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Abstract
Gaussian mixture models represent a conceptually and mathematically elegant class of models for casting the density of a
heterogeneous population where the observed data is collected from a population composed of a finite set of G homogeneous
subpopulations with a Gaussian distribution. A limitation of these models is that they suffer from the curse of dimensionality,
and the number of parameters becomes easily extremely large in the presence of high-dimensional data. In this paper, we
propose a class of parsimonious Gaussian mixture models with constrained extended ultrametric covariance structures that are
capable of exploring hierarchical relations among variables. The proposal shows to require a reduced number of parameters
to be fit and includes constrained covariance structures across and within components that further reduce the number of
parameters of the model.

Keywords Model-based clustering · Hierarchical models · Ultrametricity · Parsimony · Dimensionality reduction

1 Introduction

Finite mixture models lay their foundations in the assump-
tion that data is collected from a finite set of G populations
and that data within each population is shaped by a statistical
model. Finite Gaussian Mixture Models (GMMs) provide
a widely used probabilistic approach to group continuous
multivariate data, and assume a Gaussian structure for each
population. When considering a p-dimensional random vec-
tor x with a GMM distribution, the pdf model is, therefore,
of the form

f (x | �) =
G∑

g=1

πg φ(x | μg,�g), (1)
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where φ(· | μg,�g) denotes the density of a multivari-
ate Gaussian distribution with a p-dimensional mean vector
μg and a covariance matrix �g of order p. The mixing
proportions (prior probabilities) π1, . . . , πG are such that
πg > 0 and

∑G
g=1 πg = 1, and � = {π1, . . . , πG ,

μ1, . . . ,μG,�1, . . . ,�G} is the overall parameter set. Rel-
evant specialized literature and complete reviews of GMMs
are found in, among others, Titterington et al. (1985),
McLachlan andBasford (1988),McLachlan andPeel (2000a),
Fraley and Raftery (2002), Bouveyron et al. (2019).

Although GMMs offer the benefit of quantifying uncer-
tainty through probabilities, their practical usability is jeop-
ardized in high-dimensional spaces because of the estimation
of a large number of parameters. As a consequence, several
solutions havebeenproposed, often relyingonmatrix decom-
position or variable selection strategies. In detail, Banfield
and Raftery (1993), Bensmail and Celeux (1996) extensively
worked on the eigen-decomposition of the covariance matrix
of the form�g = λgDgAgD′

g , where λg = |�g|1/p, Ag is a
diagonal matrix such that |Ag| = 1, and Dg is an orthogonal
matrix of eigenvectors. These elements specify the scale (or
volume), shape, and orientation of the Gaussian components,
respectively. The decomposition provides different GMMs
by using from one to Gp(p+1)/2 parameters, while impos-
ing different geometric characteristics to the component
covariance structure and/or by constraining the covariance
matrices to be equal or unequal across components (Gaus-
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sian Parsimonious Clustering Models, GPCMs, Celeux and
Govaert 1995; Fraley and Raftery 1998, 2002). In the high-
dimensional context, the High-Dimensional Data Clustering
model (Bouveyron et al. 2007, HDDC) provides an alter-
native eigen-decomposition of the covariance matrix of the
form �g = Qg�g Q′

g , where Qg is an orthogonal matrix
of eigenvectors, �g = diag([ag1, . . . , agdg , bg, . . . , bg]′) is
a diagonal matrix of eigenvalues and dg ∈ {1, . . . , p − 1}
is the intrinsic dimension of the gth component. HDDC
also defines a family of models by constraining covari-
ance structures between and/or within components whose
number of parameters varies from d(p − (d + 1)/2) + 3,
where d is the intrinsic dimension shared by the G com-
ponents, to

∑G
g=1 dg(p − (dg + 1)/2) + 2G + ∑G

g=1 dg .
McNicholas and Murphy (2008, 2010) developed a class
of GMMs, called Parsimonious Gaussian Mixture Models
(PGMMs), that assume a latent structure per component.
This approach extends both the mixtures of factor analyz-
ers (Ghahramani and Hinton 1997; McLachlan and Peel
2000b; McLachlan et al. 2003) and the mixtures of prob-
abilistic principal component analyzers (Tipping and Bishop
1999a, b), and assumes a component covariance structure of
the form �g = �g�

′
g + �g , where �g is a (p × m), with

m � p, factor loading matrix and �g is a p-dimensional
diagonal covariance matrix of error. These models can have
from pm−m (m − 1) /2+1 to G(pm−m (m − 1) /2+ p)
parameters with m ∈ {1, 2, . . . , p}, by considering equal
or unequal covariance structures among the components.
Finally, Cavicchia et al. (2022) proposed a parameterization
of the covariancematrix that aims tomodelmultidimensional
phenomena—usually defined by hierarchically nested latent
concepts—by assuming an extended ultrametric covariance
matrix for each component. This peculiar structure is associ-
atedwith a hierarchy of concepts and can explore hierarchical
relationships among variables. The model introduced by
Cavicchia et al. (2022) is based upon the general parame-
terization of an extended ultrametric covariance matrix that
requires a reduced number of parameters to fit; however, this
number can be further reduced.

In this paper, we therefore propose a class of thirteen
parsimonious GMMs with constrained extended ultramet-
ric covariance structures between and within components
that further reduce the number of the ultrametric model
parameters. The models belonging to this family, named
Parsimonious Ultrametric Gaussian Mixture Models (PUG-
MMs), can thus have from p+3 toG(p+3m−1) parameters
for the covariance structure, with m ∈ {1, 2, . . . , p}. Fur-
thermore, we introduce computational improvements on the
estimate of the extended ultrametric covariance matrix. First,
we facilitate its implementation in GMMs by adapting the
results of Archakov and Hansen (2020) that make the com-
putation of its determinant and inverse remarkably faster
and easier. Second, we consider the polar decomposition

on the extended ultrametric covariance matrix to ensure its
positive definiteness, whenever necessary. The clustering
performance of the thirteen PUGMMs is compared to that
of the existing methodologies mentioned above on thirteen
benchmark data sets. Additionally, two real-world applica-
tions, respectively on FIFA football player skills and the use
of web open collaborative environments for teaching within
universities, are presented by inspecting the hierarchical rela-
tionships of variables featuring them.

The paper is organized as follows. Section2 presents
the full development of the extended ultrametric covari-
ance structure and its application as parameterization for
GMMs. In Sect. 3, the collection of parsimonious ultrametric
GMMs is given. Pivotal computational aspects are presented
in Sect. 4. Section5 features real data examples where the
proposed models are numerically illustrated. A final discus-
sion completes the paper in Sect. 6.

2 GMMwith an extended ultrametric
covariance structure

In this section, we briefly recall the parameterization intro-
duced by Cavicchia et al. (2022) to model the component
covariance matrices of a GMM. Let us consider a random
vector x drawn from a finite set of G populations as in (1),
where the covariance matrix �g is parameterized through
an Extended Ultrametric Covariance Structure (EUCovS)
defined as follows

�g = Vg(�Wg +�Bg )V
′
g+diag(Vg(�Vg − �Wg )V

′
g). (2)

Equation (2) depends on four parameters: the binary and
row-stochastic (p × m) variable-group membership matrix
defining the partition of variables into m ≤ p groups
(Vg = [v jq : j = 1, . . . , p, q = 1, . . . ,m]), the diag-
onal (m × m) group variance matrix (�Vg = [V σqq(g) :
q = 1, . . . ,m]), the diagonal (m × m) within-group covari-
ance matrix (�Wg = [Wσqq(g) : q = 1, . . . ,m]) and
the symmetric (m × m) between-group covariance matrix
(�Bg = [Bσqh(g) : q, h = 1, . . . ,m]) for each com-
ponent g = 1, . . . ,G. To guarantee the ultrametricity of
�g in (2), its parameters must comply with some con-
straints: (i) �Bg is a hollow matrix1 whose off-diagonal
triplets respect the ultrametric inequality (i.e., Bσqh(g) ≥
min{Bσqs(g), Bσhs(g)}, q, h, s = 1, . . . ,m, s �= h �= q),
(ii) the lowest diagonal value of �Wg is always greater than
(or equal to) the highest off-diagonal value of �Bg (that
is, min{Wσqq(g), q = 1, . . . ,m} ≥ max{Bσqh(g), q, h =
1, . . . ,m, h �= q}), (iii) each group variance is greater
than the absolute value of the corresponding within-group

1 The hollow matrix is a matrix with diagonal entries equal to zero.
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covariance (i.e., V σqq(g) > |Wσqq(g)|, q = 1, . . . ,m). By
complying with these constraints, EUCovS results to be a
Weak Extended Ultrametric Matrix (Cavicchia et al. 2022,
Definition 1) since it is symmetric, nonnegative on the diago-
nal, ultrametric and column pointwise diagonally dominant.
Furthermore being a covariance matrix �g must be positive
semidefinite. As demonstrated by Dellacherie et al. (2014),
an ultrametric matrix is guaranteed to be positive semidefi-
nite if all its entries are nonnegative. The column pointwise
diagonal dominance condition required by the definition of
an ultrametricmatrix results pivotal for obtaining the positive
semi-definiteness. As discussed by Cavicchia et al. (2022),
when the entries are not nonnegative, a stronger condition
(i.e., diagonal dominance) is needed to guarantee this prop-
erty. Since the diagonal dominance condition is very strong
and may lead to an overestimation of the parameter �Vg , in
this paper, the positive semi-definiteness of�g is ensured by
a procedure that considers its polar decomposition (Higham
1986) as discussed in detail in Sect. 4.3.

