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Abstract: In this paper two descent methods with respect to a gap function
for solving a class of monotone mixed variational inequalities are proposed. We
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1. Introduction

Let X be a nonempty, closed, and convex subset of R"”, F': R” — R" a map,
and f : R® — R a real valued function. The Mixed Variational Inequality
(MVI, for short) problem is to find a point z* € X such that

(F(z),y =)+ f(y) = f(=*) 20 VyeX, (1)
where (-,-) denotes the usual inner product in R".

This problem was originally considered by Lescarret [6] and Browder [2] for
its applications in mathematical physics. Afterwards, it has been shown that
the MVI problem has a large variety of applications in various fields such as
mechanics, economics and operation research, see [1], [5], [7], [10] and references
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therein. When f = 0, the MVI problem reduces to the classical variational
inequality problem.

One of the main approaches for solving the classical variational inequality or
the MVI consists in minimizing a gap function associated to the problem. Plenty
of corresponding descent type methods have been developed for VIs (see e.g. [3]
and references therein). Descent type methods have been also presented for the
MVI problem (see [4] and [9]). In [4] the author proposed a descent method
which utilizes an inexact Armijo type line search procedure. The convergence
was proved by assuming the operator F' to be strongly monotone.

In this paper, we devise two global convergent descent algorithms (with an
exact and an inexact line search procedure, respectively) with respect to a gap
function, for solving MVIs with monotone (not necessarily strongly monotone)
operator.

In the rest of the paper we consider the following assumptions.

(A1) The set X C R" is nonempty, closed, and convex; the map F : Y —
R™ is continuously differentiable, where Y is an open convex set such that
X CY; the function f : R — R is convex.

(A2) The map F is monotone on Y, i.e. (F(z)— F(y),x —y) > 0 for all
z,y €Y.

(A3) The set X is bounded.

2. Gap Functions

In this paper we consider the following function (see [4]):
— —) — L — |12 _
Pale) = max [(F@).2 —y) = Sl —vlE+ f@) - f@)]. @

where « is a positive parameter, G is a symmetric positive definite matrix, and
|| - |l denotes the norm in R™ defined by ||z|l¢ = \/(z,Gx). It easy to check
that for each € X the optimization problem (2) has a unique solution which
will be denoted by yq(x).

Under assumption (A1), the function defined in (2) is a gap function for
the problem (1), i.e. it is nonnegative on X and the set of zeros coincide with
the set of solutions of (1), see [4]. Therefore, if the problem (1) has a solution,
it is equivalent to the following constrained optimization problem:

min o (2). (3)

zeX
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We remark that, by definition, the gap function ¢, is nondifferentiable since
the function f is so. However, under the assumption (A1), the function ¢, is
locally Lipschitz continuous on X and it is directionally derivable with respect to
any direction (see [10, Proposition 4.19]). Moreover, the Clarke subdifferential
and the directional derivative of ¢, at any x € X can be determined explicitly.

Note also that problem (3) may have local minima which differ from the
global one. Therefore in order to solve (1) with a descent method with respect
to ¢, we need some monotonicity properties of the operator F'. In [4] it has
been proved that, if F' is strongly monotone on Y (i.e. (F(z) — F(y),x —y) >
7 ||z — yl||?, for all x,y € Y, for some 7 > 0) and z is not a solution of (1), then
Yo(z) — x is a descent direction at any point = for the gap function ¢,. When
F is only monotone, the vector y,(z) — = is not necessarily a descent direction
for ¢q, but it satisfies a condition which will be exploited in the following and
that allows constructing descent methods for the gap function .

Theorem 1. Let assumptions (Al) — (A2) be fulfilled and let oo > 0.
Then, for each x € X, the vector y,(x) — x satisfies the following condition:

P (@i ya(@) — 2) < —al@) + 5 &~ ya(@) & <0, (1)

where ¢, (x; yo(x) — ) denotes the directional derivative of p, at x with respect
to the direction yo(x) — x.

