are completed and a budget constraint
is fulfilled. On the other hand, each user has to find the
optimal time units 𝑡𝑖𝑘 to maximize her/his own profit without
violating her/his resource constraint. Since the platform and
users are selfish and the users choices follow the choices of the
platform, we propose a one-leader multi-follower Stackelberg
game approach [49] to model the MSC system, where the
platform acts as leader and the users as followers. Figure 1
shows this relation. The detailed optimization problems
solved by the users and the platform are described in the
following.
User profit model. When mobile user 𝑢𝑖 allocates 𝑡𝑖𝑘 time
units to job 𝑘, she/he acquires 𝑝𝑖𝑘𝑡𝑖𝑘 amount of money from
the platform and incurs a cost for completing the job. The
cost function 𝐶𝑖𝑘(𝑡𝑖𝑘) for job 𝑘 incorporates several factors

Figure 1: Interactions among the platform and its users.

such as physical or mental tiredness of mobile users, battery
drainage, and bandwidth occupation of mobile devices, etc.
We assume that 𝐶𝑖𝑘 is a strongly convex quadratic function
as in many other literature proposals (see, e.g., [1, 36, 37, 38,
50, 51, 52, 53]):

𝐶𝑖𝑘(𝑡𝑖𝑘) =
1
2
𝑎𝑖𝑘𝑡

2
𝑖𝑘 + 𝑏𝑖𝑘𝑡𝑖𝑘 + 𝑐𝑖𝑘, (1)

where 𝑎𝑖𝑘, 𝑏𝑖𝑘 > 0 are parameters depending on both user
availability level and job difficulty level [36] and 𝑐𝑖𝑘 ≥ 0.
Moreover, each user 𝑢𝑖 has an upper bound 𝑇𝑖 in her/his
sensing time due to her/his resource constraints. Given the
prices 𝑝𝑖𝑘 chosen by the platform, user 𝑢𝑖 has to determine the
vector 𝐭𝑖 = (𝑡𝑖𝑘)𝑘∈𝐽𝑖 by solving the following optimization
problem:

max
𝐭𝑖

∑

𝑘∈𝐽𝑖

[

𝑝𝑖𝑘 𝑡𝑖𝑘 − 𝐶𝑖𝑘(𝑡𝑖𝑘)
] (2)

subject to:
∑

𝑘∈𝐽𝑖

𝑡𝑖𝑘 ≤ 𝑇𝑖, (3)

𝑡𝑖𝑘 ≥ 0 ∀ 𝑘 ∈ 𝐽𝑖. (4)
Notice that, for any given prices 𝑝𝑖𝑘, the problem (2)–(4)
has a unique optimal solution, since the objective function
is strongly convex and the feasible region is a bounded
polyhedron.
Platform profit model. On the platform side, we assume that
the platform provider knows the sensing quality of the mobile
users due to the history of the sensing information. There
are many methods to evaluate the mobile users’ quality (see,
e.g., [42, 54, 55]). We assume that 𝜔𝑖𝑘 is the sensing quality
of user 𝑢𝑖 relative to the job 𝑘, for any 𝑘 ∈ 𝐽𝑖. Moreover, the
platform has a utility function 𝜙𝑘, for each job 𝑘 ∈ 𝐽 , that
depends on the vector

𝐭 = (𝑡𝑖𝑘)𝑖=1,…,𝑁, 𝑘∈𝐽𝑖

of time variables controlled by the users and the sensing
quality parameters 𝜔𝑖𝑘. We define the utility function 𝜙𝑘 as
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follows:

𝜙𝑘(𝐭) = 𝜇𝑘 log

(

1 +
𝑁
∑

𝑖=1
log(1 + 𝑡𝑖𝑘 𝜔𝑖𝑘)

)

, (5)

where 𝜇𝑘 is a system parameter, the log(1 + 𝑡𝑖𝑘 𝜔𝑖𝑘) term
reflects the diminishing marginal utility gain on the sensing
contribution of user 𝑢𝑖 for job 𝑘, and the outer log term reflects
the diminishing marginal utility gain on the number of partici-
pating users. Such a function has been widely used in previous
works for MCS systems (see, e.g., [35, 36, 40, 45, 46, 56]).
Notice that 𝜙𝑘 satisfies the following two conditions [45]:

1. 𝜙𝑘 increases with the users’ sensing time contributions,
i.e., 𝜕𝜙𝑘

𝜕𝑡𝑖𝑘
> 0 holds for any 𝑖 = 1,… , 𝑁 ;

2. the growth rate of 𝜙𝑘 decreases with the users’ sensing
time increasing, i.e., 𝜕2𝜙𝑘

𝜕𝑡2𝑖𝑘
< 0 holds for any 𝑖 =

1,… , 𝑁 , which is also known as diminishing returns
in economics [57].

The platform defines a minimum and a maximum time
unit cost 𝑃𝐿

𝑘 and 𝑃𝑈
𝑘 for any job 𝑘 that it is willing to pay

for that job. Moreover, the platform has a given budget 𝐵 to
reward users for their services. Finally, the total time spent
by all the users for job 𝑘 has both a lower bound 𝑡𝐿𝑘 , since the
platform has to collect enough sensing data to guarantee the
overall performance, and an upper bound 𝑡𝑈𝑘 , when no more
data are needed to accomplish the sensing task in order to
avoid extra costs.

The platform has to determine the prices 𝑝𝑖𝑘, for any
𝑖 = 1,… , 𝑁 and 𝑘 ∈ 𝐽𝑖 (we denote 𝐩 = (𝑝𝑖𝑘)𝑖=1,…,𝑁, 𝑘∈𝐽𝑖),by solving the following bilevel optimization problem:

max
𝐩

𝐹 (𝐩) ∶=
∑

𝑘∈𝐽
𝜙𝑘(𝐭∗(𝐩)) −

𝑁
∑

𝑖=1

∑

𝑘∈𝐽𝑖

𝑝𝑖𝑘 𝑡
∗
𝑖𝑘(𝐩) (6)

subject to:

𝐭∗𝑖 (𝐩) = argmax
𝐭𝑖

{

∑

𝑘∈𝐽𝑖

[

𝑝𝑖𝑘 𝑡𝑖𝑘 − 𝐶𝑖𝑘(𝑡𝑖𝑘)
]

∶

∑

𝑘∈𝐽𝑖

𝑡𝑖𝑘 ≤ 𝑇𝑖, 𝑡𝑖𝑘 ≥ 0, ∀ 𝑘 ∈ 𝐽𝑖

}

∀ 𝑖 = 1,… , 𝑁, (7)

𝑃𝐿
𝑘 ≤ 𝑝𝑖𝑘 ≤ 𝑃𝑈

𝑘 ∀ 𝑖 = 1,… , 𝑁, ∀ 𝑘 ∈ 𝐽𝑖, (8)
𝑁
∑

𝑖=1

∑

𝑘∈𝐽𝑖

𝑝𝑖𝑘 𝑡
∗
𝑖𝑘(𝐩) ≤ 𝐵, (9)

𝑡𝐿𝑘 ≤
∑

𝑖∶ 𝑘∈𝐽𝑖

𝑡∗𝑖𝑘(𝐩) ≤ 𝑡𝑈𝑘 ∀ 𝑘 ∈ 𝐽 . (10)

The objective function (6) represents the net utility of the
platform and is equal to the difference between the sum of
utility functions and the total payment received by users.

Table 1
Parameters and Decision Variables

Parameters

𝑁 Number of users
𝐾 Number of platform’s jobs
𝐽 Set of platform’s jobs
𝐽𝑖 Set of jobs selected by user 𝑢𝑖
𝑇𝑖 Maximum time budget of user 𝑢𝑖
𝐵 Maximum platform budget
𝑃 𝐿
𝑘 Minimum time unit cost for job 𝑘 set by users

𝑃 𝑈
𝑘 Maximum time unit cost for job 𝑘 set by the platform

𝑡𝐿𝑘 Lower bound of the total time spent for job 𝑘
𝑡𝑈𝑘 Upper bound of the total time spent for job 𝑘

Decision Variables

𝑝𝑖𝑘 Price paid by the platform to user 𝑢𝑖 for job 𝑘
𝑡𝑖𝑘 Time spending of user 𝑢𝑖 for job 𝑘

Constraints (7) guarantee that 𝑡∗𝑖𝑘(𝐩) are the optimal times
found by the users as best response to the prices 𝑝𝑖𝑘 chosen
by the platform. Constraints (8) impose that each price 𝑝𝑖𝑘satisfies the lower and upper bounds defined by the platform.
Constraint (9) entails that the total payment received by users
is lower than the maximum budget of the platform. Finally,
constraints (10) guarantee that the total time devoted by users
to each job is between the minimum and the maximum time
requirements for the job.

