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Gerromorpha Popov, 1971 is a fascinating and diverse insect lineage that evolved about 200 Mya to spend 
their entire life cycle on the air–water interface and have since colonized all types of aquatic habitats. The sub-
family Halobatinae Bianchi, 1896 is particularly interesting because some species have adapted to life on the 
open ocean—a habitat where insects are very rarely found. Several attempts have been made to reconstruct 
the phylogenetic hypotheses of this subfamily, but the use of a few partial gene sequences recovered only a 
handful of well-supported relationships, thus limiting evolutionary inferences. Fortunately, the emergence of 
high-throughput sequencing technologies has enabled the recovery of more genetic markers for phylogen-
etic inference. We applied genome skimming to obtain mitochondrial and nuclear genes from low-coverage 
whole-genome sequencing of 85 specimens for reconstructing a well-supported phylogeny, with particular 
emphasis on Halobatinae. Our study confirmed that Metrocorini Matsuda, 1960, is paraphyletic, whereas 
Esakia Lundblad, 1933, and Ventidius Distant, 1910, are more closely related to Halobatini Bianchi, 1896, than 
Metrocoris Mayr, 1865, and Eurymetra Esaki, 1926. We also found that Ventidius is paraphyletic and in need 
of a taxonomic revision. Ancestral state reconstruction suggests that Halobatinae evolved progressively from 
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limnic to coastal habitats, eventually attaining a marine lifestyle, especially in the genus Halobates Eschscholtz, 
1822, where the oceanic lifestyle evolved thrice. Our results demonstrate that genome skimming is a powerful 
and straightforward approach to recover genetic loci for robust phylogenetic analysis in non-model insects.

Key words: aquatic insect, Indo-Pacific, mitogenome, phylogenomics, whole-genome sequencing

Graphical Abstract 

Introduction

It is estimated that there are ~5.5 million insect species in the world 
(Gaston 1991, Stork et al. 2015, Stork 2018). Of these, an esti-
mated 50,000–76,000 species are considered aquatic, and even less 
(~25,000 species) are found in saline habitats (Cheng 1976, Lévêque 
et al. 2005, Balian et al. 2008, Cheng and Mishra 2022). The infra-
order Gerromorpha Popov, 1971 (Insecta: Hemiptera: Heteroptera), 
comprising more than 2,000 extant species, evolved about 200 Mya 
to live on the air–water interface (Andersen 1982, Damgaard 2008a, 
Armisén and Khila 2022, Armisén et al. 2022). Gerromorpha cur-
rently comprises 4 superfamilies and 8 families: Mesoveloidea 
(Mesoveliidae), Hebroidea (Hebridae), Hydrometroidea 
(Hydrometridae, Paraphrynoveliidae, Macroveliidae), and Gerroidea 
(Hermatobatidae, Veliidae, Gerridae) (Andersen 1982; Polhemus  
et al. (2008), but in a study combining DNA sequence data and mor-
phological characters, Damgaard (2008b) questioned the established 

relationships of superfamilies and found that Veliidae, comprising 
approximately 50% of all gerromorphan bugs, is paraphyletic with 
regards to Gerridae. Since then, more studies have questioned phylo-
genetic relationships among families in Gerromorpha (Damgaard 
2013). Most recently, Armisén et al. (2022) found Hydrometridae 
to be polyphyletic based on transcriptome data.

Owing to their unique pleustonic lifestyle (Cheng 1975), 
Gerromorpha has attracted considerable research attention on evo-
lutionary adaptations and mechanisms to life on the water surface 
(Andersen 1982, Hu and Bush 2010, Crumière et al. 2016, Mahadik 
et al. 2020, Cheng and Mishra 2022). This group is also unique be-
cause its members have been able to colonize all types of aquatic 
habitats—limnic, brackish, marine, and even oceanic—in every con-
tinent except Antarctica (Andersen 1982). It has been estimated that 
members of the Gerromorpha have independently evolved from 
limnic to marine environments at least 14 times (Andersen 1999). 
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Examples of diverse marine genera include Hermatobates Carpenter, 
1892 (Gerrormorpha: Hermatobatidae), Halovelia Bergroth, 
1893 (Gerromorpha: Veliidae), Thetibates Polhemus & Polhemus, 
1996 (Gerromorpha: Gerridae), and Halobates Eschscholtz, 1822 
(Gerromorpha: Gerridae). It is notable that Hermatobates repre-
sents the first (and oldest) lineage of the Gerromorpha to invade 
the marine environment (Andersen 1999, Wang et al. 2023), while 5 
species of Halobates from Halobatinae Bianchi, 1896, have adapted 
to live a truly oceanic lifestyle, thousands of kilometers away from 
shore (Andersen and Cheng 2004).

A detailed account of the taxonomic history of Halobatinae 
can be found in Roman-Palacios et al. (2020) and is thus not re-
peated here. The subfamily is composed of 2 tribes, Halobatini 
Bianchi, 1896 and Metrocorini Matsuda, 1960, with Halobatini 
being marine and Metrocorini being limnic (Matsuda 1960). The 
current classification based on molecular sequence data of the 2 
tribes suggests there are 9 genera (Table 1), though further taxo-
nomic revision is needed (Damgaard 2008b, Román-Palacios et al. 
2020). Studies on Halobatinae to date have traditionally focused on 
classical taxonomy (Cheng 1965, 1966, Chen and Nieser 1993a, 
1993b, Chen and Zettel 1998, Andersen and Cheng 2004, Tran et 
al. 2023), whereas genomic sequencing work has been restricted to 
Halobates (Andersen et al. 2000, Damgaard et al. 2000, Leo et al. 
2012, Wang et al. 2021a, Chang et al. 2022), with some publications 
on phylogenetic reconstructions of Gerromorpha that included other 
members of Halobatinae (Damgaard et al. 2005, Damgaard 2008b).

