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We have added support for realistic, microphysical, finite-temperature equations of state (EOS)
and neutrino physics via a leakage scheme to IllinoisGRMHD, an open-source GRMHD code for
dynamical spacetimes in the Einstein Toolkit. These new features are provided by two new,
NRPy+-based codes: NRPyEOS, which performs highly efficient EOS table lookups and interpolations,
and NRPyLeakage, which implements a new, AMR-capable neutrino leakage scheme in the Einstein

Toolkit. We have performed a series of strenuous validation tests that demonstrate the robustness
of these new codes, particularly on the Cartesian AMR grids provided by Carpet. Furthermore, we
show results from fully dynamical GRMHD simulations of single unmagnetized neutron stars, and
magnetized binary neutron star mergers. This new version of IllinoisGRMHD, as well as NRPyEOS

and NRPyLeakage, is pedagogically documented in Jupyter notebooks and fully open source. The
codes will be proposed for inclusion in an upcoming version of the Einstein Toolkit.

I. INTRODUCTION

Magnetized fluid flows in dynamical spacetimes are
a key driver of multimessenger phenomena, a promi-
nent example of which was the gravitational-wave signal
GW170817 [1] and the coincident short gamma-ray burst
GRB170817A [2], originating from a binary system of two
merging neutron stars (NSs). Self-consistent simulations
of these systems require software capable of modeling
the diverse physics of the problem, from relativistic gen-
eral relativistic magnetohydrodynamics (GRMHD) fluid
flows, to the the hot degenerate matter described by a mi-
crophysical, finite-temperature equation of state (EOS),
to the changes in matter composition and energy due to
the emission and absorption of neutrinos and photons, to
the rapidly changing spacetime dynamics involved in the
merger and black hole (BH) formation.

∗ leonardo@uidaho.edu

Given the high demand for accurate simulations of
these systems, it is unsurprising that multiple groups
have developed their own codes, some of which special-
ize in GRMHD for stationary spacetimes, which can be
used e.g., for studying merger remnants [3–7]; while oth-
ers are intended to model more generic GRMHD flows
in dynamical spacetimes, which can be used for inspi-
ral, merger, and post-merger dynamics [8–30]. Having
many codes means that a variety of algorithmic choices
are made during their development, some of which im-
pact performance, some the code’s suitability to model
certain physical systems, and others the physical realism
of the simulations.

Examples of differences that affect a code’s perfor-
mance and/or its ability to accurately model certain
physical systems include the numerical resolution and
adopted coordinate system (e.g., Cartesian, spherical,
etc.); how spatial derivatives are represented numeri-
cally (e.g., finite difference, finite volume, discontinuous
Galerkin, spectral, or even hybrid methods); the choice
of EOS; and how neutrino effects are modeled; just to
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name a few.

Regarding the EOS, a common choice made by many
codes is a simple ideal gas EOS, accounting for temper-
ature effects through a thermal contribution [31]. Oth-
ers improve the description of the cold (as opposed to
thermal) portion of the EOS by adopting the so-called
piecewise polytropic model (see e.g., [32] and references
therein). Finally, some codes adopt microphysical, finite-
temperature EOS tables constructed using data from
astrophysical observations and nuclear physics experi-
ments, like the ones available in the CompOSE [33–35] and
Stellar Collapse [36] databases. These tables provide the
best description of nuclear matter available to date.

Regarding neutrino effects, one may consider the gen-
eral relativistic radiation magnetohydrodynamics (GR-
RMHD) equations and model neutrino transport via
Monte Carlo methods—by far the most computationally
expensive option. These methods try to solve the seven-
dimensional Boltzmann’s equation by grouping particles
into packets that approximate the distribution function
of neutrinos at random points. We mention here in par-
ticular the works of Foucart et al. [37–39] and Miller
et al. [40, 41], which have used this technique in the con-
text of binary neutron star (BNS) mergers. It is impor-
tant to note that this method becomes prohibitively ex-
pensive in the optically thick regime (high densities and
temperatures), requiring e.g., enforcing a hard ceiling on
the value of the absorption opacity of the fluid [38].

Another approximate method for modeling neutrino
physics is moment-based radiation transport. In this
technique, the Boltzmann equation is recast as a 3+1 sys-
tem [42, 43], which is then solved using similar numerical
techniques to those for the GRMHD equations. Unlike
the GRMHD equations, however, the system cannot be
closed with an EOS, making its accuracy dependent on
the choice of closure (see e.g., [44]). This method has also
been used in many studies, including core-collapse [45–
53] and BNS [54–58].

Leakage schemes are perhaps the most popular ap-
proach for modeling neutrino physics [59–64]. In this
approach, experimental data are used to parameterize
analytic formulas for the neutrino emission and cooling
rates in terms of the optical depths, resulting in a compu-
tationally inexpensive algorithm that has been adopted
rather broadly [6, 9, 65–69]. It is important to state that
leakage scheme typically neglect the absorption of neutri-
nos and therefore do not account for heating and lepton
number changes due to neutrinos in the ejecta [70].

While these studies differ in how neutrinos are
modeled, one aspect most share in common is that
thHey were performed using software that is not
freely available to everyone. Exceptions include
the GRMHD codes GR1D [9, 46], WhiskyTHC [15–17],
GRHydro [18], IllinoisGRMHD [20, 21], SpeCTRE [22, 71],
and Spritz [26, 27, 72]; the neutrino leakage codes
ZelmaniLeak [9, 65] and THC_Leakage [67]; the moment-
based radiation transport codes ZelmaniM1 [49] and
M1Grey [22, 71]; and the GRRMHD Monte Carlo code

νbhlight [40].
Here we introduce a major update to

IllinoisGRMHD—a concise open-source rewrite of
the Illinois numerical relativity group’s GRMHD
code [73] (henceforth OrigGRMHD), which exists within
the Einstein Toolkit. This new version, which is
also open-source [74], supports both finite-temperature,
microphysical EOSs—via a new NRPy+ [75] module
called NRPyEOS [74]—and neutrino physics via a leakage
scheme—using the recently developed NRPy+-based
code NRPyLeakage [74]. This updated version will be
proposed for inclusion in a future Einstein Toolkit
release.

For well over a decade, both OrigGRMHD and
IllinoisGRMHD have been used to model a plethora
of astrophysical scenarios, including magnetized binary
neutron stars (BNS) [58, 76–81], binary BH-NS [82–
88], BH accretion disks [89–95], binary white dwarf-
NS [96, 97], rotating NSs [98, 99], gravitational collapse
of supermassive stars [100], magnetized Bondi accre-
tion [101], and magnetized hypermassive neutron stars
(HMNS) [102–108], to name a few. We also high-
light Frankfurt/IllinoisGRMHD [25], whose feature set
exceeds that of the original IllinoisGRMHD, but like
OrigGRMHD is currently a closed-source code.

In contrast to these codes, IllinoisGRMHD is open
source and part of the Einstein Toolkit [109], and
in this work we introduce Einstein Toolkit thorns
(or modules) for NRPyEOS and NRPyLeakage, named
NRPyEOSET and NRPyLeakageET, respectively.1 This new
version of IllinoisGRMHD, along with NRPyEOS and
NRPyLeakage, will be proposed for inclusion in a future
release of the Einstein Toolkit, but in the meantime
all codes are freely available for download at [74].

This paper is organized as follows. Sec. II provides
an overview of the mathematical formulation of the
GRMHD equations and of the neutrino leakage scheme.
Sec. III describes the numerical methods and technical
aspects of our codes. Sec. IV contains a series of chal-
lenging validation tests of the code, as well as results
from simulations of single NSs, and magnetized, equal-
mass BNS systems, with eventual BH formation. Sec. V
contains closing remarks and plans for future work.

II. BASIC EQUATIONS

Throughout the paper Greek letters µ, ν, ρ, . . . are used
to denote spacetime indices (range 0–3) and lowercase
Roman letters i, j, k, . . . to denote spatial indices (range
1–3), assuming Einstein summation convention. Un-
less stated otherwise, geometrized units G = c = 1 are
adopted, additionally assuming that M� = 1. Tempera-
tures are measured in MeV.