Summarizing, the problem (6)–(10) represents the one-
leader multi-follower Stackelberg game model, where the
platform (leader) controls the price vector 𝐩, while the users
(followers) control the time vectors 𝐭𝑖, for any 𝑖 = 1,… , 𝑁 .
For the sake of clarity, the notation used in this paper is
summarized in Table 1.

4. Estimation of users’ parameters
In order to find a solution of the Stackelberg game,

the platform needs to anticipate the best response of each
user to any price 𝐩. To this end, it has to estimate the a
priori unknown parameters 𝑎𝑖𝑘 and 𝑏𝑖𝑘 appearing in the cost
function, and the time budget 𝑇𝑖 for each user 𝑢𝑖. In this
section, first we show a general formula to compute the
optimal solution of each user’s problem (Section 4.1), then we
develop an algorithm based on the latter formula to estimate
the user parameters 𝑎𝑖𝑘, 𝑏𝑖𝑘 and 𝑇𝑖 (Section 4.2).
Remark 2. As in other literature proposals [1, 36], we
assume that the users are truthful when declaring their
time willingness 𝑡𝑖𝑘 to participate to a job or setting the
upper time limit 𝑇𝑖, while they would like not to share
their private parameters 𝑎𝑖𝑘, 𝑏𝑖𝑘. Note that, this paper main
contributions are: (i) an extension of previous work [1] with
the development of a solution to estimate the private users’
parameters, and (ii) a novel centralised and efficient method
for solving the general problem (6)–(10).
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4.1. Optimal solution of the user’s problem
Let us consider the user 𝑢𝑖’s problem. For any job 𝑘 ∈ 𝐽𝑖,the cost 𝐶𝑖𝑘 is a strongly convex quadratic function of 𝑡𝑖𝑘,

i.e., 𝐶𝑖𝑘(𝑡𝑖𝑘) =
1
2𝑎𝑖𝑘𝑡

2
𝑖𝑘 + 𝑏𝑖𝑘𝑡𝑖𝑘 + 𝑐𝑖𝑘, where 𝑎𝑖𝑘, 𝑏𝑖𝑘 > 0 and

𝑐𝑖𝑘 ≥ 0. User 𝑢𝑖 has to solve the following problem:

max
𝐭𝑖

∑

𝑘∈𝐽𝑖

[

−1
2
𝑎𝑖𝑘𝑡

2
𝑖𝑘 + (𝑝𝑖𝑘 − 𝑏𝑖𝑘)𝑡𝑖𝑘 − 𝑐𝑖𝑘

]

(11)

subject to:
∑

𝑘∈𝐽𝑖

𝑡𝑖𝑘 ≤ 𝑇𝑖, (12)

𝑡𝑖𝑘 ≥ 0 ∀ 𝑘 ∈ 𝐽𝑖. (13)
We denote 𝑑𝑖𝑘 ∶= 𝑝𝑖𝑘 − 𝑏𝑖𝑘 for any 𝑘 ∈ 𝐽𝑖, and define the
subsets of jobs
𝐽−
𝑖 =

{

𝑘 ∈ 𝐽𝑖 ∶ 𝑑𝑖𝑘 ≤ 0
}

, 𝐽+
𝑖 =

{

𝑘 ∈ 𝐽𝑖 ∶ 𝑑𝑖𝑘 > 0
}

.

Without loss of generality, we can assume that 𝐽+
𝑖 =

{1,… , 𝑛} and 𝑑𝑖1 ≤ 𝑑𝑖2 ≤ ⋯ ≤ 𝑑1𝑛.
Theorem 4.1. The optimal solution 𝐭∗𝑖 = (𝑡∗𝑖𝑘)𝑘∈𝐽𝑖 of problem
(11)–(13) is given as follows:

a) 𝑡∗𝑖𝑘 = 0 for any 𝑘 ∈ 𝐽−
𝑖 .

b) To find 𝑡∗𝑖𝑘 for 𝑘 ∈ 𝐽+
𝑖 , we distinguish 𝑛 + 1 cases:

• If
𝑛
∑

𝑘=1

𝑑𝑖𝑘
𝑎𝑖𝑘

≤ 𝑇𝑖, then 𝑡∗𝑖𝑘 =
𝑑𝑖𝑘
𝑎𝑖𝑘

for any 𝑘 = 1,… , 𝑛.

• If 𝑧1 ∶=

𝑛
∑

𝑘=1

𝑑𝑖𝑘
𝑎𝑖𝑘

− 𝑇𝑖

𝑛
∑

𝑘=1

1
𝑎𝑖𝑘

∈ (0, 𝑑𝑖1), then

𝑡∗𝑖𝑘 =
𝑑𝑖𝑘 − 𝑧1

𝑎𝑖𝑘
for any 𝑘 = 1,… , 𝑛.

• Let 𝑞 ∈ {2,… , 𝑛}.

If 𝑧𝑞 ∶=

𝑛
∑

𝑘=𝑞

𝑑𝑖𝑘
𝑎𝑖𝑘

− 𝑇𝑖

𝑛
∑

𝑘=𝑞

1
𝑎𝑖𝑘

∈ [𝑑𝑖,𝑞−1, 𝑑𝑖𝑞), then

𝑡∗𝑖𝑘 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑘 = 1,… , 𝑞 − 1,

𝑑𝑖𝑘 − 𝑧𝑞
𝑎𝑖𝑘

if 𝑘 = 𝑞,… , 𝑛.

Proof. The proof relies on the solution of the Karush-
Kuhn-Tucker system of the user’s problem and is given in
Appendix A.

The formulas shown in Theorem 4.1 have the following
interpretation. If the price 𝑝𝑖𝑘 offered by the platform for
job 𝑘 is below the threshold 𝑏𝑖𝑘, then the optimal time to
devote to the job 𝑘 is 𝑡∗𝑖𝑘 = 0. If 𝑝𝑖𝑘 > 𝑏𝑖𝑘, then its value
depends on the time budget 𝑇𝑖: if 𝑇𝑖 is large enough (i.e.,

pL1 b1 b1 + a1T pU1

pL2

b2

b2 + a2T

pU2

t∗1 = 0

t∗2 = 0

t∗1 =
p1 − b1

a1

t∗2 = 0

t∗1 = T

t∗2 = 0

t∗1 = 0

t∗2 =
p2 − b2

a2
t∗1 =

p1 − b1
a1

t∗2 =
p2 − b2

a2

t∗1 =
p1 − b1 − p2 + b2 + a2T

a1 + a2

t∗2 =
p2 − b2 − p1 + b1 + a1T

a1 + a2

t∗1 = 0

t∗2 = T

1

Figure 2: Optimal time for the two jobs scenario.

greater than ∑𝑛
𝑘=1(𝑝𝑖𝑘 − 𝑏𝑖𝑘)∕𝑎𝑖𝑘) then each 𝑡∗𝑖𝑘 is equal to

the ratio (𝑝𝑖𝑘 − 𝑏𝑖𝑘)∕𝑎𝑖𝑘; otherwise the optimal times have to
be reduced according to the ratios 𝑧1,… , 𝑧𝑛.

Notice that the solution given in Theorem 4.1 is general
for any number of jobs. In particular, if a user selects only
one job, then its optimal time is given by the following simple
formula (where index 𝑖 has been omitted):

𝑡∗1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝑝1 ∈ [𝑃𝐿
1 , 𝑏1],

𝑝1 − 𝑏1
𝑎1

if 𝑝1 ∈ [𝑏1, 𝑏1 + 𝑎1𝑇 ],

𝑇 if 𝑝1 ∈ [𝑏1 + 𝑎1𝑇 , 𝑃𝑈
1 ].

(14)

A graphical description of the optimal time for the two jobs
scenario is shown in Figure 2, while the analytical optimal
solution for the three jobs scenario is given in Appendix B.

In the next section, we will show how formula (14) can
be exploited to estimate parameters 𝑎, 𝑏 and 𝑇 .
4.2. Parameters estimation

The parameters 𝑎, 𝑏 and 𝑇 of all users can be estimated by
the platform through Algorithm 1. The algorithm performs
the following steps for each user 𝑢𝑖.First, the platform estimates the time budget 𝑇𝑖 (lines 3-8).
It chooses a job ℎ ∈ 𝐽𝑖 and sets a very large number as a price
for job ℎ, while it sets the minimum time unit cost 𝑃𝐿

𝑘 for
other jobs. Then, the platform sends the prices to user 𝑢𝑖 and
receives the user’s optimal times (lines 3-7). According to
Theorem 4.1 (see also Figure 2), if the time unit price of a job
is very high while the ones for other jobs are minimum, then
the optimal time for job ℎ will be equal to user’s maximum
time budget 𝑇𝑖 (line 8).