The most comprehensive phylogenetic reconstruction of 
Halobatinae was performed by Roman-Palacios et al. (2020) based 
on 4 partial genes—mitochondrial COI, COII, 16S rRNA, and nu-
clear 28S rRNA. Their 4-gene phylogeny confirmed that: (1) the 
limnic lifestyle of Metrocorini was ancestral within Halobatinae, 
with Metrocorini likely to be paraphyletic; and (2) the marine life-
style evolved from the common ancestor of Asclepios + Halobates. 
While the authors noted other potential hypotheses, such as the 
possibility of 3 independent invasions of Halobates into the open 
ocean, their branch support values were too low to provide firm 

conclusions. A workaround would be to increase the number of loci 
used, which is known to be correlated with phylogenetic accuracy 
(Rokas and Carroll 2005).

Advancements in high-throughput sequencing technology have 
revolutionized the ease with which genomic data can be gener-
ated for phylogenomic inferences and even population genomics 
(Johnson 2019, Quek and Huang 2022). Consequently, a myriad of 
different approaches have arisen in recent years (Dodsworth 2015, 
Wachi et al. 2018), e.g., target enrichment via bait capture (Blaimer 
et al. 2016, Call et al. 2021, Pauli et al. 2021), genome subsampling 
methods like RAD-seq (Storer et al. 2017), transcriptome sequencing 
and assembly (Wang et al. 2021b, Armisén et al. 2022), and genome 
skimming (Linard et al. 2015, Trevisan et al. 2019, Zheng et al. 
2020). Genome skimming involves shallow sequencing of genomic 
DNA to retrieve high-copy fractions of the genome (Straub et al. 
2012) and requires the least effort and reagent costs (Dodsworth 
2015). Mitochondrial DNA makes up 0.5–5% of genomic DNA ex-
tracts (Arribas et al. 2016, Crampton-Platt et al. 2016), so it is a suit-
able target marker for retrieval from low-coverage, genome skims. 
Other candidate loci include chloroplasts for plants (Bakker et al. 
2015, Nevill et al. 2020), as well as the ribosomal RNA tandem 
cluster (Grandjean et al. 2017).

The primary goal of our study was to recover high-copy 
number genes for phylogenetic analysis with genome skimming. 
Specifically, we tested if the inclusion of more mitochondrial and 
nuclear genes would provide better branch support and resolve 
phylogenetic relationships among aquatic insects. We generated 
and analyzed sequence data for several genera of marine insects, 
but focused on Halobatinae. We also included more freshwater 
species of Metrocoris Mayr, 1865, Esakia Lundblad, 1933, and 
Ventidius Distant, 1910 to better resolve relationships between 
genera. The sequence data generated improved the availability 
of genetic resources for aquatic insects, particularly marine bugs, 
which were poorly studied and underrepresented in sequence data-
bases (Hotaling et al. 2020).

Materials and Methods

Taxon Sampling
Eighty-five specimens were obtained for this study, which included 
freshly collected and museum loaned specimens (Supplementary 
File S1), and data from 15 low-coverage whole genome libraries 
from Chang et al. (2022). Fresh specimens were collected from 
Singapore (Permits NP/RP21-056 and NP/RP22-102), Australia 
(Permit G22/47448.1), and Papua New Guinea (Permit AA927408) 
by sweeping the water surface with hand nets and preserved in either 
molecular-grade ethanol or salt-saturated dimethyl sulfoxide before 
DNA extractions.

Multiple individuals of the same species were sequenced where 
possible, to capture baselines for geographic and intraspecific vari-
ability or to test species hypothesis (see Supplementary File S2 for 
more information). Despite the limited sampling effort, results 
could still be useful for detecting potential cryptic speciation. For 
oceanic Halobates species, particularly Halobates germanus White, 
1883, Halobates micans Eschscholtz, 1822, and Halobates sericeus 
Eschscholtz, 1822, we sequenced samples collected across their 
known geographic ranges to account for potential genetic differen-
tiation or cryptic speciation. Past studies have noted certain genetic 
differences among H. micans across Atlantic, Indian, and Pacific 
Oceans and H. sericeus populations from Northern and Southern 
Pacific Ocean (Andersen et al. 2000, Leo et al. 2012). We also tested 
deeper sequencing to discern if subpopulations formed distinct clades 

Table 1. Present classification of Halobatinae Bianchi, 1896 
(Gerromorpha: Gerridae). Number of known species within each 
genus (species) and number of species sequenced in this study 
(sequenced)

Subfamily Halobatinae Bianchi, 1896 Species Sequenced

Tribe Halobatini Bianchi, 1896

  Genus Asclepios Distant, 1915 3 2

  Genus Halobates Eschscholtz, 1822 50 27

Tribe Metrocorini Matsuda, 1960

  Genus Esakia Lundblad, 1933 10 3

  Genus Eurymetra Esaki, 1926 7 1

  Genus Eurymetropsiella Poisson, 1950 3 0

  Genus Eurymetropsielloides Poisson, 1956 1 0

  Genus Eurymetropsis Poisson, 1948 2 0

  Genus Metrocoris Mayr, 1865 80 12

  Genus Ventidius Distant, 1910

   Subgenus Ventidioides Hungerford & 
Matsuda, 1960

9 2

   Subgenus Ventidiopsis Miyamoto, 1967 2 0

   Subgenus Ventidius Distant, 1910 12 5
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by sequencing 2 specimens each of H. germanus from the Indian and 
Pacific Oceans, one specimen each of H. micans from the Atlantic, 
Indian, and Pacific Oceans, and 1 specimen each of H. sericeus from 
the Northern and Southern Pacific Ocean.

