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Abstract
We study a financial market populated by heterogeneous agents, whose decisions are
driven by “animal spirits”. Each agent may have either correct, optimistic or pessimistic
beliefs about the fundamental value, which can change from time to time based on an
evolutionary mechanism. The evolutionary selection of beliefs depends on a weighted
evaluation of the general market sentiment perceived by the agents and on a prof-
itability measure of the existent strategies. As the relevance given to the sentiment
index increases, a herding phenomenon in agent behavior may occur and animal spir-
its can drive the market toward polarized economic regimes, which coexist and are
characterized by persistent high or low levels of optimism and pessimism. This con-
duct is detectable from agents polarized shares and beliefs, which in turn influence
the price level. Such polarized regimes can consist in stable steady states or can be
characterized by endogenous dynamics, generating persistent alternating waves of
optimism and pessimism, as well as return distributions displaying the typical fea-
tures of financial time series, such as fat tails, excess volatility and multifractality.
Moreover, we show that if the sentiment has no or low relevance on belief selection,
those stylized facts are abated or are missing from the simulated time series.

Keywords Heterogeneous agents · Animal spirits · Behavioral finance ·
Market sentiment · Herding

JEL Classification D84 · G41 · C62 · B52

1 Introduction

Representing agents as heterogeneous and boundedly rational actors has become a
common modeling assumption in several economic contexts. Such an assumption

� M. Pireddu
marina.pireddu@unimib.it

Extended author information available on the last page of the article.

Published online: 24 July 2021

Journal of Evolutionary Economics (2021) 31:1189–1219

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s00191-021-00737-4&domain=pdf
http://orcid.org/0000-0002-3170-8082
mailto: marina.pireddu@unimib.it


relies on evidence that the complexity of the economic environment restricts the
agent’s capability to have complete knowledge so that agents make decisions that are
unavoidably cursed by uncertainty (see, e.g., Sargent 1993). In the past years, the
analysis of models that involve heterogeneous interacting agents (see, e.g., Iori and
Porter 2018) has considerably improved the understanding of financial market func-
tioning. Moreover, the psychological investigation about humans and hence about
economic agents, shows that most decisions are made based on simple heuristics (see,
among others, Gilbert 2002; Hommes 2013; Tversky and Kahneman 1974). Individu-
als, being affected by psychological and emotional factors, rely more on impressions
and common feelings than on precise knowledge and evaluation of the environment
they live in. In fact, even before the behavioral paradigm came to the forefront in
finance and economics, the role of investor sentiment was perceived as a common
phenomenon by financial analysts and market participants. The previous statement
finds its foundation in the work by De Grauwe (2011), who claims that “the notions
of animal spirits and rational expectations do not mix well”. Since the widespread
assumption in mainstream economic models is to endow agents with full rationality,
no room for perceived sentiment or animal spirits actually remains in their decision
mechanisms. Only recently has sentiment analysis grown in relevance and been con-
sidered as a key element in modeling financial markets (see e.g. Lee et al. 2002; Neal
and Wheatley 1998; Stambaugh et al. 2012).

Currently, the approach based on boundedly rational agents is widely applied in
financial market modeling (see Barberis and Thaler 2003; Conlisk 1996; Hommes
2001; Kindleberger and Aliber 2005). The literature that stems from these ideas is
burgeoning and widespread (see, e.g., Brock and Hommes 1997, 1998; Chiarella and
He 2002; Lux 1998; Lux and Marchesi 1999). Concerning the research that is closer
to the present contribution, we mention the work by Brock and Hommes (1998),
where asset price fluctuations are unpredictably characterized by the alternation of
prices close to the fundamental with phases of optimism or pessimism; the paper
by De Grauwe and Rovira Kaltwasser (2012), in which the emergence of waves of
optimism/pessimism is explained in terms of evolutionary selection between opti-
mistic/pessimistic exogenous beliefs about the fundamental value; and the paper by
Cavalli et al. (2017), in which endogenously changing optimistic/pessimistic beliefs
cannot be disentangled from their evolutionary selection considering the emergence
of waves of optimism/pessimism. In all the abovementioned works, the main mech-
anisms (imitation and evolutionary selection) are based on precise evaluations of
economic indicators (such as profits or forecasting errors), which are assumed to be
correctly estimated by agents when making their choices.

However, the literature reviewed above does not model animal spirits directly,
where a market average mood would affect an individual’s behavior. Thus, a natural
question arises, which constitutes the motivation for the present research. “What hap-
pens when decisions (in the present case, strategies in a financial market) are driven
by animal spirits?”

In the present contribution, we aim to provide rigorous formal modeling of animal
spirits as one of the agents’ drivers and, subsequently, of the market behavior. Moti-
vation for our approach is the content of the survey by Franke and Westerhoff (2017).
In fact, the abovementioned literature provides a “weak form” of animal spirits, in
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the sense that the model can generate waves of optimistic or pessimistic attitudes.
Conversely, a “strong form” of animal spirits modeling approach exists if agents also
rush toward an attitude or strategy simply because it is being applied by the major-
ity of agents. In the present work, agents may rush toward optimism or pessimism
depending on what they observe or feel about the behavior of the majority of the other
agents, which is what we call the “general sentiment”. Hence, the model that we pro-
pose provides a “strong” form of animal spirits modeling to retrieve the Keynesian
seminal idea. The modeling approach we propose is also supported by the fact that
investing in stock markets is a social activity, and it is thus reasonable that investors’
behavior, as well as stock prices, are influenced by social interaction. Therefore, it
is crucial to provide an alternative to the exclusive focus on the merely individual
expectations. Since the long-term decisions of the agents are also based on a form of
market mood derived from their social activity, what is needed is a setup in which
the concept of market sentiment is coupled with the individual evaluation of the mar-
ket. In this regard, a few recent approaches, which ground their arguments on the
notion of market sentiment, incorporate some kinds of informational constraints that
limit individual agents’ full access to the market (see, e.g., Angeletos and La’O 2013;
Benhabib et al. 2016; Flaschel et al. 2018; Gomes and Sprott 2017; Liang 2018).

It is against this background that we consider a financial market model populated
by heterogeneous agents, namely, unbiased fundamentalists, as well as optimists and
pessimists who overestimate and underestimate the true fundamental value, as in
Cavalli et al. (2017) and that can change their beliefs from time to time based on
an evolutionary mechanism. The evolutionary mechanism is based on a combination
of a profitability measure of the existent strategies in terms of realized profits, and
the average mood perceived by the agents about the market status (i.e., the sentiment
index). Thus, the psychological and emotional components become a constitutive part
of the decision process.

The results emerging from our analysis are interesting under several perspectives.
Starting from a static analysis, in addition to the fundamental steady state, we find
the existence of sentiment-connected non-fundamental steady states characterized by
either a high or low price level. However, the analysis proceeds further. Namely, we
show the emergence of herding phenomena, which occurs “because individual agents
believe that the majority will probably be better informed and smarter than they them-
selves” (see Franke and Westerhoff 2017), and thus agents pay more attention to
the general sentiment. Herding drives the occurrence of long-lasting waves of opti-
mism and pessimism, which are a consequence of the (strong form of) animal spirits
behavior of the agents. Furthermore, the eventuality of those herding behaviors is
mirrored by the emergence of coexisting economic regimes that did not emerge in the
abovementioned literature and that are characterized by persistently polarized levels
of optimism and pessimism. When agents “endeavor to conform with the behavior
of the majority or the average” (Keynes 1937), it is more likely that animal spirits
generate outcomes that can be seen as the result of a herding phenomenon around a
polarized situation. The present setting encompasses the possibility of endogenous
dynamics with neat and persistent periods of optimism alternating with periods of
pessimism, and the resulting dynamics provide a clear representation of the stylized
facts occurring in real-world financial markets.
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The remainder of the paper is organized as follows. In Section 2 we outline our
model. Section 3 is devoted to the analytical results while Sections 4 and 5 discuss
the findings with the help of numerical analysis based on both deterministic and
stochastic simulations. Finally, Section 6 concludes. All the proofs of our analytical
results and further dynamical considerations can be found in the Appendix.

