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Abstract
In the paper we prove two inequalities in the setting of RCD(K ,∞) spaces using similar
techniques. The first one is an indeterminacy estimate involving the p-Wasserstein distance
between the positive part and the negative part of an L∞ function and the measure of the
interface between the positive part and the negative part. The second one is a conjectured
lower bound on the p-Wasserstein distance between the positive and negative parts of a
Laplace eigenfunction.

1 Introduction

In recent years, a growing interest has been devoted to the study of Wasserstein distances
between positive and negative parts of a function, particularly in relation with indeterminacy
estimates [7, 8, 12, 24, 27–29]. Given a closed (i.e. compact, without boundary), smooth,
n-dimensional Riemannian manifold and denoting by m its volume measure, one considers
a nice enough function f with zero mean and notices that if it is cheap to transport f +m to
f −m, then most of the mass of f + has to be close to most of the mass of f − and hence the
zero set has to be large. The uncertainty principle quantify this relation by providing bounds
from below on the quantity

Wp( f
+m, f −m)Hn−1 ({x : f (x) = 0}) . (1)

Here Wp denotes the p-Wasserstein distance, Hn−1 is the (n − 1)-dimensional Hausdorff
measure and f +, f − are the positive and negative parts of f , respectively.

When f is a Laplace eigenfunction, it is an intriguing problem to understand whether a
meaningful upper bound on (1) also holds. Questions related to the geometry of eigenfunc-
tions are of central interest for different areas of mathematics and estimates on the quantity
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(1) together with Steinerberger’s conjecture [27] allow to get estimates on the measure of
nodal sets, in the flavour of Yau’s conjecture [32].

Around 40 years ago, Yau conjectured that there exists a positive constant C , depending
only on the manifold, such that every eigenfunction fλ, of eigenvalue λ, satisfies

C
√

λ ≥ Hn−1 ({x : fλ(x) = 0}) ≥
√

λ

C
. (2)

We refer to [20] for a review of results related to Yau’s conjecture, here we limit tomention
that the lower bound in (2) was proved by Logunov [19], while the upper bound has been very
recently established for open regular subset of Rn by Logunov, Malinnikova, Nadirashvili
and Nazarov [21], but it remains open for compact manifolds (see [18] for a polynomial
upper bound).

Regarding Wasserstein distances, Steinerberger proposed the following conjecture: for
any p ≥ 1 there exists a constant C , depending only on p and on the manifold, such that for
every non-constant eigenfunction fλ, of eigenvalue λ, it holds

C√
λ

‖ fλ‖
1
p

L1 ≥ Wp( f
+
λ m, f −

λ m) ≥ 1

C
√

λ
‖ fλ‖

1
p

L1 . (3)

Some results are known in the direction of the upper bound. In particular the first inequality
in (3)with the non optimal factor

√
log λ/λ in place of 1/

√
λwas established by Steinerberger

already in [27]. For p = 1, the same non optimal upper bound was then extended to a more
general class of spaces, the so called RCD(K , N ) spaces, by Cavalletti and Farinelli [8]. The
sharp upper bound is known to hold for closed Riemannian manifolds and p = 1 thanks to
a recent result of Carroll, Massaneda and Ortega-Cerdá [7].

Concerning the lower bound no results were known when we firstly elaborated this note
(see at the end of Sect. 1.2 for more details).

It is worth to notice that a lower bound on the Wasserstein distance between f +
λ m and

f −
λ m can be used to derive an upper bound on the measure of the nodal set of fλ, provided

an estimate from above of the quantity (1) is established.
The setting of this note will be the one of RCD(K ,∞) spaces. Roughly speaking, an

RCD(K ,∞) space is a (possibly non-smooth) metric measure space having Ricci curvature
bounded below by K ∈ R and no upper bound on the dimension, in a synthetic sense.We refer
the reader to Sect. 2.2 for the precise definition, and here we only mention that the class of
RCD(K ,∞) spaces was introduced in [4] and includes: weighted Riemannianmanifolds with
Bakry-Émery Ricci curvature bounded below [30], pmGH-limits of Riemannian manifolds
with Ricci curvature bounded below [13], finite dimensional Alexandrov spaces [25]. In
particular, every closed Riemannian manifold endowed with the geodesic distance and the
volume measure is an RCD(K ,∞) space for some K ∈ R.

The present paper has two aims: the first one is to prove an indeterminacy estimate involv-
ing the p-Wasserstein distance between the positive part and the negative part of a general L∞
function with zero integral. The second one is to show that the lower bound in Steinerberger’s
conjecture holds in full generality. Both the results will be established in spaces satisfying
the RCD(K ,∞) condition and with an explicit computation of the constants appearing in the
inequalities. The techniques that we use for proving the two inequalities are analogous and
we remark that in the statements of our main results, namely Theorem 1.1 and Theorem 1.4,
we focus on the case p = 1 since from this we easily derive the case p > 1 with an argument
explained in the proof of Corollary 3.3. In the two following subsections we introduce and
present respectively the two results.
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1.1 Indeterminacy estimate

The topic of indeterminacy estimates involving theWasserstein distance between the positive
and negative parts of an L∞ function with zero integral and the measure of its zero set, of
the type