The goal of the EUCovS parameterization is twofold.
This enables, on the one hand, to reduce the dimensional-
ity of the data by merging the p variables into a reduced
number m of groups, and on the other hand, to identify
the hierarchical structure over them. Each variable group
is then characterized by three different features: the vari-
ance of the group, the covariance within the group and
the covariance between itself and the remaining groups. As
shown by Cavicchia et al. (2022, Corollary 1), EUCovS is
one-to-one associated with a hierarchy of m latent concepts
that arise from the collection of variables in m groups. In
detail, V σqq(g), q = 1, . . . ,m, define the initial levels of
the hierarchy, Wσqq(g), q = 1, . . . ,m, are associated with
the levels at which the variables are grouped and repre-
sent the covariance within the m groups. Finally, values

Bσqh(g), q, h = 1, . . . ,m, identify the remaining m − 1 lev-
els and represent the covariance between groups of variables.
Thus, the ultrametric property that holds for the relationship
between �Wg and �Bg (constraint ii, meaning that the vari-
ables belonging to the same group are more concordant than
the variables belonging to two different groups), and within
�Bg (constraint i, meaning that the groups aggregation in
pairs occurs from the most concordant to the least concor-
dant) guarantees the formation of a hierarchy that depicts the
relationships within and between groups of variables, from
the most concordant to the most discordant.

The parameterization in Eq. (2) requires a reduced number
of parameters. Specifically, EUCovS needs at most p+3m−
1 parameters for each component covariance matrix to be
estimated, where p parameters derive from Vg , 2m from�Vg
and �Wg , and m − 1 from �Bg . It should be noted that, even
when m = p, �g has a parsimonious structure owing to the
ultrametricity of �Bg . In that case, �Vg = �Wg and �Bg

provides a hierarchy over the p singletons.

The ultrametric Gaussian mixture model with the covari-
ance structure in (2) is estimated using a grouped coor-
dinate ascent algorithm (Zangwill 1969), which Hathaway
(1986) demonstrated to be equivalent to an Expectation–
Maximization (EM) algorithm (Dempster et al. 1977) to
estimate the GMM parameters. Therefore, by considering
a random sample x = (x1, . . . , xn)′ composed of n p-
dimensional vectors, the Hathaway log-likelihood function
to maximize is

�(W ,�) =
n∑

i=1

G∑

g=1

wig

(
logπg + logφ(xi |μg,�g)

)

−
n∑

i=1

G∑

g=1

wig logwig, (3)

where wig, i = 1, . . . , n, g = 1, . . . ,G, are the poste-
rior probabilities considered as parameters and such that
wig ∈ [0, 1],∑G

g=1 wig = 1, and 0 <
∑n

i=1 wig < n, and
� = {π1, . . . , πG , μ1, . . . ,μG ,�1, . . . ,�G}.�g is param-
eterized as in Eq. (2) and therefore consists of Vg ,�Vg ,�Wg ,
and �Bg . Henceforth, for the sake of simplicity, we use �

instead of �(W ,�).
By maximizing � in (3) with respect to W and � one at a

time, keeping the other parameter fixed each time, we obtain
the estimates of the posterior probabilities and the ultramet-
ric GMM parameters. PUGMMs introduced in the following
section provide more parsimonious EuCovS parameteriza-
tions and encompass the one in (2) as the least constrained
case. Thus, its estimation details are provided in the next
section.

3 Parsimonious Ultrametric Gaussian
Mixture Models

Constraints on the parameterization in Eq. (2) bring PUG-
MMs into being and allow the hierarchical structures of the
variables to vary or be equal across and within the mixture
components. The class of models proposed herein includes
thirteen cases obtained by constraining the EUCovS parame-
ters Vg,�Vg ,�Wg and �Bg to be equal within and/or across
components or free to vary between them. PUGMMs are
coded with a combination of four letters, that is, one for
each EUCovS parameter: the first one refers to the variable-
group membership matrix, which can be equal (E) or free
to vary (F) across components; the second, third, and fourth
terms indicate whether the matrix of the group variances, the
matrix of the covariances within the groups, and thematrix of
the covariances between the groups, respectively, are unique
(U, equal within and across components), isotropic (I, equal
within components), equal (E, equal across components) or
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free to vary across components (F). The thirteen PUGMMs
are listed in detail in Table 1 together with the parameteri-
zation of the corresponding covariance structure. It has to be
noticed that for the F· · · models (i.e., the ones for which Vg is
let free to vary across components) the last three parameters
cannot be constrained across components since the variable
partition into groups changes for each component.

As in the general case illustrated in Sect. 2, PUGMMs are
estimated using a grouped coordinate ascent algorithm. The
updating formula of wig for i = 1, . . . , n and g = 1, . . . ,G
is

ŵig = π̂g φ(xi | μ̂g, �̂g)
∑G

h=1 π̂h φ(xi | μ̂h, �̂h)
,

where the covariance structure depends on PUGMMs. The
estimates of πg andμg for g = 1, . . . ,G are equal for all the
thirteen PUGMMs and are detailed below. By omitting addi-
tive constant terms w.r.t. π1, . . . , πG , the updating formula
of the mixing proportions is obtained by maximizing

� =
n∑

i=1

G∑

g=1

ŵig log(πg),

which leads to

π̂g =
∑n

i=1 ŵig

n
.

Henceforth, we use ng =∑n
i=1 ŵig .

By neglecting additive constant terms w.r.t. μ1, . . . ,μG ,
the maximization of the following log-likelihood function

� = −1

2

n∑

i=1

G∑

g=1

ŵigtr
(
(xi − μg)(xi − μg)

′�−1
g

)

gives rise to the update formula of the component mean vec-
tors

μ̂g =
∑n

i=1 ŵig xi
ng

.

The features and updating formulas of the component
covariance matrices depend on the parsimonious model con-
sidered. They are provided in the following subsections by
grouping the thirteen PUGMMs in two families: unique and
equal models (EUUU, EUUE, EUEE, EEEU, EEEE) and
isotropic and free models (EEEF, EEFF, EFFF, FIII, FIIF,
FIFF, FFFI, FFFF). However, regarding the estimates of the
variable-group membership matrices, there exist two possi-
ble configurations, the E· · · models and the F· · · models. For
the E· · · models (i.e., the ones for which Vg is equal across

components), the mixtures components share the same vari-
able partition into m groups and Vg = V is estimated row
by row across components, i.e., for each v j , j = 1, . . . , p,
as follows

⎧
⎨

⎩
v̂ jq = 1 if q = arg max

q ′=1,...,m
�

v̂ jq = 0 otherwise
,

where � = �(Ŵ , �̂−V , [̂v1, . . . , v j = iq ′ , . . . , v̂ p]′). In the
latter, �̂−V contains all PUGMM parameters, that is, the
mixing proportions, the component mean vectors and covari-
ance structures except for V , and iq ′ is the q ′th row of the
identity matrix of order m. For the F· · · models, the mix-
ture components can differ for the variable partition into m
groups and Vg is estimated row by row per component, i.e.,
for each v j(g), j = 1, . . . , p, g = 1, . . . ,G, as follows

⎧
⎨

⎩
v̂ jq(g) = 1 if q = arg max

q ′=1,...,m
�

v̂ jq(g) = 0 otherwise
,

where � = �(Ŵ , �̂−V g , [̂v1(g), . . . , v j(g)= iq ′ , . . . , v̂ p(g)]′)
with �̂−Vg containing all the PUGMM parameters except
Vg .