Then, the platform estimates the parameters 𝑎𝑖𝑘 and 𝑏𝑖𝑘 for
each job 𝑘 (lines 9-27). Intuitively, the platform will generate
a sequence of prices to induce the user’s best reply trajectory

Hamta Sedghani: Preprint submitted to Elsevier Page 6 of 18



An Incentive Mechanism for Mobile Crowdsensing

Algorithm 1 Estimation of users’ parameters
1: Choose 𝜀 > 0 small enough and 𝑀 > 0 large enough
2: for 𝑖 = 1,… , 𝑁 do
3: Choose a job ℎ ∈ 𝐽𝑖4: 𝑝𝑖ℎ ← 𝑀 𝑃𝑈

ℎ
5: 𝑝𝑖𝑗 ← 𝑃𝐿

𝑗 for any 𝑗 ∈ 𝐽𝑖 ⧵ {ℎ}
6: The platform sends the prices to user 𝑢𝑖7: User 𝑢𝑖 sends her/his optimal solution 𝑡𝑖 to the platform
8: 𝑇𝑖 ← 𝑡𝑖ℎ9: for 𝑘 ∈ 𝐽𝑖 do

10: 𝑝𝑖𝑗 ← 𝑃𝐿
𝑗 ∀𝑗 ∈ 𝐽𝑖 ⧵ {𝑘}

11: repeat
12: The platform randomly picks 𝑝′𝑖𝑘 ∈ [𝑃𝐿

𝑘 , 𝑃𝑈
𝑘 ]

13: 𝑝𝑖𝑘 ← 𝑝′𝑖𝑘
14: The platform sends the prices to user 𝑢𝑖15: User 𝑢𝑖 sends her/his optimal solution 𝑡′𝑖 to the platform
16: until 0 < 𝑡′𝑖𝑘 < 𝑇𝑖
17: 𝑝′′𝑖𝑘 ← 𝑝′𝑖𝑘 + 𝜀
18: The platform sends 𝑝′′𝑖𝑘 to user 𝑢𝑖
19: User 𝑢𝑖 sends her/his optimal solution 𝑡′′𝑖𝑘 to the platform
20: if 𝑡′′𝑖𝑘 = 𝑇 then
21: 𝑝′′𝑖𝑘 ← 𝑝′𝑖𝑘 − 𝜀
22: The platform sends 𝑝′′𝑖𝑘 to user 𝑢𝑖
23: User 𝑢𝑖 sends her/his optimal solution 𝑡′′𝑖𝑘 to the platform
24: end if

25: 𝑎𝑖𝑘 ←
𝑝′′𝑖𝑘 − 𝑝′𝑖𝑘
𝑡′′𝑖𝑘 − 𝑡′𝑖𝑘

26: 𝑏𝑖𝑘 ← 𝑝′𝑖𝑘 − 𝑡′𝑖𝑘
𝑝′′𝑖𝑘 − 𝑝′𝑖𝑘
𝑡′′𝑖𝑘 − 𝑡′𝑖𝑘

27: end for
28: end for

(𝑡∗𝑖𝑘) to a region where the relations 𝑡∗𝑖𝑘 = (𝑝𝑖𝑘 − 𝑏𝑖𝑘)∕𝑎𝑖𝑘 and
𝑡∗𝑖𝑗 = 0, for any 𝑗 ≠ 𝑘, hold (e.g., in the case of two jobs, the
user best time distribution lays in squared rectangles in Figure
2). The platform sets the minimum price 𝑃𝐿

𝑗 for jobs 𝑗 ≠ 𝑘,
so that the optimal time 𝑡∗𝑖𝑗 = 0 for any 𝑗 ≠ 𝑘. Moreover, it
chooses a random price 𝑝′𝑖𝑘 in interval [𝑃𝐿

𝑘 , 𝑃𝑈
𝑘 ] for job 𝑘. It

sends the chosen prices to user 𝑢𝑖 until the optimal time 𝑡′𝑖𝑘for job 𝑘 is greater than zero and strictly lower than 𝑇𝑖 (lines
10-16). Formula (14) guarantees that 𝑎𝑖𝑘 and 𝑏𝑖𝑘 are related
through the following relation:

𝑡′𝑖𝑘 =
𝑝′𝑖𝑘 − 𝑏𝑖𝑘

𝑎𝑖𝑘
. (15)

Then, the platform increases the price 𝑝′𝑖𝑘 by a small number
𝜀 (line 17) to obtain a new optimal time 𝑡′′𝑖𝑘 ∈ (0, 𝑇𝑖), so
that a relation similar to (15) holds. The platform sends the
new price 𝑝′′𝑖𝑘 to 𝑢𝑖 (line 18). Note that, if the the user replies
with 𝑡′′𝑖𝑘 = 𝑇𝑖, then the platform will decrease 𝑝′𝑖𝑘 by 𝜀 to
receive an optimal time different from 𝑇𝑖 (lines 21-22, this
scenario corresponds to the gray areas in Figure 2 for the
two jobs scenario). Finally, the platform can compute the
parameters 𝑎𝑖𝑘 and 𝑏𝑖𝑘 (lines 25-26) by solving the following

linear system in the variables 𝑎𝑖𝑘 and 𝑏𝑖𝑘:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑡′𝑖𝑘 =
𝑝′𝑖𝑘 − 𝑏𝑖𝑘

𝑎𝑖𝑘
,

𝑡′′𝑖𝑘 =
𝑝′′𝑖𝑘 − 𝑏𝑖𝑘

𝑎𝑖𝑘
.

(16)

5. A solution approach based on a single-level
optimization reformulation
In this section, we show that the Stackelberg game (6)–

(10) can be equivalently reformulated as a Mixed-Integer
Nonlinear optimization problem.

First, we notice that, for each 𝑖 = 1,… , 𝑁 , the vector
𝑡∗𝑖 (𝐩) is well-defined for any price vector 𝐩, since the max
problem in (7) has a unique optimal solution. Moreover,
exploiting the Karush-Kuhn-Tucker (KKT) optimality condi-
tions, constraint (7) is equivalent to the following system of
equalities and inequalities:

2𝑎𝑖𝑘𝑡∗𝑖𝑘 + 𝑏𝑖𝑘 − 𝑝𝑖𝑘 + 𝜆𝑖 ≥ 0 ∀ 𝑘 ∈ 𝐽𝑖,
𝑡∗𝑖𝑘 ≥ 0 ∀ 𝑘 ∈ 𝐽𝑖,

𝑡∗𝑖𝑘
[

2𝑎𝑖𝑘𝑡∗𝑖𝑘 + 𝑏𝑖𝑘 − 𝑝𝑖𝑘 + 𝜆𝑖
]

= 0 ∀ 𝑘 ∈ 𝐽𝑖,
𝜆𝑖 ≥ 0,
∑

𝑘∈𝐽𝑖

𝑡∗𝑖𝑘 ≤ 𝑇𝑖,

𝜆𝑖

(

𝑇𝑖 −
∑

𝑘∈𝐽𝑖

𝑡∗𝑖𝑘

)

= 0,

where 𝜆𝑖 is the KKT multiplier associated to the user 𝑢𝑖’stime budget constraint.
The latter nonlinear system is in turn equivalent to the

following system containing binary variables:
0 ≤ 𝑡∗𝑖𝑘 ≤ 𝑀𝑖𝑘 𝑦𝑖𝑘 ∀ 𝑘 ∈ 𝐽𝑖,

0 ≤ 2𝑎𝑖𝑘𝑡∗𝑖𝑘 + 𝑏𝑖𝑘 − 𝑝𝑖𝑘 + 𝜆𝑖 ≤ 𝑀𝑖𝑘 (1 − 𝑦𝑖𝑘) ∀ 𝑘 ∈ 𝐽𝑖,

0 ≤ 𝜆𝑖 ≤ 𝑀 ′
𝑖 𝑥𝑖,

0 ≤ 𝑇𝑖 −
∑

𝑘∈𝐽𝑖 𝑡
∗
𝑖𝑘 ≤ 𝑀 ′

𝑖 (1 − 𝑥𝑖),

𝑦𝑖𝑘 ∈ {0, 1} ∀ 𝑘 ∈ 𝐽𝑖,

𝑥𝑖 ∈ {0, 1},

where the constants 𝑀𝑖𝑘 and 𝑀 ′
𝑖 have to be chosen suffi-

ciently large, e.g.,
𝑀𝑖𝑘 ≥ max

{

𝑇𝑖, 2𝑎𝑖𝑘𝑇𝑖 + 𝑏𝑖𝑘 − 𝑝𝑈𝑘 + 𝜆𝑖
}

and 𝑀 ′
𝑖 ≥ max

{

𝜆𝑖, 𝑇𝑖
}.

