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Abstract
This paper deals with the problem of optimising bids and budgets of a set of digital advertising campaigns. We improve
on the current state of the art by introducing support for multi-ad group marketing campaigns and developing a highly data
efficient parametric contextual bandit. The bandit, which exploits domain knowledge to reduce the exploration space, is
shown to be effective under the following settings; few clicks and/or small conversion rate, short horizon scenarios, rapidly
changing markets and low budget. Furthermore, a bootstrapped Thompson sampling algorithm is adapted to fit the parametric
bandit. Extensive numerical experiments, performed on synthetic and real-world data, show that, on average, the parametric
bandit gains more conversions than state-of-the-art bandits. Gains in performance are particularly high when an optimisation
algorithm is needed the most, i.e. with tight budget or many ad groups, though gains are present also in the case of a single-ad
group.

Keywords Performance advertising · Parametric bandit · Censored Bayesian regression · Bootstrapped Thompson sampling

1 Introduction

Digital advertising expense in the USA reached 189 bil-
lionsUSD in 2021, showing a staggering 35%year-over-year
growth [25]. This was the highest level of growth seen since
2006 [26] and was to be partially imputed to COVID-19
restrictions and the consequent reliance on digital media: a
deceleration in advertising revenues was thus to be expected.
Moreover, the macroeconomic climate (high inflation rates,
raising interest rates and economic uncertainty throughout
2022) impacted marketing budgets among others. Neverthe-
less, in 2022, far from decreasing, digital advertising expense
reached a two-digit growth (10.8%) with respect to 2021,
totalling 210 billions USD in the USA [26]. These numbers
show that digital marketing is an ever so important expense
item for brands. Moreover, the current shift in focus from
growth to profitability due to raising costs and interest rates
means it is vital to efficiently and effectively manage digital
marketing budget.
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This challenge has attracted the interest of the machine
learning community for a manifold of reasons. Being fully
digital, it is possible to reliably measure the impact of
decisions, hence closing the data loop between action and
reward. Moreover, tabular data consisting of many dimen-
sions are appealing for learning algorithms, as opposed to
human intuition. Finally, and crucially for this contribution,
this endeavour can be seen as an exploration–exploitation
dilemma: the algorithm in charge of optimising marketing
expense (the agent) has to balance the need of gatheringmore
data from the environment (exploration) to make sharper
decisions and the need to limit the cost of data acquisition
(exploitation).

Three digital advertising formats account for the over-
whelming majority (93%) of the total spend: search ads
(40%), display ads (30%) and digital video ads (23%).Major
advertising platforms share the samebasic strategy for choos-
ing which ads get shown to internet users: every time a user
is eligible for seeing an ad, compatible advertisers take part
in an automated auction. For every ad, the advertiser is thus
called to choose wisely a target (i.e. keywords and user pro-
files), a bid for the auctions and a maximum daily budget
(i.e. the maximum total expense one wants to sustain for that
ad in a day).

While a complete description of the different auction types
is beyond the scope of this work, they mainly belong to three
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kinds: Generalized Second Price, VCG [35] and First Price
[11]. Moreover, the advertiser can be charged on the basis
of different principles, the most common of which are CPM
(cost-per-mille, i.e. payments are based on the number of
impressions, expressed in thousands), CPC (cost-per-click)
and CPA (cost-per-acquisition, i.e. payments are based on
the number of contacts or sales).

For definiteness, in this work we focus on Generalized
Second Price auctions with CPC payments, typical of Search
EngineMarketing. In this setting, the bid represents the max-
imum cost the advertiser is willing to pay if the user clicks
on the ad. However, as will become apparent, the methods
can be easily adapted to other kinds of auction and charging
principles.

While it is often assumed [18, 37] that bidding one’s pri-
vate value truthfully is the optimal strategy in second-price
auctions, this holds only under the unrealistic assumption of
infinite budget [24]. Moreover, and crucially in our setting,
in order to truthfully bid the private value the bidder must
know it, and this assumption is typically unrealistic [37]. It
follows that the bidder must sequentially learn the optimal
bids.

Search Engine Marketing ads are typically organised into
three hierarchical levels [17]: campaigns, ad groups and the
ads themselves. The primary purpose of this layered struc-
ture is to help advertisers organise their online advertising
efforts. In particular, a campaign is usually associated to a
specific advertising objective: for instance, two campaigns
can be used to market different products sold by one adver-
tiser. Moreover, for a fixed product, one can arrange several
campaigns in order to segment the audience (i.e. to reach
distinct demographic or geographic targets). Campaigns are
sub-divided into ad groups: these serve as organisational
units, in which advertisers group together ads that share a
common theme, an aligned message or the same target audi-
ence and the associated keywords.

As an example, we can think of an advertiser that sets
up two campaigns to market two coding courses, and each
campaign is divided into two ad groups: one contains the ads
that are targeted to students and the other one the ads targeted
to professionals.

In major online advertising platforms, the daily budget is
assigned at the campaign level. In other words, ad groups
within a campaign share the budget allocated to the overall
campaign. The bids are, instead, set at the ad group level. The
budget applies to the entire campaign since it is associated
with how much the advertiser is willing to spend to achieve
a specific advertising objective; on the other hand, differing
targets, ads and keywords (even within the same campaign)
usually imply differing competition landscapes, hence bids
are regulated at the more granular ad group level.