3.1 Unique and equal models

The unique and equal models include the PUGMM cases
where the variable-group membership matrices are the same
across components, and the group variance matrices, the
within-group covariance matrices, and the between-group
covariance matrices are characterized by a single unique
value each within and across components (EUUU, EUUE,
EUEE, EEEU) or are equal across components (EEEE).
These models lead to the greatest reduction in the number
of parameters involved in the covariance structure estimates
compared the freest model, i.e., FFFF (see Table 1). For this
family, �g = �, and by omitting constant terms as regards
the EUCovS parameters, the log-likelihood to maximize is

� = −n

2

[
log(|�|) + tr(�−1 S̄)

]
, (4)

where S̄ = ∑G
g=1 π̂gSg and Sg = (1/ng)

∑n
i=1 ŵig(xi −

μ̂g)(xi − μ̂g)
′. The features of the unique and equal mod-

els are examined below, while the details of the estimates
of their covariance structure parameters are provided in
Appendix A.1. In detail, Fig. 1 displays the one-to-one cor-
respondence between the extended ultrametric covariance
matrix, through its graphical representation as a heatmap,
and the path diagram for the five unique and equal models
(EUUU, EUUE, EUEE, EEEU and EEEE). The diagonal
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Fig. 1 Example of the heatmap
and the corresponding path
diagram of the unique and equal
models when m = 4 and p = 11
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Fig. 1 continued

elements of the heatmaps consist of the diagonal elements
of �V , while the elements of diagonal blocks are the diago-
nal ones of �W and the off-block-diagonal elements consist
of the off-diagonal elements of �B . Therefore, the aggrega-
tion levels of the path diagram correspond exactly to these
covariance values.

EUUU model: This is the most constrained case among the
thirteen presented here. Indeed, the covariance structure of
this model is characterized by a unique value for the main
diagonal of�V and�W and for the off-diagonal elements of
�B . The resulting � has at most 3 different values and is the
same across components. The main feature of this model is
represented by the reduced number of aggregations among
variable groups. In fact, in addition to having the same vari-
ance and covariance with them, the m variable groups are
aggregated at the same level, i.e., σB . An example of the
EUUU model covariance structure and the corresponding
hierarchy is depicted in Fig. 1a. This model represents the
situationwhere all variables enter in the hierarchy at the same
level (constant value on the diagonal of �V ) and are aggre-
gated inm groups with the same intensity (constant value on
the diagonal of �W ), and the aggregation level among the
groups is also constant (constant value on the off-diagonal
entries of �B). Constraints (iii) and (ii) described in Sect. 2
on the relationships between the EUCovS parameters reduce
to σV > |σW | and σW ≥ σB , respectively. Therefore, the
relationships among the variables are modeled such that the
aggregation level between the m variable groups is weaker
than the aggregation level within the groups, and the latter is
in turn weaker than the variance level.

EUUEmodel: In this case, the group variance matrix�V and
the within-group covariance matrix �W have the same value
each on their main diagonal, i.e., σV and σW respectively,
whereas �B can have at most m − 1 different off-diagonal
values. Thismeans that the covariances among them variable
groups can differ, leading to different levels of aggregation
in the corresponding hierarchical structure. Therefore, the
higher number of parameters compared to the EUUU case

depends on �B , and specifically on m. An example of the
EUUE model is shown in Fig. 1b. For this model, the con-
straint on the relationship between �V and �W remains the
same as in the EUUUmodel, while the constraint on�W and
�B becomes σW ≥ max

q,h=1,...,m,h �=q
Bσqh .

EUEEmodel: For this model, only the group variance matrix
�V is limited to having a unique value on its main diagonal.
The other two covariance parameters are free to vary within
components (not across them), that is, the m variable groups
have different levels of covariance within them other than
different levels of aggregation between them. The increase
in the number of parameters compared to the EUUE model
depends on them diagonal values of �W . An example of the
EUEEmodel is provided in Fig. 1c. In this case, the constraint
between�W and�B is the one introduced in Sect. 2—except
for the reference to the component—while that between �V

and �W becomes σV > max
q=1,...,m

|Wσqq |.
EEEU model: In this case, only the between-group covari-
ance matrix �B is restricted to have a unique off-diagonal
value, whereas �V and �W are free to vary within compo-
nents. Therefore, them groups of variables are characterized
bym values of the variance, different (at mostm) covariances
within groups, but they are aggregated at the same level σB .
An example of the EEEUmodel is given in Fig. 1d; herein, it
can be seen that the “entry level” of the variables correspond-
ing to the group variances can differ across groups, as well
as the internal nodes representing the within-group covari-
ances, whereas the aggregation among groups is unique. This
is an interesting case that can occur in reality when the hierar-
chy of latent concepts is composed of only two “levels”, one
representing specific concepts and the other identifying the
general concept. For instance, two important indexes such as
the global Multidimensional Poverty Index (MPI, Alkire and
Foster 2011; Alkire et al. 2015) and the HumanDevelopment
Index (HDI, Alkire 2010) follow a two-level model of this
type. The constraints of the EEEU model are equal to those
displayed in Sect. 2, where σB is unique.
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EEEE model: This model is the least constrained within the
family of unique and equal models. In fact, even if restricted
to being the same across components, the EUCovS parame-
ters are free to vary within them. Therefore, the increase in
the number of parameters with respect to the EEEU model
depends on the m − 1 different values out of the main diag-
onal of �B . An example of the EEEE model is provided in
Fig. 1e. Its constraints are equal to those reported in Sect. 2,
where � does not depend on g as well as its parameters.

3.2 Isotropic and freemodels

The family of the isotropic and free models encompasses
two subgroups: the first referring to the models where the
variable-group membership matrices are equal across com-
ponents (EEEF, EEFF, EFFF) and the second where they are
free to vary (FIII, FIIF, FIFF, FFFI, FFFF). Although in the
second group, the other EUCovS parameters can be charac-
terized by a single value each, these values must differ across
components. It should be noted that the number of parame-
ters of the isotropic model FIII (resp. FIIF, FIFF and FFFI)
corresponds to that of the equal model EUUU (resp. EUUE,
EUEE and EEEU)multiplied by the number of mixture com-
ponents, whereas that of the EEEF, EEFF, and EFFF cases
is in-between. The least constrained model is the FFFF case
described in Sect. 2.

By omitting constant terms with respect to the EUCovS
parameters, the log-likelihood to maximize for this family is

� = −1

2

⎡

⎣
G∑

g=1

ng log(|�g|) +
G∑

g=1

ngtr
(
�−1

g Sg
)
⎤

⎦ . (5)

The features of the isotropic and free models are examined
below, while the details of their estimates are provided in
Appendix A.2.

EEEF model: Unlike the EEEE model, in this case the
between-group covariance matrix varies across components,
i.e., �Bg . This means that the aggregation levels between
variable groups can change across components, even if the
variable partition is the same, affecting the number of param-
eters to estimate. The latter has to take into account the
G(m − 1) values of �B1 , . . . ,�BG . For simplicity rea-
sons, we do not display an example of this model since the
reader might infer it by replicating Fig. 1e for G compo-
nentswith different values of covariance between the variable
groups across components. With respect to the EEEEmodel,
the constraint on the relationship between the covariance
within and between groups changes: this turns out to be

σW ≥ max
g=1,...,G

{
max

q,h=1,...,m,h �=q
Bσqh(g)

}
, since �Bg varies

across components, whereas �W does not.

EEFF model: By relaxing the constraint on the within-group
covariance matrix that holds in the EEEF model, this case
is obtained. Therefore, since �Wg varies across compo-
nents, the EEFF model encompasses also the Gm values
of �W1 , . . . ,�WG as parameters to estimate. Likewise the
EEEF case, it is easy to derive an example for this model
by replicating Fig. 1e while changing the covariance values
within and between the variable groups in theG components.
Constraint (ii) in Sect. 2 holds for the relationship between
�Wg and �Bg , whereas that one between �V and �Wg turns
out to be V σqq > max

g=1,...,G
|Wσqq(g)| for q = 1, . . . ,m. It

must be recalled that the variable-group membership matrix
does not vary between components, therefore, the row-by-
row comparison between the elements of �V and �Wg , g =
1, . . . ,G, is reasonable.

EFFFmodel: This model differs from the EEFF case, as also
the group variance matrix is free to vary across components,
i.e., �Vg , thus increasing the number of parameters to take
into account its Gm values. Equivalently, the reader can eas-
ily derive an example for this model through the replication
of Fig. 1e, where the values of the covariance matrix change
between the G components although the variable partition
remains the same. The constraints on the parameters of the
EFFF case correspond to those presented in Sect. 2.