Therefore, the Stackelberg game (6)–(10) is equivalent to
the following Mixed-Integer Nonlinear optimization problem:

max
(𝐩,𝐭,𝜆,𝐱,𝐲)

𝐾
∑

𝑘=1
𝜙𝑘(𝐭) −

𝑁
∑

𝑖=1

∑

𝑘∈𝐽𝑖

𝑝𝑖𝑘 𝑡𝑖𝑘 (17)
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subject to:
0 ≤ 𝑡𝑖𝑘 ≤ 𝑀𝑖𝑘 𝑦𝑖𝑘 ∀ 𝑖, ∀ 𝑘 ∈ 𝐽𝑖 (18)
0 ≤ 2𝑎𝑖𝑘𝑡𝑖𝑘 + 𝑏𝑖𝑘 − 𝑝𝑖𝑘 + 𝜆𝑖 ∀ 𝑖, ∀ 𝑘 ∈ 𝐽𝑖 (19)
2𝑎𝑖𝑘𝑡𝑖𝑘 + 𝑏𝑖𝑘 − 𝑝𝑖𝑘 + 𝜆𝑖 ≤ 𝑀𝑖𝑘 (1 − 𝑦𝑖𝑘)

∀ 𝑖, ∀ 𝑘 ∈ 𝐽𝑖 (20)
0 ≤ 𝜆𝑖 ≤ 𝑀 ′

𝑖 𝑥𝑖 ∀ 𝑖 (21)
0 ≤ 𝑇𝑖 −

∑

𝑘∈𝐽𝑖

𝑡𝑖𝑘 ≤ 𝑀 ′
𝑖 (1 − 𝑥𝑖) ∀ 𝑖 (22)

𝑁
∑

𝑖=1

∑

𝑘∈𝐽𝑖

𝑝𝑖𝑘 𝑡𝑖𝑘 ≤ 𝐵 (23)

𝑡𝐿𝑘 ≤
∑

𝑖∶ 𝑘∈𝐽𝑖

𝑡𝑖𝑘 ≤ 𝑡𝑈𝑘 ∀ 𝑘 = 1,… , 𝐾 (24)

𝑃𝐿
𝑘 ≤ 𝑝𝑖𝑘 ≤ 𝑃𝑈

𝑘 ∀ 𝑖, ∀ 𝑘 ∈ 𝐽𝑖 (25)
𝜆𝑖 ≥ 0 ∀ 𝑖 (26)
𝑥𝑖 ∈ {0, 1} ∀ 𝑖 (27)
𝑦𝑖𝑘 ∈ {0, 1} ∀ 𝑖, ∀ 𝑘 ∈ 𝐽𝑖. (28)

From a theoretical point of view, since the above Mixed-
Integer Nonlinear program is equivalent to the Stackelberg
game (6)–(10), the platform can use any commercial global
optimization tool for its solution. However, a global optimal
solution of the problem (17)–(28) is computationally very
hard to find in practice, since the objective function (17) is
not concave, constraint (23) is not convex, and the variables
𝐱 and 𝐲 are binary. In the next section, we propose a heuristic
algorithm to find an approximate solution of the Stackelberg
game (6)–(10). Numerical experiments in Section 7 will show
that the proposed heuristic algorithm is computationally more
efficient than the state-of-the-art global solver BARON [43].

6. A heuristic solution approach
In this section, we describe a heuristic algorithm (see

Algorithm 2) for the approximate solution of the Stackelberg
game (6)–(10).

First, Algorithm 2 estimates the users’ parameters (line
1) by applying Algorithm 1 discussed in Section 4. This step
will allow the platform to compute the users’ optimal times
𝑡∗(𝐩) for any price vector 𝐩 by Theorem 4.1.

Next, an initial feasible price vector 𝐩 is found (line 6) by
means of the Initialization function (see Algorithm 3). The
Initialization function tries to increase the price of each job to
incentivise users to participate as far as the constraints (8), (9)
and (10) are not violated. If the optimal time vector 𝐭∗ does not
satisfy the time constraint (10) for a job 𝑘, then the platform
increases 𝑝𝑖𝑘 by 𝛿 until the time constraints will be satisfied
(lines 6-11). On the other hand, if the budget constraint (9) is
not satisfied, the platform decreases any price 𝑝𝑖𝑘 by 𝛿 until
the budget constraint will be satisfied (lines 13-18). Finally,
the Initialization function computes two lists Δ𝐹+ and Δ𝐹−

containing the incremental ratios of the platform net utility

Algorithm 2 Heuristic algorithm
1: Estimate the users’ parameters by using Algorithm 1
2: 𝛼 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 0.1)
3: 𝛽1 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 0.5), 𝛽2 ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝛽1, 1)4: 𝛾 ← 𝑟𝑎𝑛𝑑𝑜𝑚(1, 2)
5: 𝛿 ← 𝛼min

𝑘∈𝐽
{𝑃𝑈

𝑘 − 𝑃𝐿
𝑘 }

6: (𝐩,Δ𝐹+,Δ𝐹−) ← INITIALIZATION(𝛿)
7: Compute platform platform net utility 𝐹 (𝐩) by (6)
8: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹 ← 𝐹 (𝐩)
9: 𝑧 ← 0, 𝑓𝑙𝑎𝑔 ← 𝐹𝑎𝑙𝑠𝑒

10: while (𝑧 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) AND (𝑓𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒) do
11: 𝛿 ← 𝛼min

𝑘∈𝐽
{𝑃𝑈

𝑘 − 𝑃𝐿
𝑘 }

12: (𝑁𝑒𝑤𝐩, 𝑁𝑒𝑤Δ𝐹+, 𝑁𝑒𝑤Δ𝐹−) ← UPDATE(𝐩,Δ𝐹+,Δ𝐹−, 𝛿)
13: Δ𝐹+ ← 𝑁𝑒𝑤Δ𝐹+

14: Δ𝐹− ← 𝑁𝑒𝑤Δ𝐹−

15: if 𝐹 (𝑁𝑒𝑤𝐩) > 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹 then
16: 𝐩 ← 𝑁𝑒𝑤𝐩
17: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹 ← 𝐹 (𝑁𝑒𝑤𝐩)
18: 𝛼 ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝛼, 𝛾𝛼)
19: else
20: 𝛼 ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝛽1𝛼, 𝛽2𝛼)21: if 𝛼 < 𝛼𝑡𝑜𝑙 then
22: 𝑓𝑙𝑎𝑔 ← 𝑇 𝑟𝑢𝑒
23: end if
24: end if
25: 𝑧 + +
26: end while

Algorithm 3 Initialization Function
1: function INITIALIZATION(𝛿)
2: 𝑝𝑖𝑘 ← 𝑃𝐿

𝑘 + 𝛿 for any 𝑖 = 1,… , 𝑁, 𝑘 ∈ 𝐽𝑖
3: Compute 𝑡∗(𝐩) by Theorem 4.1
4: while constraints (8), (9), (10) are not satisfied do
5: for 𝑘 ∈ 𝐽 do
6: if

∑

𝑖∶𝑘∈𝐽𝑖
𝑡∗𝑖𝑘(𝐩) < 𝑡𝐿𝑘 then

7: repeat
8: 𝑝𝑖𝑘 ← 𝑝𝑖𝑘 + 𝛿 for any 𝑖 such that 𝑘 ∈ 𝐽𝑖9: Compute 𝑡∗(𝐩)

10: until
∑

𝑖∶𝑘∈𝐽𝑖
𝑡∗𝑖𝑘(𝐩) ≥ 𝑡𝐿𝑘

11: end if
12: end for

13: if
𝑁
∑

𝑖=1

∑

𝑘∈𝐽𝑖
𝑝𝑖𝑘𝑡∗𝑖𝑘(𝐩) > 𝐵 then

14: repeat
15: 𝑝𝑖𝑘 ← 𝑝𝑖𝑘 − 𝛿 for any 𝑖 = 1,… , 𝑁, 𝑘 ∈ 𝐽𝑖16: Compute 𝑡∗(𝐩)