Proof. Let z € X. From [10, Proposition 4.19] we have

Po(t3ya(@) — ) = (F(2) = (VF(2)" = aG) (ya(2) — 2), ya(2) — 2)
+f'(z;ya(z) — ) (5)
= (F(2),ya(2) — 2) + a[lya(z) — 2
—(Wa(z) — 2, VF(2)(ya(z) — 2)) + f'(z;ya(z) — z).
By assumption (A2), it follows that the matrix VF(x) is positive semidefinite
(see [3, Proposition 2.3.2]) and hence

(Ya () — 2, VE(2)(Yalzr) — 2)) = 0. (6)
Moreover, since the function f is convex we have
fl(@ya(z) — 2) < f(ya(z)) — f(2). (7)

Therefore, taking into account of (5), (6), (7), and that po(z) > |z — ya(2)[/Z
(see [4]), we have

P (@ a(r) = ) < (F(2),ya(z) —2) + o ya(@) — 2l + f(a(@) ~ f(2)
= ~¢a(@) + 5 1z~ ya(@[l}; <0. O
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4 Algorithm 1 )

0. (Initial step)
Let G be a symmetric positive definite matrix and n € (0,1).
Let {ax} be a sequence strictly decreasing to 0.
Choose any z° € X and set k = 0.
1. (Stopping criterion)
If o, (zF) =0
then STOP,
elseset k =k + 1.
2. (Minimization of ¢, )
2a. (Initialization)
Set i =0 and 20 = 2+~ 1.
2b. I —pa () + 5 12" = o (DG < 00, ()
then (line search)
set d' =y, (2) — 2°
compute t; € arg tg[l(i)%] Vo, (2" +td")
else (update of z*)
set zF = 2* and return to step 1.

2c. (Update of z?)
Set 2zt = 2 4 ¢;d*, i = i + 1, and return to step 2b. )

-

This result is useful to derive a modified descent method with exact line
search procedure (Section 3) and one with inexact Armijo-type line search pro-
cedure (Section 4) for solving the MVI problem (1). The basic idea is to use (4)
to obtain, if possible, a descent direction. Indeed, if x € X satisfies the condi-
tion

e
—Palz) + 5 o - Yo (@) < —nal), (8)
where 7 € (0, 1), then from (4) and (8) we get

P (@3 Ya(x)) < =1 Pa(@).
Hence the vector d = y,(x) — x is a descent direction for ¢, at x and we can
perform a line search procedure with respect to the direction d. Otherwise,
if x does not solve the problem (1) and does not satisfy (8), we reduce the
parameter «.
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3. Descent Method with Exact Line Search

In this section we describe the descent method with an exact line search and
we prove its global convergence to a solution of the problem (1).

Theorem 2. If the assumptions (Al) — (A3) are fulfilled, then Algorithm
1 either stops at a solution of the problem (1) after a finite number of iterations,
or generates a sequence {x*} such that any of its cluster points solves (1), or
generates a sequence {z'}, for some fixed y, such that any of its cluster points
solves (1).

Proof. There are three possible cases.

Case 1. The algorithm stops at " after a finite number of iterations. From
the stopping criterion at step 1 it follows that ¢, (z¥) = 0, thus z* solves the
problem (1).

Case 2. The algorithm generates an infinite sequence {z*}. From condition
at step 2b we have
k Ok k k(2
Pay (T )Smllm —Yar (@)l VEEN
Since ¥ and yq, (z*) belong to X which is bounded, the norm ||z* — y,, (z%)||%

is bounded above. Moreover klim ag = 0, thus
—0oQ

lim @, (zF) = 0. 9)
k—o0

The sequence {z*} has cluster points because it is bounded. Let z* be any clus-
ter point of {z*¥} and 2% a subsequence converging to z*. From the definition

of ¢, it follows that for each y € X we have

(0778

o, (21) 2 (F(ah), 2% —y) = = [l = yll& + F(a™) = fly)  VseN

Taking into account the continuity of F' and f, klim ai = 0, and (9), then
— 00
passing to the limit we obtain
0> (F(z"),2" —y) + f(=") = f(y).
Since y is arbitrary, we have proved that x* solves the problem (1).