1 We will refer to these as simply NRPyEOS and NRPyLeakage unless
discussing thorn-exclusive features.
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The spacetime evolution is governed by Einstein’s
equations,

Gµν = 8πTµν , (1)

where Gµν is the Einstein tensor and Tµν is the total
stress-energy tensor. As written, these equations are not
in a form immediately suitable for numerical integration.
One such form is the initial value formulation built upon
first splitting gµν into the 3 + 1 Arnowitt–Deser–Misner
(ADM) form [110]

ds2 = −α2dt2 + γij
(
dxi + βidt

)(
dxj + βjdt

)
, (2)

where α, βi, and γij are the lapse function, the shift
vector, and the metric, all defined on spatial hypersur-
faces of constant coordinate time t. With this decom-
position Einstein’s equations can be split into sets of hy-
perbolic (time-evolution) and elliptic (constraints) PDEs,
similar to Maxwell’s equations in differential form (see
e.g., [111] for a pedagogical review). The resulting ADM
evolution and constraint equations are in fact not nu-
merically stable, and must be reformulated further. The
Baumgarte–Shapiro–Shibata–Nakamura (BSSN) formu-
lation [112–114] is one such reformulation in which addi-
tional auxiliary and conformal variables are introduced
in order to make the resulting set of equations strongly
hyperbolic, enabling stable, long-term time integration
of Einstein’s equations on the computer.

The remainder of this section is dedicated to the
GRMHD formulation used by IllinoisGRMHD, as well
as an overview of the neutrino leakage scheme adopted
by NRPyLeakage.

A. General relativistic magnetohydrodynamics

The GRMHD equations with neutrino leakage can be
written as

∇µ (nbu
µ) = 0 , (3)

∇µ (neu
µ) = R , (4)

∇µTµν = Quν , (5)

∇µ∗Fµν = 0 , (6)

which are the conservation of baryon number, con-
servation of lepton number, conservation of energy-
momentum, and homogeneous Maxwell’s equations, re-
spectively. In the above, nb (ne) is the baryon (lepton)
number density, uµ is the fluid four-velocity, mb is the
baryon mass, ∗Fµν = (1/2)ε̃µνρσFρσ is the dual of the
Faraday tensor Fµν , and ε̃µνρσ is the Levi-Civita ten-
sor. Ideal MHD (uµF

µ = 0) is assumed throughout. The
source termsR andQ account for changes in lepton num-
ber and energy, respectively, due to the emission and ab-
sorption of neutrinos. The precise form of R and Q is
detailed in the next section on neutrino leakage.

The energy-momentum tensor is assumed to be that
of a perfect fluid, plus an electromagnetic contribution,
given by

Tµν =
(
ρbh+ b2

)
uµuν +

(
P +

b2

2

)
gµν − bµbν , (7)

where ρb = mbnb is the baryon density, h = 1 + ε+ P/ρb

is the specific enthalpy, ε is the specific internal energy,
P is the fluid pressure, bµ = (4π)−1/2Bµ(u) is the rescaled

4-magnetic field in the fluid frame, where

B0
(u) = uiB

i/α , (8)

Bi(u) =
(
Bi/α+B0

(u)u
i
)
/u0 , (9)

and Bi is the magnetic field in the frame normal to the
hypersurface.

To source Einstein’s equations Tµν must be updated
from one time step to the next, which requires evolv-
ing the matter fields in time. To accomplish this,
Eqs. (3)–(6) are rewritten in conservative form:

∂tC + ∂iF
i = S , (10)

where F and S are the flux and source vectors, respec-
tively. Furthermore, C = C(P ) is the vector of conser-
vative variables, with P the vector of primitive variables.
IllinoisGRMHD adopts the Valencia formalism [115, 116],
whereby

P =




ρb

Ye

T
P
vi

Bi



. (11)

Here, Ye ≡ ne/nb is the electron fraction, T is the tem-
perature, and vi = ui/u0 is the fluid three-velocity. No-
tice that this choice of primitive three-velocity differs
from the Valencia three-velocity vi(n) used in other codes

(see e.g., [11, 18, 26, 27, 117]); IllinoisGRMHD adopts
the 3-velocity that appears in the induction equation
Eq. (14). These two velocities are related via

vi(n) = α−1
(
vi + βi

)
. (12)

The conservative variables can be written in terms of
the primitive variables as

C=




D̃

Ỹe

τ̃

S̃i
B̃i



≡√γ




D

DYe

τ

Si
Bi



≡√γ




Wρb

DYe

α2T 00 −D
αT 0

i

Bi



, (13)

where γ = det(γij) and W = αu0 is the Lorentz factor.
There are many numerical advantages associated with

writing the GRMHD equations in conservative form.
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First, ignoring neutrino effects, the source terms S van-
ish in flat space with Cartesian coordinates and this
form of the equations, when combined with an appro-
priate finite-volume scheme, guarantees conservation of
total rest mass, lepton number, energy, and momentum
to roundoff error. Second, conservation is guaranteed
up to errors in S when the sources are nonzero. Third,
IllinoisGRMHD adopts finite-volume methods, which are
superior at handling ultrarelativistic flows as compared
to easier-to-implement and more-efficient artificial viscos-
ity schemes [118, 119]. Fourth, this conservative formu-
lation enables us to easily use a high-resolution shock-
capturing (HRSC) scheme, designed to minimize Gibbs’
oscillations near shocks, to name a few advantages.

An important consideration when implementing a
GRMHD code is how to handle the magnetic induc-
tion equation, obtained from the spatial components of
Eq. (6). In conservative form, this equation may be writ-
ten as

∂tB̃
i + ∂j

(
vjB̃i − viBj

)
= 0 . (14)

If Eq. (14) were to be propagated forward in time, evalu-
ating its spatial partial derivatives without special tech-
niques, violations of the “no magnetic monopoles” con-
dition (which follows from the time component of Eq. 6)

∂iB̃
i = 0 , (15)

will grow with each iteration. Ensuring this constraint
remains satisfied, particularly on AMR grids, is a non-
trivial endeavor. We adopt the same strategy as the one
used in [101, 120], which is to evolve the electromagnetic
(EM) four-potential Aµ instead of the magnetic fields
directly. In this case, numerical errors associated with
evolving Aµ do not impact violations of Eq. (15), as the
magnetic field is computed as the “curl” (i.e., a New-
tonian curl with definition appropriately generalized for
GR) of the vector potential, and the divergence of the
curl is by definition zero (here to roundoff error, once a
numerical approximation for partial derivative is chosen).

The 3 + 1 decomposition of the vector potential gives
(see e.g., [121] for a pedagogical review)

Aµ = nµΦ +Aµ and B̃i = εijk∂jAk , (16)

where nµ is the unit vector normal to the spatial hyper-
surface, Aµ is the purely spatial (i.e., nµAµ = 0) mag-
netic potential, Φ is the electric potential, and εijk is the
totally antisymmetric Levi-Civita symbol, with ε123 = 1.
Thus Eq. (14) becomes

∂tAi = εijkv
jB̃k − ∂i

(
αΦ− βjAj

)
. (17)

We fix the EM gauge by adopting a covariant version
of the “generalized Lorenz gauge condition”,

∇µAµ = ξnµAµ , (18)

which was first introduced by the Illinois relativity group
in [90, 120]. Here ξ is a parameter with units of in-
verse length, chosen so that the Courant–Friedrichs–
Lewy (CFL) condition is always satisfied. Typically ξ
is set to 1.5/∆tmax, where ∆tmax is the time step of
the coarsest refinement level (see [29] for further details).
This gauge condition results in the additional evolution
equation

∂tΦ̃ + ∂j

(
α
√
γAj − βjΦ̃

)
= −ξαΦ̃ , (19)

where Φ̃ ≡ √γΦ.
Except for Eqs. (17) and (19), the remaining GRMHD

equations are evolved using Eq. (10) and a HRSC scheme,
as described in [20]. For completeness, the remaining
components of the flux vector are given by

F i =




D̃vi

Ỹev
i

α2√γT 0i − D̃vi
α
√
γT ij


 , (20)

and those of the source vector are given by

S =




0
α
√
γR

s+ α
√
γQu0

α
√
γ
(

1
2T

µνgµν,i +Qui
)


 , (21)

where

s = α
√
γ
[(
T 00βiβj + 2T 0iβj + T ij

)
Kij

−
(
T 00βi + T 0i

)
∂iα
]
,

(22)

and Kij is the extrinsic curvature.
Specifying the matter EOS closes this system of equa-

tions. To this end, IllinoisGRMHD supports both ana-
lytic, hybrid EOSs [31] as well as microphysical, finite-
temperature, fully tabulated EOSs.