FIII model: Unlike the EUUU model, in this case, the
variable-group membership matrix differs across compo-
nents, that is Vg , and the unique values in the other EUCovS
parameters have to be component-specific. Consequently, the
number of parameters of theEUUUmodelmust bemultiplied
by the number of mixture components G to obtain the one of
the FIII model. The reader can easily infer an example of this
case by replicating the covariance structure shown in Fig. 1a
with different variable partitions into groups along with dis-
tinct parameters values per component. The constraints on
�Vg ,�Wg and�Bg turn out to beσVg > |σWg | andσWg ≥ σBg

for g = 1, . . . ,G.

FIIF model: The difference between this isotropic model
and the unique model EUUE figures in Vg , which varies
across components bymaking free the other EUCovS param-
eters across them. As well as the FIII case, an example of
this model can be easily derived from its unique counter-
part depicted in Fig. 1b. The number of parameters in this
model corresponds to that of the EUUE case multiplied by
the number of components G. The constraints on the rela-
tionship between �Vg and �Wg remain the same from the
FIII model, whereas those between �Wg and �Bg are taken
from EUUE and transformed to be component-specific, that
is, σWg ≥ max

q,h=1,...,m,h �=q
Bσqh(g) for g = 1, . . . ,G.

FIFF model: This model is the isotropic counterpart of the
EUEE model. As for the other two previous models, in the
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FIFF case, the partition of variables into groups changes
throughout the components. This entails differences in the
other EUCovS parameters across components, whose num-
ber is equal to G times that of the EUEE model. The reader
can easily think of an example of this case by generalizing it
to that depicted in Fig. 1c. For the FIFF model, the constraint
between�Wg and�Bg is the one introduced in Sect. 2, while
that between �Vg and �Wg is σVg > max

q=1,...,m
|Wσqq(g)| for

g = 1, . . . ,G.

FFFI model: As well as for the previous three cases, this
model has its counterpart among the unique models, that is,
EEEU. The FFFI model constrains only the between-group
covariance matrix to have one single value within compo-
nents, even if this value can vary across them, i.e.,σBg , aswell
as �Vg ,�Wg and Vg . An example of this model can be eas-
ily obtained by considering the structure depicted in Fig. 1d
with a different variable partition and variance and covari-
ance values per component. The constraints of the FFFI case
are equal to those displayed in Sect. 2, where the parameters
of EUCovS depends on g and σBg is a unique value within
components.

FFFF model: This is the least constrained case among
the thirteen presented herein. Indeed, the FFFF model cor-
responds to that illustrated in Sect. 2 and introduced by
Cavicchia et al. (2022), where examples of the FFFF covari-
ance structure are provided. This case represents the most
general ultrametric model, where all the EUCovS parame-
ters differ throughout the mixture components.

As formerly described, constraints (iii) and (ii) on �Vg ,
�Wg , and �Bg hold for any case. For instance, for the
FFFF model, they are implemented as follows: V σqq(g) =
|Wσqq(g)| + 1.5 × 10−8 for some (or all) q and g, and
min{Wσqq(g), q = 1, . . . ,m} = max{Bσqh(g), q, h =
1, . . . ,m, h �= q} for some (or all) g, respectively, when
necessary. In the more constrained cases, i.e., unique and
isotropic models, where the parameters have a unique value,
they are straightforwardly applied without considering the
reference to the variable groups.

4 Computational aspects of the PUGMMs
algorithm andmodel section

4.1 Initialization

The proposed algorithm for the estimation of PUGMMs
should be run multiple times with different initial values of
W and V (or Vg, g = 1, . . . ,G, for the F· · · models) to
increase the chance of reaching the global optimum of the
log-likelihood function. The initial values of W = [wig] can
be randomly selected such that wig ∈ [0, 1],∑G

g=1 wig = 1

and 0 <
∑n

i=1 wig < n, for all i . As an alternative, the solu-
tion of k-means (MacQueen 1967) with k = G (default in
our experiments) or fuzzy c-means (Bezdek 1974, 1981) as
the initial values of wig can be used.

The initial values of V , or Vg for g = 1, . . . ,G, can
be randomly chosen so that the variable-group membership
matrix turns out to be binary and row-stochastic, or obtained
from the solution of an adapted UCM algorithm (Cavicchia
et al. 2020) applied to covariance matrices, as reported in
Cavicchia et al. (2022). The initial values of πg and μg can
then be calculated, as well as those of �Vg , �Wg and �Bg

according to the chosen PUGMM case.

4.2 Canonical representation

The calculation of the log-likelihood for GMMs can be com-
putationally demandingwhen dealingwith high-dimensional
data, as it requires computing the determinant and inverse of
the covariancematrix. The ultrametric correlation and covari-
ance matrices introduced by Cavicchia et al. (2020, 2022)
have a reduced number of parameters to be fit due to their
block structure, allowing us to use its peculiar form to save
computational power when fitting PUGMMs.

In detail, Archakov and Hansen (2020) proposed a canon-
ical representation for block matrices that facilitates the
computation of operators, such as, determinant and inverse,
for this type of matrices. This representation is a semispec-
tral decomposition of a blockmatrix that is diagonalizedwith
the exception of a single diagonal block, whose dimension
is given by the number of blocks. The covariance struc-
ture in (2) can always be written as a block structure, after
reordering the variables into groups, where the off-diagonal
blocks have identical entries (i.e., the off-diagonal values
of �Bg ), while the diagonal blocks consist of variance—on
the diagonal—and covariance—off-diagonal—within each
group of variables, i.e., the values stored in �Vg and �Wg ,
respectively. This means that each off-diagonal block has
dimensions nq × nh for q, h = 1, . . . ,m, h �= q, and each
diagonal one nq ×nq for q = 1, . . . ,m, where nq represents
the number of variables in the qth group. For simplicity, we
introduce the canonical representation of �g by omitting the
reference to the component, i.e., g.

Let the orthonormal rotation matrix Q be defined as

Q =

⎡

⎢⎢⎢⎢⎣

vn1 0 . . . 0 vn1⊥ 0 . . . 0

0 vn2
. . . 0 0 vn2⊥

. . . 0
...

. . .
. . .

...
...

. . .
. . .

...

0 0 . . . vnm 0 0 . . . vnm⊥

⎤

⎥⎥⎥⎥⎦
,

where vnq = n1/2q 1nq is a vector of dimension nq that spans
the eigenspace corresponding to the qth eigenvalue and vnq⊥
is a nq × (nq − 1) matrix that is the orthogonal complement
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to vnq . Therefore, the block diagonal matrix D = Q′�Q
has the following form

D =

⎡

⎢⎢⎢⎢⎣

A 0 . . . 0

0 λ1 In1−1
. . .

...
...

. . .
. . . 0

0 . . . 0 λm Inm−1

⎤

⎥⎥⎥⎥⎦
,

where A has orderm with aqh = Bσqh
√
nqnh for q �= h, and

aqq = V σqq +Wσqq(nq −1). Moreover, λq = V σqq −Wσqq .
Given the canonical representation of �, such that � =

QDQ′, we can rewrite Eq. (3) as follows

� =
n∑

i=1

G∑

g=1

wig

[
logπg + log

(
2π−p/2|Dg|−1/2

exp

(
−1

2
(xi − μg)

′ QgD
−1
g Q′

g(xi − μg)

))]

−
n∑

i=1

G∑

g=1

wig log(wig). (6)

In this way, instead of inverting the p × p matrix �g and
computing |�g|, it suffices to invert the smallerm×mmatrix,
Ag , and evaluate |Ag|. It should be noted that the eigenvalues
of �g correspond to those of Dg (see Archakov and Hansen
2020).

4.3 Polar decomposition

When EUCovS turns out not to be positive definite after
the estimation of its parameters, this property is obtained
via the polar decomposition. Specifically, consider a Hermi-
tian matrix � of order p—the reference to the component g
is removed in this section for simplicity reasons—its polar
decomposition is � = UH , where U is a unitary matrix of
order p and H is a Hermitian positive semidefinite matrix of
the same order. The latter equals the spectral decomposition
of � with its negative eigenvalues taken in absolute terms.
Higham (1986) demonstrated that the matrix (� + H)/2 is
the nearest Hermitian positive semidefinite matrix to � in
the 2-norm.

It has to be noticed that this procedure does not guaran-
tee the ultrametricity of the resulting matrix. For this reason,
the nearest EUCovS matrix is fit to (� + H)/2, depending
on the PUGMM case. If this new ultrametric matrix results
not to be positive semidefinite, its smallest eigenvalue taken
in absolute value is added to its diagonal elements, plus a
small constant (≈ 1.5 × 10−8 in our experiments) to com-
ply with the positive definiteness of the estimated matrix, as
proposed by Cailliez (1983) and implemented by Cavicchia
et al. (2022). Therefore, the resultingmatrix, obtained via the

latter procedure, whenever needed, is the nearest extended
ultrametric positive semidefinite (adding the aforementioned
constant, positive definite) matrix to � in the 2-norm, while
applying the proposal by Cailliez (1983) directly to � only
does guarantee to reap an ultrametric and positive definite
matrix by inflating the diagonal values of�V and potentially
ending up to an overestimation of this parameter.