We consider here the common situation in which a total
daily budget is given, and it must be split across a set of

Fig. 1 The structure of a portfolio of two campaigns, each of which
contains two ad groups, in turn containing two ads each

several campaigns. We will henceforth call such set a portfo-
lio of campaigns.1 The layered structure of a stylised digital
advertising portfolio is depicted in Fig. 1.

Two recent works [21, 22] have cast the daily bid/budget
optimisation as a multi-armed bandit problem. In particular,
the goal is tomaximise the long-term revenue, choosing daily
the combination of bids and budgets for the whole portfolio
over which the total budget is set. To this end, the whole
combination of bids and budgets is the arm of the bandit that
the learning agent plays.

In particular, the authors of [21] note that, when the agent
plays one such combination, it does not observe just the total
number of clicks and conversions gained by the portfolio over
the day: it observes also the individual numbers of clicks and
conversions totalled by each ad group. In other words, even
if the space of possible actions is combinatorial in nature,
a richer feedback with respect to the pure bandit feedback
makes the problem manageable, as the agent can learn how
to associate the bids and budget of a single campaign to the
expected number of clicks. As the whole combination of
bids a budgets can be seen as a collection of arms of sin-
gle, simpler bandits (the campaigns and the ad groups), it is
called the super arm of a combinatorial bandit [9, 28, 29].
Campaigns are in turn seen as static contextual bandits [1]:
similar bid/budget combinations for a campaign share infor-
mation. The fixed context (feature) vector is indeed given by
the bids/budget pair.

The application of these results in practical settings is,
however, limited by the following shortcomings:

(i) The literature concentrates on campaigns without sub-
structure (single-ad group campaigns). Thismeans that,

1 We specify that the term “portfolio” is less established in the industry
with respect to terms such as “ad group” and “campaign”: we use it here
just to refer to the collection of campaigns involved in the optimisation.
If these make up the totality of an advertiser’s campaigns, one could
use the term account interchangeably.
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besides the budget, only one bid must be chosen per
campaign. However, the typical campaign is divided
into ad groups, thus requiring generalisation. Given the
regression model introduced in [21], this generalisation
is non-trivial.

(ii) Agnostic nature of Gaussian processes (GPs) with
respect to the functional form which links bid to
observed clicks. While this method is very flexible, it
also reflects in the need for more data to converge to
a sensible posterior, if compared to a more informed
model (in particular, a parametric model).

(iii) The need to extrapolate, from the observed clicks, the
so-called saturation clicks, i.e. the number of clicks we
would have observed if we did not have budget con-
straints. The authors of [21] suggest using the time of
the day when the daily budget finished and an estimate
of the distribution of the number of clicks during the
day to perform the extrapolation (see also [22]where the
exampleof constant distribution is given).However, this
information is not available, and ad frequency is explic-
itly reduced throughout the day to make sure the budget
lasts until the end of the day [17]. Other metrics could
be used to this end, but they are inherently noisy. Per-
hapsmore importantly, this extrapolationmethod needs
a certain share of the total budget to be always reserved
for exploration (akin to ε-greedy strategies). The need
for this missing data imputation stems from the use of
vanilla GPs (i.e. with a Gaussian likelihood [38]). On
the other hand, censored regression is a principled way
to avoid the need for missing data imputation. While
GPs can accommodate non-Gaussian likelihoods, this
requires giving up exact update formulas, and switching
to approximate methods [14].

Reasons (ii) and (iii) point to parametric regression,
exploiting a functional form suggested by domain knowl-
edge, as a way to use data more efficiently and without
resorting to proxies. In this spirit, a recent work [16] has
overcome aforementioned shortcomings making the follow-
ing contributions:

• To address point (i) above, a multi-ad group generalisa-
tion of the relation between bid/budget and clicks was
developed (Sect. 2), suitable regardless of the regression
model one employs.

• To tackle points (ii) and (iii) above, an informed alter-
native to GP regression has been devised, namely a
parametric regression model, which accounts for censor-
ing in a principled way and with interpretable parameters
(Sect. 3.1).

• The use of such a model in the context of bandits
(and specifically Thompson sampling) has been explored
(Sect. 3.2). In particular, bid and budget selection are

recast as local constrained optimisation problems, as
opposed to global optimisation required by GPs: this
brings advantages both in terms of resource requirements
and accuracy of the found optimum.

• To test and compare performances of the proposed
approach, a simulation environment was developed, built
on what is known about the inner workings of the auc-
tions (Sect. 4.1). Numerical results reported in Sect. 4.2
confirm the advantages of the proposed method.

This paper extends [16] by making the following novel
contributions:

• The performance of the approach proposed in [16] has
been extensively tested on real-world data by exploiting
the Criteo AttributionModeling for Bidding Dataset [12]
(described in Sect. 5.1).

• With an eye to applications, bootstrapped Thompson
sampling [23, 28], an easy to implement approximated
Bayesian inference method, has been adapted to our con-
textual bandit and tested (see Sect. 3.3).

• The impact of various parameters on model’s perfor-
mance has been studied on the Criteo dataset. Further-
more, an ablation experiment, to study the effect of the
model alone on single-ad group campaigns, has been per-
formed (Sect. 5.2).

The paper is organised as follows: In Sect. 2, we set the
notation and define themulti-ad group optimisation problem.
In Sect. 3, we analyse how the optimisation can be carried
out using a parametric Bayesian regression model. Section4
is devoted to testing the proposed technique in an artificial
simulated environment, while in Sect. 5 we test it on real-
world data. Finally, we draw the conclusions and trace the
next steps in Sect. 6.