2 Themodel

The evolutive financial market model we study grounds on a market in which, at each
discrete time period t, a population of agents is composed of three types of bound-
edly rational fundamentalists, being either unbiased, pessimists or optimists.1 The
belief about price of unbiased fundamentalist is the true fundamental value F of the
asset, while that of pessimistic and optimistic agents consist of a systematic under-
estimation and overestimation of F . Additionally, as in Brock and Hommes (1998),
who introduced a simplified assumption postulating that the expected value of the
future divided is constant, i.e., δe

t+1 = δ̄, the fundamental value of the asset can be
computed as F = δ̄/r . Despite this, we assume that agents are boundedly rational,
and they tend to make decisions based on a fast associative thinking instead of efforts
to make computations that would be consistent with the hypothesis of rational expec-
tations (see De Bondt and Thaler 1985; Thaler 1994; Tversky 1974). This gives rise
to the different belief biases.

Assuming symmetric biases and denoting them by Δ > 0, the beliefs about the
price of pessimists and optimists can be written as Xp = F − Δ/2 and Xo =
F + Δ/2, respectively, while that of unbiased agents is Xf = F . We stress that Δ

gauges the degree of heterogeneity among agents, i.e., the maximum possible degree
of belief polarization.

Fundamentalists buy/sell stocks in undervalued/overvalued markets and the stock
price Pt is adjusted by a market maker by means of a nonlinear mechanism. The
demand functions of each type of agent are then described by di,t = ρ(Xi −Pt), i ∈
{p, o, f }, where Pt is the asset price at time t and ρ > 0 is a demand reac-
tivity parameter, which we can assume to be the same for the various types of
agents being all fundamentalists. If at time t the shares of pessimists, optimists and
unbiased fundamentalists are respectively ωp,t ∈ [0, 1], ωo,t ∈ [0, 1 − ωp,t ] and
ωf,t = 1− ωp,t − ωo,t , the total excess demand is Dt = ρ

∑
i∈{o,p,f } ωi,t (Xi − Pt),

which, recalling that Xp = F − Δ
2 and Xo = F + Δ

2 , can be rewritten as

1There exist several papers in which agents are endowed with biased beliefs about the fundamental (or
target) value of a certain economic variable, such as the price, inflation, output gap or exchange rate target
(see, just to cite a few, Agliari et al. 2017; Anufriev et al. 2013; Brock and Hommes 1998; Hommes and
Lustenhouwer 2019; Rovira Kaltwasser 2010). Moreover, in the experiments of Assenza et al. (2011),
individuals frequently employ constant forecasting rules. We also refer the reader to the introduction of De
Grauwe and Rovira Kaltwasser (2012) for a possible explanation of the empirical basis for the assumption
that fundamentalists can either be optimistically or pessimistically biased.
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Dt = ρ(F −Pt + Δ
2 (ωo,t −ωp,t )). The price variation is described by the nonlinear,

bounded mechanism

Pt+1 − Pt = f (γDt) = f

(

γρ
(
F − Pt + Δ

2

(
ωo,t − ωp,t

))
)

, (1)

where γ > 0 represents the price adjustment reactivity and f : R → (−a2, a1),

with −a2 < 0 < a1, is a twice differentiable sigmoidal function, i.e., an increasing
function, satisfying f (0) = 0, f ′(0) = 1, f ′′(z) > 0 on (−∞, 0) and f ′′(z) < 0 on
(0, +∞). Moreover, as it is evident from Eq. 1, without loss of generality we can set
ρ = 1, encompassing both the demand and the price adjustment reactivities in the
parameter γ .

The nonlinear mechanism introduces a cautious price adjustment, as from t to
t + 1 prices can only increase or decrease by a bounded quantity,2 respectively given
by a1 or a2. More precisely, due to the previous assumptions on f, from Eq. 1 the
stock price increases or decreases when the excess demand is positive or negative,
respectively, and the variation rate increases as the excess demand vanishes, since the
derivative of the right-hand side of Eq. 1 with respect to Dt is given by γf ′(γDt),

and attains its maximum value γ when Dt = 0.
The last part of the model regards the updating mechanism for the shares of agents,

based on evolutionary competition among the three behavioral rules. Agents select
a strategy within the pool of the available rules, and this can be represented by a
discrete choice model along the lines of Manski and McFadden (1981). We assume
that the strategy selection process is described by a logit model

ωj,t+1 = eβUj,t+1

∑
i∈{p,o,f } eβUi,t+1

, j ∈ {p, o, f }, (2)

which provides the shares ω of optimistic (o), pessimistic (p) and unbiased (f )
agents and where β is a positive parameter representing the intensity of choice of
the switching mechanism. Finally, Ui,t+1, for i ∈ {p, o, f }, is the fitness measure of
pessimistic, optimistic and unbiased strategies, governing the evolutionary selection
at time t + 1. Unlike Cavalli et al. (2017) and De Grauwe and Rovira Kaltwasser
(2012) where the fitness measure relied only on the comparison between the profits
that could be realized, in the present contribution, the evolutionary selection of beliefs
also depends on the general feeling perceived by the agents about the market status.

As noted in Baker and Wurgler (2007), perceived market feeling takes shape
from agents’ opinions, emotions and views and is not a variable that can be directly
assessed objectively. It is also affected by heterogeneity of visions and expectations.

2The mechanism in Eq. 1 describes a conservative behavior for the market maker, induced by a central
authority that tries to limit overreaction phenomena with the consequent occurrence of excessive stock
volatility, and imposes bounds to price variations (see France et al. 1994; Harris 1998; Kyle 1988). As
a consequence, the market maker prudently adjusts prices in the presence of extreme excess demand,
while when the excess demand is small, the price adjustment is nearly proportional to the excess demand.
The price variation limiter mechanism can be modeled by a sigmoidal adjustment rule that determines a
bounded price variation in every time period due to the presence of two asymptotes that limit the price
changes. In the literature on behavioral financial markets, nonlinear price adjustment mechanisms have
already been considered, among others, by Tuinstra (2002) and Zhu et al. (2009).
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Such a difference is ascribed to the role played by human psychology in investors’
decisions. Market sentiment and the general market mood are also the result of social
interactions among agents (see, e.g., Lux 1995, 1998; Daniel et al. 1998; Barberis
et al. 1998). To embody all these features, we introduce the sentiment index

It = Xt − F =
∑

i∈{p,o,f }
ωi,tXi − F = Δ

2
(ωo,t − ωp,t ), (3)

which measures the difference between the average belief X about the fundamental
value (corresponding to the first three addends in Eq. 3) and the true fundamental
value F . The average belief about the fundamental value depends on both the beliefs
and the shares, whose effects cannot be completely disentangled. The sign of It pro-
vides information about the general degree of optimism or pessimism in the market.
When It is positive (negative), portraying the underlying optimistic (pessimistic) per-
ceived market mood, X is larger (smaller) than F . The rightmost expression in Eq. 3
is obtained replacing the occurrences of Xi with their respective explicit expressions.
Hence, It is positive (negative) when the share of optimists exceeds (is lower than)
that of pessimists, and it increasingly deviates from zero as the belief heterogeneity
increases.

Equation 3 highlights how the sentiment index grounds both on the different
beliefs about the fundamental, related to the presence of boundedly rational agents,
and on their numerousness, compared with the true fundamental value. Such index
can thus be considered publicly perceived by the agents due to their continuous
interactions and exchange of opinions in the market and, accordingly, a positive or
negative market mood, pushed by the corresponding value of the sentiment, can affect
price patterns. This leads to a shared knowledge of the general market mood that can
be proxied by the index It , in line with attempts to measure market sentiment through
a mood proxy (see, e.g., Baker and Wurgler 2007).

To present the fitness measure that governs the evolutionary selection mecha-
nisms, we start focusing on two extreme situations. Let us assume that all the agents
populating the market make decisions based on the perceived mood. Since the more
negative the market mood is, the more pessimism will spread among the agents, the
fitness measure related to a pessimistic strategy has to be a decreasing function of
the perceived sentiment. To keep the model analytically tractable, we assume a linear
dependency in the value function for a pessimistic belief through the simple speci-
fication vp(It ) = −It . Conversely, since the probability for an optimistic belief to
become popular increases as the market mood increases, the value function corre-
sponding to such a strategy must be an increasing function of the perceived sentiment.
Symmetrically to the previous case, we can set vo(It ) = It . Finally, the value func-
tion corresponding to an unbiased strategy must be larger as It is close to zero, at
which we must have the highest spread for an unbiased strategy, and therefore we set
vf (It ) = −|It |.

In contrast, according to De Grauwe and Rovira Kaltwasser (2012), if all the
agents made decisions based on a profitability measure, in every time period the
fitness measure of strategy Xi would be πi for i ∈ {p, o, f }, where

πi,t+1 = (Pt+1 − Pt)(Xi − Pt)
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are profits that would have been realized by adopting a pessimistic, optimistic or
unbiased strategy.