W1( f
+m, f −m)Hn−1 ({x : f (x) = 0}) ≥

( ‖ f ‖L1

‖ f ‖L∞

)α

‖ f ‖L1 α > 0,

wasfirstly introduced bySteinerberger in [27] and [28] in 1 and 2-dimensional spaces and then
developed by Sagiv and Steinerberger for Euclidean domains in any dimension n in [29], with
exponent α = 4 − 1

n . Then Carrol, Massaneda and Ortega-Cerdá [7] extended the estimate
to general smooth, compact, Riemannian manifolds, also lowering (and thus improving) the
exponent α. Finally, Cavalletti and the second author proved in [8] the estimate with the sharp
exponent α = 1 in the even more general setting of metric measure spaces of finite diameter
satisfying the so called curvature dimension condition CD(K , N ), K ∈ R and N < +∞.
We recall that in this context K plays the role of a lower bound on the Ricci curvature and
N plays the role of an upper bound on the dimension.

The first scope of this note is to prove the sharp (in the exponent) indeterminacy estimate
in the possibly infinite dimensional setting of spaces satisfying the RCD(K ,∞) condition.

In order to properly state the result, we introduce the notation h(X) for the Cheeger
constant of themetricmeasure space (X ,d,m) (see formula (12) for the definition of Cheeger
constant). Here and below, we also tacitly assume to work with non-zero functions.

Theorem 1.1 Let (X , d,m) be a space of finite measure satisfying the RCD(K ,∞) con-
dition for some K ∈ R. Let f ∈ L∞(X ,m) be such that

∫
X f dm = 0 and∫

X d(x̄, x) | f (x)| dm(x) < +∞ for some x̄ ∈ X. Then one has

W1( f
+m, f −m)Per({ f > 0}) ≥ C(K , h(X))

( ‖ f ‖L1

‖ f ‖L∞

)
‖ f ‖L1 , (4)

with

C(K , h(X)) :=

⎧⎪⎨
⎪⎩

√
π

27
√
2

K ≥ 0 ,(
1 − 1

(2π)
1
4

)
h(X)

8h(X)+2|K | 12
K < 0 .

Themotivation behind our result is the observation that the estimate in [8] does not depend
on N . This seems to suggest that an analogous result should hold in an “infinite dimensional
setting”. The natural extension would have been to CD(K ,∞) spaces. The main tool used in
[8] to prove the result in the CD(K , N ) setting, namely the localization paradigm, however,
is not at disposal in the CD(K ,∞) setting.

Our result relies on very different techniques which are only available on the subclass
of CD(K ,∞) spaces which satisfy also the RCD(K ,∞) condition. In particular, the proof
makes use of the heat flow and of its properties. The crucial ingredient is an inequality due
to Luise and Savaré [22, Theorem 5.2], linking the Wasserstein distance between two finite
measures with the Hellinger distance of their evolution through the heat flow (see Proposition
2.5 for the precise statement).

Inequality (4) does not imply in general the indeterminacy estimate in [8], since we proved
it only for those CD(K ,∞) spaces which satisfy the RCD(K ,∞) condition. However, it is
worth to observe that at least in the RCD setting not only our result is more general than the

123



131 Page 4 of 17 N. De Ponti, S. Farinelli

one in [8], since it can be applied to“infinite dimensional” spaces like Gaussian spaces, but
also we do not require the space to have finite diameter (in opposite to [8]): (4) is meaningful
for the class of spaces having positive Cheeger constant, a class which includes spaces having
finite diameter (see [11] for the details on this implication and for an example of space with
finite measure, positive Cheeger constant and infinite diameter).

We remark that it is out of the purposes of this paper to find the optimal constant in the
estimate. In this regard, we mention the recent work [12] where sharp (also in the constant)
indeterminacy estimates have been established for some 1-dimensional spaces.

As we have already anticipated, the inequality (4) can be easily extended to a sharp
indeterminacy estimate for the p-Wasserstein distance, p > 1, see Corollary 3.3. The proof
of Theorem 1.1 together with its Corollary is presented in Sect. 3, where we also prove a
more refined result involving another transport distance, namely the Hellinger-Kantorovich
distance [16]. To avoid technicalities in the introduction, we refer to Sect. 2.1 for a brief
presentation of this distance (see in particular the definition (7)), and to Theorem 3.5 for the
statement of the result.

1.2 Lower bound on theWasserstein distance between eigenfunctions

The second aim of this note is to prove the lower bound in the Steinerberger’s conjecture (3).
More precisely, we obtain:

Theorem 1.2 Let (M, g) be a smooth, closed, Riemannian manifold, and p ≥ 1. Then there
exists a constant C(K , M, p) such that for any non-constant eigenfunction fλ of the Lapla-
cian, of eigenvalue λ ≥ M, the following inequality is satisfied

Wp( f
+
λ m, f −

λ m) ≥ C(K , M, p)
1√
λ

‖ fλ‖
1
p

L1(M)
,

with K being a lower bound on the Ricci curvature of the manifold.

We remark that in the estimate there is no dependence on the dimension of the manifold.
From Theorem 1.2 and the above mentioned upper bound obtained in [7, Theorem 3] it
follows exactly the full conjecture (3) for p = 1 and an equivalent formulation of Yau’s
conjecture, which we state in the following corollary since it may be of independent interest.