17: until
𝑁
∑

𝑖=1

∑

𝑘∈𝐽𝑖
𝑝𝑖𝑘𝑡∗𝑖𝑘(𝐩) ≤ 𝐵

18: end if
19: end while
20: for 𝑖 = 1,… , 𝑁 do
21: for 𝑘 ∈ 𝐽𝑖 do
22: 𝐩′ ← 𝐩
23: 𝑝′𝑖𝑘 ← 𝑝𝑖𝑘 + 𝛿

24: Δ𝐹+
𝑖𝑘 ←

𝐹 (𝐩′) − 𝐹 (𝐩)
𝛿

25: 𝐩′ ← 𝐩
26: 𝑝′𝑖𝑘 ← 𝑝𝑖𝑘 − 𝛿

27: Δ𝐹−
𝑖𝑘 ←

𝐹 (𝐩′) − 𝐹 (𝐩)
𝛿

28: end for
29: end for
30: Sort lists Δ𝐹+ and Δ𝐹− decreasingly
31: return (𝐩,Δ𝐹+,Δ𝐹−)
32: end function
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𝐹 at the found price vector 𝐩 along any direction. The lists
Δ𝐹+ and Δ𝐹− are then sorted in descending order.

At each iteration, Algorithm 2 sets the step size 𝛿 (line
11) and find a new feasible price vector by means of the
Update function (see Algorithm 4). The Update function is
inspired to the directional direct-search algorithm that is a
well known solution approach in the field of derivative-free
optimization [58]. The Update function exploits the listsΔ𝐹+

and Δ𝐹− to get the new price vector. The two lists contain, at
each iteration, approximate values of the incremental ratios
of 𝐹 at the current price with the current step size along any
direction. The Update function starts by changing only the
price that (hopefully) provides the maximum platform net
utility increase. If this maximum is achieved at Δ𝐹+

𝑖𝑘, for
some user 𝑢𝑖 and job 𝑘, then the price 𝑝𝑖𝑘 is increased by 𝛿
(line 11), otherwise it is decreased by 𝛿 (line 23). Then, if
the new price vector 𝐩′ is feasible and provides a platform
net utility greater than the current one (line 12 or 24), then
the procedure stops, returns 𝐩′ (line 13 or 25) and update the
value of Δ𝐹−

𝑖𝑘 (if 𝑝𝑖𝑘 has been increased by 𝛿, see line 14) or
Δ𝐹+

𝑖𝑘 (if 𝑝𝑖𝑘 has been decreased by 𝛿, see line 26). Otherwise,
if the new price 𝐩′ is not feasible or it does not provide a
platform net utility greater than the current one, then the
values of Δ𝐹+

𝑖𝑘 or Δ𝐹−
𝑖𝑘 are updated (line 17 or 29) and the

next element in the list Δ𝐹+ or Δ𝐹− will be analysed (lines
18 or 30).

If the price vector 𝑁𝑒𝑤𝐩 returned by the Update function
gives a net utility greater than the current one, then the
iteration is considered successful and the step size 𝛿 is in-
creased (Algorithm 2 lines 16-18), otherwise it is considered
unsuccessful and 𝛿 is decreased (line 20). Algorithm 2 stops
when either the step size is smaller than a given threshold
(lines 21-23) or the maximum number of iterations is reached.

As discussed in [58], a too large step size can cause
the algorithm to overstep a local optimum, while a large
enough step size leads to a fast convergence. On the other
hand, a small step size will take a long time to converge.
Therefore, we use a large step size at first iterations, then if
the platform net utility does not improve, it means that the
step size should be decreased. Vice versa, if the platform net
utility increases, a 𝛿 increase in next iteration can lead the
algorithm to converge faster. By this argument, we can keep
the advantage of both large and small step sizes while the
search advances. The impact of the variable step size adoption
on the convergence of Algorithm 2 and a comparison with a
fixed step size approach will be discussed in Section 7.2.3.

7. Performance evaluation
In this section, we present numerical experiments to

evaluate the performance of our approach. The experimental
setup including the characteristics of the sensing platform
and mobile users is introduced in Section 7.1. The scalability
analysis and the quality of the solutions that can be achieved
by our approach are reported in Section 7.2.
All experiments were run on a Linux server machine with
8-cores Intel(R) Xeon(R) CPU 2.40GHz and 16 GB memory.

Algorithm 4 Update Function
1: function UPDATE(𝐩,Δ𝐹+,Δ𝐹−, 𝛿)
2: 𝑁𝑒𝑤𝐩 ← 𝐩
3: 𝑁𝑒𝑤Δ𝐹+ ← Δ𝐹+

4: 𝑁𝑒𝑤Δ𝐹− ← Δ𝐹−

5: 𝑓𝑙𝑎𝑔 ← 𝐹𝑎𝑙𝑠𝑒, 𝑟 ← 1, 𝑠 ← 1
6: while (𝑓𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒) AND (𝑟 ≤ |Δ𝐹+

| OR 𝑠 ≤ |Δ𝐹−
|) do

7: 𝑀 ← max between 𝑟-th elem. of Δ𝐹+ and 𝑠-th elem. of Δ𝐹−

8: if 𝑀 is equal to the 𝑟-th element of Δ𝐹+ then
9: Let Δ𝐹+

𝑖𝑘 be the 𝑟-th element of Δ𝐹+

10: 𝐩′ ← 𝐩
11: 𝑝′𝑖𝑘 ← 𝑝𝑖𝑘 + 𝛿
12: if 𝐩′ satisfies (8), (9), (10) AND 𝐹 (𝐩′) > 𝐹 (𝐩) then
13: 𝑁𝑒𝑤𝐩 ← 𝐩′

14: 𝑁𝑒𝑤Δ𝐹−
𝑖𝑘 ←

𝐹 (𝐩) − 𝐹 (𝐩′)
𝛿

15: 𝑓𝑙𝑎𝑔 ← 𝑇 𝑟𝑢𝑒
16: else

17: 𝑁𝑒𝑤Δ𝐹+
𝑖𝑘 ←

𝐹 (𝐩′) − 𝐹 (𝐩)
𝛿

18: 𝑟 + +
19: end if
20: else
21: Let Δ𝐹−

𝑖𝑘 the 𝑠-th element of Δ𝐹−

22: 𝐩′ ← 𝐩
23: 𝑝′𝑖𝑘 ← 𝑝𝑖𝑘 − 𝛿
24: if 𝐩′ satisfies (8), (9), (10) AND 𝐹 (𝐩′) > 𝐹 (𝐩) then
25: 𝑁𝑒𝑤𝐩 ← 𝐩′

26: 𝑁𝑒𝑤Δ𝐹+
𝑖𝑘 ←

𝐹 (𝐩) − 𝐹 (𝐩′)
𝛿

27: 𝑓𝑙𝑎𝑔 ← 𝑇 𝑟𝑢𝑒
28: else

29: 𝑁𝑒𝑤Δ𝐹−
𝑖𝑘 ←

𝐹 (𝐩′) − 𝐹 (𝐩)
𝛿

30: 𝑠 + +
31: end if
32: end if
33: end while
34: Sort lists 𝑁𝑒𝑤Δ𝐹+ and 𝑁𝑒𝑤Δ𝐹− decreasingly
35: return (𝑁𝑒𝑤𝐩,𝑁𝑒𝑤Δ𝐹+,𝑁𝑒𝑤Δ𝐹−)
36: end function

We used multiprocessing to support the solution of both
the Stackelber game reformulation proposed in Section 5
(enabling the multithreading option for the BARON 19.12.7
solver) and the heuristic approach presented in Section 6.
7.1. Experiments setup

In our experiments, we consider a sensing area where
mobile users are randomly distributed. Even if the solutions
we propose are general and can cope with an arbitrary number
of jobs, to perform a fair comparison with the work proposed
in [1], in a first scenario we assume that there are two types of
jobs 𝐽 = {1, 2}. Furthermore, we consider a second scenario
including three types of jobs 𝐽 = {1, 2, 3}. Due to the un-
availability of the parameters used even in very popular MCS
applications such as Bemyeyes [22] or Pokemon Go [23],
the parameters of the sensing platform utility functions and
mobile users’ cost functions are generated randomly as in
previous literature proposals [1, 36, 37, 38, 50, 51, 52, 53] and
distributed as reported in Table 2. To have a fair comparison
with [1], we choose the same range of the random parameters
in this previous work. To assess the performance in a wide set
of scenarios of practical interest, the comparison is performed
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Table 2
Simulation parameters

Parameter Value

𝑁 10, 100, 500, 1000, 5000
𝜔𝑖𝑘 Uniform distribution in (0, 1)
𝑎𝑖𝑘 Uniform distribution in (1, 2)
𝑏𝑖𝑘 Uniform distribution in (0.5, 1)
𝑐𝑖𝑘 0
𝑇𝑖 Uniform distribution in (2, 3)
𝜇𝑘 10, 30, 50
𝐵 equal to 𝑁
𝑃 𝑈
𝑘 5

𝑃 𝐿
𝑘 0.5

𝑡𝐿𝑘 0.3
𝑡𝑈𝑘 3
𝛼𝑡𝑜𝑙 0.0001

for both small and large systems. The number of users has
been set equal to 𝑁 = 10, 100, 500, 1000, and 5000. For
a fixed problem instance size, we generated 20 random
instances and in the following every method relevant metrics
are evaluated as the average across 20 instances.