2 Optimisation problem

In this section, we generalise the single-ad group model to
multiple ad groups per campaigns. To do so, we first establish
the notation in the single-ad group regime and proceed with
the generalisation below.

We follow [21] and assume for now that we have a port-
folio of N campaigns, each with just one ad group. Let’s call
n j (b j , Bj ) the average number of clicks obtained by the j-th
campaign with budget Bj and bid b j . Let v j be the average
value of one click from the j-th campaign. The task of max-
imising the revenue can then be formulated as the following
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constrained optimisation problem:

max
N∑

j=1

v j n j (b j , Bj )

s.t.
N∑

j=1

Bj ≤ B, b j ∈ [b j , b j ] ∀ j

(1)

where the maximum is taken over the budgets B1, . . . , BN

and the bids b1, . . . , bN , B is the total budget and b j and b j

are the (possibly campaign-dependent) minimum and maxi-
mum allowed bids.

Both the functions n j and the values v j are unknown and
must be estimated from the collected data, hence the need to
balance exploration and exploitation. Early estimates could
be inaccurate and lead to sub-optimal decisions, but one does
not want to spend too many resources on data gathering
either, since this comes at the expense of exploiting acquired
knowledge.

Note that, in accordance with [21], we are here assum-
ing stationarity, i.e. that the probability distributions of click
value and number of clicks given a bid and budget don’t
change with time. This is a realistic approximation only on
short time spans: as detailed in Sect. 5, thismotivates the need
for fast-learning models, as the one we present in Sect. 3.1.

In order to reduce the burden of exploration, in [21] an
ansatz for the formofn j is proposed, reducing the complexity
of a two-variable regression to two one-variable functions:

n j (b j , Bj ) ≈ n sat
j (b j ) min

(
1,

Bj

c satj (b j )

)
. (2)

Here the function n sat
j denotes the saturation clicks, i.e.

the number of clicks a campaign would obtain if there were
no budget limits. Likewise, c satj denotes the saturation cost,
i.e. the cost faced in the same situation. Since the right-hand
side depends nonlinearly on n sat and c sat, and given that we
are speaking about averages, the equality in (2) strictly holds
only in the deterministic case.

The issue in generalising the problem (1) to the multi-ad
group setting is that the budget is shared by all the ad groups
of the same campaign, as stated in Sect. 1. While we can let
an index k run over ad groups and define v jk as the value of a
click from the ad group k of campaign j and do similarly for
the bid b jk , we cannot define a corresponding click function
n jk(b jk, Bj ): the number of clicks gathered by an ad group
depends also on the bids of all the other ad groups belonging
to the same campaign. Intuitively, raising the bid b jk will
bring more clicks for the corresponding ad group, but it will
also erode the budget Bj more quickly, thus lowering the
clicks received by the other ad groups. This difficulty can be
circumvented introducing the total value functionVj (b j , Bj )

of a campaign, which depends on the whole vector of bids
b j . Therefore, the optimisation problem (1) generalises to

max
N∑

j=1

Vj (b j , Bj )

s.t.
N∑

j=1

Bj ≤ B, b jk ∈ [b jk, b jk] ∀ j, k.

(3)

In order to preserve data efficiency, the ansatz (2) must be
generalised too, linking the total value function to the corre-
sponding saturation quantities. Note that the aforementioned
interdependence among different ad groups is a consequence
of a limited budget, while the dependence of saturation quan-
tities n sat

jk and c satjk on the single bid b jk is well defined. If the
j-th campaign contains m j ad groups, and we let

V sat
j (b j ) =

m j∑

k=1

v jkn
sat
jk (b jk),

c satj (b j ) =
m j∑

k=1

c satjk (b jk),

(4)

then ansatz (2) generalises to

Vj (b j , Bj ) ≈ V sat
j (b j ) min

(
1,

Bj

c satj (b j )

)
. (5)

Since the right-hand side is not a sum over single-ad group
contributions, this formula captures the interaction among
different ad groups.

As away to intuitively justify (5) for fixed bids and budget,
we can think of the single n sat

jk as the sizes of “reservoirs”, one
for each ad group, from which clicks are randomly drawn,
up until the moment when the total cost paid matches the
assigned budget. If the clicks pertaining to different ad groups
are well mixed, each will bring approximately the same frac-
tion of its saturation value V sat

jk (b jk) = v jkn sat
jk (b jk) and

saturation cost. The value of this fraction is found equating
the total cost paid and the assigned budget Bj , hence (5).

3 Optimisation strategy

In the previous section, we established how the optimisation
problem is formulated, generalising it to the multi-ad group
domain, which contains single-ad group as a special case.
In this section, we explore an efficient way to perform the
optimisation itself.

As stated in Introduction (Sect. 1), we face here the
exploration–exploitation dilemma, since the function we
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want to optimise must be learnt from the data. We will for-
mulate, as in [22], this problem as a stochastic multi-armed
bandit. One could argue that, dealingwith auctions, an adver-
sarial environment which adapts to the bidder’s strategy
would better model the problem. However, we assume that
advertising competitors are many and not coordinated: the
stochastic setting is then justified by amean-field approxima-
tion [3, 20] and is standard in the literature [36]. Even if each
competitor implements a learning strategy, several quantities
can be effectively modelled as random, e.g. time of enter-
ing the market, private values, ad quality (which is factored
in to determine auction winners, see Sect. 4.1). Moreover,
standard adversarial bandit algorithms focus on worst-case
performance, without taking advantage of “nice” problem
instances [4]: if one can assume a stochastic environment,
stochastic bandit algorithms achieve lower regret. The (rel-
atively slow) collective change in behaviour of competitors
due to the added presence of the bidder can be modelled as
a non-stationary stochastic bandit: we will touch upon non-
stationarity in Sects. 5 and 6.2

Among stochastic bandit algorithms, Thompson sampling
[33] is of particular interest to practitioners, due both to its
performance [8], generality and conceptual simplicity [28].