For tabulated EOSs, hydrodynamic quantities are
given as functions of the density ρb, the electron fraction
Ye, and the temperature T . As needed, the tempera-
ture can be recovered from the pressure, specific internal
energy, or entropy by using either a Newton–Raphson
method or bisection, with the latter yielding superior re-
sults in highly degenerate regions of parameter space.

These table operations are handled by NRPyEOS, a
pedagogically documented and infrastructure-agnostic
NRPy+ module that generates table interpolation routines
based on the Einstein Toolkit’s core EOS driver thorn
EOS_Omni, which is itself based on the original code by
O’Connor & Ott [122]. NRPyEOS provides a clean and
clear user interface, generating specialized routines that
compute only needed hydrodynamic quantities, avoid-
ing unnecessary interpolations and thus greatly increas-
ing the overall performance of GRMHD simulations that
make use of tabulated EOSs.
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A concrete example is the computation of the
neutrino opacities and emission and cooling rates,
for which NRPyLeakage requires five table quantities:
(µe, µn, µp, Xn, Xp), which are the chemical potentials
of the electron, neutron, and proton, and the neutron
and proton mass fractions, respectively. The general-
purpose routine EOS_Omni_full is the only one available
in EOS_Omni to compute such quantities. This routine,
however, interpolates a total of 17 table quantities, 11
of which are unused for our purposes, resulting in it be-
ing twice as slow as the specialized routine generated by
NRPyEOS.

For hybrid EOSs, hydrodynamic quantities are ana-
lytic functions of the density and the specific internal
energy. The pressure is given by

P (ρb, ε) = Pcold(ρb) + Pthermal(ρb, ε) , (23)

where

Pthermal(ρb, ε) = (Γth − 1) ρb [ε− εcold(ρb)] , (24)

accounts for thermal effects, with Γth a constant param-
eter that determines the conversion efficiency of kinetic
to thermal energy at shocks, and Pcold(ρb) and εcold(ρb)
are computed assuming either a gamma-law or piecewise
polytropic EOS (see e.g., [32]).

B. Neutrino leakage

NRPyLeakage—a new infrastructure-agnostic neutrino
leakage code generated by NRPy+ and fully documented in
pedagogical Jupyter notebooks—enables us to incorpo-
rate basic neutrino physics in our simulations. Our imple-
mentation follows the prescription of [60, 68, 123] to com-
pute the neutrino number and energy emission rates, as
well as the neutrino opacities. We also consider nucleon-
nucleon Bremsstrahlung [124] following the ZelmaniLeak
code [9, 65, 125]. Unlike [60] and ZelmaniLeak, however,
we adopt a local, iterative algorithm in order to com-
pute the neutrino optical depths following [66, 68] (see
also [6]) , yielding far more efficient computations of opti-
cal depths than that implemented in ZelmaniLeak when
the modeled system is far from spherical symmetry. Fur-
ther, the Einstein Toolkit version of the code has been
carefully designed to work seamlessly with the Cartesian
AMR grids provided by Carpet [126].

Neutrinos are accounted for via the following reactions:
β-processes, i.e., electrons (e−) being captured by pro-
tons (p) and positrons (e+) being captured by neutrons
(n),

e− + p→ n+ νe , (25)

e+ + n→ p+ ν̄e ; (26)

electron-positron pair annihilation,

e− + e+ → νi + ν̄i ; (27)

transverse plasmon (γ̃) decay,

γ̃ → νi + ν̄i ; (28)

and nucleon-nucleon Bremsstrahlung,

N +N → N +N + νi + ν̄i . (29)

In the reactions above νi = {νe, νµ, ντ} are the electron,
muon, and tau neutrinos, with ν̄i their antineutrinos, and
N heavy nuclei. Our implementation assumes that the
contributions from heavy lepton neutrinos and antineu-
trinos are all the same, and we use the notation νx to
refer to any one species throughout.

The production of neutrinos via these processes lead to
changes in the electron fraction and energy of the system,
which are accounted for in the source terms R and Q of
Eqs. (4) and (5). More specifically,

R = −Rνeeff +Rν̄eeff , (30)

Q = −Qνeeff −Qν̄eeff − 4Qνxeff , (31)

where the effective rates are given by

Rνieff = Rνifree

[
1 + tνi,Rdiff /tνi,Rfree

]−1

, (32)

Qνieff = Qνifree

[
1 + tνi,Qdiff /tνi,Qfree

]−1

, (33)

and the diffusion time scales using

tνi,jdiff = Ddiff

(
κνit,j

)−1 (
τνij
)2

, (34)

where τνij are the neutrino optical depths, κνit,j the total

neutrino transport opacity (see Sec. III B), Ddiff = 6 [6,
9, 62, 68], and j = R,Q. The free emission time scales
are given by

tνi,Rfree =
nνi
Rνifree

, tνi,Qfree =
ενi
Qνifree

, (35)

where nνi and ενi are the neutrino number and energy
density, respectively, and the total free emission and cool-
ing rates are given by

Rνifree = Rνiβ +Rνi,ν̄iPair +Rνi,ν̄iPlasmon +Rνi,ν̄iBremss , (36)

Qνifree = Qνiβ +Qνi,ν̄iPair +Qνi,ν̄iPlasmon +Qνi,ν̄iBremss . (37)

Note that β-processes only contribute when νi = {νe, ν̄e}.
For small densities and temperatures—the optically

thin regime—the optical depths vanish and the medium
is essentially transparent to neutrinos. Diffusion oc-
curs on much shorter time scales than free-streaming,
and therefore the effective rates become the free ones.
For large densities and temperatures—the optically thick
regime—optical depths are large and the neutrinos in-
teract with the matter, such that diffusion happens on
long time scales and free-streaming on short ones due
to the increase in the emission and cooling rates, imply-

ing Rνieff → nνi/t
νi,R
diff and Qνieff → ενi/t

νi,Q
diff . The leakage

scheme provides a smooth interpolation between the dif-
fusive and free-streaming regimes (see [60] for details).
We postpone the discussion on how the optical depths
are computed in NRPyLeakage until Sec. III B.
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III. NUMERICAL METHODS

Most of the core numerical algorithms in
IllinoisGRMHD remain the same as in the original
version announced in 2015; these algorithms were
reimplemented from OrigGRMHD as they were found most
robust when modeling a large variety of astrophysical
scenarios. Core algorithms, as described in [20], include
the HRSC scheme, the Harten–Lax–van Leer approx-
imate Riemann solver [127], the piecewise parabolic
method [128] used to reconstruct the primitive variables
at the cell interfaces, the staggering of the electric
and magnetic potentials and of the magnetic field, the
algorithm to compute the magnetic fields from the
magnetic potential, the Runge–Kutta time integration,
and outflow boundary conditions.

Key algorithmic changes introduced here include an
updated conservative-to-primitive infrastructure, which
has been expanded to include new effective 1D rou-
tines that are well-suited for tabulated EOSs, and the
interface with the newly developed codes NRPyEOS and
NRPyLeakage. We reserve the remainder of this section
to discussing these updates in detail.