4.4 Model selection

A major question in GMMs is model selection. In detail,
for PUGMMs, we have to determine both the number of
components to include in the mixture (G) and the number
of variable groups (m), as well as the covariance structure
to assume for the components (EUUU, EUUE, …, FFFF).
To address all these issues we consider information criteria,
as the Bayesian Information Criterion (BIC, Schwarz 1978)
and Integrated Completed Likelihood (ICL, Biernacki et al.
2000).

Themain feature of the information criteria is that they are
based on penalized forms of the log-likelihood. Therefore, a
penalty term for the number of free parameters to estimate is
subtracted from the log-likelihood, which increases with the
addition of more components. BIC is a popular choice in the
context of GMMs. For PUGMMs, the BIC formula takes the
form

BIC = 2�max − ν log n, (7)

where �max is the maximized log-likelihood value and ν is
the total number of free parameters in the model. The latter
accounts for the G−1 and Gp parameters for estimating the
mixing proportions and the componentmean vectors, respec-
tively, common to all PUGMM cases, and varies depending
on the covariance structure, which is therefore chosen,
together with G and m, to maximize BIC. Specifically, in
the FFFF model, ν = 2G(p + m) − 1 − (cV ,W + cW ,B).
Other than the aforementioned free parameters for estimating
π1, . . . , πG , andμ1, . . . ,μG , ν is also given by p parameters
minus m constraints (non-empty groups) for the estimation
of each Vg ,m parameters for the diagonal values of each�Vg
and �Wg (i.e., 2m), m − 1 parameters for the off-diagonal
elements of each �Bg (i.e., number of levels in the hierar-
chy), and subtracting from this number cV ,W + cW ,B that
represent the constraints activated in the algorithm to satisfy
constraints (iii) and (ii), respectively (see Sect. 2). Evidently,
ν decreases asmore constrainedPUGMMmodels are consid-
ered. For all cases, the maximum number of cV ,W and cW ,B

per model that can be activated is reported in Appendix B.
ICL is based on BIC and penalizes it by deducting an

entropy term that assesses the overlap between the compo-
nents. ICL favors solutions where the overlap among the
components is not too large (Celeux et al. 2018). However,

123



Statistics and Computing           (2024) 34:108 Page 11 of 23   108 

because an asymptotic approximation of the log-posterior
probability of the models exists (Kass and Raftery 1995), we
suggest using BIC to select the number of mixture compo-
nents, the number of variable groups, and the covariance case.
Althoughmixturemodels typically do not satisfy the regular-
ity requirements for the asymptotic approximation utilized in
the formulation of BIC, Kerebin (1998, 2000) demonstrated
that it yields consistent estimates of the number of compo-
nents in a mixture model. Furthermore, in the same field,
Fraley and Raftery (1998, 2002) gave examples to demon-
strate how BIC works effectively for model selection.

4.5 Aitken’s acceleration

As shown byLindstrom andBates (1988), the relative change
in the log-likelihood function usually adopted in the EM
algorithm does not represent a proper stopping criterion,
but rather a lack-of-progress criterion. FollowingMcLachlan
and Krishnan (2008), we implement the Aitken acceleration-
based stopping rule in our algorithm. In detail, the Aitken’s
acceleration at iteration t − 1 is given by

a(t−1) = �(t) − �(t−1)

�(t−1) − �(t−2)
,

where �(t−2), �(t−1) and �(t) are the log-likelihood values at
iterations t − 2, t − 1 and t , respectively. The log-likelihood
asymptotic estimate at iteration t needed to compute the stop-
ping criterion is given by

�(t)∞ = �(t−1) + 1

1 − a(t−1)
(�(t) − �(t−1)).

The PUGMMs algorithm can be considered to have con-
verged when �

(t)∞ − �(t−1) < ε (McNicholas et al. 2010),
where ε > 0 is the desired tolerance (e.g., 1.5× 10−8 in our
experiments). Alternative stopping criteria are, for example,
�
(t)∞ − �

(t−1)∞ < ε (Böhning et al. 1994) and �
(t)∞ − �(t) < ε

(Lindsay 1995).

5 Applications

Weevaluate the performance of PUGMMson thirteen bench-
mark data sets (Sect. 5.1), where the theoretical clustering
structure is known a priori, and on two real-world applica-
tions: the first provides insights on the features of the FIFA
player roles (Sect. 5.2), whereas the latter inspects the use
of Wikipedia as a teaching approach within the university
(Sect. 5.3). The analysis of these benchmark data sets shows
the potential of PUGMMs in recovering clustering structure,
whereas the further twoapplications illustrate the deeper abil-
ity of PUGMMs to estimate the features of the covariance

structures and their interpretation. It is worth noting that, in
this section, we refer to components as “clusters” since we
obtain a partition of the unit space according to theMaximum
A Posteriori (MAP) classification.

The benchmark data sets and the two real-world applica-
tions display our proposal’s performance when no assump-
tion on the data generating process is made; however, we
provide in the Supplementary Materials a simulation study
where we generate data from PUGMMs.

5.1 Benchmark data sets

In this section, we compare PUGMMswithGPCMs (R pack-
age mclust, Fraley and Raftery 1999; Scrucca et al. 2016),
PGMMs (R package pgmm, McNicholas et al. 2019) and
HDDC (R package HDclassif, Bergé et al. 2012) in cor-
rectly detecting the expected clustering structure. For each
model, we select the triplet (G,m, case) according to BIC.
The value of G ranges from 1 to G∗ + 2, where G∗ repre-
sents the theoretical value. Furthermore, whenever the “true”
number of clusters is not correctly identified, we also run the
models by fixing G = G∗. For PUGMMs and PGMMs, we
choose m in {1, . . . , 10}; however, if p < 10, m is at most
equal to p. The model case is chosen among those illustrated
in Sect. 3 for PUGMMs; for competitors, the reader can refer
to the references reported in Sect. 1. We assess the clustering
performance of the models using the Adjusted Rand Index
(ARI, Hubert and Arabie 1985), which quantifies the simi-
larity between the theorized and estimated classifications by
reaching 1 in the case of perfect agreement.

We analyze thirteen benchmark data sets retrieved from
different sources, which are detailed in Appendix C. The
variables of all these data sets are standardized to z-score,
moreover it should be noted that in these data sets, a hierar-
chical structure is not assumed or inspected beforehand. The
results synthesized in Table 2 show comparable performance
of PUGMMs to the competitors in classification recovery.
Particularly, PUGMMs achieve this goal while often estimat-
ing a smaller number of parameters. In the first four data sets,
PUGMMs correctly detect the theoretical number of clusters
and achieves similar results w.r.t. the other models in terms
of ARI. We also achieve compelling results on the remain-
ing nine data sets. Specifically, we can split the results into
two distinct sets: first, cases where PUGMMs fail to iden-
tify G∗ while at least one of the competitors does succeed to
correctly detect it; and second, cases where none of the mod-
els correctly select the number of clusters. On the former,
the proposal can accurately identify the theoretical cluster-
ing structure when the value of G is set to G∗, achieving the
maximum ARI for Ceramic, while displaying comparable
and better results for Tetragonula and Sobar, respectively.
For the other set composed of Kidney, Economics, Ais, Ban-
knotes, andCoffee,G differs from the theoretical one, despite
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Table 3 Variables studied for FIFA

ID Variable name ID Variable name

1 Crossing 16 Shot power

2 Finishing 17 Jumping

3 Heading accuracy 18 Stamina

4 Short passing 19 Strength

5 Volleys 20 Long Shots

6 Dribbling 21 Aggression

7 Curve 22 Interceptions

8 FK Accuracy 23 Positioning

9 Long passing 24 Vision

10 Ball control 25 Penalties

11 Acceleration 26 Composure

12 Sprint speed 27 Marking

13 Agility 28 Standing tackle

14 Reactions 29 Sliding tackle

15 Balance

there may be cases where some or all models select the same
value, e.g., on Banknotes all the competitors choose G = 4
and onAis PUGMMs andGPCMs single outG = 4, whereas
PGMMs and HDDC choose G = 3. In these benchmarks, it
can be reasonable to assume that the “true” clusters do not
align with distinguishable patterns in the data, as none of the
models, regardless of their component covariance structure,
can accurately select the “true” value of G (Hennig 2022).