For what concerns the connectivity of the mobile users,
we assume that the users participating to the sensing jobs are
connected through 4G or 5G networks. As network perfor-
mance metric, we consider only the number of exchanged
messages. Indeed, both the work in [1] and our approach
require to exchange a single float value in the interaction
between the provider and each mobile user. In [1], at each
iteration the platform solves the primal problem and sends
to each mobile user the current value of the Lagrangian
multipliers of the objective function of the primal problem
which are the decision variables of the corresponding dual
problem. Vice versa, each mobile user solves a local dual
sub-problem and sends back to the platform the time she/he
is willing to devote to the jobs. The time required to send
and receive a single float number can be estimated, as a first
approximation, by the round trip time of the messages that
ranges between 50-100 ms for 4G networks (see, e.g., [59])
and has a target value of 1 ms for the 5G standard [60, 61]. As
it will be discussed in Section 7.2.1, network transfer times
are significantly larger than the computation time required to
solve the local sub-problems (in the order of ms). Hence, the
number of exchanged messages is a representative metric to
compare our solution with the approach in [1].

Overall in the comparison with the dual decomposition
approach, we performed 240 simulations which required
about 700 CPU hours in our server.
7.2. Experimental results

In this section, we compare our heuristic algorithm with
the dual decomposition approach proposed in [1] and the
BARON solver [43] (which has been used to solve the
reformulation reported in Section 5) in Sections 7.2.1 and
7.2.2, respectively. The impact of the dynamic step size on
the convergence of our algorithm is analyzed in Section 7.2.3.

7.2.1. Comparison with the dual decomposition
approach

To validate our approach, we compare the performance of
our heuristic method with the dual decomposition approach
proposed in [1]. KNITRO 12.0 [62] has been used as
nonlinear optimization solver for the solution of the [1]
optimization problem on the platform side and GUROBI
9.0.2 [63] as a quadratic program solver for the solution
of the [1] optimization problem on the user side. In the
dual decomposition method we have used the multithreading
option for KNITRO to solve the platform side optimization
problem. The comparison considers as performance metrics:
i) the number of exchanged messages, ii) the running time,
and iii) the platform net utility. To have a fair comparison,
since the approach in [1] do not consider constraint families
(8), (9) and (10), they have been relaxed. Here we limit
our results to 𝑁 = 1000 users, since instances of that size
required more than one million messages to converge with
the dual decomposition approach. The results are as follows:

• Number of messages
The average number of messages sent among the users
and the platform (across 20 random instances for each
user set considering two types of jobs) are shown in
Figure 3. As can be seen, the number of messages in
the dual decomposition approach is significantly larger
than in our method. Indeed, the dual decomposition
approach (since the platform is not aware of the users’
parameters) has to solve a distributed optimization
problem and this leads to a large number of messages to
update the Lagrangian multipliers and users’ job times.
Vice versa, with our parameter estimation algorithm,
the platform estimates users’ parameters within the
initialization phase after sending and receiving a
few messages. Then, after estimating the parameters
by solving the 2x2 linear equation system (16), the
platform can solve the problem in a centralized way
by the proposed heuristic algorithm. The experiments
show that our method allows to reduce the average
number of messages by a factor ranging between 53 (for
10 users) and 80 (for 1000 users). Hence, our solution
approach is more scalable than the work proposed
in [1], since the wide area network is the bottleneck
in the reference distributed systems (indeed, the round
trip time between a user device and the platform is
higher than the time required to compute Lagrangian
multiplier updates in [1], see also the next point).
Note that the number of network messages reduction
increases with the number of users.

• Running time
According to the dual decomposition distributed algo-
rithm proposed in [1], at each iteration the platform
sends a message including the current Lagrangian
multiplier value to all users. On the other side, the users
solve their dual local optimization problem and send
their optimal time as a result to the platform. Users can
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Figure 3: Average number of messages comparison
between the dual decomposition approach and our
heuristic algorithm.

Figure 4: Average running time comparison between the
dual decomposition approach and our heuristic algorithm.

solve their optimization problem in a parallel manner.
Therefore, since the platform updates are performed
synchronously, [1] overall performance will be affected
by the time of the last message received by the platform
at each iteration.
Since wide area networks round trip times are usually
characterised by large variability at least in current
4G networks [59] and we have already shown that our
approach reduces the number of exchanged messages,
for comparison purposes at each iteration performed
by [1], we neglect the network round trip time and we
just consider the computation time of the platform and
the maximum computation time of users.
The average running time for the different number of
users 𝑁 are shown in Figure 4. The experiments show
that the adoption of our heuristic method can reduce
the average running time significantly, by more than
23 times for 10 users up to more than 650 times for
1000 users. Therefore, even neglecting the network
delay and just considering the computation time, our
approach outperforms the dual decomposition method
in [1].

Figure 5: Platform net utility ratio of our heuristic
algorithm with respect to the dual decomposition
approach.

• Platform Net Utility
Figure 5 shows a comparison between the ratio of
platform net utility in the heuristic method to the one in
dual decomposition approach for different value of 𝜇
equal to 10, 30 and 50. Since the platform is the game
leader, our approach achieves a platform net utility
improvement between 0.6% and 20.5% on average.

As final remark, the experimental results show that our
Stackelberg game approach and the heuristic method excel
with respect to [1] according to every performance metric of
interest: not only we reduce the computation time by at least
a factor 23 and the number of messages by at least a factor
53, but we also obtain a platform net utility increase.

As a final remark, in our work (as in most of distributed
approaches such as [1, 36]), we assume that the end users
will not move from the sensing job area during all steps of the
MCS. According to Figure 4, in our centralized approach, for
1000 user (i.e., a scenario of significant size), the users have to
stay about 52 seconds in the job coverage area to receive the
optimal time and price that is reasonable in practice, while in
the dual decomposition approach proposed in [1], they have
to stay about 9 hours.
7.2.2. Comparison with the BARON solver

In this section, we compare the performance of the heuris-
tic algorithm with the solution of the problem reformulation
discussed in Section 5, which can be achieved by the BARON
solver in both scenarios of two and three jobs. BARON
is a state of the art commercial global solver for Mixed-
Integer Nonlinear Programs [43]. Since the problem (17)–
(28) has a non-concave objective function and includes non-
convex constraints, only relying on local search procedures,
as the direct-search, might lead to poor local sub-optima.
BARON, as a global solver, overcomes this weakness through
interval analysis and range reduction techniques (i.e., linear
programming, duality, and constraint propagation) within
a branch-and-bound framework to find global solutions to
non-convex models.

Hamta Sedghani: Preprint submitted to Elsevier Page 11 of 18



An Incentive Mechanism for Mobile Crowdsensing

In this experiment, we reintroduce the price, budget and
time constraints for the platform i.e., constraints (8), (9) and
(10). To have a fair comparison, we have also used multi-
threading to run both our heuristic algorithm and the BARON
solver.

• Two jobs scenario
The average results achieved by considering 10 random
instances and by varying the number of users 𝑁 for
the two jobs scenario are shown in Figure 6. The
figure reports the average platform net utility versus
the execution time. It can be noticed that the average of
platform net utility in our proposed algorithm is near to
BARON’s result. For 10 users, the heuristic algorithm’s
result is about 2.2% larger than BARON but when
the number of users 𝑁 is in the range [100, 5000],
BARON achieves a solution with a platform net utility
by 0.6% and 2.9% better than the heuristic algorithm.
According to Figure 6, our heuristic algorithm can
reach an acceptable result in few seconds. The dotted
line in the figures for BARON’s result means that
BARON can not find a feasible solution in that time
limit. Hence, our algorithm acts much faster than
BARON especially for large scale systems: for 1000
users our algorithm can find a good solution after about
5 seconds, while BARON can find a feasible solution
near to optimal after about 39 seconds. For 5000 users,
the heuristic algorithm can find a good solution after 8
seconds, whereas BARON can find feasible solutions
for 9 instances after 258 seconds, while for one out
of 10 instances the solution cannot be found in 1000
seconds.