If the financial market is populated by N agents, with 0 ≤ Ns ≤ N agents that
make decisions based on the perceived mood, and by 0 ≤ N − Ns ≤ N agents
that make decisions based on the profitability signal, the overall fitness measure of
each strategy is obtained aggregating the contribution of each agent. Namely, for
i ∈ {p, o, f } we have

Ui,t+1 = Nsvi(It ) + (N − Ns)πi,t+1 .

The fitness measures Up and Uo are thus directly affected by both a measure
of profitability of the pessimistic or optimistic strategy (evaluated through the prof-
its that would be realized by adopting that strategy) and by the value assigned by
pessimists and optimists to the perceived market mood. Assuming a normalized
population N = 1, we have that the fractions of pessimists and optimists evolve
depending on a convex combination of the general market sentiment and the profits
realized by the three kinds of agents, according to the following updating rules:

ωp,t+1 = eβ(σ(−It )+(1−σ)πp,t+1)

eβ(σ (−It )+(1−σ)πp,t+1) + eβ(σIt+(1−σ)πo,t+1) + eβ(σ(−|It |)+(1−σ)πf,t+1)
(4)

and

ωo,t+1 = eβ(σIt+(1−σ)πo,t+1)

eβ(σ (−It )+(1−σ)πp,t+1) + eβ(σIt+(1−σ)πo,t+1) + eβ(σ(−|It |)+(1−σ)πf,t+1)
,

(5)
where σ ∈ [0, 1], denoting the fraction Ns of agents that make decisions based on
the perceived mood, represents the sentiment weight.

The model is obtained by collecting the price adjustment rule in Eq. 1 and the
evolutionary mechanism in Eq. 2 and is described by map G = (G1, G2, G3) :
(0, +∞) × (0, 1)2 → R

3, (Pt , ωp,t , ωo,t ) �→ (Pt+1, ωp,t+1, ωo,t+1), with

(Pt+1, ωp,t+1, ωo,t+1) = (G1(Pt , ωp,t , ωo,t ), G2(Pt , ωp,t , ωo,t ), G3(Pt , ωp,t , ωo,t ))

where:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1(Pt , ωp,t , ωo,t ) = Pt + f
(
γ (F − Pt + Δ

2 (ωo,t − ωp,t ))
)
,

G2(Pt , ωp,t , ωo,t ) = eβUp,t+1

∑
i∈{p,o,f } eβUi,t+1

,

G3(Pt , ωp,t , ωo,t ) = eβUo,t+1

∑
i∈{p,o,f } eβUi,t+1

.

(6)

The present framework needs some remarks. As explained above, the key eco-
nomic element to be considered is that the choice between predictors is driven not
only by a rational computation of the profitability of the existent strategies, but as σ

rises, the psychological and emotional aspects assume an increasing relevance, and
represent the unique impulse when σ = 1. This reinforces the behavior of agents
as “animal spirits”, which, as σ → 1, becomes the main motivational driver of the
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agents’ choices. However, the significance of the considered framework is not lim-
ited to the economic interpretation of the model, but as it will become evident in
further sections, the possible outcomes arising when the sentiment index drives stock
market dynamics to significantly differ from those found in the existing literature, so
that the proposed approach provides a “strong form” (according to Franke and West-
erhoff 2017) of animal spirits modeling, which is different from the “weak form” by
De Grauwe and Rovira Kaltwasser (2012) and Cavalli et al. (2017).

3 Analytical results on steady states and local stability

In this section, we determine the possible steady states of the model outlined above,
and we provide analytical conditions for the local stability of the fundamental steady
state. Moreover, we also present results on how the additional steady states vary when
the relevant parameters change.

Let us start by investigating the number of steady states of the system in Eq. 6,
and their stability. In Proposition 1, as well as in its proof, we deal with both fun-
damental and non-fundamental steady states S = (P, ωp, ωo), i.e., steady states at
which the price either corresponds or not to the fundamental value. In the former
case, the steady state and its components are denoted by using ∗ superscript. In the
latter case, we denote them by using either superscript + or −, to specify the signs
of the sentiment index at the corresponding steady state, which in turn highlight an
optimistic/pessimistic characterization of the steady state, respectively. Moreover, we
say that two steady states are symmetric when their components are symmetric with
respect to the fundamental steady state.

Proposition 1 Let σ ∈ [0, 1]. The system in Eq. 6 features up to five steady states,

among which the (fundamental) steady state S∗ =
(
F, 1

3 ,
1
3

)
always exists. More

precisely:

a) S∗ is the unique steady state if

σ < σf ≈ 2.7456

βΔ
; (7)

b) five steady states, S− Ŝ−, S∗, Ŝ+, S+, exist if σ ∈ (
σf , σ tc

)
with σ tc = 3

βΔ
;

c) three steady states, S−, S∗, S+, exist if σ > σ tc.

When existing, S+ and S− are symmetric w.r.t. S∗, as well as Ŝ+ and Ŝ− are, with
I− < Î− < I ∗ = 0 < Î+ < I+. Finally, Ŝ− and Ŝ+ are never locally asymptotically
stable.

Proposition 1 bears relevance for our analysis. In fact, differently from what is
found in the existing literature (see e.g., Cavalli et al. 2017; De Grauwe and Rovira
Kaltwasser 2012; Naimzada and Pireddu 2015), where the unique steady state is
the fundamental steady state S∗, when animal spirits affect economic decisions to
a sufficient extent, non-fundamental steady states that are characterized by either
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pessimism or optimism exist. We stress that, as anticipated by Proposition 1 and as
it will become more evident in Section 4, among the four possible arising additional
steady states, only S− and S+ play an active role and are economically relevant since
trajectories almost never converge toward3 Ŝ± due to their unconditional instability.
Given this background, when animal spirits drive the market, we have two more
steady economic regimes that can be identified as either “pessimistically” (associated
with S−) or “optimistically” (associated with S+), which can coexist with S∗. Such
polarized steady states are characterized by either greater (P +) or smaller (P −) prices
than the fundamental value, and by a population consisting of a dominating share of
optimists (i.e., in which ω+

o is greater than both ω+
p and ω+

f ) or pessimists (ω−
p is

greater than both ω−
o and ω−

f ), respectively. This eventuality occurs if agents assign
a sufficiently large relevance to the perceived market mood, as the additional steady
regimes can emerge only for suitably large sentiment weight values. If agents only
rely on a “rational” comparison of the performance of pessimism and optimism in
terms of profits (as in Cavalli et al. 2017), the equilibrium configuration can solely
consist of an even distribution of the agents, with the stock price corresponding to the
true fundamental value, as in the analogous scenario occurring in Brock and Hommes
(1998). However, as the sentiment weight approaches 1, the switching mechanism is
increasingly influenced by the sentiment index, whose size is not only determined by
the population shares but also by the distance Δ between optimistic and pessimistic
beliefs. More precisely, if the relevance given by the agents to the perceived mood is
small (i.e., β is low), agents will more likely choose one of the heuristics indifferently,
so that deviations from a uniform distribution are neglectable and shares will settle
back to a uniform distribution. Conversely, if the relevance is large (i.e., β is high),
even a small excess of pessimistic agents triggers a diffusion of pessimism, which
leads the majority of agents becoming pessimists, and symmetrically with optimists.

We return to this aspect after Proposition 4 with the help of the stability analysis
and simulated time series. Moreover, as the factors characterizing the agents’ behav-
iors become more extreme (i.e., as the intensity of choice and/or the polarization of
the beliefs increase), the effect of the animal spirits is bolstered and a progressively
reduced sentiment weight is enough to trigger the emergence of polarized steady
states. In this respect, we stress that both the relevance given to the evolutionary
selection of heuristics (β > 0) and the heterogeneity degree of beliefs (Δ > 0) are
essential because otherwise, only the fundamental steady state would exist (as Eq. 7
is fulfilled).

In accordance with the previous considerations, we introduce the aggregate index
s = βσΔ, which encompasses the effect of the sentiment weight σ enhanced by the
evolutionary pressure β and by the heterogeneity degree Δ. From now on, we refer
to s as the sentiment strength. We stress that this nonnegative aggregate parameter
regulates the threshold value at which S+ and S− emerge, since Eq. 7 can be simply
rewritten as s ≤ 2.7456.