5.2 Grouping soccer players with similar skill-sets in
FIFA

Table 4 First four best players per cluster

1 Robert Lewandowski 5 Neymar Jr

1 Harry Kane 5 David Silva

1 Edison Cavani 5 Mohamed Salah

1 Gonzalo Higuan 5 Lorenzo Insigne

2 Kevin De Bruyne 6 Marcelo

2 Lukas Modric 6 Jordi Alba

2 Tony Kroos 6 Alex Sandro

2 Paul Pogba 6 Joshua Kimmich

3 Giorgio Chiellini 7 N’Golo Kante

3 Kalidou Koulibaly 7 Sergio Busquets

3 Medhi Benatia 7 Casemerio

3 Milan Škriniar 7 Marco Verratti

4 Sergio Ramos 8 Lionel Messi

4 Diego Godin 8 Cristiano Ronaldo

4 Mats Hummels 8 Eden Hazard

4 Thiago Silva 8 Luis Surez

The Fédération Internationale de Football Association
(FIFA) is a governing body of football (sometimes, espe-
cially in the USA, called soccer). FIFA is also a series of
a football simulation games developed by EA Sports which
faithfully reproduces the characteristics of real players. The
main characters of the video game are the football players,
and players in the video game are meant to be as close to
the real ones, both physically and in skills. This set of skills
also determines the position they play on the field. FIFA rat-
ings of football players from the video game is contained in
Giordani et al. (2020) and can be downloaded from the R
package datasetsICR. In detail, the data set contains the
attributes for every player registered in the latest edition of
FIFA 19 database, and consists of 18,207 observations on
80 variables measured on a 0–100 scale. However, for this
application, we select the 1398 best outfield players—those
with the variable Overall larger than 75—and 29 variables
representing their skills. Goalkeepers, being characterized
only by specific variables, are discarded because they form
a separated cluster that can be easily detected by any clus-
tering method. Table 3 reports the complete list of variables
considered in this application.

The thirteen PUGMMs are fitted to the data for G =
1, 2, . . . , 10, and m = 1, 2, . . . , 10. The model with the
highest BIC, equal to −271716.7, is the FFFI model with
G = 8 and m = 10. Specifically, the first cluster is charac-
terized by the strikers, while the second cluster consists of
attacking midfielders. The third and fourth clusters are com-
posed by stoppers and central backs, respectively. The fifth
cluster is characterized by the number ten players who are
very talented and have an evident attacking predisposition.
The sixth and seventh clusters consist of backwings andmid-
fielders, respectively. Finally, the forward players compose
the eighth cluster. Table 4 reports the 4 best players per clus-
ter, while Fig. 2 displays aMultiDimensional Scaling (MDS)
scatterplot of the same players. Furthermore, Fig. 3 shows
the complete MDS scatter plot of all players by highlight-
ing the 8 clusters. The players presented in Table 4 clearly
illustrate that the clusters are formed based on players’ posi-
tions, which, in turn, are determined by their skills. It is worth
noting that a player’s football position is not always defini-
tive, as they may be capable of playing in various positions,
and their understanding of a specific position can be sub-
jective. For instance, we can have both highly offensive and
defensive wing backs occupying the same assigned position,
despite their distinct skill sets. The same holds for midfield-
ers, and this explains why they appear in close proximity and
overlap in Fig. 3. Cluster 5 (number tens) and Cluster 8 (for-
wards) are also extremely similar, themain difference we can
observe is that players in Cluster 8 have a greater propensity
to score many goals.

The FFFI model suggests a second-order model for every
cluster, with cluster-specific variable groups, group vari-
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Fig. 2 MDS scatterplot (first
two MDS dimensions) of the 4
best players per cluster as listed
in Table 4

Fig. 3 MDS scatterplot (first
two MDS dimensions) of all
players

ances, within-group covariances, and between-group covari-
ances (Fig. 4). It is evident that distinct clusters or players’
positions require different variable structures. Despite the
significant differences among the eight hierarchies in terms
of variable group identification and aggregation, it is observ-
able that certain variables are frequently grouped together
due to their high correlation and association with the same
macro-skills. For example, variables related to speed and run-
ning are grouped together, as well as variables associated
with technical skills are grouped into one group. The same
principle applies to defensive skills.

5.3 The use ofWikipedia for teaching within
universities

The further real-world application of PUGMMs delves into
the use of Wikipedia for teaching within universities (UCI
repository, Aibar et al. 2015). We focus on variables directly
related to the use of Wikipedia for higher education teach-
ing activities that refer to six latent concepts (Table 5). The
variables are measured on a 5-point Likert scale that reflects
the level of disagreement or agreement with a statement or
to the frequency of certain actions, depending on the nature
of the question, ranging from 1 (strongly disagree or never)
to 5 (strongly agree or always). The data set consists of 800
members (full, associate, and assistant professors, lecturers,
instructors, adjuncts, all called “professors” hereinafter) of
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Fig. 4 Hierarchical structures of variables per cluster of FIFA players
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Table 5 Variables studied for Wikipedia usage in teaching grouped with reference to the corresponding latent concept, estimated variable-group
membership and their mean per cluster of Wikipedia users

Group ID Variable name No conf Moderate conf Strong conf

Perceived usefulness

1 1 The use of Wikipedia makes it easier for students to
develop new skills

2.88 2.96 3.82

1 2 The use of Wikipedia improves students’ learning 2.92 2.97 3.81

1 3 Wikipedia is useful for teaching 3.19 3.18 4.33

Perceived enjoyment

2 4 The use of Wikipedia stimulates curiosity 3.72 3.65 4.19

2 5 The use of Wikipedia is entertaining 3.73 3.73 4.08

Quality

3 6 Articles in Wikipedia are reliable 2.99 3.04 3.71

3 7 Articles in Wikipedia are updated 3.26 3.28 3.84

4 8 Articles in Wikipedia are comprehensive 2.81 2.86 3.40

Use behaviour

5 9 I use Wikipedia to develop my teaching materials 2.11 1.73 3.05

5 10 I use Wikipedia as a platform to develop educational
activities with students

1.50 1.73 2.55

6 11 I recommend my students to use Wikipedia 2.22 2.38 3.81

6 12 I recommend my colleagues to use Wikipedia 2.16 2.28 3.62

7 13 I agree my students use Wikipedia in my courses 3.02 3.09 4.05

Job relevance

8 14 My university promotes the use of open collaborative
environments in the Internet

3.69 3.71 3.89

8 15 My university considers the use of open collaborative
environments in the Internet as a teaching merit

3.17 3.15 3.23

Behavioral intention

9 16 In the future I will recommend the use of Wikipedia
to my colleagues and students

2.71 2.71 3.87

9 17 In the future I will useWikipedia inmy teaching activ-
ity

2.73 2.71 4.04

the Universitat Oberta de Catalunya, a Spanish online uni-
versity that offers bachelor degrees, master’s degrees, and
postgraduate courses. Since few missing values occur in the
data, we impute them using the K -nearest neighbors method
by setting K = 5, using the Euclidean distance as metric,
and assuming the missing completely at random mechanism
(Rubin 1976).

We run PUGMMs with both G and m ∈ {1, . . . , 10}. The
EFFF model returns the highest BIC value of −25226.06
with G = 3 and m = 9. The three clusters reveal varying
degrees of confidence in the use ofWikipedia for educational
purposes, from no or little confidence (Cluster 1) to strong
confidence (Cluster 3) with moderate confidence in between
(Cluster 2). Analyzing the mean vectors in Table 5, the first
and second clusters appear closer, indicating a smaller dis-
similarity betweenprofessorswhoare not confident and those
who are moderately confident in the use of Wikipedia for
teaching. As shown in Fig. 5, the variable configuration in

groups and corresponding latent concepts remain constant
across clusters, while remarkable differences occur in the
aggregation of these concepts as a result of the EFFF model.
It is worth noting that the variable-group membership matrix
essentially identifies the six theoretical concepts, such as per-
ceived usefulness, by splitting quality in two groups and use
behavior into three groups. Indeed, for quality, the variable
Articles in Wikipedia are comprehensive (8) is a singleton,
while for use behavior, the variables I use Wikipedia to
develop my teaching materials (9) and I use Wikipedia as
a platform to develop educational activities with students
(10) are lumped together in a group representing the core
variables of this latent concept. Additionally, the variables I
recommend my students to use Wikipedia (11) and I recom-
mend my colleagues to use Wikipedia (12) form a separate
group representing recommendation for the use ofWikipedia,
with the remaining variable (13) as a singleton.
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Fig. 5 Hierarchical structures of variables per cluster of Wikipedia users. In Fig. 5b, variable 9 represents both itself and variable 10 since
V σ55(2) = Wσ55(2)

Looking at Fig. 5, we can notice several differences in
the aggregations of the variable groups. For example, in
Fig. 5a, the first aggregation concerns perceived useful-
ness with the variable I agree my students use Wikipedia
in my courses. This indicates that professors who have
less confidence in Wikipedia pay greater attention to its
employment in higher education courses by disagreeing
with it. In Cluster 2 (Fig. 5b), the model first combines
the groups representing recommendation for the use of
Wikipedia and the singleton composed of I agree my stu-
dents use Wikipedia in my courses, which all refer to use
behavior, then this broader group with the one indicat-
ing behavioral intention. Therefore, professors who have
moderate confidence in Wikipedia do not necessarily rec-
ommend its use to students and colleagues, although they
themselves employ this tool for preparing teaching mate-
rial. This could be attributed to a caution in the use of
Wikipedia when recommended to others, which brings Clus-
ter 1 closer to Cluster 2. In Cluster 3, the first aggregation
involves the variables related to recommendation for the
use of Wikipedia with the core variables of use behav-

ior and then behavioral intention, as shown in Fig. 5c, by
highlighting an opposite approach to the no confident pro-
fessors.