A. Conservative-to-primitive recovery

The energy-momentum tensor in the GR field equa-
tions and the GRMHD equations are written as func-
tions of the primitive variables. So after updating the
conservative variables at each time iteration, the primi-
tive variables (“primitives”) must be computed from the
conservative variables (“conservatives”). This is a non-
trivial step, as there are no algebraic expressions to com-
pute the conservatives from the primitives, requiring the
implementation of a root-finding algorithm to solve a set
of coupled nonlinear equations.

As numerical errors—such as truncation error originat-
ing from spatial and temporal finite differencing, as well
as interpolation and prolongation operations—can cause
the conservative variables to stray away from their valid
range, sometimes this inversion becomes impossible. Be-
cause of this, we perform a series of checks on conserva-
tive variables to ensure they are valid before attempting
to recover the primitive variables. We refer the reader to
Appendix A of [84] for details on how these bounds are
checked and enforced.

For gamma-law and hybrid EOSs, the primary prim-
itive recovery routine used in IllinoisGRMHD is the 2D
scheme of Noble et al. [4] (henceforth “Noble 2D”).2 We
have also implemented the 1D scheme of the same refer-
ence, as well as 1D routines that replace the energy by the

2 The dimensionality of the scheme is associated with how many
equations are used to recover the primitive variables: 1D schemes
use one equation and one unknown, 2D schemes use two equa-
tions and two unknowns, etc.

entropy, which is passively advected alongside the other
variables assuming a conservation equation, as in [5]. The
user is then given the option to use one or more of these
last three routines as backups to the Noble 2D one.

The entropy routines perform well in regions of high
magnetization and low densities, where the other two can
be less robust, but we stress that they should only be used
as backups, as the entropy is not conserved at shocks
and therefore cannot always be reliably used to recover
the primitives. If the Noble 2D and backup routines are
unable to recover the primitives, a final backup routine
due to Font et al. [129] is used, for which the pressure is
reset to its cold value and thus an inversion is guaranteed
(see Appendix A of [84] for more details).

For tabulated EOSs, Newton–Raphson-based routines
become very sensitive to the initial guesses provided for
the primitive values. IllinoisGRMHD does not keep track
of the values of the primitives at the previous time step,
making it difficult to use routines such as the Noble 2D
and the closely related routines by Antón et al. [115],
Giacomazzo & Rezzolla [11], and Cerdá-Durán et al. [12]
(see also [6]).

As reviewed in [130], some routines require better
initial guesses than others. In particular, we find
that the 1D routines of Neilsen et al. [66] and Palen-
zuela et al. [131], as well as the one by Newman & Ham-
lin [132], which only require an initial guess for the tem-
perature, are very robust at recovering primitive vari-
ables even for relatively poor initial guesses. Our imple-
mentation of these routines is based on the open-source
infrastructure by Siegel [133], and we extend the imple-
mentation by adding to the routines the option of using
the entropy instead of the energy during primitive recov-
ery.

Performing an EOS table inversion with the entropy
yields far smaller temperature errors than when using the
energy—particularly in regions of high densities and low
temperatures—and therefore, unsurprisingly, the mod-
ified routines recover the primitive variables with far
smaller errors than the original. Unfortunately, because
the entropy evolution assumes that entropy is conserved
(an approximation that completely fails near shocks),
these new routines are also only suitable as backup rou-
tines. As the entropy backup is rarely applied, and gener-
ally applied only far from shocks, we find it quite useful.

A primitive recovery step begins with guesses Wguess =
1 and Tguess = Tatm or Tguess = Tmax, corresponding to
the atmospheric and maximum temperatures allowed in
the simulation, which exist at or within the EOS table
bounds. In this paper the values Tatm = 0.01 MeV and
Tmax = 90 MeV are adopted. A density guess is obtained
using ρguess = D̃/

(√
γWguess

)
and the electron fraction is

recovered analytically from Ye = Ỹe/D̃. All other primi-
tives are computed from these using the EOS.

Both the Palenzuela et al. and Newman & Hamlin rou-
tines are iterative and result in updates to the Lorentz
factor and specific internal energy (or entropy), requir-
ing EOS table inversions to compute the temperature
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at every iteration. Starting with the energy version of
the routines and Tguess = Tatm, a primitive recovery is
attempted using the Palenzuela et al. routine. A fail-
ure leads to a new attempt using the Newman & Hamlin
routine. In case this fails, the temperature guess is reset
to Tguess = Tmax and the previous steps are repeated. If
all previous steps fail, the process is repeated with the
entropy version of the routines. If at the end of this
step primitive recovery is still unsuccessful, the point is
flagged and the recovery continues for the remaining grid
points.

After sweeping the numerical grid once, we loop over
flagged points, look at their neighbors and check for how
many of them the primitive recovery has succeeded. If
not enough neighbors are found the run is terminated,
as clusters of failures indicate serious problems in the
evolution. When the number of neighbors is sufficient,
the conservative variables at the flagged points are set to

Cnew = (1− w)Cflagged + wC̄neighbors , (38)

where C̄neighbors denotes the average of the conservative
variables at the neighboring points for which primitive
recovery succeeded. This is repeated up to four times,
successfully increasing the weight w to 1/4, 1/2, 3/4, and 1
in each new attempt. If primitive recovery is unsuccessful
at this point, they are reset to their atmosphere values
(ρb = ρatm, Ye = Y atm

e , and vi = 0).
We note that recovery failures are quite rare—

particularly those in which all of the backup techniques
fail—and typically occur in dynamically irrelevant re-
gions: in the low density atmosphere or deep inside BH
horizons. However, because production-quality simula-
tions involve ∼1012 primitive recovery attempts, occa-
sional failures are a near certainty. In the case of fail-
ures, adjusting the fluid 3-velocity components to zero
is rather undesirable as it could greatly and discontin-
uously influence the magnetic field dynamics in regions
that are magnetically dominated. With this in mind, we
have dedicated considerable effort in making our backup
strategies robust, avoiding velocity resets as much as pos-
sible.

Finally, we note that we have not extended the
Font et al. routine to work with tabulated EOS, but
this will be done in a future work. We also plan on us-
ing the tabulated EOS version of RePrimAnd [134] once
it becomes available.

B. Computation of optical depth

In NRPyLeakage we consider the following reactions
contribute to the total transport opacities κνit,j :

n+ νe → e++ p , (39)

p + ν̄e → e++ n , (40)

n+ νi → n + νi , (41)

p + νi → p + νi , (42)

The first two of these reactions are inverse β-processes—
νe absorption onto neutrons and ν̄e absorption onto pro-
tons, respectively—and are the dominant contributions
to the optical depths of νe and ν̄e. The last two re-
actions describe neutral-current-scattering off neutrons,
which provide the dominant contribution to the optical
depths of heavy-lepton neutrinos. Explicit formulae for
obtaining κνit,j can be found in Appendix A of [60].

Computing the local neutrino optical depths τνij gener-

ally involves a global integration of κνit,j along some path
P, i.e.,

τνij =

∫

P
ds κνit,j . (43)

One common option, implemented in the open-source
code ZelmaniLeak, is to integrate along radial rays (see
e.g., [9, 65, 125]), which for simulations that use Carte-
sian coordinates require an auxiliary spherical grid. One
interpolates data to the spherical grid, computes the
opacities, and then performs the integration. This ap-
proach is particularly well-suited to study core collapse
and other nearly spherically symmetric systems. How-
ever, for systems far from spherical symmetry, such as
BNS and BH accretion disks, computing the optical
depths this way can be very inefficient, as the resolution
of the auxiliary spherical grids would need to be increased
tremendously to produce accurate optical depths.

In order to have an algorithm that is both efficient
and more generally applicable, we instead compute the
optical depths with the local approach proposed in [66]
(see also [6, 68]). The optical depths are first integrated
to all of their nearest neighbors and then updated using
the results that lead to the smallest optical depths, i.e.,

τνij = min
neighbors

(
τνij +

√
γmn∆xm∆xnκνit,j

)
, (44)

where ∆xi is the grid spacing along the ith-direction. For
simplicity, we do not integrate diagonally. In this way
neutrinos are allowed to explore many possible paths out
of regions with relatively high optical thickness, following
the path of least resistance. In our implementation, we
assume that the outer boundary of the computational
domain is transparent to neutrinos and thus have zero
optical depths.