Our taxon coverage of Halobatinae included 52 species across 
7 genera (including subgenus), 6 of which were featured in Roman-
Palacios et al. (2020) (Table 1). We were unable to obtain speci-
mens from 3 Afrotropical genera, Eurymetropsiella Poisson, 1950, 
Eurymetropsielloides Poisson, 1956, and Eurymetropsis, Poisson, 
1948. Fourteen Halobates samples analyzed here were re-sequenced 
from Roman-Palacios et al. (2020) but Halobates darwini Herring, 
1961, Halobates fijiensis Herring, 1958, Halobates mjobergi Hale, 
1925, and Halobates rivularis (Andersen and Weir 1994) were not 
re-sequenced as the DNA extracts were completely expended. The 
same was true for Ventidius (Ventidiopsis) yangae Chen & Zettel, 
1999, from Roman-Palacios et al. (2020), but we successfully ac-
quired other specimens of Ventidius (Ventidioides) Hungerford & 
Matsuda, 1960.

DNA Extractions and Library Preparation
We followed the DNA extraction protocol by Chang et al. (2022). 
Briefly, genomic DNA was extracted using DNeasy Blood and Tissue 
Kit (Qiagen), following the manufacturer protocol for insects, with 
final elution of genomic DNA (gDNA) in molecular-grade water.

Low-coverage whole-genome libraries were prepared in 2 ways, 
depending on the DNA quantity. For specimens with ≥ 100 ng of 
gDNA, gDNA was sheared using the BioRuptor Pico (Diagenode) 
for either 7 or 13 cycles, of 30/30 s ON/OFF to target an insert size 
of ~300 and ~200 bp, respectively (manufacturer’s recommenda-
tions). The former insert size was targeted for freshly caught spe-
cimens, while the latter was used for loaned museum specimens as 
the extracted DNA tended to be highly degraded. For specimens 
with < 100 ng of gDNA, the libraries were prepared with NEBNext 
Ultra II FS DNA Library Prep Kit (New England Biolabs) instead, 
in which gDNA was fragmented enzymatically. Samples were incu-
bated for 13 min to obtain an insert size of ~200 bp.

All other libraries were prepared using NEBNext Ultra II DNA 
Library Prep Kit (New England Biolabs) following the manufacturer 
protocols, but with TruSeq CD Dual Indexes (Illumina). Adapter-
ligated libraries were PCR-enriched according to manufacturer re-
commendations. DNA clean-up and size-selection was done using 
either AMPure XP beads (Beckman Coulter), SPRIselect (Beckman 
Coulter), using manufacturer-recommended ratios, or with E-gel 
SizeSelect II 2% agarose gels (ThermoFisher Scientific). The li-
braries were sequenced either on Illumina HiSeq X or NovaSeq 
6000 (150 bp paired-end). We targeted a minimum of 3 Gbp of 
sequence reads per sample, based on 2–3 × sequencing coverage re-
commended by Tan et al. (2021) for genome skimming, and the 
known ~1 Gbp Gerris buenoi Kirkaldy, 1911 genome size (Armisén 
et al. 2018).

Sequence Quality Check and Assembly
Raw sequence reads were processed using default settings in fastp 
v0.23.2 (Chen et al. 2018). Assemblies were performed using SPAdes 
v3.13.0 (Bankevich et al. 2012), with default settings and error 
correction enabled (--careful mode). We identified and filtered po-
tential contaminants (archaea, bacteria, virus, plasmid, human, 
UniVec_Core, protozoa, plant, and fungi) in assembled SPAdes 
contigs using kraken2 v.2.1.3 (Wood et al. 2019) against the kraken2 
PlusPFP database (updated 5 June 2023; downloaded from https://
benlangmead.github.io/aws-indexes/k2).

Mitochondrial Genes
Mitogenomes were extracted from SPAdes assembly graphs with the 
get_organelle_from_assembly.py script in GetOrganelle v1.7.7.0 (Jin 
et al. 2020). We supplied closely related gerromorphan mitogenomes 
as references—Asclepios apicalis (Esaki, 1924) (KR920102) from 
Liu et al. (2021) was used for Halobates and Asclepios samples; 
Metrocoris esakii Chen & Nieser, 1993 (MT344112) from Ye et al. 
(2020) for Esakia, Metrocoris, and Ventidius samples; Trepobates 
sp. (MN027277) and Rhagovelia reitteri Reuter, 1882 (MN027271) 
from Esemu et al. (2019) for Thetibates and the Haloveliinae spe-
cies, respectively; and finally, Hydrometra greeni Kirkaldy, 1898 
(FJ456945) from Hua et al. (2009) for Hermatobates djiboutensis 
Coutiere & Martin, 1901. Preliminary tests revealed only minor 
increase in assembly coverage when congeneric sequences were 
supplied as reference (i.e., closely related species are effective as ref-
erence sequences).

When the assembly graph was too complicated to resolve, we 
used the get_organelle_from_reads.py script instead. Briefly, bowtie2 
v2.3.5.1 (Langmead and Salzberg 2012) was used to map the fil-
tered reads onto the same references for recruiting and extending 
mitogenome-associated reads. All target-associated reads were then 
assembled with SPAdes, followed by blastn in NCBI-BLAST+ v2.13.0 
(Camacho et al. 2009) to the local, default, GetOrganelle database 
to isolate mitochondrial contigs, before circularizing into a complete 
mitogenome (Jin et al. 2020). There are no differences in mitogenome 
length and accuracy when retrieved from “get_organelle_from_as-
sembly.py” or “get_organelle_from_reads.py” (Supplementary File 
S3).

Assembled mitogenomes were annotated for RNAs and protein-
coding genes (PCGs) using the MITOS2 web server (Bernt et al. 
2013, Donath et al. 2019), using the Invertebrate Mitochondrial 
Code (Code 5) and the RefSeq89 Metazoa reference for the anno-
tation. Several annotations were manually rectified after MAFFT 
v7.511 (Katoh and Standley 2013) alignment of PCGs in frame with 
other GenBank mitogenome annotations, as described by Quek et 
al. (2021). Confirmatory Sanger sequencing was performed to con-
firm that any internal gaps within the alignment were not due to 
mis-assembly (Supplementary File S4). We also performed blastn 
searches of the genome-skimmed COI barcode against the nt data-
base (downloaded 15 Feb 2023) to verify species identities.