In general, Thompson sampling involves two steps:

1. Making optimal use of the data gathered thus far with
Bayesian inference, establishing a posterior distribution
on the space of parameters (Sect. 3.1);

2. Sampling from the posterior distribution, and selecting
the best armacting as if the sample represented the reality
(Sect. 3.2).

We investigate these steps separately in the upcoming sub-
sections, while in Sect. 3.3 we show how Bayesian inference
can be simplified with an approximated technique.

3.1 Parametric regressionmodel

If we see the j-th campaign as a contextual bandit, Thomp-
son sampling requires performingBayesian regression on the
correspondence between (b j , Bj ) and the reward r j . We can
restrict the search space by placing few, sensible hypothe-
ses on the shape of the functions n sat and c sat, introduced
in equations (5) and (4) (we are here dropping indices for
simplicity). These hypotheses will lead us naturally to a para-

2 Two recent works [6, 18] indeed model the problem of bidding in
repeated ad auctions in adversary terms. In particular, the adversar-
ial bandit algorithm proposed in [18] outperforms a stochastic bandit
algorithm on real-world data; the authors remark, however, that the
competing stochastic algorithm is hampered by being non-contextual,
while the proposed adversarial algorithm contextually depends on the
private value. Moreover, the authors of [6] only consider an oblivious
adversary, i.e. one which does not adapt to the bidder’s actions.

metric model: Bayesian regression can then be conducted
with Markov chain Monte Carlo (MCMC) [31].

Clicks and cost paid are of course highly correlated, so
to be able to perform separately the two regressions it is
convenient to introduce the cost-per-click (CPC) function

ϕ(b) = c sat(b)
n sat(b) . Both functions n

sat andϕ must be positive, be
monotonic increasing with the bid, saturate for high enough
bid and vanish for vanishing bid. Moreover, ϕ was empiri-
cally found to be linear for small bids (in accordance with
the law of diminishing returns), and must be strictly smaller
than the identity (because of the meaning of bid as maxi-
mum CPC). These considerations suggest to use a properly
shifted and scaled logistic function. Starting from the satu-
ration clicks,

n sat(b) = k(1 + e−ac)︸ ︷︷ ︸
scale factor

·
(

1

1 + e−a(b−c)
︸ ︷︷ ︸
logistic function

− 1

1 + eac︸ ︷︷ ︸
vert. shift

)
. (6)

An example of this function is shown in Fig. 2a. The term
in parentheses in the scale factor has the goal of providing
a meaningful k, which is the saturation value, i.e. the max-
imum number of clicks one can expect when setting a very
high bid. The coefficients a and c have the meaning of an
inverted length scale and of a horizontal shift. In order to give
them a more intuitive meaning (since it is required to place
priors on them), we can link them to the elbows of the curve,
which can be identified as the maximum andminimum of the
second derivative of the function. The left elbow can be inter-
preted as the threshold belowwhich the bid yields a negligible
number of clicks, while above the right elbow the function
effectively saturates. For a standard logistic function (with
a = c = 1) such elbow points are: x± = log(2 ± √

3). For
a general logistic function, the elbows b− and b+ are linked
to the parameters a and c via: a = x+−x−

b+−b− , c = b+ − x+
a .

Switching to the CPC function ϕ (Fig. 2b), the additional
hypothesis of being linear near the origin suggests the same
functional form as (6), with c = 0:

ϕ(b) = 2κ

(
1

1 + e−αb
− 1

2

)
. (7)

Here κ is themaximumCPCwhich can be paid, and the same
considerations connecting α with elbows apply.

In order to perform regression, one needs to model the
likelihood of the data given the parameters. Since n sat is a
count of clicks at saturation, a natural choice is the Poisson
distribution, centred around the mean given by (6). We note,
however, that this count is often censored, i.e. only partially
known: this happenswhen the assigned budget is less than the
saturation cost. In these cases, all we know is that saturation
clicks are greater than or equal to observed clicks, and one
needs a principled way to take these data into account, with-
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Fig. 2 Bayesian regression for models (6) and (7). Data have been
simulated as in Sect. 4.1. Orange dots denote censored quantities: the
number of saturation clicks is greater or equal than the observed number
of clicks (see Sect. 3.1)

out introducing systematic bias. In the bandit model, one can
assume non-informative censoring [19]. Thus, just a simple
change in the likelihood is needed: censored data enters the
likelihood via the so-called survival function, i.e. the com-

plementary of the Poisson CDF. Finally, a natural model for
the CPC is offered by the lognormal distribution.

Summing up, this model has the following advantages:
(i) lower variance (with a small bias increase), (ii) closed-
form functions, (iii) it forces monotonicity, which helps
optimisation to choose the next action, (iv) transparent hyper-
parameters make it easy to elicit priors, and finally (v)
parametric Bayesian regression easily accommodates cen-
soring.