Because the opacities themselves depend on the op-
tical depths, the following iterative approach is used to
compute the initial optical depths at all gridpoints in the
simulation domain. First the optical depths are initial-
ized to zero, leading to an initial estimate of the opacities.
This initial estimate is used to update the optical depths
according to Eq. (44), which in turn allows us to recom-
pute the opacities, and so on. One might also interpret
this algorithm as considering only nearest neighbors in
the first iteration, next-to-nearest neighbors in the sec-
ond, next-to-next-to-nearest neighbors in the third, etc.
In this way our algorithm enables neutrinos to map out
paths of least resistance through arbitrary media.
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When the grid structure contains multiple refinement
levels, we adopt a multi-grid “V” cycle at each iteration:
the optical depths are computed on a given refinement
level and, unless we are at the finest one, the solution is
prolongated to the next finer one; we move to the next
finer refinement level and repeat the previous step; once
the finest refinement level is reached the solution is re-
stricted to the coarser levels, completing one iteration.

The algorithm is stopped once an equilibrium is
reached, measured by the overall relative change in the
optical depths between consecutive iterations (n, n+ 1),

E =


∑

j

∑

νi

∑

interior

(
τνij,n+1 − τνij,n

τνij,n+1

)2



1/2

. (45)

Once E falls below a user-specified threshold (typically
10−8) or the prescribed maximum allowed number of it-
erations (typically 2048) is exceeded, the algorithm stops.

IV. RESULTS

This section presents stress tests of these new algo-
rithms implemented in IllinoisGRMHD, with the aim of
demonstrating both the correctness of our implementa-
tion as well as its robustness when modeling challenging
astrophysical scenarios.

To this end, we first present results from challenging
unit tests of the conservative-to-primitive infrastructure
and the optical depth framework. Further, to validate
NRPyLeakage, we evolve a simple optically thin gas and
compare results between IllinoisGRMHD and a trusted
code with a physically identical but independently de-
veloped neutrino leakage scheme, HARM3D+NUC. Next to
demonstrate the reliability of our new tabulated EOS
implementation, NRPyEOS, we evolve isolated, unmagne-
tized NSs without neutrino leakage at different grid reso-
lutions with different EOS tables. We consider the test as
passed if numerically driven oscillations converge to zero
with increased resolution at an order consistent with the
reconstruction scheme (between second and third order
for PPM).

The remaining tests focus on full-scale simulations of
physical scenarios that lie at the heart of multimessenger
astrophysics. We simulate magnetized, equal-mass BNS
systems that lead to a remnant BH with an accretion
disk that is evolved for several dynamical timescales. We
perform simulations with and without our new neutrino
leakage scheme, comparing the qualitative differences be-
tween them. Stably modeling these last two systems, in
particular, is extremely difficult if the new algorithms
are not implemented correctly, thus acting as the most
strenuous tests conducted in our study.

In tests involving tabulated EOSs, we use three differ-
ent fully-tabulated microphysical EOSs: the Lattimer–
Swesty EOS with incompressibility modulus K =
220 MeV [135] (henceforth LS220), the Steiner–Hempel–
Fisher EOS [136] (henceforth SFHo), and the SLy4 EOS

of [137]. For the first three, we use the tables by
O’Connor–Ott [9], while for the last one we use the table
by Schneider–Roberts–Ott [138], all of which are freely
available at [36]. These choices of EOS were made largely
to facilitate direct comparisons with HARM3D+NUC in the
case of BH accretion disks.

Finally, we note that the EOS tables were cleaned with
a simple script to change the reference mass used in the
tables in such a way that the specific internal energy is
never negative. We also clean up some of the table entries
to avoid superluminal sound speeds. These are standard
procedures when using EOS tables from [36].

A. Primitive variables recovery

In order to validate our implementation of primitive re-
covery routines described in Sec. III A, we perform sim-
ilar tests to the ones described in [6, 130]. First a set
of primitive variables is specified and conservatives com-
puted. Then the primitive recovery routine is selected
and the conservatives injected into it. The primitives
that are output from the recovery routine are compared
with the input primitives, producing an estimate of how
well the tested routine is able to recover the correct prim-
itive variables. We refer to this as a “P to C to P ” test.

We measure the primitive recovery error at each re-
covery as a sum of relative errors across all primitive
variables in the primitives vector P

EP→C→P =
∑

i

∣∣∣∣∣1−
precovered
i

poriginal
i

∣∣∣∣∣ , (46)

where poriginal
i and precovered

i represent the original and
recovered primitive variables, respectively, and the sum
includes all variables in Eq. (11).

For a given EOS, we perform two separate tests in
which we use N = 212 points to evenly discretize non-
constant hydrodynamic quantities. In the first test
we consider log10 ρb ∈ [−12,−3], log10 T ∈ [−2, 2]
and arbitrarily fix the electron fraction to Ye = 0.1,
the Lorentz factor to W = 2, and the magnetic pres-
sure to log10

(
Pmag/P

)
= −5; in the second we con-

sider log10

(
Pmag/P

)
∈ [−5, 9], log10

(
W − 1

)
∈

[−5.5, 1.5], and arbitrarily fix ρb = 1011 g/cm3, Ye = 0.1,
and T = 5 MeV. The pressure, specific internal energy,
and entropy are computed using the EOS table, while the
spatial components of the velocities and magnetic fields
are set randomly from W and Pmag, respectively. Finally,
we compute the conservative variables using Eq. (13) as-
suming flat space.

We use this setup to test the Palenzuela et al. and
the Newman & Hamlin routines as implemented in
IllinoisGRMHD. As described in Sec. III A, each rou-
tine is given two chances to recover the primitives, with
initial guesses Tguess = Tatm and, in case of failure,
Tguess = Tmax. In Fig. 1 we present the test results.
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FIG. 1. Primitive recovery errors (Eq. 46) from
“P to C to P ” tests using the Palenzuela et al.
and Newman & Hamlin routines, as implemented in
IllinoisGRMHD. Top/bottom: Tests performed with fixed(
Ye, Pmag,W

)/(
ρb, Ye, T

)
. In each figure’s top/bottom pan-

els, table inversions to obtain the temperature are performed
using the specific internal energy/entropy. The vertical
dashed white lines in to bottom figure indicate W = 10, the
maximum Lorentz factor allowed in our simulations.

As our implementation allows for one to use either
the specific internal energy or the entropy to recover
the temperature, we perform tests using both. Our re-
sults indicate that using the entropy generally leads to
errors that are at least comparable to, but often smaller
than, those obtained using the energy. However, because
IllinoisGRMHD currently adopts an approximate entropy
evolution equation (assuming entropy is conserved), we
are unable to reliably use the entropy as our default vari-
able for primitive recovery. During actual numerical evo-
lutions, we thus limit use of the entropy variable to a

backup when recovery using the specific internal energy
fails.

Further stress tests of the routines indicate
they are robust for magnetizations as high as
log10

(
Pmag/P

)
∼ 15, although the recovery errors

increase for log10

(
Pmag/P

)
& 10. We also found that

the routines typically fail to recover the primitives for
W & 100, which is not worrisome given we impose a
hard ceiling on the Lorentz factor which is much smaller
than this value (Wmax = 10 in the simulations presented
in this paper).

B. Optically thin gas

To validate our neutrino leakage implementation
NRPyLeakage, we model an isotropic gas of constant den-
sity at rest in flat space assuming the SLy4 EOS. We note
that this system has been chosen for its simplicity, not its
physical relevance, as it allows us to validate the imple-
mentation of our leakage scheme against a trusted code.