Corollary 1.3 Let (M, g) be a smooth, closed, Riemannian manifold. Then Yau’s conjecture
(2) holds if and only if there exists a constant C, depending only on the manifold, such that
for any non-constant eigenfunction fλ of the Laplacian the following inequality is satisfied

C‖ fλ‖L1(M) ≥ W1( f
+
λ m, f −

λ m)Hn−1 ({x : fλ(x) = 0}) ≥ ‖ fλ‖L1(M)

C
.

As already emphasized, we obtain Theorem 1.2 as an outcome of a more general result
valid for a class of spaces which includes closed Riemannian manifolds. The case p = 1 is
stated in the following Theorem, while the case p > 1 will be derived from the case p = 1
and it is stated in Corollary 4.2.

Theorem 1.4 Let M > 0, K ∈ R and (X , d,m) be an RCD(K ,∞) space of finite measure.
Then for any non-constant eigenfunction fλ of the Laplacian, of eigenvalue λ ≥ M and
satisfying

∫
X d(x̄, x)| fλ(x)| dm(x) < +∞ for some x̄ ∈ X, it holds
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W1( f
+
λ m, f −

λ m) ≥ C(K , M)
1√
λ

‖ fλ‖L1(X) ,

where

C(K , M) :=

⎧⎪⎨
⎪⎩
e− 1

2 if K ≥ 0 ,(
1 − K

M

) M
2K − 1

2

if K < 0 .
(5)

Notice that in Theorem 1.4 we are not requiring any compactness of the space (X ,d), nor
are we assuming that the spectrum of the metric measure space is discrete. The assumptions
m(X) < ∞ and

∫
X d(x̄, x)| fλ(x)| dm(x) < +∞, trivially satisfied for compact spaces, are

requested here to ensure that the measures f +
λ m, f −

λ m have the same total mass and finite
1-moment.

As for the indeterminacy estimate, the proof of Theorem 1.4, which will be given in
Sect. 4, relies on a crucial inequality that relates the Wasserstein distance between two finite
measures with the Hellinger distance of their evolution through the heat flow (see Proposition
2.5).

To conclude the introduction we notice that, up to our knowledge, the upper bound in (3)
conjectured by Steinerberger is open for any p in RCD(K ,∞) spaces and for p > 1 even in
smooth Riemannian manifolds. Concerning the lower bound, only when the first version of
this manuscript was in preparation we became aware of the independent work [24], where the
author obtains the conjectured inequality for closed Riemmanian manifolds and p = 1, with
an implicit constant. It is interesting to notice that the proof in [24] is based on ideas from
elliptic PDEs and it makes use of a new, non-trivial, mass (non)-concentration property of
Laplace eigenfunctions around their nodal set, while our approach does not require to appeal
to any fine property satisfied by fλ (see Remark 4.1).

2 Preliminaries

In the sequel we will denote by (X ,d) a complete and separable metric space. By M(X)

we denote the space of finite, non-negative, Borel measures on X . We write μ ∈ Mp(X) if
μ ∈ M(X) and there exists x̄ ∈ X such that

∫
X
d(x̄, x)p dμ(x) < +∞,

while Pp(X) ⊂ Mp(X) denotes the subset of probability measures with finite p-moment.
When X is endowed with a Borel measure m, we denote by L p(X ,m) the Lebesgue space
of p-integrable (equivalence class of) functions, p ∈ [1,∞]. For simplicity, we often write
L p(X) (or L p) in place of L p(X ,m).

We write Cb(X) to denote the space of real valued, bounded and continuous functions on
X . The set of real valued (bounded, or with bounded support) Lipschitz functions is denoted
by Lip(X) (respectively Lipb(X) or Lipbs(X)). Finally, Bb(X) is the set of bounded Borel
functions on X .
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2.1 Wasserstein, Hellinger-Kantorovich and Hellinger distances

Definition 2.1 Given μ1, μ2 ∈ M(X) and p ∈ [1,+∞), the p-Wasserstein distance Wp

between μ1 and μ2 is defined as

W p
p (μ1, μ2) := inf

{∫
X×X

d(x, y)p dπ(x, y) | π ∈ M(X × X), (Pi )�π = μi , i = 1, 2

}
,

where (Pi )� is the pushforward through the projection on the i-th component.

Notice that Wp(μ1, μ2) = +∞ whenever μ1(X) �= μ2(X), but Wp(μ1, μ2) is finite
if μ1, μ2 ∈ Mp(X) and have the same total mass. In particular, it is well known that
(Pp(X),Wp) is a complete and separable metric space. The p-Wasserstein distance metrizes
the weak convergence of measures plus convergence of the p-moment (see e.g. [31]).

When (X ,d) is a length metric space, one can prove a dynamic formulation of theWasser-
stein distance (see for instance [22, Proposition 2.10]):

1

p
W p

p (μ0, μ1) = sup
{ ∫

X
ζ1 dμ1 −

∫
X

ζ0 dμ0,

ζ ∈ C1([0, 1],Lipb(X)), ∂tζt + p − 1

p
|Dζt |

p
p−1 ≤ 0

}
, (6)

where we are using the notation |Df | (x) for the slope of a Lipschitz function f at the point
x , i.e.

|Df | (x) := lim sup
y→x

| f (y) − f (x)|
d(y, x)

.