Contextual bandits have been mostly studied in the lin-
ear [2, 10], generalised linear [13] and kernelised domain
[30, 34]. More recently, deep neural networks have been
explored for the regression step [27]; their expressive power
is, however, balanced by the large need of data. To the best of
our knowledge, this is the first work which uses full-fledged
Bayesian regression on a parametric function which is not
(generalised) linear.

3.2 Next super-arm selection

We now turn to the problem of sampling from the poste-
rior distribution, and selecting the best arm accordingly: this
means drawing a particular instance of the functions intro-
duced in (4) and (5) and solving the optimisation problem (3)
for those instances. As noted in [21], since the constraint
acts only on the budgets, the optimisation problem (3) can
be decoupled as follows:

max
N∑

j=1

Vj (b j , Bj ) = max
B1,...,BN

⎛

⎝
N∑

j=1

max
b j

V j (b j , Bj )

⎞

⎠ .

In other words, if we are able to find the bid vector b j =
b j (Bj ) which maximises the value Vj (b j , Bj ) for a fixed
budget Bj , we are then left only with the constrained opti-
misation on the budget splitting B1, . . . , BN .

While the grid search approach suggested in [21] works
well in one dimension (i.e. for single-ad group campaigns), it
scales badly with increasing dimensionality. If a GP regres-
sion model is employed, owing to the non-monotonic nature
of extracted samples, one must recur to global methods, as
opposed to local ones. On the other hand, employing the
monotonic functions (6) and (7), the function Vj (b j , Bj )

with fixed budget was empirically found to have only one
localmaximum,which is also global (see Fig. 3a). Therefore,
optimisation is amenable to local methods: when applicable,
these are both faster andmore reliable.We now describe how
such methods can be applied in practice. Starting from (5),
Vj (b j , Bj ) can be rewritten as a piecewise function:

Vj (b j , Bj ) =
⎧
⎨

⎩
V sat
j (b j ), c satj (b j ) ≤ Bj

B j
V sat
j (b j )

c satj (b j )
, c satj (b j ) ≥ Bj

. (8)
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Fig. 3 Thompson sample of the total value function Vj (b j , Bj ) of a
campaignwith two ad groups (click values v jk are set to 1 for simplicity)

Note that, on the boundary
{
c sat(b j ) = Bj

}
between the two

regions, the functions coincide. On the other hand, traversing
the boundary the gradient changes abruptly, thus hindering
the direct application of gradient-based optimisation meth-
ods. We will see, however, that a constrained optimisation on
just one region is sufficient. First we note that, if both regions

are non-empty, the global maximum of Vj (b j , Bj ) is given
by the maximum between the two maxima of the function
on the two regions. Moreover, every directional derivative
of V sat

j (b j ) (sum of monotonic single-variable functions)

is strictly positive. If the boundary
{
c sat(b j ) = Bj

}
is not

empty, the maximum of V sat
j (b j ) then lies on said bound-

ary. This, in turn, means that the maximum over the region{
c sat(b j ) ≤ Bj

}
is less than or equal to the maximum over

the region
{
c sat(b j ) ≥ Bj

}
, i.e. that, if the latter region is not

empty, it suffices to search the maximum there.
Up to now, we dealt with finding the optimal bids for

a campaign given the budget, thus finding a function b j =
b j (Bj ). Wemust now solve the following optimisation prob-
lem:

max
B1,...,BN

N∑

j=1

Vj (b j (Bj ), Bj )

s.t.
∑

j

B j ≤ B.

(9)

The terms Vj (b j (Bj ), Bj ) in the sum are single-argument
functions that depend only on the budget of the cam-
paign. For budgets Bj greater than the spending capability
c satj (b j1, . . . b jm j ) of the campaign, such functions become
constant, as can be seen by (8). For budgets below the spend-
ing capabilities, the functions have been empirically found to
be downwards concave (see Fig. 3b), in agreement with the
law of diminishing returns. This also means that this opti-
misation step is amenable to local gradient methods too.
If, however, the optimisation over bids is performed with
numerical methods, extra care must be taken in choosing the
step size over budgets: small errors in the first step translate
to a small noise in the function Vj (b j (Bj ), Bj ). To control
this issue, we developed an intuitive optimisation procedure
which generalises the budget splitting strategy presented in
[15] to the case of non-constant returnon investment (i.e. non-
linear functions): this procedure is outlined in Algorithm 1.

Algorithm 1 Local budget splitting optimisation
Input: Spending capabilities of every campaign
1: for every campaign j do
2: Assign j-th spending capability to j ↪→ as initial budget
3: end for
4: while total assigned budget ↪→ is greater than B do
5: for every campaign j do
6: Calculate discrete derivative ↪→ of Vj (b j (Bj ), Bj )

7: end for
8: Find campaign with smallest ↪→ discrete derivative
9: Subtract one unit from its assigned ↪→ budget (e.g. one euro)
10: end while

The procedure keeps subtracting budget from a campaign
until the discrete derivative matches or becomes smaller than
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Fig. 4 Flow chart of the whole bid/budget optimisation algorithm.
On the first day of optimisation, the algorithm starts from the top left
node, sampling from the priors (since no data have been gathered yet).
Here, nsat and ϕ are the click and CPC functions introduced in Sect. 2,

and indices running over all ad groups and campaigns are dropped for
simplicity, as in Sect. 3.1. Bayesian regression and sampling from pos-
terior can be carried out either with MCMC or with Bootstrapped TS
(Sect. 3.3)

the discrete derivative of another. This means that the proce-
dure effectively searches for the point in the budget splitting
simplex where the derivatives are approximately equal: this
is the solution of the Lagrange problem corresponding to (9).