Case 3. The algorithm generates an infinite sequence {2*} for a fixed oy, = a.
Let z* be any cluster point of {2z} and z% a subsequence converging to z*.
Assume by contradiction that z* does not solve (1), thus ¢, (2*) > 0. Moreover,
for all s € N we have:

—¢al(2") + 5 ll2" - Ya(Z) & < —npalz™).
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Hence passing to the limit, since ¢, and y, are continuous (see [4]), we obtain
—¢alz) + 5 12" = ya(=")lI& < —nealz) <0.
Using Theorem 1 we have:
P2 Ya(2") — 27) <0,
thus d* = yo(2*) — z* is a descent direction for ¢, at z* and

min p, (2" +td*) < pa(z%). (10)
te[0,1]

On the other hand the sequence {(,(2")} is monotone decreasing and from the
step length rule it follows that for each ¢ € [0, 1] we have:
Va2 < a2 4t (yo(2) — '), VseN.
Passing to the limit we obtain:
Pa(2") < 0a(Z" +1(Yal(z") = 27)))  Vie[0,1],
that is

o * — . o * td*
Pa(z") Mnin @ (2" +td)

which is impossible because it contradicts (10). Thus z* is a solution of the
problem (1). O

4. Descent Method with Armijo-Type Line Search

In this section we describe the descent method with an Armijo-type line search
and we prove it is globally convergent to a solution of (1).

Theorem 3. If the assumptions (A1) —(A3) are fulfilled, then Algorithm 2
either stops at a solution of the problem (1) after a finite number of iterations, or
generates a bounded sequence {x*} such that any of its cluster points solves (1),
or generates a bounded sequence {z'}, for some fixed ay, such that any of its
cluster points solves (1).

Proof. First, we show that the algorithm is well defined, i.e. that the line
search procedure is always finite. Assume, by contradiction, that there are
i,k > 0 such that the inequality

Pop (2 ") — 0, () > — By o, (2Y),
holds for all m € N. Then we have:
A (F:d) = lim Pay, (2" + 7™ d") — oy (2')

m——+00 ™

> — ﬁ%pak (ZZ)
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é Algorithm 2 )

0. (Initial step)
Let G be a symmetric positive definite matrix, ,y € (0,1), and 5 € (0,7).
Let {ax} be a sequence strictly decreasing to 0.
Choose any z° € X and set k = 0.
1. (Stopping criterion)
If pq, (zF) =0
then STOP,

elseset k =k + 1.
2. (Minimization of ¢, )
2a. (Initialization)
Set i =0 and 20 = 2+~ 1.
i Xk i i i
2b. T o, (') + 5 112" = Yo (ZIE < =100 (27)
then (line search)

set d' =y, (2°) — 2
compute the smallest nonnegative integer m such that:

Pay (Z7 + ,_ym dz) — Pay, (Zz) < _ﬁ ,_ym Pay (Z7)

set t; =",
else (update of z*)
set zF = 2* and return to step 1.

2c. (Update of z?)
\_ Set 2! = 2 4 ¢;d*, i = i + 1, and return to step 2b. )

Combining (4) and step 2b, we get:
i, gi i Ak 1 4 i
Pop (25d") < —pa, (') + - lld & < = n¢ay(2),
therefore
(n— B) ¢ay, (2') <0,

which is impossible because n > 3 and ¢,, (') > 0. So the line search procedure
is always finite.

There are three possible cases.

Case 1. The algorithm stops at =¥ after a finite number of iterations. From
the stopping criterion it follows that z* solves (1).
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Case 2. The algorithm generates an infinite sequence {z¥}. As in the Case
2 of Theorem 2, it can be proved that any cluster point of {z*} solves (1).