Nuclear Ribosomal Genes
For skimming of high-copy number ribosomal RNA reads, we used 
barrnap v0.9 (https://github.com/tseemann/barrnap) to isolate 18S, 
5.8S, and 28S rRNA genes from the kraken2-filtered contigs. These 
were matched against the nt nucleotide database and any rRNA 
sequences that did not hit Gerromorpha were discarded. The rRNA 
sequences were visualized and edited (if needed) on Geneious Prime 
v2023.1.1 (http://www.geneious.com/).

Phylogenetic Analyses
Our phylogenetic matrix comprised 13 mitochondrial PCGs and 
2 rRNAs (12S and 16S), along with 3 nuclear rRNA genes (18S, 
5.8S, and 28S) of our samples together with 26 Gerromorpha 
mitogenomes from GenBank (Hua et al. 2009, Li et al. 2017, Sun 
et al. 2018, Esemu et al. 2019, Ye et al. 2020, Zheng et al. 2020, 
Cui et al. 2021, Liu et al. 2021) (Supplementary File S5). Full-length 
sequences were aligned by gene using the L-INS-i algorithm in 
MAFFT, with nuclear rRNA genes were treated as missing data for 
the 26 GenBank mitogenome sequences. The rRNA alignments were 
further curated with Gblocks v0.91b (Castresana 2000, Talavera 
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and Castresana 2007), allowing for gap positions in the final blocks. 
Finally, sequences were concatenated in Geneious Prime to form the 
phylogenetic matrix that comprised 110 samples and 18,436 bp. We 
partitioned the matrices by gene and selected the best evolutionary 
models with ModelTest-NG v0.1.7 (Darriba et al. 2020).

We conducted maximum likelihood (ML) and Bayesian infer-
ence (BI) reconstructions, providing evolutionary models for each 
gene partition based on the Akaike information criterion (AIC). 
Stenopirates sp. Walker, 1873 (KP406518) was selected as the 
outgroup for both ML and BI analyses, based on past phylogenetic 
work (Li et al. 2017, Armisén et al. 2022). ML trees were inferred 
using RAxML-NG v1.2.0 (Kozlov et al. 2019), with 100 starting 
trees (50 random and 50 parsimony-based). Node supports were 
quantified using 1,000 nonparametric bootstrap pseudoreplicates 
(Felsenstein 1985) and assessed to have converged at the default 3% 
cutoff before mapping onto the best tree (Pattengale et al. 2010). 
BI analyses were performed with MrBayes v3.2.7a (Ronquist et 
al. 2012), where we implemented 4 Markov chains Monte Carlo 
(MCMC) of 20,000,000 generations across 3 runs, sampling one 
tree per 100 generations. MCMC convergence was assessed using 
Tracer v1.7 (Rambaut et al. 2018), after discarding the first 20,001 
trees as burn-in. Trees were visualized using the Interactive Tree of 
Life (iTOL) web tool (Letunic and Bork 2021).

Ancestral State Reconstruction
Reconstruction of habitat and salinity preference was performed 
using R v4.3.3 in RStudio v2023.06.2, with the packages ape v5.7-1 
(Paradis and Schliep 2018), phytools v.2.1-1 (Revell 2012), and 
geiger v2.0.11 (Pennell et al. 2014). We pruned the input tree, leaving 
only single species representatives of Halobatinae. We assigned 
each taxon one of 3 discrete categories: “Limnic,” “Coastal,” and 
“Oceanic” based on their known habitat and salinity preference—
“Limnic” for freshwater habitats; “Coastal” for coastal habitats 
like reef flats or mangroves; and “Oceanic” for strictly open ocean 
species. We then ran 3 different transition models of trait evolution 
using the ace function in ape—equal-rates model (ER), symmetrical 
model (SYM), and all-rates-different model (ARD). Model fit was 
assessed by comparing the AIC scores from fitDiscrete function in 
geiger (999 iterations). We also adopted an MCMC approach using 
the make.simmap function in phytools for ancestral state reconstruc-
tion using 300 simulations, with Q set to MCMC. The output was 
compared for consistency and results were mapped onto the phylo-
genetic reconstruction using phytools.

Results

Genome Skimming for High-Copy Number Genes
A total of 2,420,224,795 raw reads (~363 Gbp) were generated from 
85 low-coverage genome libraries. Reads varied between 3,971,488 
and 92,737,764 reads per sample (Supplementary File S1). We re-
trieved 76 complete mitogenomes that measured ~15,000 bp in 
length, with 3–44,623 × coverage obtained per mitogenome (Fig. 
1A and Supplementary File S1). Mitogenome coverage was weakly 
correlated with sequenced reads and specimen age (Supplementary 
Fig. S1). The 76 mitogenomes were successfully annotated for 37 
known genes (13 PCGs, 2 rRNAs, and 22 tRNAs) with MITOS2. All 
mitogenomes adhered to the ancestral insect mitogenome gene order 
(designated “Type A”) (Hua et al. 2008). Initiation codons for the 
13 PCGs also adhered to canonical codons under the Invertebrate 
Mitochondrial Code (code 5). Start codons for genes like atp6 and 
cox3 were invariable across our dataset, with only 1 initiation codon 

observed, while other genes like nad3 had 4 possible variations in its 
start codon (Fig. 1B).

The 8 species for which we were unable to obtain the complete 
mitogenome were: Esakia johorensis Cheng, 1966, Esakia lundbladi 
Cheng, 1966, Eurymetra natalensis Distant, 1903, Halobates 
elephanta Andersen & Foster, 1992, Halobates japonicus Esaki, 
1924, Metrocoris bilobatoides Chen & Nieser, 1993, Ventidius 
(Ventidioides) karen Lansbury, 1990, and Ventidius (Ventidioides) 
pulai Cheng, 1965. These samples had low coverage of mitochon-
drial contigs (3.7–65.4×), likely due to a low proportion of mito-
chondrial reads in the prepared libraries. In any case, we were still 
able to retrieve mitochondrial genes with varying degrees of suc-
cess, with species like E. johorensis and E. natalensis only missing a 
partial segment of a single mitochondrial gene, to more fragmented 
assemblies like H. elephanta, where we only obtained 8 partial mito-
chondrial gene segments (Table 2). We merged data from GER1094 
(nad2 and cox1) and GER1093 (all remaining genes) to obtain the 
complete set of mitochondrial genes for M. bilobatoides.