We also introduce the weighted Hellinger-Kantorovich distance HKα , α > 0, following
the theory developed in [16]. In its dynamical formulation on a length metric space (X ,d) it
reads as follow

HK2
α(μ0, μ1) := sup

{ ∫
X

ζ1 dμ1 −
∫
X

ζ0 dμ0,

ζ ∈ C1([0, 1],Lipb(X)), ∂tζt + α

4
|Dζt |2 + ζ 2

t ≤ 0
}
. (7)

Notice that HKα(μ0, μ1) is finite even if μ0(X) �= μ1(X) and one can prove that HKα is
indeed a distance on M(X).

Definition 2.2 Givenμ0, μ1 ∈ M(X) and p ∈ [1,+∞), the p-Hellinger distanceHep (also
called Matusita distance) [15, 23] between μ0 and μ1 is defined as

Hepp(μ0, μ1) :=
∫
X

∣∣∣ρ1/p
0 − ρ

1/p
1

∣∣∣p dλ,

where λ is any dominating measure of μ0, μ1 and ρi are the relative densities: μi � λ and
μi = ρiλ for i = 0, 1.

We are particularly interested in the case p = 1, which corresponds to the classical total
variation, and p = 2, which is the original distance studied by Hellinger.

An immediate consequence of the elementary inequality |t − s| ≥ ∣∣t1/2 − s1/2
∣∣2 is that

He1(μ0, μ1) ≥ He22(μ0, μ1) for every μ0, μ1 ∈ M(X). (8)
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It is not difficult to show that all the p-Hellinger distances induce the same strong con-
vergence of the total variation, and are complete distances on M(X).

It is useful to recall here that also the p-Hellinger distances admit a dynamic formulation
for p > 1 [22, Proposition 2.8], specifically:

Hepp(μ0, μ1) = sup
{ ∫

X
ζ1 dμ1 −

∫
X

ζ0 dμ0,

ζ ∈ C1([0, 1],Bb(X)), ∂tζt + (p − 1)ζ
p

p−1
t ≤ 0

}
. (9)

For every twomeasuresμ0, μ1 ∈ M(X) one can prove (see [16, Chapter 7]) the following
relations between He2, W2 and HK

HKα(μ0, μ1) ≤ He2(μ0, μ1) and lim
α↓0 HKα(μ0, μ1) = He2(μ0, μ1), (10)

√
αHKα(μ0, μ1) ≤ W2(μ0, μ1) and lim

α↑+∞
√

αHKα(μ0, μ1) = W2(μ0, μ1). (11)

2.2 Metric measure spaces and curvature condition

In this section we recall some basic constructions in the theory of metric measure spaces, the
definition of RCD(K ,∞) spaces and some of their properties, which will be useful later on.
We refer to the survey [1] and the book [14] as general references on the subject.

Our assumption on the space is that (X ,d,m) is a metric measure space, briefly m.m.s.,
in the sense that (X ,d) is a complete and separable metric space and m is a non-negative,
Borel measure defined on the Borel σ -algebra given by the metric d.

Although not needed for some of the results that we are going to discuss, we always
assume in the paper m(X) < ∞ and supp(m) = X .

Let A ⊂ X be a Borel set, the perimeter Per(A) is defined as

Per(A) := inf

{
lim inf
n→∞

∫
X

|Dfn | dm : fn ∈ Lipbs(X), fn → χA in L1(X ,m)

}
,

where we denote by χA : X → {0, 1} the indicator function of the set A.
The Cheeger constant of the metric measure space (X ,d,m) is defined as follows:

h(X) := inf

{
Per(A)

m(A)
: A ⊂ X Borel with 0 < m(A) ≤ m(X)/2

}
. (12)

We define the relative entropy functional with respect to m, Entm : P2(X) → [0,+∞],
as

Entm(μ) :=
⎧⎨
⎩

∫
{ρ>0}

ρ log(ρ) dm if μ = ρm,

+∞ otherwise.

In order to define the RCD(K ,∞) condition, we need first to define the CD(K ,∞) introduced
by Lott-Villani in [17] and by Sturm in [30].

Definition 2.3 We say that a m.m.s. (X ,d,m) satisfies the CD(K ,∞) condition if for any
couple of measures μ0, μ1 ∈ P2(X) with Entm(μi ) < +∞, i = 0, 1, there exists a W2-
geodesic {μt }t∈[0,1] such that μ0 = μ0, μ1 = μ1 and for every t ∈ (0, 1)

Entm(μt ) ≤ (1 − t)Entm(μ0) + tEntm(μ1) − K

2
t(1 − t)W 2

2 (μ0, μ1).
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For f ∈ L2(X ,m) we define the Cheeger energy (see [9]) as

Ch( f ) := inf

{
lim inf
n→∞

1

2

∫
|Dfn |2 dm : fn ∈ Lip(X) ∩ L2(X ,m), ‖ fn − f ‖L2 → 0

}
,

and we put

W 1,2(X ,d,m) := { f ∈ L2(X ,m) : Ch( f ) < +∞}.
For simplicity, we will often drop the dependence of the metric measure structure and

write W 1,2(X) (or W 1,2) in place of W 1,2(X ,d,m).
For any f ∈ W 1,2(X), the Cheeger energy admits an integral representation

Ch( f ) = 1

2

∫
X

|Df |2w dm ,

where |Df |w is called minimal weak upper gradient.