A flow chart depicting the broad steps of the whole
bid/budget optimisation algorithm, from data gathering to
next super-arm selection, is given in Fig. 4.

3.3 Bootstrapped Thompson sampling

While Markov chain Monte Carlo [31] has become the de
facto standard for Bayesian inference when no closed for-
mula for the posterior exists, it presents challenges that could
hinder applications. First, some tuning is often required on
the models to ensure that the Markov process converges,
and that the sampled data approximate the posterior well.
Second, it is resource-intensive and requires much time to
converge (if compared to maximum likelihood models). To
bridge this gap, we adapted an approximated, lighter alter-
native, i.e. bootstrapped Thompson sampling [23, 28].

The main idea behind this method is to approximate sam-
pling from the posterior with the statistical bootstrap. In the
case of our parametricmodel, thiswouldmean samplingwith
replacement from the history of data gathered so far, and find-
ing the maximum likelihood estimate of the parameters for
said sampledhistory.This procedure, however,would present
two issues [28]: the prior over parameters is ignored and,
more importantly, the uncertainty over parameters is underes-
timated in initial periods, when data points are scarce. Since
Thompson sampling leverages this uncertainty to produce
next action decisions, this naive application of the bootstrap
is known to lead to linear regret [23]. In particular, in the
first days of optimisation the agent could conclude that an ad
group is underperforming with respect to the others just by
chance, and stop allocating budget to that ad group altogether,
never allowing it to recover.

To overcome this issue, we adapted Algorithm 3 of [23]
withBayesian bootstrapping to our setting. The adapted algo-
rithm is reported in Algorithm 2.

Algorithm 2 Bootstrapped Thompson Sampling
Input: Prior P over parameters of models (6) and (7); ad groups list
(a1, a2, . . . ).
1: Data D0 = ()

2: for t = 0, 1, . . . do
3: for a = a1, a2, . . . do
4: Uniformly sample artificial bid b̃ ↪→ over allowed range
5: Sample model parameters ↪→ (k, a, c, κ, α) ∼ P

6: Sample artificial saturation ↪→ clicks ñ ∼ Pois
(
n sat(b̃)

)

7: Sample artificial CPC ↪→ ϕ̃ ∼ Lognormal
(
ϕ(b̃)

)

8: Sample t + 1 weights ↪→ wi ∼ Gamma(1, 1), i = 0, . . . , t
9: WeightedMaximumLikelihood ↪→ regression over data Dt ∪

(b̃, ñ, ϕ̃)

10: end for
11: Use ML parameters for choosing next ↪→ bids and budgets as

in Section 3.2
12: Update data Dt+1 with observed ↪→ clicks and CPCs
13: end for

4 Numerical simulations

In order to test the model and compare it with the state of the
art, we designed and developed an environment which tries
to capture what is disclosed about the ad placing auctions
[17]. In Sect. 4.1, we introduce such environment, while in
Sect. 4.2 we analyse the results of our simulations.

4.1 Simulation environment

We describe here the simulation environment: while some
simplifying assumptions have been made, the click and
CPC dependence on bids agrees with experience on actual
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auctions.Moreover, the goal is proving the ability of the opti-
miser to adapt to an environment which is similar enough to
reality. In particular, we are avoiding simulating the distribu-
tion of the number of clicks using the same models that are
being tested, in order not to introduce bias.

For every day, the number of searches compatible with an
ad group is sampled from a Poisson distribution. Then, for
each search we simulate an auction. The number of compet-
ing advertisers is again sampled from a Poisson distribution
(with a different mean). The ads belonging to different adver-
tisers are ranked according to the product of three quantities.
The first is the bid: for competing advertisers, the bid is sam-
pled from an exponential distribution. The second is a static
quality score, which measures the intrinsic quality of the
ad: it is sampled from a triangular distribution. The third is
an instantaneous quality score, which measures the affinity
between the single search and the ad group. It is modelled as
an angle between vectors, which is extracted from a rescaled
beta distribution; then, the quality score is calculated as the
scalar product between said vectors.

After the ads have been ranked, the first ones appear on
the search engine result page: whether they are clicked or not
is determined by a Bernoulli distribution. Then, in keeping
with the meaning of the bid as maximumCPC, the advertiser
that has received a click pays the minimum amount neces-
sary to appear in that position. The budget is then updated
accordingly, until either available searches end or the budget
is finished. A second Bernoulli distribution governs which
clicks turn into contacts. What distinguishes various simu-
lations are the parameters of the manifold of the probability
distributions involved.

To run a comparison between the parametric regression
model introduced in Sect. 3.1 and the GP model introduced
in [21], the latter needs some additional metric to extrapolate
the saturation clicks of the day from the observed clicks,
as stated in Sect. 1. We have chosen lost impression share,
an estimate of the fraction of times the ad was eligible for
appearing in a search, but did not due to limited budget. To
capture the fact that it is inherently a noisy quantity, a convex
combination of the actual lost impression share with random
fractions was used, with varying coefficients.

The code of the simulation environment is available at
https://github.com/MarcoGigli/sem-simulation.

4.2 Simulation results

We run 120 experiments randomly drawing the parameters
introduced in Sect. 4.1 (thus tripling the number of experi-
ments reported in the preliminary version [16]). The number
of campaigns of the portfolio varied between 2 and 8 and,
for each campaign, the number of ad groups varied between
1 and 4. For each parameter setting, both the parametric and
the GP model optimised the total value for 100 virtual days.
We specify that in these numerical simulations we tested the
parametric model with full-fledged Bayesian inference, per-
formed with MCMC: we deferred testing the approximated
bootstrapped Thompson sampling introduced in Sect. 3.3 to
the real-world experiments (see Sect. 5.2).