3Intensive numerical simulations show that they have a null measure basin of attraction and that no
attractors exist around them.
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Proposition 1 showed that the first effect of an evolutionary selection of strategies
based on the perceived market mood is the emergence of additional polarized steady
states, which are characterized in terms of optimism/pessimism. Now we focus on
how the polarization of such non-fundamental steady states is affected by β, Δ and
σ, i.e., by the sentiment strength. Supported by a clear rationale, we can say that a
steady state becomes more optimistically (resp. pessimistically) polarized if all its
components are increasingly characterized in terms of optimism (resp. pessimism),
namely, if the steady-state price and the share of optimists increase, while that of pes-
simists decreases (resp. if the steady-state price and the share of optimists decrease,
while that of pessimists increases). Accordingly, we have the following result.

Proposition 2 Provided that σ, β and Δ are such that non-fundamental steady states
exist,4 we have that, on increasing σ, β or Δ, then S+ and S− become more and
more polarized, the former optimistically and the latter pessimistically; conversely,
Ŝ+ and Ŝ− become less and less polarized, the former optimistically and the latter
pessimistically.

This result reinforces that in Proposition 1, the more the psychological and emo-
tional components are determinant for the choice of optimistic/pessimistic heuristics,
the more such polarized steady states divert from the fundamental equilibrium.
Indeed, increasing the relevance of the perceived market mood leads to final out-
comes that are more strongly characterized (in terms of both prices and shares) by
optimism and pessimism. Such a feature reflects the resulting sentiment index at the
polarized steady states, which is not “neutral” (I = 0) as at S∗, but, in contrast,
portrays the pessimistic (I− < 0) and optimistic (I+ > 0) mood perceived in the
market. Psychological factors can thus strengthen the role of the market sentiment
in determining the prices and the shares. Although the opposite may seem to be true
regarding the effect on Ŝ±, what actually occurs is that, as the polarization degree of
Ŝ± decreases, the relevance of S± increases and that of the fundamental steady state
becomes more marginal. This will be more evident in Section 4, when we investigate
how the basins of attraction of S∗ and S± change depending on the parameters.

The next level of investigation concerns how the stability of S∗ is affected by
the sentiment weight and, more generally, we analyze the effects of the sentiment
index on the resulting dynamics.5 Before presenting such results, we compare the
roles of β, Δ and γ on the stability of S∗ when the evolutionary mechanism is only
driven either by the profitability measure6 (σ = 0) or by the perceived sentiment
(σ = 1). Thus we recall that if we consider homogeneous beliefs (Δ = 0) and we
consequently neglect the evolutionary switching mechanism (β = 0), it is easy to see

4More precisely, the results on S± hold for s > 2.7456, while those on Ŝ± hold for 2.7456 < s < 3.
5In what follows, we say that an unconditionally stable/unstable scenario is realized when the steady state
is locally asymptotically stable/unstable independently of the parameter values. A stabilizing/destabilizing
scenario occurs when the steady state is locally asymptotically stable only above/below a certain threshold
and unstable otherwise. A mixed scenario arises when the steady state is locally asymptotically stable only
for intermediate parameter values, between two stability thresholds, and unstable otherwise.
6This case corresponds to that of Proposition 2 in De Grauwe and Rovira Kaltwasser (2012).
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that dynamics only consist of the price adjustment mechanism and that S∗ is stable
when γ < 2.

Proposition 3 When σ = 0, the steady state S∗ is locally asymptotically stable
provided that 3(γ−2)

γ
< βΔ2 < 6

γ
. When σ = 1, the steady state S∗ is locally

asymptotically stable provided that γ < 2 and βΔ < 3.

When the price mechanism does not introduce instabilities (γ < 2), increasing the
intensity of choice and the heterogeneity degree has a destabilizing effect for both
extremal choices of fitness measures (i.e., σ = 0 and σ = 1). Conversely, when the
price mechanism introduces instability (γ > 2), suitable intermediate values of β

and Δ can stabilize S∗ when agents choose their strategy based on the profitability
measure. Such stabilization does not occur when the fitness measure is given by the
sentiment index, as the steady state S∗ is unstable regardless of Δ and β.

Proposition 3 shows that the same degree of belief heterogeneity has a different
effect when the fitness criterion is represented by the profitability measure or by the
sentiment index. In the latter case, the role of the parameters affecting the selection
mechanism (β) and the agents heterogeneity (Δ) is essentially the same as the stabil-
ity of S∗ depends on Δβ; therefore, increasing either β or Δ by the same amount has
an identical effect. Conversely, belief heterogeneity has a more intense effect when
the strategy choice depends only on profits, since in that case the stability of S∗ is
affected by βΔ2. Such dissimilarity can be easily understood in terms of the effect
of belief polarization on the fitness measure: the degree of heterogeneity affects the
sentiment index through beliefs only once while it affects the profits twice, through
the excess demand and through prices, resulting in a “squared” influence. This may
occur since agents assign more emphasis to the possibility of realizing a profit evalu-
ating their strategy rather than considering the general mood perceived by the market,
which can manifest sluggishly due to some form of slowness in news diffusion about
market status.

Concerning the different dynamics7 associated with the stability loss for σ = 0
and σ = 1, if the reactivity of the price mechanism is suitably small, the fundamental
steady state becomes unstable as the intensity with which the agents choose between
increasingly polarized beliefs grows. However, while in the former situation8 we have
nonconvergent quasiperiodic trajectories, in the latter case, recalling the comments
that follow Proposition 1, if the distance between biased beliefs is suitably large
and under strong evolutionary pressure, agents with unbiased beliefs are increasingly
attracted by the growing number of agents having biased beliefs. Accordingly, a small
perturbation in an equally distributed population of beliefs creates a contagion phe-
nomenon and most agents herd at either the pessimistically or optimistically biased
strategy. We stress that with an endogenously nervous price adjustment, if agents
choose among strategies on the basis of a profitability evaluation, a partial stabiliza-
tion of dynamics is possible in the presence of mild belief heterogeneity and intensity

7Their occurrence can be inferred by looking at the proof of Proposition 3.
8For a more detailed discussion of the dynamics for both γ < 2 and γ > 2 in the case of null sentiment
weight, we refer to De Grauwe and Rovira Kaltwasser (2012).
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of choice. This is evident by recalling that the excess demand Dt is affected both by
price deviations with respect to the fundamental and by a heterogeneous distribution
of agents beliefs. For instance, if the asset is overvalued, when the agents choose their
strategy based on a profitability evaluation, which is directly determined by prices,
there is an increase in the number of optimistically biased agents, which counterbal-
ances the intrinsic tendency to sell of fundamentalists, allowing for a milder price
adjustment. This is not possible when agents make decisions on the basis of the per-
ceived market mood, since it is not directly affected by price dynamics. In such cases,
if belief polarization and evolutionary pressure do not trigger a herding effect, the
agents tend to randomly choose their strategies, equally distributing among biased
and unbiased strategies, and the market marker adjusts prices only overreacting to
their deviations from the fundamental.

To better focus on the role of the sentiment index, in what follows we consider the
case γ < 2, i.e., the price adjustment mechanism is not responsible for introducing
instability. The robustness of the results for γ > 2 are tested in Appendix A, in which
we show that, despite some differences in the dynamical scenarios, the economic
explanations of the present section and Section 4 about the role of the sentiment
component still hold true. In the next result, we study the stability of S∗ on increasing
σ .

Proposition 4 On varying σ ∈ [0, 1], we have that the sentiment weight can produce
a destabilizing, stabilizing, mixed or neutral effect on the stability of S∗ when γ < 2.
In particular, both the unconditionally stable and unstable scenarios can occur.

The previous proposition notes the richness of outcomes that can be described
by the model as the importance of the sentiment index increases. In addition to the
dynamical relevance, explaining each scenario is significant to understand the role of
the sentiment index. We postpone the discussion of Proposition 4 to the next section
to concentrate on suitably general numerical examples that allow an explanation of
the rationale of each arising scenario.