Definition 2.4 Following [4] (see also [2] for the current axiomatization), we say that am.m.s.
(X ,d,m) satisfies the RCD(K ,∞) condition if it satisfies the CD(K ,∞) condition and in
addition the Cheeger energy Ch is a quadratic form on W 1,2(X ,d,m), i.e. for every f and g
∈ W 1,2(X ,d,m) the following equality is satisfied

Ch( f + g) + Ch( f − g) = 2Ch( f ) + 2Ch(g).

We remark that Ch is a convex and lower semicontinuous functional over L2(X ,m). This
implies that W 1,2(X ,d,m) is a Banach space with the norm

‖ f ‖2W 1,2(X)
:= ‖ f ‖2L2(X)

+ 2Ch( f ),

which turns out to be an Hilbert space if X satisfies the RCD(K ,∞) condition.
From now on, we focus on (X ,d,m) satisfying the RCD(K ,∞) condition. It is useful to

recall the definition of subdifferential for Ch. Given f ∈ W 1,2(X), we say that g ∈ ∂−Ch( f ),
namely g is in the subdifferential of Ch at f , if∫

X
g(ψ − f ) dm ≤ Ch(ψ) − Ch( f ) ∀ ψ ∈ L2(X).

In an RCD(K ,∞) space, the subdifferential ofChwhere non empty is single valued. From the
convexity and lower semicontinuity of Ch and from the fact thatW 1,2(X) is dense in L2(X),
it follows, using the theory of gradient flows in Hilbert spaces, that for any f ∈ L2(X) there
exists a unique locally absolutely continuous curve t �→ Ht ( f ), t ∈ (0,+∞), with values
in L2(X), which satisfies{

d
dt Ht f = −∂−Ch(Ht f ) a.e. t > 0,

limt→0 Ht f = f in L2(X).

{Ht }t≥0 is called the heat semigroup and for any t > 0, f �→ Ht f is a linear contraction in
L2(X). By the density of L2(X) ∩ L p(X) in L p(X), it can be extended to a semigroup of
linear contractions in any L p(X), p ≥ 1. It can also be extended to L∞(X) and it is known
that Ht f , for f ∈ L∞(X), admits an integral representation via the heat kernel.

We remark that in our setting, the heat semigroup satisfies the maximum principle

Ht f ≤ C if f ≤ C m-a.e. ; (13)
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in particular, it is sign preserving. Moreover, Ht is also measure preserving∫
X
Ht f dm =

∫
X
f dm, ∀ f ∈ L1(X), ∀ t > 0,

and for any f ∈ L∞(X ,m) we have that Ht f belongs to the space Lipb(X), with the bound
[10, Proposition 3.1]

‖ |DHt f |w ‖L∞ ≤
√

2K

π(e2Kt − 1)
‖ f ‖L∞ if K �= 0,

‖ |DHt f |w ‖L∞ ≤
√

1

π t
‖ f ‖L∞ if K = 0, (14)

(which is sharp in the case K > 0).
From properties (13) and (14), Ht maps Cb(X) into itself, so we can define its adjoint

operator H∗
t : P(X) → P(X) that satisfies

H∗
t (ρm) = Ht (ρ)m (15)

for any probability density ρ ∈ L1+(X ,m) (see [3, Proposition 3.2] for details).
Finally, we recall that an RCD space is a length space, and thus formula (6) and (7) hold

in this setting.
As shown by Luise and Savaré [22], the regularizing effect of the heat semigroup Ht

allows to control the stronger p-Hellinger distance in terms of the weaker p-Wasserstein and
Hellinger-Kantorovich distances.

To properly formulate their results, crucial for our purposes, first of all we set for t > 0

RK (t) :=
{

e2Kt−1
K if K �= 0,

2t if K = 0.
(16)

Proposition 2.5 [22, Theorem 5.2 and 5.4] Let (X , d,m) be an RCD(K ,∞) metric measure
space for some K ∈ R, and let p ∈ [1, 2]. For μ0, μ1 ∈ Pp(X) it holds

Wp(μ0, μ1) ≥ p(RK (t))
1
2Hepp(H

∗
t μ0, H

∗
t μ1) ∀ t > 0. (17)

Moreover, for every μ0, μ1 ∈ M(X) it holds

HK4RK (t)(μ0, μ1) ≥ He22(H
∗
t μ0, H

∗
t μ1) ∀ t > 0. (18)

Here RK (t) is the function defined in (16).

Notice that the estimate (18) is more refined than (17) (as a consequence of (11)), at a cost of
being more implicit in the sense that both the left hand side and the right hand side depend
on t .

To conclude the section, we recall in the following Proposition an intermediate result
contained in the proof of the Buser’s inequality given in [10], to which we refer for all the
details. For the reader convenience, we give here a sketch of the proof.

Let us define:

JK (t) :=
∫ t

0

√
2

πRK (s)
ds =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

πK arctan
(√

e2Kt − 1
)

if K > 0,
2√
π

√
t if K = 0, t > 0.√

− 2
πK arctanh

(√
1 − e2Kt

)
if K < 0,

(19)
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Proposition 2.6 Let (X , d,m) be a space of finite measure satisfying the RCD(K ,∞) condi-
tion for some K ∈ R. Let A ⊆ X be a Borel set. Then∫

Ac
Ht (χA) dm ≤ 1

2
JK (t)Per(A),

where JK (t) was defined in (19).