Our genome skimming effort for ribosomal RNA genes was suc-
cessful; we recovered all 3 nuclear rRNA genes in all samples, with 
varying degrees of completeness (in terms of gene length). There 
were 5 samples for which we were unable to obtain the full-length 
5.8S rRNA gene (155 bp). The 18S gene (full length ~1.8 kbp) was 
recovered across all samples at ≥ 80% completeness and was only 
highly fragmented for samples GER029 and GER030. Success rate 
for the 28S rRNA genes was the most varied; we recovered the 
full-length 28S rRNA gene (~4 kbp) for 33 samples, and there were 
12 samples where we recovered < 50% of the complete 28S rRNA 
gene. We retained 95%, 94%, and 69% of the respective 18S, 5.8S 
rRNA, and 28S gene alignments post Gblocks-curation for phylo-
genetic analyses.

Phylogenetic Analyses
Analyses with ML and BI on 110 gerromorphan insects using 15 
mitochondrial genes and 3 nuclear rRNA genes generated iden-
tical phylogenies, with most branches maximally supported (Fig. 
2). Analyses conducted using only single species representatives 
also returned identical tree topology (Supplementary Fig. S2). 
Hermatobates djiboutensis is the first branching marine lineage on 
the tree (Fig. 2A).

Our results indicate that “Veliidae” is paraphyletic, with 
Haloveliinae more closely related to Gerridae (Branch support: 
94/1.00) than to Rhagovelia or Perittopus. There is, however, max-
imum support for the monophyly of Haloveliinae (Fig. 2B).

The monophyly of Gerridae is moderately supported in our ana-
lysis (Branch support: 79/1.00), but maximally supported for the 
subfamilies Gerrinae, Ptilomerinae, and Halobatinae. There is also 
maximum support for the sister relationship between Ptilomerinae 
and Halobatinae. Within Halobatinae, relationships are congruent 
with Roman-Palacios et al. (2020), albeit with stronger support 
values. There are 2 major clades within Halobatinae (Fig. 2C); the 
first comprising Eurymetra and Metrocoris (Fig. 2D) and a second 
containing Asclepios, Esakia, Halobates, and Ventidius (Fig. 2E). 
The traditionally defined Metrocorini is thus paraphyletic (cf. Table 
1). Metrocoris is monophyletic, but does not conform to traditional 
species groups delineated by morphology (see Supplementary Table 
S1). Esakia is embedded within Ventidius, and sister to Ventidius 
(Ventidioides) samples GER1054 and GER1057. Ventidius sensu 
stricto is paraphyletic; the Ventidius distanti (formerly V. modulatus) 
group (Fig. 2F) is sister to the Ventidius (Ventidioides) + Esakia 
clade, whereas the Ventidius aquarius group (Fig. 2G) is sister to 
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the Asclepios + Halobates clade instead (Branch support: 71/1.00). 
Asclepios is sister to Halobates with maximum support, and each 
genus is monophyletic.

For Halobates, we recovered similar cladistic relationships as 
Roman-Palacios et al. (2020). Similarities included the recovery of 
the following group relationships: (1) Halobates katherinae Herring, 
1958, Halobates mariannarum Esaki, 1924, and Halobates bryani 
Herring, 1961; (2) Halobates hayanus and Halobates sericeus; and 
(3) Halobates proavus and Halobates micans. Species relationships 
within each of the abovementioned clades are similar to Roman-
Palacios et al. (2020). Most clades also conform to traditional spe-
cies groups delineated with genital morphology (see Supplementary 
Table S1). There are, however, 3 exceptions found in our species 
groups: (1) Halobates regalis is paraphyletic; Halobates whiteleggei 
Skuse, 1891 is sister to H. hayanus and H. sericeus, while the other 
H. regalis group members, Halobates peronis Herring, 1961 and 
Halobates sexualis Distant, 1903, form their own clade as the 
first branching lineage in Halobates. Previously, H. peronis and H. 
sexualis are sister to what was previously known as the Halobates 
(Hillelia) subgenus and are embedded within Halobates (Román-
Palacios et al. 2020). (2) Halobates japonicus nests within Halobates 
matsumurai; and (3) H. hayanus nests within H. sericeus (maximum 
support) (Fig. 2). The 3 oceanic Halobates species—H. germanus, 
H. micans, and H. sericeus sampled from the various ocean basins, 
all form monophyletic clades with maximum support. Interestingly, 
Halobates flaviventris Eschscholtz, 1822 from 3 different locations 
do not form a monophyletic clade (Fig. 2), with GER1347 and 
JD0083 more closely related to Halobates hawaiiensis Usinger, 1938.

Ancestral State Reconstruction of Habitat and 
Salinity Preference
All 3 models generated similar ancestral state reconstructions in 
Halobatinae (Fig. 3 and Supplementary Fig. S3), but we selected the 

SYM model, which scored the lowest AIC value (SYM: 42.015; ARD: 
44.985; ER: 47.050). Halobatinae evolved from limnic to coastal, 
and eventually to an oceanic lifestyle, with Metrocorini being limnic, 
and the transition to coastal habitats occurred in the ancestor of 
Asclepios + Halobates, while transition to an oceanic lifestyle oc-
curred within Halobates (Fig. 3). Interestingly, our analysis also sug-
gests that the oceanic lifestyle of present-day Halobates evolved 3 
times: twice independently for H. sericeus and H. germanus, and 
once more at the common ancestor for H. micans, H. sobrinus, and 
H. splendens.