4 Discussion of the results

In the present section, with the help of numerical simulations, we discuss the analyti-
cal results of Section 3 to deepen the understanding of the economic relevance of the
dynamical behaviors arising from Eq. 6 focusing on the role of the sentiment index.
In particular, the left panel of Fig. 1 contains a comprehensive sketch of the scenar-
ios occurring in the (Δ, β)−space, obtained with γ = 1 and increasing the weight σ
associated with the market sentiment. The setting we consider is consistent with that
in Proposition 4, namely, instability does not endogenously emerge from the price
mechanism (since γ < 2), while erratic dynamics are associated with the switch-
ing of agents among strategies driven by profitability evaluations and/or perceived
mood. To support the discussion of Fig. 1, we use bifurcation diagrams on increas-
ing σ and time series. In more detail, we run simulations for which we specify the
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Fig. 1 In the left panel, for each (Δ, β) couple, different colors, according to the color bar, correspond to
different stability scenarios of S∗ on increasing σ . Red and yellow refer to the occurrence of a stabilizing
(S) and a destabilizing (D) scenario, magenta and blue highlight the emergence of mixed (M) and unstable
(UU) scenarios, and white is associated with an unconditionally stable (US) scenario. Above the dashed
line, we have the (Δ, β) combinations for which, for suitably large values of σ, non-fundamental steady
states exist, coexisting with S∗. The bifurcation diagrams in the central panel depict the stabilizing scenario
occurring for P on varying σ , and the corresponding effect on the fractions of agents. The right panel
contains the evolution of P and the population fractions for the values of σ corresponding to the dashed
lines marked in the central plot. Other parameters for central and right plots are Δ = 4, β = 0.6, initial
datum P = 10.5, ωo = 0.4, and ωp = 0.3

sigmoid function as

f (z) =
{

a1 tanh (z/a1) if z ≥ 0,
a2 tanh (z/a2) if z < 0,

and we set F = 10, a1 = 2, a2 = 1, and γ = 1. The remaining parameters β, σ

and Δ vary from time to time according to the different regions on the left panel of
Fig. 1. We start by focusing on the white region in the left panel of Fig. 1. If Δ and β

are suitably small, the increasing relevance assigned to the perceived sentiment has
no effect on stability, as both extreme situations in which most agents adopt either
the profitability signal or the perceived mood to select strategies lead to a uniform
distribution of beliefs. The rationale underlying such scenarios is quite evident. If the
context is affected by a very reduced heterogeneity, even if agents are sensitive to
differences in strategy performances, the profitability signal given by each strategy is
small, even in the presence of an excess of one type of biased agents (e.g., optimists),
as their bias is reduced. The result is that any inhomogeneity in the agent distribu-
tion is not sustained by the opportunity to realize profits adopting the most diffuse
strategy, and the mean reverting mechanism of the fundamentalist belief drives the
agents to uniformly distribute among the three strategies. A similar scenario occurs
when agents make decisions based on the sentiment. For instance, even if the mar-
ket is initially populated by many pessimists, their negative bias is small, and the
overall sentiment is too weakly characterized by pessimism to self sustain so that
again, agents randomly choose among the possible strategies. The symmetric situa-
tion, in which beliefs are polarized but agents do not rely on them very much, can
be explained similarly. In such case, the agents observe a difference in the perfor-
mance of each strategy, but they are slightly sensitive to this, and again a uniform
distribution of agent types is the only possible distribution. Considering intermedi-
ate scenarios for the agent distributions, realized by 0 < σ < 1, we obtain the same
effects, and hence, S∗ is stable regardless of the adopted fitness measure.
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Let us now increase agent heterogeneity, keeping their intensity of choice small
(red region in the left panel of Fig. 1). In this case, the effect of heterogeneity plays
a stronger role on the profitability measure than on the general sentiment, so that
we have a situation in which S∗ is unstable for σ = 0 and stable for σ = 1
(see the comments after Proposition 3); thus, the sentiment index has a stabilizing
effect on S∗, which is also evident from the one-dimensional bifurcation diagram
in the central plot of Fig. 1, obtained for sufficiently polarized (Δ = 4) beliefs
and for a small value of the intensity of choice (β = 0.6). When the sentiment
index has no relevance (σ = 0, dashed red line), we detect a continuous switch
between phases characterized by optimism and pessimism that, in turn, generates the
quasiperiodic dynamics also observed in the red time series shown in the right panel
of Fig. 1.

In this setting, evolutionary selection only depends on the profitability measure,
which in turn is affected by excess demand and agents heterogeneity. The endogenous
oscillations around the fundamental equilibrium can be explained as follows, focus-
ing on, e.g., an initial setting characterized by an optimistic bias, as in the red plot in
the right panel of Fig. 1. In such case, the profitability signal is influenced more by
overestimating the price than by excess optimistic agents, so that the price slightly
decreases, still remaining above the fundamental. However, that signal leads many
agents to change their strategy and pessimism spreads. This, jointly with the price
overestimation, leads to a decrease in the price, which further bolsters the diffusion
of pessimistic agents. At such point, the price lies below the fundamental, and hence
the excess demand is influenced more by the purchases of both optimistic and unbi-
ased agents than by the sales of pessimists. The price starts increasing, and the wave
of pessimism begins to move back, so that after a few time periods, we have a con-
figuration close to the fundamental equilibrium but now with an underestimation of
the price together with dominant optimism, which triggers a symmetric phenomenon
with respect to that described above. We note that the switching mechanism mostly
affects biased strategies, while fluctuations in the share of unbiased agents are small.
The economic motivation of this is clear; for instance, if the profitability signal fos-
ters a diffusion of pessimism, an optimistic agent will more likely adopt an unbiased
strategy, while an unbiased agent will more likely become a pessimist so that the
number of unbiased agents will not change.

When σ = 1, the previous phenomena do not take place, as the selection mech-
anism does not depend on excess demand and the scenario is the same as that in
the situation of large Δ and small β described by the white region in the left panel
of Fig. 1. Hence, by increasing σ , the strength of the interplay between prices and
shares decreases, as the switching mechanism is more affected by the sentiment index
and less affected by profits, which are the source of instability in this setting. The
result is that the oscillating motion is partially tamed when the weight of the mar-
ket sentiment increases (σ = 0.28, green color) since agents are also affected by
the perceived market mood, which pushes them to switch to another strategy less
impetuously. Finally, when agents consider the market sentiment (σ = 0.48, yellow
color) more, the dynamics of the price and the shares stabilize. Accordingly, agents
equally distribute among biased and unbiased strategies, the market maker adjusts
prices only reacting to their deviations from the fundamental and the final effect is a
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stabilization in the price and the population fractions. Conversely, if the belief polar-
ization is small (Δ < 2) and we increase the intensity of choice, since in this case
the effect of heterogeneity on the profitability measure is weaker than before, we
have a situation in which S∗ is stable for σ = 0 and unstable for σ = 1. The conse-
quence is that, as σ increases, S∗ can lose stability (yellow region of Fig. 1, left plot).
However, such instability does not mean that dynamics become erratic but rather that
agents start herding toward the same strategy, and this drives the evolution of prices
toward either the optimistically or the pessimistically biased new steady state. The
economic rationale for those polarized steady states can be ascribed to an increased
sensitivity assigned to the utility of being either pessimistic or optimistic, as also
remarked in the comments after Proposition 1. Depending on the initial deviation in
the shares toward one of the biased strategies, most of the agents herd around pes-
simism (blue bifurcation diagram) or optimism (red bifurcation diagram). This kind
of herding phenomenon starts occurring if the sentiment index is suitably relevant in
selecting strategies among the agents. In such an intermediate situation, all the three
strategies coexist. This is illustrated in the central plot of Fig. 2 where the time series
of the relevant variables are reported for different initial conditions. We observe that
an initial degree of optimism or pessimism can determine the convergence toward an
attractor that reflects the same polarized optimism or pessimism only, while if this
degree is not significant, the contagion effect does not occur and agents converge
toward the fundamental steady state. This can be explained by noting that in such
intermediate framework, the relevance of the perceived market mood is still opposed
by the profitability signal. Hence, only in the presence of an initial situation that is
already strongly characterized in terms of optimism/pessimism the contagion effect
takes place; otherwise, biased agents are too few to attract other agents. This is also
confirmed by looking at the right plot of Fig. 2, in which we report the correspond-
ing basins of attraction of the different steady states (green is associated with S+,
gray with S∗ and yellow with S−). We remark that, as we mentioned in the com-
ments following Propositions 1 and 2, unconditionally unstable steady states Ŝ± do
not play an active role, but they pinpoint the position and the extent of the basins
of attraction of biased equilibria, indirectly determining their strength and relevance.
If σ further increased, we would observe that the basin of the unbiased fundamen-
tal steady state continues to shrink until S∗ becomes unstable. In this scenario, the
role of the sentiment index is so large that the contagion phenomenon affects all
agents, who are all pushed toward a polarized strategy. The final state to which
the economic variables converge is then affected by the sentiment perceived by the
agents, which self-sustains and reinforces the occurrence of more extreme levels of
optimism/pessimism associated with the emerging steady states.