In this scenario, the GRMHD equations simplify to

∂tYe = R/ρb and ∂tε = Q/ρb . (47)

These equations are solved straightforwardly with a stan-
dalone code, which supports both NRPyLeakage and the
leakage scheme of HARM3D+NUC. We then compare the
results from these equations against those generated
when IllinoisGRMHD evolves the full set of GRMHD
equations. Agreement between IllinoisGRMHD and
the standalone code provides an external validation of
NRPyLeakage in the optically thin regime, as well as its
integration within IllinoisGRMHD.

The solution has the following behavior. When the
electron fraction is large (small), electron (positron) cap-
ture by protons (neutrons) is favored, resulting in a
decrease (increase) of electron neutrinos (antineutrinos)
and a decrease (increase) of the electron fraction with
time. Note that, by construction, Q ≤ 0 and thus the
specific internal energy and temperature are always ex-
pected to decrease.

We perform two tests to verify the expected behavior
of the system as described above. In one test we set the
initial electron fraction to Ye(0) = 0.5, while in the other
we set it to Ye(0) = 0.005. In both cases the density and
initial temperature of the gas are set to ρb = 10−12 and
T (0) = 1 MeV, respectively. Other hydrodynamic quan-
tities, like the initial specific internal energy, are com-
puted as needed using the SLy4 EOS of [138].

In Fig. 2 we show the excellent agreement between the
results obtained by the different codes.3

3 The leakage scheme in HARM3D+NUC assumes that the optical
depths are always large when computing the neutrino degen-
eracy parameters. This is a reasonable assumption, given that
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FIG. 2. Electron fraction (top) and temperature (bottom)
evolution for an isotropic gas of constant density, for different
initial values of Ye.

C. Optically thick sphere

We next demonstrate the robustness of our implemen-
tation of the optical depth initialization algorithm on
Cartesian AMR grids. To this end, a simple case of a
sphere of constant density, electron fraction, and tem-
perature is considered, for which the opacities vanish
everywhere except in the interior of the sphere.

Given the opacities for this spherically symmetric sys-
tem, the optical depths can also be determined semi-
analytically by performing the integral Eq. (43) along ra-
dial rays, allowing us to validate our iterative algorithm.
Since (ρb, Ye, T ) are constant, so are the opacities, yield-
ing

τνij =

{
κt,νi
j (rSph − r) , r ∈ [0, rSph] ,

0 , otherwise .
(48)

The sphere is assumed to have radius rSph = 2.5,

constant density ρSph
b = 9.8× 1013 g/cm3, electron frac-

ton Y Sph
e = 0.1, and temperature T Sph = 8.0 MeV in

an optically thin medium with ρExt
b = 6× 107 g/cm3,

Y Ext
e = 0.5, and TExt = 0.01 MeV. We adopt the SLy4

EOS of [138].
Our grid is a Cartesian box of side-length 10rSph with

four refinement levels, as illustrated in the upper panel
of Fig. 3. We add two refinement centers located at
±2.5, each with three levels of refinement. Of course,
this grid structure would never be used to simulate a

most physical systems of interest are not transparent to neutri-
nos. Nevertheless, this causes a discrepancy between the leakage
scheme in HARM3D+NUC and NRPyLeakage. For the sake of the
comparison made here, we slightly modified the way HARM3D+NUC

computes the neutrino degeneracy parameters to match what is
done in NRPyLeakage; i.e., using Eqs. (A3) and (A4) in [60].

spherical object, but because the surface of the sphere
crosses multiple refinement boundaries, it provides a sig-
nificantly challenging test for our optical depth initializa-
tion algorithm as detailed in Sec. III B. We find excellent
agreement with the semi-analytic results obtained using
the opacities from the iterative algorithm in Eq. (48), as
shown in the bottom panel of the figure.
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FIG. 3. Stress test for the “path of least resistance” algorithm
used to compute the optical depths. Top: Our grid setup and
the constant density sphere. Bottom: Comparison between
the results obtained using IllinoisGRMHD and the exact so-
lution along y = 0.

D. Tolman–Oppenheimer–Volkoff star

As our next validation test, we evolve unmagnetized,
stable Tolman–Oppenheimer–Volkoff (TOV) NSs. In this
test, we disable neutrino leakage to ensure the NS main-
tains this equilibrium solution in the continuum limit.
That is to say, in the limit of infinite numerical resolu-
tion, we expect zero oscillations in our simulated NSs.

When placing the stars in our finite resolution numer-
ical grids however, numerical errors induce stellar os-
cillations. Because these oscillations are largely caused
by truncation error associated with IllinoisGRMHD’s re-
construction scheme, they should converge to zero as
we increase the resolution of the numerical grid. To
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confirm this, we perform simulations at three different
resolutions—hereafter low (LR), medium (MR), and high
(HR)—and demonstrate that the oscillations converge
away at the expected rate.

To obtain initial data, a tabulated EOS is chosen
and the TOV equations are solved using NRPy+’s TOV
solver. Three different EOS tables are used: LS220,
SFHo, and SLy4. The initial temperature is fixed to
T = 0.01 MeV, while the initial electron fraction is de-
termined by imposing the neutrino-free beta-equilibrium
condition µν(ρb, Ye, T ) = 0, where µν is the neutrino
chemical potential. The initial data are then evolved
forward in time with the Einstein Toolkit, using
Baikal [139] and IllinoisGRMHD to perform the space-
time and GRMHD evolutions, respectively.

−1

0

1

2

3

1
−

ρ
re

s
m
a
x
(t
)/
ρ
H
R

m
a
x
(t
)

Shifted vertically for easier visualization×10−3

SFHo, MR

LS220, MR

SLy4, MR

SFHo, LR×(∆xMR/∆xLR)3

LS220, LR×(∆xMR/∆xLR)3

SLy4, LR×(∆xMR/∆xLR)2.5

0 10 20 30 40 50 60

t/tdyn,NS

1.00

1.01

1.02

ρ
H
R

m
a
x
(t
)/
ρ
H
R
(0

)
m
a
x SFHo LS220 SLy4

FIG. 4. Bottom: High resolution (HR) evolution of the max-
imum density for unmagnetized TOV stars of M = 1.4M�
and different EOSs. Top: Relative errors in density os-
cillations between the HR run and the low (LR) and the
medium (MR) resolutions runs. Here tSFHo

dyn,NS ≈ 0.134 ms,

tLS220
dyn,NS ≈ 0.144 ms, and tSLy4

dyn,NS ≈ 0.131 ms (Eq. 49).

The numerical grid structure contains five factor-
of-two levels of Cartesian AMR, with resolutions on
the finest level of ∆xLR = 1.5∆xMR = 2∆xHR ≈ 277 m.
The stars are evolved for approximately 60 dynamical
timescales

tdyn,NS =
1

√
ρ0,max

, (49)

where ρ0,max is the maximum initial density (i.e., the
density at the center of the NS). We monitor the max-

imum density on the grid as a function of time, with
results from the HR runs displayed on the bottom panel
of Fig. 4.

The top panel of Fig. 4 displays the relative errors, E,
of the oscillations from the MR and LR runs against the
oscillations from the HR run. Assuming E ∝ ∆xp, we
find

EMR =

(
∆xMR

∆xLR

)p
ELR . (50)

Thus, for a numerical scheme that is p-order accurate, we
expect that multiplying the relative errors of the LR run
by (∆xMR/∆xLR)p will yield similar errors as the MR
run. Generally we would expect the numerical errors
to be dominated by our reconstruction method (PPM),
which is between second and third order. This is indeed
the observed behavior—the convergence order of our nu-
merical scheme is found to be p ∈ [2.5, 3].

E. Magnetized binary neutron stars

With the core new features validated, we now turn our
attention to fully dynamical GRMHD simulations of a
magnetized, equal-mass BNS system, modeling the inspi-
ral, merger, and the resulting remnant BH. We adopt the
LS220 microphysical, finite-temperature EOS, and simu-
late the system both with and without neutrino leakage
enabled. This self-validation test is quite challenging,
and is bound to result in unphysical behavior or, in the
worst case, code crashes, if there are issues in our imple-
mentation.