To compare performances, we evaluated the regret of
using the GP model instead of the parametric one, Rn =∑n

t=1

(
rpart − rGPt

)
. Here rpart and rGPt represent the rewards

received at day t using the parametric and GPmodel, respec-
tively. In particular, it is given by the number of contacts. We

also calculated relative regret ρn =
∑n

t=1
(
rpart −rGPt

)
∑n

t=1 r
par
t

to mean-

ingfully compare performances of experimentswith different
parameters.

In Fig. 5, the behaviour in time of regret and relative regret
is shown for a particular set of parameters, i.e. one of the
120 experiments. After a short time in which, due to random
fluctuations, theGPmodel gathersmore contacts, the relative
regret quickly raises to 40%. Then, as both models are given
more data, the relative difference in performance gradually
tapers off and converges to approximately 10%.

This example is typical, as can be seen in Fig. 6 and in
table 1: at n = 10 days, only in 11 experiments the regret
is negative, and in most cases the relative regret ranges from
8% to 55%. Fast convergence is especially important if a
sliding window strategy is employed to retroactively take
time dependence into account, as in [22]. At n = 100 days,
the relative regrets are much less spread out and lower on
average, and again they are negative only in roughly one in
ten cases (13 runs). As hinted at in the preliminary version
[16], upon closer inspection the most important feature in
determining regret is the number of ad groups per campaign
(see Fig. 7). This shows that the ability to efficiently search
for the optimal bid combination given a certain budget (as
described in Sect. 3.2) is crucial for the performance of the
agent. Moreover, higher percentages of noise in the extrap-
olation metric are associated with a higher relative regret
(especially at n = 100 days), as is to be expected from the
discussion of Sect. 3.1. Other features do not show a clear
link with relative regret.
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Fig. 5 Time dependence of regret and relative regret suffered by the
GP model when compared to the parametric model

5 Real-world data

While the simulation environment described in Sect. 4.1 has
the benefit of giving full control over the parameters of the
simulation, it is at risk of being too idealised and relying too
heavily on assumptions, particularly with regard to probabil-

ity distributions and the presence of outliers. To counter this,
we performed extensive experiments over the Criteo Attri-
bution Modeling for Bidding Dataset [12], which contains
one month worth of (subsampled) Criteo display advertis-
ing data. Dealing with real data, as opposed to synthetic,
means we are not shielded from non-stationarity; moreover,
the imposed 31-day time frame makes data efficiency all the
more important.

In the following subsections, we first describe the dataset,
and how it can be used to evaluate bandit performances
(Sect. 5.1) and then we analyse the results of the experiments
(Sect. 5.2).

5.1 The Criteo dataset

Every line of the dataset contains contextual features regard-
ing the user, the website and the ad. These (anonymised)
categorical features are used to feed a supervised model that
predicts the probability of conversion (see [12] for details).
This predicted probability is the analogue of the product of
static and instantaneous quality score described in Sect. 4.1:
it is multiplied by the bid to determine the ad rank and thus
the right to be shown on page. The dataset was thus split in
two: one half was used to train the predictive model, while
the other half was used to test the bandit algorithms. The
training set was also used to learn the priors, both over the
parameters of the proposed Bayesian model and over the
hyperparameters of the GPs.

The data points correspond to auctions that were won by
the production policy; in other words, the dataset is trun-
cated, since lines corresponding to lost auctions are absent.
This selection bias means that the logged distribution of min-
imumwinning bids is not representative of the true one.More
generally, to evaluate the performance of competing bandit
policies on logged data one would need a full counterfactual
analysis [32], which could be unfeasible if the production
policy is deterministic. In this case, however, it has become
standard practice to tackle the problem of selection bias by
injecting noise into the distribution of competing bids [7, 12],
and we followed this simple approach.

It was thus possible to effectively replay the auctions. The
bid chosen by the agent for a given day and ad group is
compared, after multiplication by the predicted probability
of conversion, with the best competing ad rank. If the auction
is won and the ad in the dataset received a click, then the click
count for that day is increased by one. The same holds for
conversions.

As an ablation experiment, and to keep matters as close
as possible to the original dataset, we fed the GP model with
the actual lost impression share, without adding noise. This
benefits theGPmodel, as one of the concerns raised in Sect. 1
was here removed. Nevertheless, we will see in Sect. 5.2 that
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Fig. 6 Distribution of the
relative regret at n = 10 days and
n = 100 days for all synthetic
experiments. The boxes show
the first quartile, median and
third quartile

Table 1 Descriptive statistics of the relative regret at n = 10 days and
n = 100 days

Days Relative regret
First quartile (%) Median ( %) Third quartile (%)

10 8.6 22.4 55.8

100 4.5 8.5 12.5

the parametric Bayesian model performs best on average in
every setting we studied.

Before delving into comparing the performances of the
bandit algorithmson this dataset,we can study the two regres-
sion models taken in isolation. First note that the right hand
side of formula (6) with k = 1 is the probability of winning
a single auction, as predicted by the parametric model. The
actual probability of winning is given here by the cumulative
distribution of competing ad ranks (which is unknown to the
agent). A comparison of the two curves shows the expressive
power of the proposed model (see Fig. 8 for an example).