Overall, we can observe that, after some aggregations, two
broader groups with a low level of covariance are identified
for the clusters of no and strongly confident professors. This
evidence demonstrates the presence of “higher-order” low-
correlated dimensions at a certain level of the hierarchy that
distinctively and uniquely contribute to defining confidence
in the use of Wikipedia. On the contrary, for Cluster 2 the
aggregation seems to be smoother by pinpointing a unique,
internally consistent dimension representing confidence in
the use of Wikipedia.

6 Conclusions

We have introduced a new class of parsimonious ultrametric
GMMs with the aim of inspecting hierarchical relationships
amongvariableswhile further reducing the number of param-
eters compared to the existing GMMs in the literature. The
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proposed thirteen models are obtained by constraining the
covariance structure, which is extended ultrametric, to be
equal within and/or across components. We have also pro-
posed computational improvements for the estimation of the
extended ultrametric covariance structure. Specifically, we
have used its canonical representation based upon the result
of Archakov and Hansen (2020) to obtain faster computation
of its determinant and inverse. Moreover, we have enhanced
the strategy chosen byCavicchia et al. (2022) to guarantee the
positive definiteness of the extended ultrametric covariance
matrix by considering a procedure based on its polar decom-
position (Higham 1986), that turns into the nearest solution
in the 2-norm.

We have evaluated the performance of PUGMMs on
both benchmark and real-world data sets. In the case of
benchmark data sets, we have compared our proposal to
GPCMs, PGMMs and HDDC. Our results showed com-
parable cluster recovery performance with a significantly
reduced number of parameters, often substantially lower.
Moreover, we have inspected the features of the FIFA foot-
ball players to identify clusters related to their roles and
variable groups associated with different kind of skills. We
have obtained interesting outcomes also on the second appli-
cation where we have studied the use of Wikipedia for
teaching purposes within universities. We have discovered
three clusters of professors with varying levels of confidence
in web-based open collaborative environments. Addition-
ally, we have identified a hierarchical structure of latent
concepts, where the first nine remained constant across all
clusters. Therefore, these applications illustrate the poten-
tial of PUGMMs in effectively recovering sub-populations
within data sets. Furthermore, they highlight the proposal’s
ability to detect hierarchical latent concepts. These results
are achieved by employing constrained covariance struc-
tures, wherein the number of parameters scales linearly
with both the data dimension and the number of variable
groups.

All the functions to estimate PUGMMs are implemented
in theR packagePUGMM, which is available on https://github.
com/giorgiazaccaria/PUGMM and will be soon released on
CRAN. A further extension of the PUGMMmodels to cases
where the variable groups are assumed to be uncorrelated,
i.e., �Bg is sparse or fully equal to zero, will be studied in a
separate future work to investigate their specific properties.
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Appendix A

The ML estimates of the PUGMMs covariance parameters
are presented in the following sections, considering the two
identified families of models: the unique and equal models
and the isotropic and free models.

A.1 Unique and equal models

For unique and equal models, theML estimates of the covari-
ance parameters are obtained by differentiating � in Eq. (4)
with respect to each parameter separately, i.e., �D where
D = {V ,W , B}. Applying the results of Lütkepohl (1996),
we obtain

∂�

∂�D
= −n

2

[
∂ log(|�|)

∂�D
+ ∂ tr(�−1 S̄)

∂�D

]

= −n

2

[
�−1 ∂�

∂�D
− �−1 ∂�

∂�D
S̄�−1

]
. (8)

Setting to zero the partial derivative of � in Eq. (8) with
respect to �D , D = {V ,W , B} one-at-a-time given the oth-
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ers, leads to

�−1 ∂�

∂�D
− �−1 ∂�

∂�D
S̄�−1 = 0,

that holds if and only if S̄�−1 = I p. This means that S̄ = �

where �−1 is nonsingular,2 which is the starting point to
compute the ML estimates of the unique and equal model
parameters. The same result is easily obtained when �D

depends on a scalar (unique models), since the trace oper-
ator occurs in Eq. (8).

A.1.1. EUUUmodel

For the EUUU model, �V = σV Im , �W = σW Im and
�B = σB(1m1′

m − Im). Then the covariance structure is

� = V
(
σW Im + σB(1m1′

m − Im)
)
V ′

+ diag
(
V (σV − σW )ImV ′).

Given V̂ and pre- and post-multiplying S̄ = � for matri-
ces that depend on V̂ , we obtain the ML estimate of σV by
solving

diag(V̂σV Im V̂
′
) = diag(S̄),

that returns

σ̂V = tr
(
V̂

+
diag(S̄)V̂

)

m
. (9)

Note that V̂
+
represents the Moore–Penrose inverse of the

matrix V̂ .
With the same reasoning, given V̂ and σ̂V , theMLestimate

of σW is derived by solving the following problem

V̂σW Im V̂
′ − diag(V̂σW Im V̂

′
)

= S̄ − σ̂V I p − V̂ σ̂B
(
1m1′

m − Im
)
V̂

′
,

that results in

σ̂W =
tr
(
V̂

′(
S̄ − σ̂V I p

)
V̂
(
(V̂

′
V̂ )2 − V̂

′
V̂
)−1
)

m
. (10)

Finally, the ML estimate of σB given V̂ is

σ̂B =
tr
((
V̂

+
S̄V̂

′+  (1m1′
m − Im)

)
(1m1′

m − Im)−1
)

m
,(11)

which is derived from

V̂σB(1m1′
m − Im)V̂

′ = (S̄ − σ̂V I p)  (1p1′
p − I p).

2 Since � is positive definite by definition, �−1 is positive definite in
turn (Lütkepohl 1996, p. 152, property 7c) and thus nonsingular.

A.1.2 EUUEmodel

In the EUUE model, �V and �W are constrained to have a
unique value each on their diagonal, whereas�B has at most
m − 1 different values. Hence the covariance structure is

� = V (σW Im + �B)V ′ + diag(V (σV − σW )ImV ′).

It is easy to prove that the ML estimates of σV and σW equal
those in Eqs. (9) and (10), respectively. The ML estimate of
�B is

�̃B = V̂
+
S̄(V̂

′
)+  (1m1′

m − Im), (12)

where the Hadamard product derives from the constraint that
diag(�B) = 0. If Eq. (12) does not satisfy the ultrametricity
condition, �̂B is obtained from �̃B by applying an adapted
UPGMA algorithm for covariances to it (see Cavicchia et al.
2022, for further details).

A.1.3 EUEE model

In the EUEE model, �V is the only parameter constrained
within the component, i.e., �V = σV Im , and hence the
covariance structure is

� = V (�W + �B)V ′ + diag(V (σV Im − �W )V ′).

It is easy to prove that the ML estimates of σV and �B equal
those in Eqs. (9) and (12), respectively. The ML estimate of
�W is obtained as follows

�̂W = diag
(
V̂

′
(S̄ − σ̂V I p)V̂

)(
(V̂

′
V̂ )2 − V̂

′
V̂
)−1

. (13)

A.1.4 EEEUmodel

TheEEEUmodel constrains�B = σB(1m1′
m−Im), whereas

�V and�W can havem different diagonal values. Therefore,
the covariance structure is

� = V (�W + σB(1m1′
m − Im))V ′

+ diag(V (�V − �W )V ′).