Initial data are obtained using LORENE [140–143].
The initial separation of the system is 45 km and the
gravitational (baryonic) mass of each NS is 1.39M�
(1.59M�), while the total ADM mass of the system is
MADM = 2.86M�. The interior of each NS is seeded
with a poloidal magnetic field with maximum initial value
∼1015 G (see Appendix C of [20]). The initial tempera-
ture is set to 0.01 MeV and the electron fraction is de-
termined by imposing the neutrino-free beta-equilibrium
condition.
Baikal, which solves Einstein’s equations in the BSSN

formalism, is used to evolve the spacetime. Again the
Carpet AMR infrastructure is adopted to set up a grid
with eight refinement levels by factors of two, with the
resolution at the finest level ∆x8 ≈ 185 m. Upon BH
formation, two additional refinement levels are added to
better resolve the puncture, and thus the highest resolu-
tion on the grid becomes ∆x10 ≈ 46 m.

Performing the simulation using the Einstein
Toolkit gives us access to outstanding diag-
nostic thorns, of which prominent examples in-
clude AHFinderDirect [144]—used to locate and
compute the shape of apparent horizons—and
QuasiLocalMeasures [145, 146]—used to compute
useful quasi-local quantities like the BH mass and spin.
Additionally, IllinoisGRMHD carefully monitors the



12

number of times the primitive recovery infrastructure
resorts to backup strategies, as well as the strategies
used, aborting the simulation if any major error is de-
tected. For the two simulations performed in this paper,
we have not observed atmosphere resets or conservative
averages (see Sec. III A), which reflects the robustness of
our conservative-to-primitive implementation.

Satisfaction of the Einstein constraints reflect the
health of BNS simulations in a holistic sense. As evidence
that our updated implementation of IllinoisGRMHD is
working correctly, we carefully monitor the Hamiltonian
constraint violation throughout the numerical evolution.
In Fig. 5 the magnitude of these violations with the LS220
tabulated EOS is compared against an evolution of an
SLy piecewise polytropic EOS (PPEOS) BNS evolution
performed with a trusted version of IllinoisGRMHD with
hybrid equation of state support (adopting a PPEOS for
the cold pressure). Both are equal-mass binaries (but
run without any symmetries imposed), with each neu-
tron star having a baryonic mass of 1.49M� and 1.59M�
in the tabulated and PPEOS cases, respectively. The
initial separations are different, so as to reuse existing
data; this has no bearing on our assessment. The left
panel of Fig. 5 displays side-by-side comparisons of this
diagnostic at t = 0 and, in the right panel, after a full
orbit at t = τorb.4 Initial violations are smaller for the
PPEOS case, as the LORENE initial data possessed higher
spectral resolution. The small initial constraint violation
difference is quickly dominated by numerical-evolution
errors, such that after one full orbit, constraint viola-
tions quickly reach a steady-state a few orders of magni-
tude higher than in the initial data. Generally we would
expect that errors due to EOS table interpolations would
result in slightly higher constraint violations in the tabu-
lated EOS case, but we find that both runs exhibit quite
comparable results.

As in the TOV tests, we also track the maximum den-
sity on the grid over time—i.e., the density at the center
of the NSs during inspiral. Fig. 6 shows the evolution of
this quantity for 70 dynamical timescales, which happens
to be shortly before merger in the tabulated EOS (LS220)
case. As can be seen in the figure, the maximum density
remains constant to 0.75% of its initial value through-
out, indicating that the hydrostatic equilibrium of the
NSs, imposed by the initial data, is maintained through
merger, and to a degree that is comparable or better
when comparing the latest IllinoisGRMHD against the
trusted PPEOS version. Further, as expected, data in
this figure demonstrate that neutrino leakage has no im-
pact on the central densities of the neutron stars.

Next we focus on the merger of the tabulated EOS
(LS220) BNS simulations, comparing results both with
and without neutrino leakage enabled. BH formation oc-

4 Note that τorb corresponds to different physical times in different
simulations, but is unambiguously defined as the time it takes
the stars to complete their first orbit.

curs in coincidence with the collapse of the lapse func-
tion toward zero. When αmin < 0.1, we trigger Carpet
to add additional refinement levels to our grid (as previ-
ously described) so that the moderately spinning black
hole is sufficiently resolved.

Further, post-merger oscillations of αmin(t) are mon-
itored as an indication of how close the merger rem-
nant (a very short-lived HMNS in this case) is to BH
formation. As can be seen in Fig. 7(a), our simula-
tions lead to a HMNS that undergoes a single oscilla-
tion prior to collapse to a BH, with an apparent hori-
zon detected tBH ≈ 2.1 ms after merger. Comparing with
a couple other equal-mass results in the literature with
similar initial NS masses adopting this EOS, we find
that both result in a short-lived HMNS remnant that
collapses to a BH between tBH ≈ 8.5 ms ([147], with
each NS having isolated ADM mass MNS = 1.41M�)
and tBH ≈ 48.5 ms ([148], with each NS having isolated
ADM mass MNS = 1.35M�). However a clean, apples-
to-apples comparison cannot be made, as simulations in
these references did not include magnetic fields, chose
different initial separations, and adopted different nu-
merical resolutions/grids. Indeed, further work is sorely
needed to cleanly validate current HMNS lifetime esti-
mates across different codes, and we plan to perform such
comparisons in future work.

As further validation that our conservative GRMHD
scheme is working correctly, conservation of rest mass,
i.e.,

M0 =

∫
Wρb

√
γ dV = constant, (51)

is carefully monitored. Provided GRMHD flows do not
cross AMR refinement levels or a black hole forms, this
conservation should be maintained to roundoff error. In-
deed, Fig. 7(b) demonstrates that the initial value is con-
served to 0.001% throughout the inspiral for over 75 dy-
namical timescales. During and after BH formation, a
significant amount of rest mass forms and falls into the
horizon, where ceilings on maximum density are imposed
for numerical stability and resulting in a loss of rest mass.

Finally, the gravitational wave signal, from the inspi-
ralling of two NSs through the oscillations of the HMNS,
to the ringing BH, is one of the key theoretical predictions
derived from these simulations. In Fig. 7(c) we display
the real component of the dominant, (2, 2) mode of ψ4

extracted at rext ≈ 738.3 km. We note that in this panel
of the figure we also subtract the time that it takes for
the wave to propagate from the center of the grid to rext.

Minor differences in the signal are observed between
simulations with and without neutrino leakage, which we
attribute to the great increase in neutrino production
after the massive shock—and consequent heating—that
occurs when the NSs merge. As the neutrinos leak, they
carry energy and deleptonize the system, which help ex-
plain the small differences in the gravitational wave sig-
nals.

The gravitational wave signal already provides a hint
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orbital plane. Left: initial constraint violations; right: constraint violations after one full orbit.
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FIG. 6. Maximum baryonic density as a function of time,
comparing the new version of IllinoisGRMHD, both with
(orange dashed) and without (blue solid) neutrino leakage,
against the previous, trusted version of the code that imple-
ments PPEOS (red dotted). Note that tdyn,NS ≈ 0.141 ms
(Eq. 49).

that the inspiral phase of both simulations are virtually
the same, and we confirm this behavior by looking at
other quantities. In Fig. 8 snapshots of density, temper-
ature, electron fraction, and b2 = bµbµ are plotted on
the orbital plane during the inspiral for the simulations
with and without neutrino leakage. Indeed we observe
no significant differences throughout.