Discussion

In this study, we reconstructed the phylogeny of 110 aquatic insects 
based on a 18,436 bp matrix comprising 15 mitochondrial genes and 
3 nuclear rRNA genes. Overall, phylogenetic relationships inferred 
were well-supported across most branches (Fig. 2) and corrobor-
ated results from Damgaard (2008b). We present here taxonomic 
and evolutionary implications of our results and assess the utility of 
genome skimming for phylogenetics.

Taxonomy of Halobatini and Metrocorini
The monophyly of Matsuda’s (1960) classification has been ques-
tioned (Damgaard 2008b), but no formal decisions were made 
due to low phylogenetic resolution achieved with few molecular 
markers. Even in Roman-Palacios et al. (2020), the topologies of 
Eurymetra and Metrocoris differed between ML and BI analyses. 
Broader sequencing efforts and inclusion of more genes for phylo-
genetic analyses in this study, however, enabled recovery of 2 major 
clades within Halobatinae; Eurymetra and Metrocoris forming one, 
and Asclepios, Esakia, Halobates, and Ventidius forming the other. 
Given the maximum support values from our analysis, we propose 
reorganizing Metrocorini to comprise Eurymetra and Metrocoris, 

Fig. 1. A) Representative circular mitogenome maps of aquatic Gerromorpha: left, Hermatobates djiboutensis; middle, Halovelia malaya; right, Halobates 
micans, annotated for protein-coding, ribosomal RNA, and transfer RNA genes. Mitogenome maps were created with Geneious Prime v2023.1.1 (http://www.
geneious.com/). B) Gene order of protein-coding genes is also expressed linearly, with observed initiation codons listed. The gene order [coined “Type A” by Hua 
et al. (2008)] adheres to the ancestral insect mitogenome gene order.
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and for Esakia and Ventidius to be reclassified under Halobatini. 
Indeed, Ventidius species have been observed at intertidal zones 
(Yang et al. 1999), indicating a degree of salinity tolerance much like 
Asclepios and Halobates.

Our analyses further confirmed the paraphyly of 2 groups 
in Ventidius sensu stricto; Ventidius aquarius is sister to 
Asclepios + Halobates, whereas Ventidius distanti is sister to 
Esakia + Ventidioides. If monophyly of Ventidius is to be main-
tained, then Ventidius sensu stricto must be restricted to encom-
pass only the V. aquarius group (type species: Ventidius aquarius 
Distant, 1910), and a new genus named for the V. distanti group. 
Chen and Zettel (1998) have previously suggested that the species 
groups could be different genera as each group has clearly defined 
apomorphic characters, e.g., long and slender antennal segments 
with stout middle and hind femora in V. aquarius group, whereas 
the V. distanti group are characterized by shorter and less slender 
antennal segments and slender middle and hind femora. There is 
thus corroborative morphological evidence to support our phylo-
genetic results. It is also likely that Ventidioides could be raised to 
genus level (type species: Ventidius kuiterti Hungerford & Matsuda, 
1960), given its sister relationship to Esakia (Fig. 2). We are un-
able to confirm the relationships between Esakia, Ventidioides, and 
Ventidiopsis, although Ventidiopsis and Esakia are sister groups ac-
cording to Roman-Palacios et al. (2020). Further sampling from the 
Ventidioides kuiterti and Ventidiopsis groups will be needed to de-
termine their phylogenetic placements and nomenclatural revision 
of Ventidius.

Phylogeny of Halobates and Evolution into the 
Open Ocean
The genus Halobates is separated into coastal and oceanic groups 
based on morphology and habitat preference (Herring 1961), with 
the coastal species further delineated into several species groups 
by genitalia morphology and single-gene sequences (Andersen 
1991, Damgaard et al. 2000). Relationships between Halobates 
species groups largely agree with our phylogenetic results and 
mirrored Roman-Palacios et al. (2020). However, the Halobates 
regalis group is paraphyletic here, with H. peronis and H. sexualis 
distinct from H. whiteleggei and H. zephyrus. The former 2 
form the first branching lineage of Halobates in our dataset (Fig. 
2, maximum support); previously, the H. regalis group is more 
closely related to the H. sericeus, H. proavus, and H. micans spe-
cies groups (Román-Palacios et al. 2020). This new position is 
noteworthy as they are closely related to the recently synonymized 
subgenus Halobates (Hilliella) China, 1957 (Román-Palacios et 
al. 2020), which that the subgenus occupies a similar position by 
association. This finding reignites discussions of Hilliella as the 
primitive form of Halobates (Andersen and Weir 1994). We have 
been unable to re-sequence Halobates (Hilliella) mjobergi Hale, 
1925 from Roman-Palacios et al. (2020) to test this hypothesis, 
and recommend future work to prioritize sequencing of species 
in this group.

Critically, we have obtained well-supported relationships for the 
clade of Halobates that contain the 5 open ocean species, with H. 
micans group sister to H. proavus group, and both clades in turn 
sister to a clade containing H. hayanus and H. sericeus groups. We 
propose a merger of H. hayanus and H. sericeus groups since they 
form a well-supported monophyletic clade. Moreover, males of this 
group all possess black spines on the lateral sides of the proctiger, 
which is likely an apomorphy for this new H. sericeus clade 
(Andersen 1991, Andersen and Cheng 2004).Ta

b
le

 2
. 