Switching to the number of clicks in a day, one can com-
pare the proposed parametric model with a GP trained on the
same data (see Fig. 9). Here we see that the fewer restric-
tions placed on the GP (as mentioned in Sect. 1) mean much
slower convergence to sensible shapes.

5.2 Results on the Criteo data

In order to study how the main parameters of the experiment
affect the regrets, we varied them one at a time, keeping
the others fixed: budget per ad group (Fig. 10a), number of
campaigns (Fig. 10b), and number of ad groups per campaign
(Fig. 10c).

For each parameter combination, we sampled 120 reali-
sations from the Criteo dataset, i.e. we randomly extracted
portfolios with the chosen number of campaigns and ad

groups, and replayed its auction as described in Sect. 5.1.
Since the campaigns of the Criteo dataset present no sub-
structure, to test multi-ad group scenarios we treated them as
ad groups, and randomly clustered them to form campaigns.

The experiments letting budget and number of campaigns
vary were conducted with one ad group per campaign, to
perform an ablation experiment and study the effect of the
parametric model alone, independently of themulti-ad group
generalisation introduced in Sect. 2.

Overall, in every setting we studied, the average regret
suffered by either the GP method or Bootstrapped TS at the
end of the simulation is positive. As shown in Fig. 10, the
average percentage of conversions lost due to not using the
parametric Bayesian method can reach in some settings 40%
(Fig. 10c).

As can be seen from Fig. 10a, keeping the number of
campaigns and ad groups fixed and increasing daily bud-
get, relative regret quite steadily decreases both for GPs and
Bootstrapped TS. This is to be expected, since increasing
daily budget means moving closer to saturation cost, which
in turn means that

• Errors in splitting budget have less impact,
• More budget is available for exploration, which means
getting more accurate data.

Put differently, while the proposed method gathers more
conversions on average for all the budgets we tested, its
advantages are more clear cut when daily budget is tight.

The relative order between the two curves in Fig. 10a is
in turn an effect of the relatively high number of campaigns
involved, as can be seen in Fig. 10b: while the regret for
GP is somewhat independent by the number of campaigns,
bootstrapped TS suffers from increasing this number, so that
the two curves cross.
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Fig. 7 Distribution of the relative regret at n = 10 days and n = 100
days varying the number of ad groups per campaign. The boxes show
the first quartile, median and third quartile

If we instead let the number of ad groups per campaign
vary (Fig. 10c), while both methods show increasing aver-
age relative regret with increasing number of ad groups,
bootstrapped TS suffers less: while the Bayesian posterior
is approximated, next action selection is the same as in the
full-fledged parametric Bayesian algorithm and can thus ben-
efit from the same local optimisation method.

The GP method and bootstrapped TS show comparable
performances across the settings studied. One can interpret

Fig. 8 Predicted versus actual dependence of the probability ofwinning
an auction on the bid, for a campaign of the Criteo dataset

Fig. 9 Daily saturation number of clicks for a given bid with the pre-
diction of the parametric model and the GP, for a campaign of the Criteo
dataset

this as showing the separated effects of both a more effi-
cient model (shared by bootstrapped TS and our method)
and full Bayesian inference (shared by GPs and our method):
one needs both in order to increase performance in this
environment.
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Fig. 10 Behaviour of the average relative regret on the Criteo dataset
varying one parameter at a time

6 Conclusion and next steps

In this paper, we extended a state-of-the-art method for
Search Engine Marketing optimisation to the multi-ad group
domain, thus bridging a gap with application. Exploiting
domain knowledge, we introduced a parametric Bayesian
regression model to reduce the need of data with respect to
GPs and to naturally account for censoring, further freeing
up resources for both exploration and exploitation. Parame-
ters are interpretable, hence allowing for the easy elicitation
of priors on them. Benefiting from the properties of this
model, we presented how the optimisation step in Thompson
sampling can be carried out by local (as opposed to global)
methods. To bridge the gap with applications and study the
effect of exact Bayesian inference on Thompson sampling
performance, we adapted a version of bootstrapped TS to
static contextual bandits. In order to test the performance
of competing models, we both built a simulation environ-
ment and replayed the auctions of a public digital advertising
dataset. Finally, we run a host of simulations that show a
clear improvement over the state of the art, especially over
short times (implying amuch faster convergence on average),
when the budget is particularly constrained or the number of
ad groups raises.

The following extensions will be addressed in future
works:

• Although time effects are not explicitly included in the
analysed models, the proposed method shows fast con-
vergence on a real dataset, which is non-stationary. This
means that a simple sliding window could be applied in
real-world settings to discard data older than one month
and keep themodel up-to-date.We plan on exploring how
state-of-the-art non-stationary bandit techniques fare on
the various types of concept drift [5], including adaptive
window size, that takes into account how fast the envi-
ronment changes.

• This work assumes that the reward is immediate, i.e. that
the agent is shown the reward of its past action before
the next round occurs. In practical settings, this hypothe-
sis works for optimising clicks and first contacts; on the
other hand, further steps of the marketing funnel (sales in
particular) can occur many days after the first interaction.

• As we have seen in Sect. 3, we are able to assume a
stochastic (as opposed to adversarial) environment thanks
to the mean-field approximation, in turn justified by a
large number of competitors. An interesting question is
what would happen if all competitors were to use the pro-
posed method to choose bids. We plan on studying this
setting, letting the number of competitors vary, to empir-
ically verify the onset of the mean-field approximation
as the number of competitors grows.
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