Proof By the above mentioned regularizing effect of the heat semigroup we know ([10,
Proposition 3.1]) that for every function f ∈ L∞(X) it holds

‖|D(Ht f )|w‖L∞ ≤
√

2

πRK (t)
‖ f ‖L∞ , (20)

where RK (t) was defined in (16). By a duality argument, from (20) one easily derives

‖ f − Ht ( f )‖L1 ≤ JK (t)‖|Df |w‖L1 , (21)

say for f ∈ Lipbs(X). Now, for any Borel set A we consider a sequence fn ∈ Lipbs(X),
fn → χA in L1(X), recovery sequence for Per(A). By applying (21) to fn and passing to
the limit n → ∞ we deduce

JK (t)Per(A) ≥ ‖χA − Ht (χA)‖L1 =
∫
A
[1 − Ht (χA)]dm +

∫
Ac

Ht (χA)dm (22)

=
∫
X
[1 − Ht (χA)]dm −

∫
Ac

1 dm + 2
∫
Ac

Ht (χA)dm = 2
∫
Ac

Ht (χA)dm ,

(23)

as desired. ��

Laplacian and Eigenfunctions

We next recall the definition of Laplacian, obtained as sub-differential of the Cheeger energy:

Definition 2.7 Let (X ,d,m) be satisfying the RCD(K ,∞) condition for some K ∈ R. For
f in W 1,2(X), the Laplacian of f is defined as � f := −∂−Ch( f ), provided that ∂−Ch( f )
is non empty.

We say that a non-zero function fλ ∈ W 1,2(X) is an eigenfunction of the Laplacian of
eigenvalue λ ∈ [0,+∞) if−� fλ = λ fλ. If one considers the evolution at time t via the heat
flow of an eigenfunction fλ, then

Ht fλ = e−λt fλ.

Every non-zero constant function is an eigenfunction of eigenvalue 0 (recall that we are
assuming m(X) < +∞), and every other eigenfunction has zero mean, meaning that∫

X
f −
λ dm =

∫
X
f +
λ dm.

Under our quite general assumptions, the spectrum of the Laplacian may not be discrete.
For brevity, we refer the reader to [13, Proposition 6.7] and [11, Theorem 2.17]for some
results about the spectrum of the Laplacian on RCD(K ,∞) spaces. Here we just mention
that the condition diam (X) < ∞, or K > 0, implies the compactness of the embedding of
W 1,2(X) into L2(X), and thus the existence of a basis of L2(X) formed by eigenfunctions
corresponding to a diverging sequence of eigenvalues.
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3 Indeterminacy estimate

We start by proving a Proposition which is linked to Proposition 2.6.

Proposition 3.1 Let (X , d,m) be a metric measure space of finite measure satisfying the
RCD(K ,∞) condition for some K ∈ R, and let f ∈ L∞(X ,m). Then∫

X

√
Ht ( f +)Ht ( f −) dm ≤ JK (t)

1
2 Per({x ∈ X | f (x) > 0}) 1

2 ‖ f ‖
1
2
L1‖ f ‖

1
2
L∞ ,

where JK (t) was defined in (19).

Proof By taking advantage of the maximum principle for the heat semigroup, the Cauchy-
Schwarz inequality and Proposition 2.6, one has∫

{ f >0}

√
Ht ( f +)Ht ( f −) dm ≤ ‖ f −‖

1
2
L∞

∫
{ f >0}

√
Ht ( f +)Ht (χ{ f ≤0}) dm

≤ ‖ f −‖
1
2
L∞‖Ht ( f

+)‖
1
2
L1

(∫
{ f >0}

Ht (χ{ f ≤0}) dm
) 1

2

≤ 1√
2
‖ f −‖

1
2
L∞‖ f +‖

1
2
L1 JK (t)

1
2 Per({ f > 0}) 1

2 ,

where we have also used that the heat flow is mass preserving. Along the same lines, one
also gets∫

{ f ≤0}

√
Ht ( f +)Ht ( f −) dm ≤ 1√

2
‖ f +‖

1
2
L∞‖ f −‖

1
2
L1 JK (t)

1
2 Per({ f ≤ 0}) 1

2 .

In particular splitting the integral in the statement of the proposition in an integral on the set
where f is positive, and an integral on the set where f is non-negative, we deduce∫

X

√
Ht ( f +)Ht ( f −) dm =

∫
{ f >0}

√
Ht ( f +)Ht ( f −) dm +

∫
{ f ≤0}

√
Ht ( f +)Ht ( f −) dm

≤ 1√
2
‖ f −‖

1
2
L∞‖ f +‖

1
2
L1 JK (t)

1
2 Per({ f > 0}) 1

2 + 1√
2
‖ f +‖

1
2
L∞‖ f −‖

1
2
L1 JK (t)

1
2 Per({ f ≤ 0}) 1

2 .

The conclusion follows by observing thatPer({ f > 0}) = Per({ f ≤ 0}),‖ f ±‖L∞ ≤ ‖ f ‖L∞
and ‖ f +‖L1 + ‖ f −‖L1 = ‖ f ‖L1 . ��

In the course of the proof of Theorem 1.1 we also take advantage of the following easy
Lemma.