M
it

o
ch

o
n

d
ri

al
 g

en
es

 th
at

 w
er

e 
p

re
se

n
t (

P
),

 in
co

m
p

le
te

 (I
),

 o
r 

m
is

si
n

g
 (M

) i
n

 s
p

ec
ie

s 
w

h
er

e 
co

m
p

le
te

 m
it

o
g

en
o

m
e 

co
u

ld
 n

o
t b

e 
as

se
m

b
le

d
. M

et
ro

co
ri

s 
b

ilo
b

at
o

id
es

 w
as

 o
m

itt
ed

 b
ec

au
se

 
al

l m
it

o
ch

o
n

d
ri

al
 g

en
es

 c
o

u
ld

 b
e 

fo
u

n
d

 a
ft

er
 m

er
g

in
g

 d
at

a 
fr

o
m

 2
 s

am
p

le
s

Sp
ec

ie
s 

/ G
en

e
na

d2
co

x1
co

x2
at

p8
at

p6
co

x3
na

d3
na

d5
na

d4
na

d4
l

na
d6

co
b

na
d1

rr
nL

rr
nS

E
sa

ki
a 

jo
ho

re
ns

is
I

P
P

P
P

P
P

P
P

P
P

P
P

P
P

E
sa

ki
a 

lu
nd

bl
ad

i
M

I
P

P
P

P
I

I
P

P
P

P
P

P
P

E
ur

ym
et

ra
 n

at
al

en
si

s
P

P
P

P
P

P
P

P
P

P
P

I
P

P
P

H
al

ob
at

es
 e

le
ph

an
ta

M
I

I
M

I
I

M
I

I
M

M
I

I
I

M

H
al

ob
at

es
 ja

po
ni

cu
s

M
P

P
M

I
P

I
I

M
M

I
P

P
P

P

V
en

ti
di

us
 k

ar
en

P
I

P
P

I
P

P
P

P
P

P
P

P
P

P

V
en

ti
di

us
 p

ul
ai

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P

D
ow

nloaded from
 https://academ

ic.oup.com
/isd/article/8/4/3/7717518 by guest on 23 July 2024



8 Insect Systematics and Diversity, 2024, Vol. 8, No. 4

Fig. 2. Phylogenetic reconstruction of 110 Gerromorpha samples based on a concatenated matrix (18,436 bp) comprising 15 mitochondrial genes (13 PCGs 
and 2 rRNA) and 3 nuclear rRNA genes. Samples from this study are shaded, while JD-coded specimens were resequenced from Román-Palacios et al. (2020). 
Enicocephalomorpha outgroups removed for figure clarity. A) Hermatobates djiboutensis is the first branching marine insect lineage in this study; B) Clade 
Haloveliinae; C) Clade Halobatinae; D) Clade Metrocorini; E) Clade Halobatini; F) Ventidius is paraphyletic; G) Ventidius aquarius group. Proposed re-classification 
of Metrocorini and Halobatini are bounded by arrows. Names for MN027277 (Trepobates sp.) and MN027278 (Metrocoris sp.) were amended to Gerridae sp. to 
avoid confusion due to potential misidentification. Only branches with < 85 maximum likelihood bootstrap support and < 0.90 posterior probability, respectively, 
are depicted with circles. Asclepios annandalei, Metrocoris tenuicornis, Halobates proavus, and Ventidius harrisoni were imaged by Harald Bruckner, NHMW, 
and reused with permission; all other images are the author’s own.
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For H. flaviventris, computed pairwise p-distances 
(Supplementary File S6) show that GER1347 and JD0083 differ from 
JD0076 by ~6%, but are only ~3% different from H. hawaiiensis 
(GER1012). Given the known ~3–4% maximum intraspecific vari-
ability in Halobates, JD0076 likely represents a different lineage. 
Unfortunately, we are unable to verify the morphologies of JD0076 
and JD0083 (vouchers cannot be tracked down) to eliminate po-
tential misidentification. GER1347 and GER1012, however, match 
their respective species descriptions, with the latter possessing dense, 
stiff, black bristles on the hind acetabula—a key identifying char-
acter to separate H. hawaiiensis from H. flaviventris (Andersen and 
Cheng 2004). This could imply that either the trait is not useful for 
defining species or that introgression or incomplete lineage sorting 
resulted in similar mitogenomes. More in-depth sampling of these 2 
species is needed to untangle this observation.

Our phylogeny also lends strong support to the hypothesis that 
the oceanic lifestyle evolved at least 3 times within Halobates. One 
habitat transition occurred at the common ancestor of H. micans + H. 
splendens + H. sobrinus, with 2 other independent invasions by H. 
sericeus and H. germanus (Fig. 3). It was previously thought that 
all 5 species form a single monophyletic clade, given their smaller 
size, similar color patterning, and oceanic lifestyle (Herring 1961). 
However, a close examination of their genital morphology together 
with the mitochondrial COI locus revealed this to be unlikely, with 
H. micans, H. splendens, and H. sobrinus more closely related to 
H. flaviventris (coastal), whereas H. sericeus and H. germanus are 

more closely related to H. hayanus group (coastal), implying inde-
pendent invasions to the oceans (Andersen 1991, Damgaard et al. 
2000). What all 3 independent coastal-to-oceanic transitions share 
is that they evolved from coastal marine lineages with transoceanic 
rather than endemic or nearshore distributions (Ikawa et al. 2012). 
The fact that nearshore relatives such as H. calyptus, H. flaviventris, 
H. maculatus, and H. proavus are more commonly found at fore 
reefs (Polhemus and Polhemus 1991, 2006), where sea surface con-
ditions are undoubtedly harsher (relative to bays and mangroves), 
does lend support to the more gradual evolution of the oceanic life-
style (Damgaard et al. 2000, Andersen and Cheng 2004). It is also 
highly plausible that the Indo-Pacific is the geographic origin of the 
oceanic lifestyle in Halobates, given that all 5 oceanic species are 
found in the Pacific, and the Pacific population of H. micans is sister 
to Indian and Atlantic Ocean H. micans lineages (Fig. 2; maximum 
support). Furthermore, of more than 40 coastal Halobates species 
described, only 9 are known from the Indian Ocean, while none had 
been found from the Atlantic Ocean (Ikawa et al. 2012). These evo-
lutionary patterns lend credence to the hypothesis that H. micans 
evolved somewhere in the Indo-Pacific and dispersed later to the 
other oceans. A more detailed study with more specimens from the 3 
oceans is needed to interrogate this theory.