• Three jobs scenario
The average results achieved by considering 10 random
instances and by varying the number of users 𝑁 for the
three jobs scenario are shown in Figure 7. Results show
that the average of the platform net utility obtained by
BARON and our proposed algorithm are very close.
Up to 1000 users the heuristic algorithm’s result is
in the very worst case lower than 2% w.r.t. BARON
while for 5000 users results are about 1.4% larger on
average. As it can be seen, our algorithm acts much
faster than BARON especially for large scale systems.
According to Figure 7b, for 100 users BARON can
find a feasible solution only for two out of 10 instances
after about one second, while our algorithm can find
a near-optimal solution for all instances after about
0.5 second. As it can be seen in Figure 7c, for 500
users BARON can find a feasible solution for five out
of 10 instances after about 19 seconds, whereas our
algorithm find a near-optimal solution for all instances
after about two seconds.
Finally, for 5000 users, our algorithm can find the
optimal solution after 13 seconds, whereas BARON
can find a lower solution after 570 seconds.

7.2.3. Impact of dynamic step size on the convergence
In this section, we compare the impact of the dynamic step

size and fixed step size on the convergence of our algorithm.
In particular, we set 𝛼𝑡𝑜𝑙 = 0.0001 for the variable version,
while we set 𝛿𝑓𝑖𝑥𝑒𝑑 = 0.1, 0.2, 0.3, 1 and 2 in the fixed step
version. In this way, we investigated multiple values of 𝛿𝑓𝑖𝑥𝑒𝑑which corresponds to the values assumed by 𝛿 in the variable
step size runs. As an example, a representative trace for
100 users is depicted in Figure 8. It can be noticed that the
dynamic step size not only can achieve a better result but also
can be faster than the fixed step size version.

8. Conclusions
In this paper, we have designed a framework and an

incentive mechanism based on a Stackelberg game for
mobile crowdsensing systems. Different from other literature
proposals, we have introduced a budget constraint for the
platform and developed a centralized method for the game
solution since, thanks to KKT conditions, we can estimate
the users utility function parameters. Therefore, the platform
is able to solve its optimization problem in a centralized
manner instead of exchanging a lot of messages as requested
by distributed methods. Furthermore, we have proposed an
efficient heuristic algorithm to achieve good approximated
solutions of the game. Results have demonstrated that our
approach outperforms current literature proposals and is
much faster than the BARON solver especially in large scale
systems.

Future works will extend our method to general utility
functions for the end users (not necessarily quadratic) and
develop models where users can switch between 4G/5G and
Wi-Fi connections. Finally, scenarios where a fraction of
users participating to the game are not truthful will be also
investigated, proposing some protection mechanisms for the
platform provider.

APPENDIX

A. Proof of Theorem 4.1
Proof. Problem (11)–(13) has a strongly concave objective
function and linear constraints, thus its unique solution is the
unique solution of the corresponding Karush-Kuhn-Tucker
(KKT) system:

𝑎𝑖𝑘𝑡𝑖𝑘 − 𝑑𝑖𝑘 + 𝜆 − 𝜇𝑘 = 0, 𝑘 ∈ 𝐽𝑖,

𝜆 ≥ 0,
∑

𝑘∈𝐽𝑖

𝑡𝑖𝑘 ≤ 𝑇𝑖, 𝜆

(

∑

𝑘∈𝐽𝑖

𝑡𝑖𝑘 − 𝑇𝑖

)

= 0,

𝑡𝑖𝑘 ≥ 0, 𝜇𝑘 ≥ 0, 𝑡𝑖𝑘𝜇𝑘 = 0, 𝑘 ∈ 𝐽𝑖,

for some multipliers 𝜆 and 𝜇. The KKT system can be
equivalently rewritten as:

𝑎𝑖𝑘𝑡𝑖𝑘 − 𝑑𝑖𝑘 + 𝜆 ≥ 0 𝑘 ∈ 𝐽𝑖,
𝑡𝑖𝑘 ≥ 0 𝑘 ∈ 𝐽𝑖,
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(a) Comparison for 10 users. (b) Comparison for 100 users.

(c) Comparison for 500 users. (d) Comparison for 1000 users.

(e) Comparison for 5000 users.
Figure 6: Comparison between the solutions obtained by BARON solver and the heuristic algorithm varying the number of users in
the two jobs scenario.

𝑡𝑖𝑘(𝑎𝑖𝑘𝑡𝑖𝑘 − 𝑑𝑖𝑘 + 𝜆) = 0 𝑘 ∈ 𝐽𝑖,
𝜆 ≥ 0,
∑

𝑘∈𝐽𝑖

𝑡𝑖𝑘 ≤ 𝑇𝑖,

𝜆

(

∑

𝑘∈𝐽𝑖

𝑡𝑖𝑘 − 𝑇𝑖

)

= 0.

We identify the following cases:
a) If 𝑘 ∈ 𝐽−

𝑖 , then 𝑡∗𝑖𝑘 = 0 must hold. In fact, if 𝑡∗𝑖𝑘 > 0,
then the complementarity slackness condition implies
𝑎𝑖𝑘𝑡∗𝑖𝑘 − 𝑑𝑖𝑘 + 𝜆 = 0. On the other hand, 𝑑𝑖𝑘 ≤ 0 implies
that 𝑎𝑖𝑘𝑡∗𝑖𝑘 − 𝑑𝑖𝑘 + 𝜆 ≥ 𝑎𝑖𝑘𝑡∗𝑖𝑘 > 0 which is a contradiction.

b) Let us consider indices 𝑘 ∈ 𝐽+
𝑖 . We notice that if 𝜆 ≥ 𝑑𝑛 >

0, then 𝑡∗𝑖𝑘 = 0 for any 𝑘 ∈ 𝐽+
𝑖 and ∑

𝑘∈𝐽𝑖 𝑡
∗
𝑖𝑘 = 𝑇𝑖, which

is impossible. Therefore, 𝜆 < 𝑑𝑛 holds. We distinguish the
following 𝑛 + 1 cases: 𝜆 = 0, 𝜆 ∈ (0, 𝑑𝑖1), 𝜆 ∈ [𝑑𝑖1, 𝑑𝑖2),. . . , 𝜆 ∈ [𝑑𝑖,𝑛−1, 𝑑𝑖𝑛).

• If 𝜆 = 0, then 𝑎𝑖𝑘𝑡∗𝑖𝑘 ≥ 𝑑𝑖𝑘 > 0 holds for any 𝑘 ∈ 𝐽+
𝑖 ,

thus 𝑡∗𝑖𝑘 > 0 and, in particular, we get 𝑡∗𝑖𝑘 = 𝑑𝑖𝑘∕𝑎𝑖𝑘

for any 𝑘 = 1,… , 𝑛. If
𝑛
∑

𝑘=1

𝑑𝑖𝑘
𝑎𝑖𝑘

≤ 𝑇𝑖, then (𝑡∗𝑖𝑘)𝑘∈𝐽+
𝑖

solves the KKT system, with 𝜆 = 0, and hence
solves problem (11)–(13) as well.

• If 𝜆 ∈ (0, 𝑑𝑖1), then 𝑎𝑖𝑘𝑡∗𝑖𝑘 ≥ 𝑑𝑖𝑘 − 𝜆 > 0 holds for
any 𝑘 ∈ 𝐽+

𝑖 , thus 𝑡∗𝑖𝑘 > 0 and 𝑡∗𝑖𝑘 = (𝑑𝑖𝑘 − 𝜆)∕𝑎𝑖𝑘.
Since 𝜆 > 0, we have

𝑇𝑖 =
∑

𝑘∈𝐽𝑖

𝑡∗𝑖𝑘 =
𝑛
∑

𝑘=1

𝑑𝑖𝑘
𝑎𝑖𝑘

− 𝜆
𝑛
∑

𝑘=1

1
𝑎𝑖𝑘

,

thus we have

𝜆 =

𝑛
∑

𝑘=1

𝑑𝑖𝑘
𝑎𝑖𝑘

− 𝑇𝑖

𝑛
∑

𝑘=1

1
𝑎𝑖𝑘

= 𝑧1.
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(a) Comparison for 10 users. (b) Comparison for 100 users.