Lemma 3.2 Let (X , d,m) be a metric measure space of finite measure. Then, for every f ∈
L∞(X ,m) of null mean we have

‖ f ‖L∞Per({ f > 0})
‖ f ‖L1

≥ h(X)

2
, (24)

where h(X) is the Cheeger constant of the space defined in (12).

Proof We can suppose without loss of generality that m({ f > 0}) ≤ m(X)/2 (since the left
hand side of (24) does not change if we replace f with − f ). We have

‖ f ‖L1 =
∫
X
f +dm +

∫
X
f −dm = 2

∫
{ f >0}

f +dm ≤ 2m({ f > 0})‖ f ‖L∞ .
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As a consequence,

‖ f ‖L∞Per({ f > 0})
‖ f ‖L1

≥ Per({ f > 0})
2m({ f > 0}) ≥ h(X)

2

where in the last passage we have used the definition of Cheeger constant, since the set
{ f > 0} is a possible competitor in the right hand side of (12). ��

We are now able to prove the indeterminacy estimate.

Proof (Proof of Theorem 1.1)We divide the proof in two steps.
Step1: general estimate involving time.
Using the inequality (17) with p = 1, the definition of H∗

t (15) and the inequality (8) we
have that for every t > 0

W1( f
+m, f −m) ≥ RK (t)

1
2He1

(
Ht ( f

+)m, Ht ( f
−)m

)
≥ RK (t)

1
2He22

(
Ht ( f

+)m, Ht ( f
−)m

)
.

(25)

Now we make use of the explicit expression of He2, of the mass preservation property of the
heat flow, and of Proposition 3.1 to obtain

He22(Ht ( f
+)m, Ht ( f

−)m) =
∫
X

(
Ht ( f

+) + Ht ( f
−) − 2

√
Ht ( f +)Ht ( f −)

)
dm

≥ ‖ f ‖L1 − 2JK (t)
1
2 Per({ f (x) > 0}) 1

2 ‖ f ‖
1
2
L1‖ f ‖

1
2
L∞ .

(26)

By putting together (25) and (26) we thus obtain that for every t > 0

W1( f
+m, f −m) ≥ RK (t)

1
2 ‖ f ‖L1 − 2

(
RK (t)JK (t)Per({ f (x) > 0})‖ f ‖L1‖ f ‖L∞

) 1
2
.

(27)

Step 2: optimizing in t.
In the case K = 0 the right hand side of (27), that we denote with g(t), has the following

expression

g(t) = √
2‖ f ‖L1 t

1
2 − 4

π
1
4

‖ f ‖
1
2
L1‖ f ‖

1
2
L∞Per({ f > 0}) 1

2 t
3
4 . (28)

By choosing

t̄ = π

324

‖ f ‖2
L1

‖ f ‖2L∞Per({ f > 0})2
we maximize the function g and we obtain

W1( f
+m, f −m) ≥ g(t̄) =

(√
2

√
π

324
− 4

π
1
4

π
3
4

324
3
4

) ‖ f ‖2
L1

‖ f ‖L∞Per({ f > 0})

=
√

π

27
√
2

‖ f ‖2
L1

‖ f ‖L∞Per({ f > 0}) .

For K < 0 we use again the notation g(t) for the right hand side of (27) so that

g(t) = DK ( f )
√
1 − e2Kt

[
1 − 2

5
4

π
1
4

(
DK ( f ) arctanh(

√
1 − e2Kt )

) 1
2
] ‖ f ‖2

L1

‖ f ‖L∞Per({ f > 0}) , (29)
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where we have denoted by DK ( f ) the quantity

DK ( f ) := ‖ f ‖L∞Per({ f > 0})
‖ f ‖L1 |K | 12

.

We use the change of variable (0, 1) � s := √
1 − e2Kt and we consider the function

g1(s) := DK ( f )s

[
1 − 2

5
4

π
1
4

(
Dk( f ) arctanh(s)

) 1
2

]
s ∈ (0, 1).

We recall now the elementary inequality

arctanh(s) ≤ s

1 − s
s ∈ (0, 1),

so that

g1(s) ≥ DK ( f )s

[
1 − 2

5
4

π
1
4

(
Dk( f )

s

1 − s

) 1
2
]

=: g2(s) s ∈ (0, 1).

We finally take the admissible choice

s̄ := 1

8DK ( f ) + 1

and, putting everything together, we obtain

W1( f
+m, f −m) ≥ g2(s̄)

‖ f ‖2
L1

‖ f ‖L∞Per({ f > 0})

=
(
1 − 1

(2π)
1
4

)
DK ( f )

8DK ( f ) + 1

‖ f ‖2
L1

‖ f ‖L∞Per({ f > 0}) . (30)

Notice that, thanks to Lemma 3.2 we know that

DK ( f ) ≥ h(X)/(2|K | 12 ). (31)

Moreover, the function

x �→ x

8x + 1
x > 0,

is increasing, so that we can bound from below the right hand side of (30) using (31) and
obtain

W1( f
+m, f −m) ≥

(
1 − 1

(2π)
1
4

)
h(X)

8h(X) + 2|K | 12
‖ f ‖2

L1

‖ f ‖L∞Per({ f > 0}) ,

which concludes the proof. ��
In the next corollary we show how to obtain an indeterminacy estimate for the p-

Wasserstein distance as a simple consequence of the indeterminacy estimate for the
1-Wasserstein distance.