However, the post-merger phase of these simulations
exhibit noticeable differences, as shown in Fig. 9. The
BH accretion disk is slightly less neutron rich in the sim-
ulation with neutrino leakage enabled, with a large region
of larger electron fraction being visible in the outer lay-
ers of the accretion disk. Notably, the same behavior is
observed in HARM3D+NUC when studying magnetized BH
accretion disks (see Fig. 11 of [6]). A detailed analysis of
the global quantities that characteriza the disk evolution
(e.g., mass, radius, accretion rate, average Ye, etc) will
be the subject of a future work.
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FIG. 7. Several diagnostics extracted from magnetized, equal-
mass BNS simulations performed with IllinoisGRMHD using
the LS220 microphysical, finite-temperature EOS. Results ob-
tained without (with) neutrino leakage are displayed using
blue, solid (orange, dashed) curves. The red, dashed line
shows the time of BH formation tBH, while tmerger corre-
sponds to the time where the stars first touch. (a) Mini-
mum value of the lapse function. (b) Conservation of the
rest mass of the system, computed using Eq. (51). (c) Domi-
nant (2, 2) mode of the gravitational wave strain extracted at
rext ≈ 738.3 km. We have subtracted the time it takes for the
wave to propagate to rext when generating the plot. Note that
tdyn,NS ≈ 0.141 ms, tmerger ≈ 12.2 ms, and tBH ≈ 14.3 ms.

In this study we are only presenting results up to≈5 ms
after black hole formation, when the spacetime already
appears to be sufficiently static. We plan to use the
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(b) t = 34tdyn,NS = 4.8 ms.
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(c) t = 68tdyn,NS = 9.6 ms.
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FIG. 8. Time evolution of a magnetized, equal-mass BNS system using microphysical, finite-temperature EOS. Each panel
shows (starting from the top left and moving clockwise) the logarithm of the density (in g/cm3), the temperature in MeV, the
logarithm of

√
bµbµ, and the logarithm of the electron fraction on the orbital (xy) plane. Panels (a)–(c) and (d)–(f) display the

inspiral phase of the simulation with neutrino leakage enabled and disabled, respectively. The trajectory of the star initially on
the left of the grid is shown using a gray, dashed line and its center is indicated by a gray dot. Note that tdyn,NS ≈ 0.141 ms
(Eq. 49).
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recently developed HandOff code to transfer simulation
data from IllinoisGRMHD to HARM3D+NUC and continue
the post-merger phase for O (∼seconds). Results of these
continuation runs will be reported in a future publication.

V. CONCLUSIONS & FUTURE WORK

Modeling magnetized compact binary systems in par-
ticular, and magnetized fluid flows in general, is of
paramount importance for multimessenger astronomy.
Simulating these systems accurately and reliably may not
only lead to insights on phenomena we do not yet fully
understand, but also provide crucial reference points for
detections of gravitational waves and their electromag-
netic and/or neutrino counterparts.

Given the importance of these simulations, many
groups have developed GRMHD codes capable of per-
forming them. Among these codes, the original GRMHD
code developed by the Illinois numerical relativity group
is particularly notable for its reliability and robustness
when simulating a very broad range of astrophysical phe-
nomena. Since IllinoisGRMHD acts as an open-source,
drop-in replacement of the original code, it inherits all of
the original code’s qualities while being faster and more
concise.

The new version of IllinoisGRMHD presented in this
work aims at improving not only technical aspects of the
code, but also the physical realism of the simulations that
it can perform. To this end, two key new features were
added: support for microphysical, finite-temperature,
tabulated EOSs via a new NRPy+-based code—NRPyEOS;
and neutrino physics via a leakage scheme using another
NRPy+-based code—NRPyLeakage.
IllinoisGRMHD has been developed to facilitate

widespread community adoption. To this end, it was
designed to be user-friendly, modular/extensible, robust,
and performant/scalable. The development of this new
version of the code shares all of these core principles,
and it is with them in mind that we are making the code
open-source and freely available for download [74].

In terms of user-friendliness, the code is well-
documented, properly commented, and requires only ba-
sic programming skills to understand and run, traits also
shared by NRPyEOS and NRPyLeakage. In the near fu-
ture, we will release a series of Jupyter notebooks that
meticulously document all of these codes.

Designed as thorns for the Einstein Toolkit and
with clear separation of key algorithms in mind, all of
these codes are both modular and extensible. To pre-
serve the robustness of IllinoisGRMHD, every new addi-
tion has been rigorously tested to ensure maximum re-
liability and optimal performance. A systematic study
of the scalability of the new version of IllinoisGRMHD,
however, is not a focus of this work, in part because the
core AMR infrastructure in the Einstein Toolkit is un-

dergoing a major upgrade that will greatly improve scal-
ability. IllinoisGRMHD will be made compatible with
this updated infrastructure in the coming months.

It is widely known that moving from a simple, analytic
EOS to a tabulated EOS and adding a neutrino leakage
scheme negatively affects the code’s overall performance.
In the case of IllinoisGRMHD, the new version of the
code is about 1.8× slower than the hybrid equation of
state version. This performance impact is comparable
to those observed by the authors of other codes, such as
Spritz. A code comparison study that showcases the
performance and impact of different algorithmic choices
made by different GRMHD codes will be the subject of
future work.

The BNS results presented in this paper exist as a
part of a larger project. Because of this, we have
taken special care to ensure that all of the new fea-
tures in IllinoisGRMHD are consistent with those in
HARM3D+NUC [6]. The simulation data will be transferred
from IllinoisGRMHD to HARM3D+NUC (a code specially
designed to accurately and reliably model BH accretion
disks) using our recently developed HandOff code [81],
and the simulation will continue for O (∼seconds). Re-
sults of these simulations will be presented in a future
paper.
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FIG. 9. Same as figure Fig. 8 for the post-merger phase.
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S. L. Shapiro, Class. Quant. Grav. 32, 175009 (2015),
arXiv:1501.07276 [astro-ph.HE].

[21] Z. B. Etienne, V. Paschalidis, R. Haas, P. Moesta,
and S. L. Shapiro, “IllinoisGRMHD: GRMHD code for
dynamical spacetimes,” Astrophysics Source Code Li-
brary, record ascl:2004.003 (2020), ascl:2004.003.

[22] L. E. Kidder et al., J. Comput. Phys. 335, 84 (2017),
arXiv:1609.00098 [astro-ph.HE].

[23] M. Fernando, D. Neilsen, E. W. Hirschmann, and
H. Sundar, in Proceedings of the ACM International
Conference on Supercomputing , ICS ’19 (Association for
Computing Machinery, New York, NY, USA, 2019) p.
1–12.

[24] K. G. Felker and J. M. Stone, Journal of Compu-
tational Physics 375, 1365 (2018), arXiv:1711.07439
[astro-ph.IM].

[25] E. R. Most, L. J. Papenfort, and L. Rezzolla, Mon. Not.
Roy. Astron. Soc. 490, 3588 (2019), arXiv:1907.10328
[astro-ph.HE].

[26] F. Cipolletta, J. V. Kalinani, B. Giacomazzo, and
R. Ciolfi, Class. Quant. Grav. 37, 135010 (2020),
arXiv:1912.04794 [astro-ph.HE].

[27] F. Cipolletta, J. V. Kalinani, E. Giangrandi, B. Gia-
comazzo, R. Ciolfi, L. Sala, and B. Giudici, Class.
Quant. Grav. 38, 085021 (2021), arXiv:2012.10174
[astro-ph.HE].

[28] J. M. Stone, K. Tomida, C. J. White, and K. G. Felker,
apjs 249, 4 (2020), arXiv:2005.06651 [astro-ph.IM].

[29] V. Mewes, Y. Zlochower, M. Campanelli, T. W.
Baumgarte, Z. B. Etienne, F. G. Lopez Armengol,
and F. Cipolletta, Phys. Rev. D 101, 104007 (2020),
arXiv:2002.06225 [gr-qc].

[30] W. Tichy, A. Adhikari, and L. Ji, Bulletin of the Amer-
ican Physical Society 65 (2020).

[31] H. T. Janka, T. Zwerger, and R. Moenchmeyer, aap
268, 360 (1993).

[32] J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Fried-
man, Phys. Rev. D 79, 124032 (2009), arXiv:0812.2163
[astro-ph].

[33] S. Typel, M. Oertel, and T. Klähn, Phys. Part. Nucl.
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