The remaining scenarios corresponding to the magenta and blue regions in the
right panel of Fig. 1 can be explained by combining elements of the above discussion.
For example, for an intermediate degree of heterogeneity and evolutionary pressure,
we have that the fundamental steady state is unstable in the two extremal frameworks
identified by σ = 0 and σ = 1, giving rise to oscillations between optimistically and
pessimistically biased scenarios for σ = 0 and to a herding phenomenon when σ =
1. However, for intermediate values of σ , the negative feedback of the profitability
measure is offset by the positive feedback of the sentiment index and their effects
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Fig. 2 The bifurcation diagram in the left panel shows the emergence of the new polarized steady states,
highlighted in red (optimistic) and blue (pessimistic), as a consequence of a fold bifurcation. The central
panel depicts the time series evolution for the price and the shares obtained for σ = 0.75 while the right
panel portrays the basins of attraction for the three steady states (green color is associated with S+, gray
to S∗ and yellow to S−). Other parameters are: Δ = 1.5, β = 2.5, and initial conditions are taken suitably
close to S∗. For the orbits converging to S+ we selected initial conditions P = 10.25, ωo = 0.6, ωp = 0.1
while for those converging to S− they are P = 9.75, ωo = 0.1 and ωp = 0.6

cancel out, giving rise to stable dynamics (magenta region). This is also highlighted
by the bifurcation diagram in the left panel of Fig. 3, where we observe the occurrence
of the mixed scenario with an intermediate stabilization of quasiperiodic dynamics
after which S∗ undergoes a fold bifurcation, which gives rise to the two polarized
steady states, S+ and S−.

Finally, when the evolutionary pressure β is very strong, agents sharply switch
between the strategies, a more polarized steady-state configuration occurs, and the
stability of the fundamental steady state cannot be recovered (blue region). Nonethe-
less, we can still observe stable configurations with the spread of optimism or
pessimism that leads the majority of agents to adopt a biased strategy (middle panel
of Fig. 3). The right panel of Fig. 3 reports the basins of attraction of the latter dynam-
ics. Again, the polarization of the dynamics associated with the possible herding
behavior of the agents is clearly visible.

Fig. 3 The bifurcation diagram in the left plot, obtained for β = 1.5, portrays a mixed scenario on varying
σ while the central panel, obtained with β = 4, depicts a situation in which S∗ is always unstable. The
basins of attraction corresponding to the latter framework are reported in the right panel. Other parameters
are Δ = 2.5 and initial conditions are taken suitably close to S∗. For the dynamics converging to S+ we
selected initial conditions P = 10.4, ωo = 0.5, ωp = 0.1 while for those converging to S− they are
P = 9.6, ωo = 0.1 and ωp = 0.5
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5 Stochastic simulations

The analysis performed in the previous section showed how animal spirits can drive
the market toward economic regimes characterized by either optimism or pessimism.
We now consider a stochastically perturbed version of the model to determine
whether the model can reproduce the qualitative properties of the time series of
real-world financial markets.9 In what follows, we focus on different, increasingly
refined, peculiar characteristics of the economic observables time series. A first class
of stylized facts consists in some qualitative properties of prices Pt and returns
Rt = 100((Pt+1−Pt)/Pt ) time series, such as the emergence of bubbles and crashes
of stock prices and volatility clustering. A second class includes indicators that aim
to estimate the deviation from normality and the persistence of autocorrelation in
returns distribution. These two families of stylized facts are those usually considered
in the existing literature. Additionally, we also consider a third element of investiga-
tion, i.e., multifractality,10 which is observed in stock markets time series and that is
identified as a constitutive element of their complexity.

We recall (see, e.g., Calvet and Fisher 2002) that a stochastic process {X(t)} is
named multifractal if it has stationary increments and if

E(|X(t)|q) = c(q)tτ(q)+1,

where t ∈ [0, T ] ⊂ R and q ∈ [−q0, q0] are constants, while c : [−q0, q0] → R

and τ : [−q0, q0] → R are functions of q. The latter, called the scaling function, is
useful for discriminating between a monofractal process (where τ linearly depends
on q) and a multifractal process (for which τ is a concave function of q). To estimate
τ(q), we perform the MultiFractal Detrended Fluctuation Analysis (MFDFA) intro-
duced in Kantelhardt et al. (2002). In agreement with the abovementioned literature,
in detecting multifractality, we adopt the following strategy. We evaluate the strength
of the multifractality process, which is defined by Δα = αmax − αmin, where αmax
and αmin are the maximum and the minimum values, respectively, of α(q) = τ ′(q).
This is an index of the concavity (and hence, multifractality) degree of τ(q). More-
over, we study the behavior of Δα on increasing the length N of the considered time
series, which has to be monotonically increasing for multifractality to be present.
Finally, to rule out the possibility that multifractality is due to a broad probability
density function of the time series rather than long-time correlations, we repeat the
evaluation of Δα considering randomly shuffled time series.

As a reference example, in Fig. 4, we report the time series of the returns, the
autocorrelograms, the plots of Δα depending on N for the S&P 500 time series and
for the shuffled time series. The top-right panel in Fig. 4 represents an estimation
of the sentiment perceived by the agents, obtained by removing the trend from the

9For a survey about stylized facts in financial time series, we refer to Bouchaud et al. (2000), Cont (2001),
Kukacka and Kristoufek (2020), and Lux and Segnon (2018).
10More precisely, multifractality is an index to identify the presence of different long-range temporal
correlations of observables. A detailed description of what multifractality is can be found in Kantelhardt
et al. (2002). Understanding the origin of multifractality in financial markets is an issue that has been
addressed in, e.g., Barunik et al. (2012) and that in many real cases stemmed from the large fluctuations
of prices (Zhou 2012).
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Fig. 4 S&P 500 stylized facts. The plots in the first row show the time series of returns (left) and highlight
the emergence of optimistic and pessimistic waves (right); in the second row we report the autocorrelation
of returns (left) and absolute returns (right); in the third row we display the multifractality strength Δα on
increasing the length N of the sample for the original time series (left) and the shuffled one (right)

price series and plotting the resulting zero mean detrended time series (blue line),
which actually provides an estimation of the market sentiment. We identify opti-
mistic and pessimistic periods by simply observing the index sign, and we highlight
them through the orange lines. As we can see, we have the alternation of long-lasting
periods of optimism and pessimism.

We stress that the common features in financial market time series are the presence
of spikes and perceptible volatility clustering in the returns time series (top-left panel
in Fig. 4), polarization of consecutive periods of optimistic and pessimistic behav-
ior (top-right panel in Fig. 4), uncorrelated returns, a slowly decreasing correlation
of absolute returns (second row in Fig. 4), and multifractality due to a long-range
correlation of returns (third row in Fig. 4).

Consistent with the literature on financial markets, in what follows, we perform a
model evaluation to determine whether the introduction of the sentiment index can
improve the qualitative representation of the abovementioned aspects. To this aim,
we now move to the description of the stochastically perturbed version of the model
in Eq. 6. In particular, we assume that the true fundamental value follows the random
walk

Ft+1 = Ft + εF,t Ft , (8)

where {εF,t } are normally distributed random variables with standard deviation
s1 > 0 and zero mean. The deterministic version of the model is thus adapted
by replacing the original variable Xi, i ∈ {p, o, f }, with time-dependent Xp,t =
Ft − Δ/2, Xo,t = Ft + Δ/2 and Xf,t = Ft . We stress that also in De Grauwe and
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Fig. 5 The plots in the first row show the time series of prices and returns; in the second row we show
the autocorrelation of returns and absolute returns when σ = 1; in the third row we show the kurtosis
of returns distribution as σ increases; the fourth row highlights the emergence of waves of optimism and
pessimism in the market sentiment index for different values of σ ; the fifth row portrays the behavior of
the multifractality strength Δα as N increases

Rovira Kaltwasser (2012), the bias about the fundamental remains unchanged, while
the fundamental may vary. Moreover, as in Franke (2010), we introduce a random
perturbation of beliefs, proportional to the price, i.e.,

Xi,t+1 = Xi,t + εXi,tPt , i ∈ {p, o, f }, (9)

where {εXi,t } are normally distributed random variables with standard deviation s2 >

0 and zero mean, which describe a temporary perturbation of the agents heterogeneity
level.11 This allows the stochastic version of the system in Eq. 6 to be obtained, with
F replaced by Ft , to which Eqs. 8 and 9 have to be added.