(c) Comparison for 500 users. (d) Comparison for 1000 users.

(e) Comparison for 5000 users.
Figure 7: Comparison between the solutions obtained by BARON solver and the heuristic algorithm varying the number of users in
the three jobs scenario.

Therefore, if 𝑧1 ∈ (0, 𝑑𝑖1), then 𝑡∗𝑖𝑘 =
𝑑𝑖𝑘 − 𝑧1

𝑎𝑖𝑘
, for

any 𝑘 = 1,… , 𝑛, is a solution of the KKT system,
with 𝜆 = 𝑧1, and thus solves problem (11)–(13).

• If 𝑞 ∈ {2,… , 𝑛} and 𝜆 ∈ [𝑑𝑖,𝑞−1, 𝑑𝑖𝑞), then

𝑡∗𝑖𝑘 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑘 = 1,… , 𝑞 − 1,

𝑑𝑖𝑘 − 𝜆
𝑎𝑖𝑘

if 𝑘 = 𝑞,… , 𝑛.
(29)

Since 𝑇𝑖 =
∑𝑛

𝑘=1 𝑡
∗
𝑖𝑘, we get

𝜆 =

𝑛
∑

𝑘=𝑞

𝑑𝑖𝑘
𝑎𝑖𝑘

− 𝑇𝑖

𝑛
∑

𝑘=𝑞

1
𝑎𝑖𝑘

= 𝑧𝑞 .

Therefore, if 𝑧𝑞 ∈ [𝑑𝑖,𝑞−1, 𝑑𝑖𝑞), then the vector
defined in (29) is a solution of the KKT system,
with 𝜆 = 𝑧𝑞 , and thus solves problem (11)–(13).
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Figure 8: Platform net utility of dynamic step size vs fixed step
size for 100 users.
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B. Optimal solution of the user problem with
three jobs
We report here the optimal solution in closed form of

problem (11)–(13) with three jobs solved by user 𝑖. For

the sake of simplicity, we remove index 𝑖 in the following
formulas. The optimal solution is as follows:

𝑡∗ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

𝑝1 − 𝑏1
𝑎1

,
𝑝2 − 𝑏2

𝑎2
,
𝑝3 − 𝑏3

𝑎3

)

if 𝑝1 ≥ 𝑏1, 𝑝2 ≥ 𝑏2, 𝑝3 ≥ 𝑏3,
3
∑

𝑘=1

𝑝𝑘 − 𝑏𝑘
𝑎𝑘

≤ 𝑇 ,
(

0,
𝑝2 − 𝑏2

𝑎2
,
𝑝3 − 𝑏3

𝑎3

)

if 𝑝1 ≤ 𝑏1, 𝑝2 ≥ 𝑏2, 𝑝3 ≥ 𝑏3,
𝑝2 − 𝑏2

𝑎2
+

𝑝3 − 𝑏3
𝑎3

≤ 𝑇 ,
(

𝑝1 − 𝑏1
𝑎1

, 0,
𝑝3 − 𝑏3

𝑎3

)

if 𝑝1 ≥ 𝑏1, 𝑝2 ≤ 𝑏2, 𝑝3 ≥ 𝑏3,
𝑝1 − 𝑏1

𝑎1
+

𝑝3 − 𝑏3
𝑎3

≤ 𝑇 ,
(

𝑝1 − 𝑏1
𝑎1

,
𝑝2 − 𝑏2

𝑎2
, 0
)

if 𝑝1 ≥ 𝑏1, 𝑝2 ≥ 𝑏2, 𝑝3 ≤ 𝑏3,
𝑝1 − 𝑏1

𝑎1
+

𝑝2 − 𝑏2
𝑎2

≤ 𝑇 ,

(

𝑎3(𝑝1−𝑏1−𝑝2+𝑏2)+𝑎2(𝑝1−𝑏1−𝑝3+𝑏3)+𝑎2𝑎3𝑇
𝑎1𝑎2+𝑎1𝑎3+𝑎2𝑎3

, if 𝑇 ≤
3
∑

𝑘=1

𝑝𝑘 − 𝑏𝑘
𝑎𝑘

≤ 𝑇 +

(

3
∑

𝑘=1

1
𝑎𝑘

)

min
𝑘=1,2,3

{𝑝𝑘 − 𝑏𝑘},

𝑎3(𝑝2−𝑏2−𝑝1+𝑏1)+𝑎1(𝑝2−𝑏2−𝑝3+𝑏3)+𝑎1𝑎3𝑇
𝑎1𝑎2+𝑎1𝑎3+𝑎2𝑎3

,

𝑎2(𝑝3−𝑏3−𝑝1+𝑏1)+𝑎1(𝑝3−𝑏3−𝑝2+𝑏2)+𝑎1𝑎2𝑇
𝑎1𝑎2+𝑎1𝑎3+𝑎2𝑎3

)

(0, 0, 0) if 𝑝1 ≤ 𝑏1, 𝑝2 ≤ 𝑏2, 𝑝3 ≤ 𝑏3,

(0, 0, 𝑇 ) if 𝑝3 − 𝑏3 − 𝑎3𝑇 ≥ max{0, 𝑝1 − 𝑏1, 𝑝2 − 𝑏2},

(0, 𝑇 , 0) if 𝑝2 − 𝑏2 − 𝑎2𝑇 ≥ max{0, 𝑝1 − 𝑏1, 𝑝3 − 𝑏3},

(𝑇 , 0, 0) if 𝑝1 − 𝑏1 − 𝑎1𝑇 ≥ max{0, 𝑝2 − 𝑏2, 𝑝3 − 𝑏3},
(

0, 0,
𝑝3 − 𝑏3

𝑎3

)

if 𝑝1 ≤ 𝑏1, 𝑝2 ≤ 𝑏2, 𝑝3 ∈ [𝑏3, 𝑏3 + 𝑎3𝑇 ],
(

0,
𝑝2 − 𝑏2

𝑎2
, 0
)

if 𝑝1 ≤ 𝑏1, 𝑝3 ≤ 𝑏3, 𝑝2 ∈ [𝑏2, 𝑏2 + 𝑎2𝑇 ],
(

𝑝1 − 𝑏1
𝑎1

, 0, 0
)

if 𝑝2 ≤ 𝑏2, 𝑝3 ≤ 𝑏3, 𝑝1 ∈ [𝑏1, 𝑏1 + 𝑎1𝑇 ],

(

0, 𝑝2−𝑏2−𝑝3+𝑏3+𝑎3𝑇𝑎2+𝑎3
, 𝑝3−𝑏3−𝑝2+𝑏2+𝑎2𝑇𝑎2+𝑎3

)

if 𝑝2 − 𝑏2
𝑎2

+
𝑝3 − 𝑏3

𝑎3
≥ max

{

𝑇 , 𝑇 + (𝑝1 − 𝑏1)
(

1
𝑎2

+ 1
𝑎3

)}

,

𝑝2 − 𝑏2 ∈ [𝑝3 − 𝑏3 − 𝑎3𝑇 , 𝑝3 − 𝑏3 + 𝑎2𝑇 ],

(

𝑝1−𝑏1−𝑝3+𝑏3+𝑎3𝑇
𝑎1+𝑎3

, 0, 𝑝3−𝑏3−𝑝1+𝑏1+𝑎1𝑇𝑎1+𝑎3

)

if 𝑝1 − 𝑏1
𝑎1

+
𝑝3 − 𝑏3

𝑎3
≥ max

{

𝑇 , 𝑇 + (𝑝2 − 𝑏2)
(

1
𝑎1

+ 1
𝑎3

)}

,

𝑝3 − 𝑏3 ∈ [𝑝1 − 𝑏1 − 𝑎1𝑇 , 𝑝1 − 𝑏1 + 𝑎3𝑇 ],

(

𝑝1−𝑏1−𝑝2+𝑏2+𝑎2𝑇
𝑎1+𝑎2

, 𝑝2−𝑏2−𝑝1+𝑏1+𝑎1𝑇𝑎1+𝑎2
, 0
)

if 𝑝1 − 𝑏1
𝑎1

+
𝑝2 − 𝑏2

𝑎2
≥ max

{

𝑇 , 𝑇 + (𝑝3 − 𝑏3)
(

1
𝑎1

+ 1
𝑎2

)}

,

𝑝1 − 𝑏1 ∈ [𝑝2 − 𝑏2 − 𝑎2𝑇 , 𝑝2 − 𝑏2 + 𝑎1𝑇 ].
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