Genome Skimming for Phylogenetic Reconstruction
We applied genome skimming to extract high-copy number loci 
(i.e., mitogenomes and nuclear ribosomal RNA) for phylogenetic 

Fig. 3. Ancestral state reconstruction of salinity and habitat preference in Halobatinae, reconstructed using the make.simmap function in phytools, in R, using 
300 Markov chains Monte Carlo simulations of the SYM model, for the 3 discrete categorical states: “Limnic,” “Coastal,” and “Oceanic.” Pies represent the 
probability of ancestral character state, and those that reflect only 1 state are removed for figure clarity.
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reconstruction of the Halobatinae and successfully retrieved all 3 nu-
clear ribosomal RNA genes from all samples (to varying degrees of 
completion) and recovered 76 complete mitogenomes. Phylogenetic 
reconstructions with a concatenated matrix of 18 genes resulted in 
a generally well-resolved tree, with maximum support values for 
most branches (Fig. 2). Our study joins a growing body of work 
demonstrating the value of genome skimming for retrieving and 
analyzing more higher-resolution phylogenetic markers (Linard et 
al. 2015, Chen et al. 2019, Raupach et al. 2022, Duan et al. 2023).

Importantly, we found genome skimming to be generally for-
giving in its input DNA requirements. We were able to work with 
highly degraded DNA and/or very small input amounts (~10 ng), 
thus allowing us to use museum-preserved collections, which 
may not necessarily be optimally preserved but still recovering 
phylogenetically-informative loci at sufficient depth. For instance, 
22 out of 24 (91.6%) of our freshwater Halobatinae samples were 
obtained from museum collections where the DNA was generally de-
graded, while 14 samples re-sequenced from Roman-Palacios et al. 
(2020) (coded with JD prefix) had very little input DNA for library 
construction (0.8–200 ng, average ~40 ng). Yet, we were still able to 
retrieve complete mitogenomes for 20/24 and 13/14 samples, respect-
ively, and all 3 nuclear genes for all samples. Given the near-global 
distribution of Halobatinae, it would have been logistically challen-
ging to collect fresh specimens for sequencing. We also found that 
sample age had a very weak positive correlation with mitogenome 
coverage (Supplementary Fig. S1B), further demonstrating the 
powerful potential of genome skimming for getting “more from less” 
as aptly described by Tan et al. (2021). Furthermore, genome skim-
ming could be carried out affordably vis-à-vis other methods like 
target enrichment or RAD-seq, which require additional treatments 
of genomic DNA; or even transcriptomes, which typically require 
freshly collected specimens and high RNA integrity.

Nevertheless, genome skimming is a random, almost non-
targeted approach to extract phylogenetically informative loci 
(Supplementary Fig. S1A). Despite incomplete mitogenomes for 
samples GER996 and JD2097, we were able to retrieve full-length 
ribosomal RNA genes, while the opposite was true for samples 
GER029 and GER030 (i.e., complete mitogenomes but highly frag-
mented rRNAs). The design of more efficient capture or amplifica-
tion methods for target genes could thus help lower sequencing costs 
in the future. We note that there are hybrid-capture bait sets de-
signed to work on Hemiptera (Faircloth 2017), but the locus capture 
success rate was lower than expected when tested on actual samples 
(Kieran et al. 2019), so refinements to the methodology are needed. 
Given the vast improvements in the accuracy of third-generation, 
long-read sequencing technology, we could potentially see the re-
vival in popularity of long-range PCRs for targeted amplification of 
long amplicons. Past studies have attempted this for long ribosomal 
RNA in arthropods (Krehenwinkel et al. 2019). The field of long 
read sequencing of mitogenomes is still relatively nascent for insects, 
though there are publications on fish (Ramón-Laca et al. 2023), 
other vertebrates (Karin et al. 2023), and even environmental DNA 
(Deiner et al. 2017). The generation of more genomic resources like 
those generated in this study will go a long way into building more 
comprehensive databases that can not only support more confident 
species identifications but also aid in other aspects such as the design 
of suitable primer binding sites.

Conclusion

In this study, we have constructed a well-resolved phylogeny for 
marine insects in Gerromorpha with emphasis on Halobatinae. 
Importantly, Metrocorini is paraphyletic and Esakia and Ventidius 

are transferred to Halobatini. Ventidius is also paraphyletic, but we 
suggest greater sampling before any nomenclatural decisions are 
made. Our findings corroborate previous studies that the ancestor of 
Asclepios + Halobates was likely limnic or mangrove-dwelling, and 
further confirm that Halobates invaded the oceans on 3 independent 
occasions. Our results highlight the utility of genome skimming 
for recovering more molecular markers to generate well-supported 
phylogenies, which can be further applied to help advance our 
understanding of the evolution of aquatic insects.

Reconstructing relationships within the Halobatinae and 
Gerromorpha remains a work in progress. For Halobatinae, we 
recommend increased sampling effort for African and Madagascan 
genera Eurymetropsiella, Eurymetropsielloides, and Eurymetropsis, 
to better understand how these genera fit within Halobatinae. 
Likewise, we recommend better sample representation of Australian 
Halobates species. Australia is the only known locality of freshwater 
Halobates—Halobates acherontis J. Polhemus, 1982, Halobates 
robinsoni Andersen & Weir, 2003, and Halobates rivularis Andersen 
& Weir, 1994 (Polhemus and Cheng 1982, Andersen and Weir 1994, 
2003). It was thought that H. rivularis represents the freshwater lin-
eage that reverted from a mangrove-dwelling ancestor (Andersen 
and Weir 1994, Damgaard et al. 2000), but recent molecular evi-
dence suggested that H. rivularis is nested within Halobates 
(Román-Palacios et al. 2020). Knowing where these freshwater 
Halobates species place phylogenetically in relation to the sequenced 
taxa would help address the evolutionary origins of the freshwater 
habitat and whether these freshwater reversions represent single, or 
multiple evolutionary events. Such extensive research will provide 
general insight into the evolutionary biogeography of Halobates 
which, to date, remains uncertain.
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