11Since both groups of agents consist of fundamentalists, it is more economically reasonable to consider
the same standard deviation for both belief perturbations. However, we checked that the results we present
are robust with respect to the introduction of a suitable asymmetry in the standard deviations related to
each belief.
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We report the outcomes of our stochastic model in Fig. 5, where the parameter set-
ting is F = 10, Δ = 2.7, a1 = 2, a2 = 1, β = 1.5 while γ is set equal12 to 0.02. In
the presence of exogenous shocks on the fundamental value, periods of high volatil-
ity in the price course may alternate with periods in which prices do not depart too
much from the fundamental value. Such behavior can arise when the parameter set-
ting is located near the bifurcation boundary and exogenous noise can occasionally
spark long-lasting endogenous fluctuations around the new occurring steady states.
More precisely, the top left panel in Fig. 5 displays a typical plot for the price time
series obtained for s1 = 0.003 and s2 = 0.035, which highlights the very erratic price
course with alternating bubbles and crashes. The corresponding returns time series is
reported in the top-right panel of Fig. 5, which reflects the alternating periods of high
and low volatility and exhibits volatility clustering, highlighted by the strongly pos-
itive, slowly decreasing autocorrelation coefficients of absolute returns (right plot in
the second row of Fig. 5) in contrast to the insignificant autocorrelation coefficients
of returns displayed in the left plot of the second row. Moreover, deviation from nor-
mality in the returns distribution only occurs as the herding phenomenon takes place,
i.e., as the sentiment index plays an increasingly relevant role in determining agents
choices, as shown in the third row of Fig. 5. The reported kurtosis analysis is in good
agreement with that of S&P 500 returns. In fact, Corrado and Su (1996) showed that
kurtosis of S&P 500 returns is estimated to be larger than 3, and on average equal
to 3.47. The presence of fat tails implies that, when the sentiment index drives the
market, large returns often occur, corresponding to strong movements in prices and
thus to more volatility in the financial market in agreement with the well-known
empirically observed stylized facts. The panels in the fourth row of Fig. 5 contrast
the time series of the sentiment index It when σ = 0 and σ = 1 (in the left and
right plots, respectively). When σ = 0, it is possible to observe the emergence of
periods of prevailing optimism or pessimism only if we deal with a moving average
Īt of It on a suitable number of periods (in the reported simulation, Īt is computed
considering the last 5 values assumed by the sentiment index at each time period
t). This means that there is alternation of periods characterized by the prevalence of
a certain sentiment, but such phenomenon is quite weak and can be perceived only
considering an average behavior over a proper number of periods. Conversely, when
agents choose strategies based on the sentiment index, there exist waves of opti-
mism and pessimism that are much more long-lasting than when the influence from
behavioral aspects is neglected in agent choices. Namely, in such latter case, opti-
mism and pessimism quickly alternate due to a continuous and recurrent evaluation
of market beliefs based only on market performance. The rationale for the waves of
optimism and pessimism occurring can be explained as follows: assume that agents
have the choice of using biased beliefs about the fundamental value of the asset and
that they seek to opt for the one that provides them higher profitability. When the
price volatility is low, the biases do not diverge too much from the fundamental and

12This is in agreement with Franke (2010), in which, when structural volatility is considered for the
first model, parameters are changed so that “the price converges monotonically ... though only (very)
slowly so”. This also enforces the random walk nature of the asset prices. We stress that the results are
qualitatively robust with respect to parameter modifications in suitable ranges.
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agents act more or less independently (some of them being optimists and the others
pessimists). Accordingly, the market maker price adjustment will not be too strong,
and the price volatility remains low. In other words, the negative feedback induced
by the traders compounds the one induced by the market maker, and prices may con-
verge, with alternating periods of optimism and pessimism. However, when the price
dynamics are more turbulent, agents may prefer to observe other agents’ choices
more closely and possibly imitate them. The resulting herding behavior implies that
agents’ choices become increasingly aligned (i.e., they behave less independently)
on values that differ from the fundamental steady state. This may be the case in
which the optimistic and pessimistic steady states emerge. In such an eventuality,
agents’ orders are less balanced around the fundamental value and the market maker
can no longer mediate among them. Therefore, the market maker’s price adjustments
over/under react to those misalignments and the volatility remains high.

The emergence of long-lasting alternating periods of optimism and pessimism
can be understood in light of the stability analysis. As we have shown in Section 3,
the most economically relevant phenomenon occurring when the market is driven
by the general mood is that polarized regimes emerge, in terms of both possible
steady states, attractors and basins of attraction. In the simulation reported in Fig. 5,
for σ = 1, the fundamental steady state is unstable, and deterministic trajectories
can converge toward the polarized steady states. Since the stock price is affected by
shocks, due to the “polarized” structure of the basins of attraction, the trajectories
persist in the basin of the same attractor (e.g., of the optimistic attractor) for sev-
eral periods until a random deviation moves them into the basin of the other attractor
(e.g., of the pessimistic one), in which trajectories wander until a similar phenomenon
drives them back into the basin of the former attractor. In this process, prices are
close to a random walk, with optimistic and pessimistic agents frequently switching
between the two strategies.

Finally, in the last row of Fig. 5, we compare the multifractality of the time series
when agents choose their strategy only based on the profit evaluation (σ = 0) or only
considering the sentiment perception (σ = 1). The results are obtained considering
the average values derived from 1,000 simulations. As we can see, in the former
case Δα remains constant, in contrast with a typical multifractal pattern. For such
reason, we do not report the plot of Δα obtained with shuffled time series, which is
similar to the original time series and does not provide further relevant information.
Conversely, in the latter case Δα is increasing (right panel of Fig. 5, solid line),
providing evidence for multifractality with a significant strength when N = 16, 000.
The result is corroborated by the decreasing behavior of the shuffled time series (right
panel of Fig. 5, dashed line), which confirms that the source of multifractality is the
long-time correlation of the observables. All the previous considerations suggest that
the more refined modeling of animal spirits behavior allows for a better agreement
between simulated and real time series.
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6 Concluding remarks

In the economic literature, there exist several contributions (e.g., Cavalli et al. 2017;
De Grauwe and Rovira Kaltwasser 2012; Naimzada and Pireddu 2015) showing
that diverting from the perfect rationality assumption on the agents’ behavior, the
waves of optimism and pessimism observed in financial markets can be explained in
terms of endogenous fluctuations originated by the evolutionary selection of simple
heterogeneous heuristics and/or by imitation mechanisms. However, changes in the
psychological and emotional perceptions of the market are not only consequences of
the agents’ choices being also part of the process on which decisions are made. In this
work, we developed a financial market model with heterogeneous agents whose deci-
sions are not only based on an individual evaluation of the market performances but
also consider a form of market sentiment. When the mechanism which regulates the
evolutionary selection of forecasting rules is based on a combination of the average
mood perceived by the agents about the status of the market and a precise evalua-
tion of the profits, new economic regimes arise, different from those occurring when
agents decisions are not driven by “animal spirits”. Such regimes are characterized
by persistently polarized levels of optimism and pessimism, highlighted by high/low
beliefs and prices, as well as by a large share of optimists or pessimists. An excess
of optimism or pessimism may endogenously give rise to outcomes that can be seen
as the result of a self-sustaining herding phenomenon. Endogenous waves of opti-
mism and pessimism may be generated by animal spirits, especially when decision
mechanisms are based on both market sentiment and profits evaluation. Moreover, as
the role of the sentiment index becomes predominant, those waves are reinforced by
possible endogenous dynamics around self-fulfilling economic regimes and, when
nondeterministic effects are considered, give rise to alternating long-lasting periods
of polarized economic regimes. Our future research will aim to deepen the study of
the role of animal spirits as the drivers of economic decisions, extending the pursued
approach to other macroeconomic frameworks, also involving the real market side.

Appendix A: Case with γ > 2

In the next result, we study the stability of S∗ on increasing the role of the sentiment
weight for γ > 2, i.e., when the price mechanism is the source of instability.

Proposition 5 On varying σ ∈ [0, 1], we have that the sentiment weight can have a
destabilizing, mixed or neutral effect on the stability of S∗ when γ > 2. In particu-
lar, only the unconditionally unstable scenario can occur, while the unconditionally
stable scenario can not.