Corollary 3.3 Let (X , d,m) be a metric measure space of finite measure satisfying the
RCD(K ,∞) condition for some K ∈ R, and let f ∈ L∞(X ,m)with null mean and satisfying∫
X d(x̄, x)| fλ(x)|dm(x) < +∞ for some x̄ ∈ X. Then, for any p > 1

Wp( f
+m, f −m)Per({ f > 0}) ≥ 2

p−1
p C(h(X), K )

( ‖ f ‖L1

‖ f ‖L∞

)
‖ f ‖

1
p

L1 , (32)
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where C(h(X), K ) is the constant appearing in Theorem 1.1.

Proof The result follows from Theorem 1.1 and the bound

Wp( f
+m, f −m)

‖ f ‖1−
1
p

L1

21−
1
p

≥ W1( f
+m, f −m) (33)

which is a consequence of the Holder’s inequality for the Wasserstein distance (see for
instance [31,Remark 6.6] and recall that themeasures here have totalmass equal to‖ f +‖L1 =
‖ f −‖L1 = ‖ f ‖L1

2 ). ��
Remark 3.4 We notice that one can recover an indeterminacy estimate involving the ∞-
Wasserstein distance for example by taking the limit for p → +∞ in (32) and observing
that the constant depending on p does not degenerate for p → +∞.

We conclude the section with an indeterminacy estimate for the Hellinger-Kantorovich
distance. In analogy with the comparison between the estimates (17) and (18), we obtain
an implicit but more refined result than Theorem 1.1. Another advantage of the following
Theorem is that it is not restricted to functions f with null mean and bounded moment.

Theorem 3.5 Let (X , d,m) be a metric measure space of finite measure satisfying the
RCD(K ,∞) condition for some K ∈ R, and let f ∈ L∞(X ,m). Then

HK4RK (t)( f
+m, f −m) ≥

(
‖ f ‖L1 − 2JK (t)

1
2 Per({ f (x) > 0}) 1

2 ‖ f ‖
1
2
L1‖ f ‖

1
2
L∞

) 1
2 ∀ t > 0,

(34)

where RK (t) and JK (t) were defined in (16) and (19) respectively.

Proof Using the inequality (18) and the definition of H∗
t (15) we have that for every t > 0

HK2
4RK (t)( f

+m, f −m) ≥ He22
(
Ht ( f

+)m, Ht ( f
−)m

)
. (35)

With the same estimate as in (26) we can now bound from below the square of the 2-Hellinger
distance and reach the desired conclusion. ��

4 Proof of the lower bound on theWassersteind distance of
eigenfunctions

Proof of Theorem 1.4 As in the case of Theorem 1.1, we divide the proof in two steps.
Step 1: general estimate involving time.
Using the inequality (17) with p = 1 and the definition of H∗

t (15) we bound from below
the cost W1 in terms of the total variation:

W1( f
+
λ m, f −

λ m) ≥ (RK (t))
1
2He1(Ht ( f

+
λ )m, Ht ( f

−
λ )m) . (36)

We observe that

He1(Ht ( f
+
λ )m, Ht ( f

−
λ )m) = ‖Ht ( f

+
λ ) − Ht ( f

−
λ )‖L1(X) = ‖Ht ( fλ)‖L1(X) = e−λt‖ fλ‖L1(X),

(37)

using the linearity of the heat flow and recalling that Ht ( fλ) = e−λt fλ.
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So inequality (36) reads as

W1( f
+
λ m, f −

λ m) ≥ (RK (t))
1
2 e−λt‖ fλ‖L1(X) ∀ t > 0.

Step 2: optimizing in t.
In the case K = 0 the result follows by choosing t̄ = 1

2λ in the previous inequality.
For K < 0 we choose instead t̄ = 1

2K log( λ
λ−K ) in order to obtain

W1( f
+
λ m, f −

λ m) ≥ 1√
λ

√
− λ

K

(
e(− λ

K ) log λ
λ−K − e(1− λ

K ) log λ
λ−K

)
‖ fλ‖L1(X).

The result follows by standard computations, setting x = − λ
K ≥ −M

K > 0 and noticing that
the function

x �→
√
x

(
ex log

x
x+1 − e(1+x) log x

x+1

)
=

(
x

x + 1

) x+1
2

is increasing. ��

Remark 4.1 We notice that in the proof of Theorem 1.4 we have avoided using fine properties
of Laplace eigenfunctions, exploiting only the equality Ht ( fλ) = e−λt fλ in the last passage
of (37).

Along the same lines of Corollary 3.3, one can easily prove the following:

Corollary 4.2 Let M > 0, K ∈ R and (X , d,m) be an RCD(K ,∞) space of finite measure.
Then for any non-constant eigenfunction fλ of the Laplacian, of eigenvalue λ ≥ M and
satisfying

∫
X d(x̄, x)| fλ(x)| dm(x) < +∞ for some x̄ ∈ X, it holds for any p > 1

Wp( f
+
λ m, f −

λ m) ≥ 2
p−1
p C(K , M)

1√
λ

‖ fλ‖
1
p

L1(X)
,

where C(K , M) was defined in (5).

Remark 4.3 One can recover a lower bound for the ∞-Wasserstein distance as in Remark
3.4.
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