Case 3. The algorithm generates an infinite sequence {2*} for a fixed oy, = av.
Let us consider two possible subcases: either limsupt; > 0, or limsupt; = 0.

1—00 1—00
Subcase 3a. If limsupt; > 0, then there exists t* > 0 and a subsequence
1—00
{ti,} such that t;, > t* > 0 for all s € N. Since the sequence {z'} is infinite, we
have:

Pal2") = al(2Th) 2 Bti, pa(2") 2 Bt pal(2") 2 0. (11)
The sequence {¢4(2%)} is monotone decreasing and bounded below, hence
lim [pa(2") = @a(z1)] =0,

71— 00
and in particular

T [pa(2") — pa(2471)] = 0. (12

Using (11) and (12), we obtain lim ¢, (z%) = 0 and thus lim ¢, (2*) = 0. If
z* is any cluster point of {21}, tS}Te;o from the continuity on ;f;o it follows that
Zliglo ©0a(2") = @a(z¥), hence @ (2*) =0, i.e. z* is a solution of the problem (1).
Subcase 3b. If limsupt; = 0, then lim ¢; = 0. From the step length rule it

1—00 =00

follows that for all i € N,
goa(zi + '7_1 li di) - SDa(Zi) > = 57_1 Ui goa(zi).
By the mean value theorem we have
pa(2 +77 i d') = pa(2') = (€77 i dY),
where £ € Opq (2 +0; v t; d') for some 6; € (0,1). We set w® = 2! +0; v 1 t; d".
From [10, Proposition 4.19] it follows that
¢ =Fw')— (VF)" —aG)(ya(w') —uw') + 4,
for some g € Of(w'). Therefore, for all i € N, we have:
(F(wh) = (VF@)T = aG) (ya(w’) - w'),d) + (g',d) > — Ba(2).

The sequences {2z} and {d'} are bounded, thus also {g°} is bounded. Let z* be
any cluster point of {z}. Since lim ¢; = 0 and the set-valued map 9f is closed,
passing to the limit and taking a subsequence if necessary, we get:

(F(z*) = (VF(z")T = aG) (ya(z") = 2),d") + (¢",d") =2 = Bpa(z"), (13)
where d* = y,(2*) — 2* and g* € df(z*). Since

"(z*;d*) = max (g,d*), 14
P = max (o) (19)
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from [10, Proposition 4.19], (13) and (14) it follows that:

Po(z4d") = (F(z*) = (VF(z")T —a @) (ya(z*) = 2%),d*) + f'(z*;d")

> (F(2) = (VE(z")" = aG) (ya(2*) = 2%),d*) + (g",d*) = = Bpalz*). (15)
Moreover, for all ¢ € N, we have:

i Qi i i
=¢a(2") + 5 12" = 4 (& < =nal2),

hence passing to the limit and taking a subsequence if necessary, and using
Theorem 1 we obtain:

* >k * « >k *
Pal(25d7) < —a(2) + 5 171G < = nale). (16)
From (15) and (16) we get
(n—=B) ¢a(z") <0.

Since n > (3 and ¢4(z*) > 0, it follows that p4(2z*) = 0. ie. z* solves the
problem (1). O

Remark 4. In Algorithms 1 and 2 the sequence {aj} can be chosen
adaptively, for example (see also [11]) such as:

; k1) <
ak — ak—l lf @ak,%(i ) — V]C—17 (17)
pag_1 otherwise,

where 0 < p < 1 and {1} is a sequence decreasing to 0. Indeed, if the
algorithm generates an infinite sequence {#*} with {ay} chosen by (17), then
either lim ap = 0, which can be treated as in the Case 2 of Theorem 2 or

k—o0
Theorem 3, or one has
ap =a and @a(xk) <y Vk>k,
hence klim ¢a(x*) = 0. Then for each cluster point z* of {x*} we have ¢4 (2*) =
— 00

0, that is «* solves the problem (1).
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