The ML estimate of �V is obtained as follows

�̂V = V̂
+
diag(S̄)V̂ , (14)

whereas that of �W can be easily derived from Eq. (13) by
substituting σ̂V I p for diag(V̂ �̂V V̂

′
), as in Eq. (17). The

unique off-diagonal value of �B is estimated as in Eq. (11).
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A.1.5 EEEE model

The covariance structure of the EEEE model is

� = V (�W + �B)V ′ + diag(V (�V − �W )V ′)

and the ML estimates of �V and �W are equal to those
presented in the EEEU model, whereas �B is estimated as
in Eq. (12).

A.2 Isotropic and freemodels

For the isotropic and free models, the ML estimates of the
covariance parameters are obtained by differentiating � in
Eq. (5) with respect to each parameter separately. For the
EEEF and EEFF models, the partial derivative of � with
respect to �D with D = {V ,W }, i.e., the parameters that
do not vary between components in these cases, is given by

∂�

∂�D
= −1

2

G∑

g=1

ng

[
∂ log(|�g|)

∂�D
+ ∂ tr(�−1

g Sg)

∂�D

]

= −1

2

G∑

g=1

ng

[
�−1

g

∂�g

∂�D
− �−1

g

∂�g

∂�D
Sg�−1

g

]
.

(15)

If we set the partial derivative of � to zero in Eq. (15) with
respect to �D , D = {V ,W } one-at-a-time given the others,
we obtain

G∑

g=1

ng
[
�−1

g

∂�g

∂�D
− �−1

g

∂�g

∂�D
Sg�−1

g

]
= 0.

This holds if and only if
∑G

g=1 ngSg = ∑G
g=1 ng�g since

�g is nonsingular. From this equivalence, it is possible to
derive the ML estimates of �D , D = {V ,W }, for the EEEF
and EEFF cases.

For the other models and parameters of this family, the
partial derivative of � in Eq. (5) with respect to �Dg , Dg =
{Vg,Wg, Bg}, is

∂�

∂�Dg

= −ng
2

[
∂ log(|�g|)

∂�Dg

+ ∂ tr(�−1
g Sg)

∂�Dg

]

= −ng
2

[
�−1

g

∂�g

∂�Dg

− �−1
g

∂�g

∂�Dg

Sg�−1
g

]
, (16)

whose first-order condition is Sg = �g . The same result is
easily obtained when�Dg is restricted to have a single value,
since the trace operator occurs in Eq. (16).

A.2.1 EEEF model

In the EEEF model, �Vg = �V and �Wg = �W , whereas
the between-group covariance matrix is free to vary across
components. Thus, the covariance structure is

�g = V (�W + �Bg )V
′ + diag(V (�V − �W )V ′).

It is easy to prove that theML estimate of�V is consistent
with Eq. (14).

The ML estimate of �W is obtained by solving the fol-
lowing equation

V̂�W V̂
′ − diag(V̂�W V̂

′
)

= S̄ − diag(V̂ �̂V V̂
′
) − V̂

⎛

⎝
G∑

g=1

π̂g�̂Bg

⎞

⎠ V̂
′
,

that results in

�̂W = diag
(
V̂

′(
S̄ − diag(V̂ �̂V V̂

′
)
)
V̂
)

× ((V̂ ′
V̂ )2 − V̂

′
V̂
)−1

. (17)

Finally, the ML estimate of �Bg is

�̃Bg = V̂
+
Sg(V̂

′
)+  (1m1′

m − Im), (18)

where the Hadamard product derives from the constraint that
diag(�Bg ) = 0. If Eq. (18) does not satisfy the ultrametricity
condition, �̂Bg is obtained from �̃Bg by applying an adapted
UPGMA algorithm for covariances to it.

A.2.2 EEFF model

In the EEFF model, �V is the only parameter constrained
across components and, therefore, the covariance structure
is

�g = V (�Wg + �Bg )V
′ + diag(V (�V − �Wg )V

′).

It is easy to prove that the ML estimates of �V and �Bg

correspond to Eqs. (14) and (18), respectively, while the ML
estimate of �Wg is

�̂Wg = diag
(
V̂

′(
Sg − diag(V̂ �̂V V̂

′
)
)
V̂
)

× ((V̂ ′
V̂ )2 − V̂

′
V̂
)−1

. (19)

A.2.3 EFFF model

The covariance structure of the EFFF model is

�g = V (�Wg + �Bg )V
′ + diag(V (�Vg − �Wg )V

′),

123



Statistics and Computing           (2024) 34:108 Page 21 of 23   108 

where the component covariance matrices share only the
variable-group membership matrix parameter. In this case,
the ML estimates of �Wg and �Bg equal those in Eqs. (19)
and (18), respectively, while the ML estimate of �Vg is

�̂Vg = V̂
+
diag(Sg)V̂ . (20)

A.2.4 FIII model

In the FIII model, �Vg = σVg Im , �Wg = σWg Im , �Bg =
σBg (1m1

′
m − Im), and the covariance structure is

�g = Vg
(
σWg Im + σBg (1m1

′
m − Im)

)
V ′
g

+ diag
(
Vg(σVg − σWg )ImV

′
g

)
.

The ML estimates of σVg , σWg and σBg are easily deriv-
able; their expression corresponds to Eqs. (9), (10) and (11),
respectively, where all the involved parameters depend on g
and S̄ is replaced by Sg .

A.2.5 FIIF model

In the FIIF model, only�Vg and�Wg are constrained to have
a single value each on their diagonal, even if these values
differ across components. The covariance structure is

�g = Vg(σWg Im + �Bg )V
′
g

+diag(Vg(σVg − σWg )ImV
′
g).

For theML estimates of σVg and σWg , what is reported for the
FIII model holds, whereas the ML estimate of �Bg equals
Eq. (18), with V̂ replaced by V̂g .

A.2.6 FIFF model

In the FIFF model, �Vg is the only parameter restricted to
having a single value on its diagonal that varies between
components. The covariance structure is

�g = Vg(�Wg + �Bg )V
′
g

+diag(Vg(σVg Im − �Wg )V
′
g).

The considerations reported for the FIII and FIIF models
remain valid for the ML estimates of σVg and �Bg . The
ML estimate of �Wg corresponds to Eq. (13), where all the
involved parameters depend on g and S̄ is replaced by Sg .

A.2.7 FFFI model

The FFFI model constrains �Bg = σBg (1m1
′
m − Im),

whereas �Vg and �Wg vary within and across components.
The covariance structure is

�g = Vg(�Wg + σBg (1m1
′
m − Im))V ′

g

+ diag(Vg(�Vg − �Wg )V
′
g).

The ML estimates of �Vg and �Wg correspond to Eqs. (20)
and (19), respectively, where all the parameters depend on
g. The unique off-diagonal value of �Bg is estimated as
the component-specific counterpart of Eq. (11), where S̄ is
replaced by Sg and V̂ by V̂g .

A.2.8 FFFF model

The FFFF case is the most general model, whose covari-
ance structure is described in Sect. 2. The ML estimates of
�Vg ,�Wg and �Bg correspond to Eqs. (20), (19) and (18),
respectively, where all the parameters involved depend on g.

Appendix B

In Table 6, we provide the maximum number of constraints
per model that can be activated in the PUGMMs algorithm.
This is a useful information for the user since it is needed for
the computation of the number of free parameters in Sect. 4.4.
We recall that cV ,W concerns the relationship between �Vg
and �Wg (constraint iii in Sect. 2), whereas cW ,B does that
between �Wg and �Bg (constraint ii in Sect. 2).

Table 6 Maximum number of
constraints activated in the
PUGMMs algorithm

Model ID cV ,W cW ,B

V Equal

EUUU 1 1

EUUE 1 1

EUEE 1 m

EEEU m m

EEEE m m

EEEF m m

EEFF m Gm

EFFF Gm Gm

V Free

FIII G G

FIIF G G

FIFF G Gm

FFFI Gm Gm

FFFF Gm Gm
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Table 7 Benchmark data sets source

Name Original name Source

Penguin Penguin dataset Kaggle

Wine 13 Wine R-HDclassif

Wine 27 Wine R-pgmm

Thyroid R-mclust

Kidney ckd R-teigen

Economics Economics R-datasetsICR

Tetragonula Tetragonula (Hennig 2022,
Supplementary
File 2)

Diabetes Diabetes R-mclust

Ais ais R-sn

Ceramic Chemical
Composition of
Ceramic
Samples

UCI repository

Banknotes Banknote R-mclust

Coffee Coffee R-pgmm

Sobar Cervical Cancer
Behavior Risk

UCI repository

Appendix C

Table 7 provides information on the source of the benchmark
data sets used for the analysis in Sect. 5.1.
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