The possible scenarios are reported in the left plot of Fig. 6. In what follows, we
give an idea of the economic explanation of those scenarios, since the unique new
element to be considered is the instability of the price mechanism, while the other
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Fig. 6 In the left panel, for each pair of Δ and β, different colors correspond to different
stability scenarios of S∗ on increasing σ , each scenario is denoted by different colors according
to the color bar: yellow refers to the destabilizing (D) scenario, magenta and blue are employed
to highlight the emergence of mixed (M) and unstable (UU) scenarios. Above the dashed line
we have the (Δ, β) combinations for which, for suitably large values of σ, non-fundamental
steady states exist, coexisting with S∗. The bifurcation diagram in the central panel (Δ = 1.4,
β = 0.8) depicts the destabilizing scenario on varying σ, while that in the right panel (Δ = 2,
β = 2.5) depicts a mixed scenario. Initial conditions are chosen suitably close to S∗, S+ and
S− in the black, red and blue diagrams, respectively

aspects have already been discussed for γ < 2 in Section 4. According to Proposition
3, when both Δ and β are small (blue region in the left lower part of the left plot
of Fig. 6), the fundamental steady state is unstable because of the overreaction of
the market maker in adjusting prices based on the excess demand. Such nervous
price adjustment can be compensated by the distribution of agent shares only if they
give suitable relevance to the profitability signal and if strategies are sufficiently
heterogeneous, so that for larger values of Δ and β, we have that S∗ is stable for
σ = 0. However, the more the agents consider the sentiment index, the less the price
affects their choice about the strategy to adopt, and thus the previous compensation
effect fails, and the price turbulence leads to a nervous switching among strategies.
In this case, the sentiment weight plays a destabilizing role (yellow region in the left
plot of Fig. 6), and it can foster the emergence of periodic and chaotic dynamics,
as evident from the bifurcation diagram in the middle plot of Fig. 6. As Δ and β

further increase, we again find the mixed scenario (magenta region in the left plot of
Fig. 6), similar to that in Fig. 1. The main difference is that now the instability of the
price mechanism can lead to unstable, chaotic dynamics around the non-fundamental
steady states, as highlighted by the bifurcation diagram in the right plot of Fig. 6.

Appendix B: Proof of the analytical results

To prove some of the results of Section 3, we make use of the following

Lemma 1 Let us consider q > 0 and map h : (−1, 1) �→ R defined by

h(A) = eqA − 1

eqA + e
q(A−|A|)

2 + 1
. (10)
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The associated dynamical equation At+1 = h(At ) always has the steady state
A∗ = 0, which is unique if q < 2.7456. At qf ≈ 2.7456 a double fold bifurcation
occurs, and four additional steady states Â+, A+, Â−, A− exist for q ∈ (2.7456, 3),
with Â+ = −Â− > 0 and A+ = −A− > 0. At q = 3 a double transcrit-
ical bifurcation occurs, and both Â+ and Â− collide with A∗, disappearing, so
that the dynamical equation has just two additional steady states A+, A−, with
A+ = −A− > 0. When existing, Â+ and Â− are always unstable and their abso-
lute value decreases as z = eqA increases, while the absolute value of A− and A+
increases as z increases.

Proof Function h is strictly increasing, as

h′(A) = 3qeqA

(2 + eqA)2
> 0 for A > 0, h′(A) = 3qeqA

(2eqA + 1)2
> 0 for A < 0. (11)

We stress that since h′−(0) = limA→0− h′(A) = q

3
= limA→0+ h′(A) = h′+(0),

function h is differentiable on (−1, 1). A direct check shows that h is odd, so its
derivative is even. Concerning steady states ofAt+1 = h(At ),we indeed have h(0) =
0. In addition to A∗ = 0, further symmetric steady states may exist. Thanks to the
oddness of h, we can focus just on the case A > 0. Let us introduce map g(A) =
h(A) − A = eqA − 1

eqA + 2
− A, for which we have g′(A) = −(4eqA+e2qA−3zeqA+4)

(eqA+2)2
. Since

the sign of g′(A) is determined just by the numerator, we set z = eqA and we study
the inequality P(z) = −z2 − (4 − 3q)z − 4 > 0 for z ≥ 1. Since P(z) describes a
concave parabola, for z > 0 it is always negative if 4−3q ≥ 0, so that it is decreasing
with P(0) = −4 as starting point, or if 4−3q < 0 and also the discriminant 3q(3q −
8) is negative. In both cases, i.e., for 3q − 8 < 0, g is decreasing with g(0) = 0
and thus no other zeros of g, corresponding to fixed points of h, can exist. If instead
3q − 8 > 0 it holds that P(z) < 0 for z ∈ [0, z1) ∪ (z2, +∞) and P(z) > 0 for

z ∈ (z1, z2), where z1 and z2 are the two zeros of P , i.e., z1,2 = 3q−4±√
3q(3q−8)
2 . A

fold bifurcation occurs when g(A2) = 0, where eA2q = z2 > 1. The latter condition
is always satisfied for q > 8/3. Straightforward computations show that

g(A2) = 1

q

(√
3q(3q − 8) + q

4
− ln

(√
3q(3q − 8)

2
+ 3q

2
− 2

))

=: 1
q

c(q).

Since it holds that c′(q) = q+√
3q(3q−8)
4q , c is strictly increasing. Observing that

c(8/3) < 0, a unique zero for c exists, in correspondence to which g(A2) = 0. The
numerically computed value for the zero of c is approximately 2.7456. Hence, the
fold bifurcation occurs for q ≈ 2.7456 and, for larger values of q, the equilibria Â+
and A+ arise, with 0 < Â+ < A+, and, since g′(Â+) = h′(Â+) − 1 > 0, we have
that Â+ is always unstable.

Note that the fold bifurcation could not occur ifA2 = log(z2)
q

> 1, but this is not the

case. Namely, for q > 8/3 it holds that log(z2) < log
(
3q+√

3q3q
2

)
= log(3q) < q,
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where the last inequality can be proven by observing that 3q < q + q2

2 + q3

3 < eq

for q > −3+√
57

2 and that −3+√
57

2 < 8
3 .

A simple geometrical consideration allows concluding that Â+ is strictly decreas-
ing with respect to q, while A+ is strictly increasing with respect to q. For increasing
values of σ ∈ (σ f , σ tc) = (2.7456, 3), the unstable equilibrium Â+ decreases as
long as it collides for σ = σ tc with A = 0, which loses its stability, due to a tran-
scritical bifurcation. Namely, Â+ collides with A = 0 when P(1) = 0, i.e., when
q = 3.

Recalling the oddness of h (and hence of g, as well), we can infer by symmetry
the properties on Â− and A−.

Proof of Prop. 1 Setting Pt+1 = Pt = P and ωp,t+1 = ωp,t = ωp, ωo,t+1 = ωo,t =
ωo from Eq. 1 we obtain F − P + Δ

2 (ωo − ωp) = 0, from which it follows that
P = F + I, which, used in Eqs. 4 and 5, provides

ωp = eβσ(−I )

eβσ(−I ) + eβσI + eβσ(−|I |) , ωo = eβσI

eβσ(−I ) + eβσI + eβσ(−|I |) . (12)

Computing ωo − ωp we find

A = e
s
2A − e− s

2A

e− s
2A + e

s
2A + e(− s

2 |A|) = esA − 1

esA + e
s(A−|A|)

2 + 1
= h(A) (13)

when setting A = ωo − ωp and q = s = Δβσ .
From Eq. 13 we have that the steady states of the system in Eq. 6 are in one to

one correspondence with the fixed points of map h studied in Lemma 1. Recalling
that at the equilibrium it holds that P = F + I and using Lemma 1, the fixed point
A∗ = I ∗ = 0 corresponds to the fundamental steady state S∗ = (F, 1

3 ,
1
3 ), which

always exists, as well as Si and Ŝi correspond to Ai and Âi for i ∈ {+, −}. Existence
intervals with respect to βΔσ in Proposition 1 are obtained from those with respect
to q in Lemma 1. We conclude the proof by checking that the instability of Ŝ+ and
Ŝ− is inferred by that of Â+ and Â−. We just focus on Ŝ+ (i.e., we can assume
ωo − ωp > 0) and we shall omit the explicit proof that Ŝ− is unstable for the system
in Eq. 6, due to its similarity.

We recall that at any steady state S of the system in Eq. 6 it holds that P =
F + Δ

2 (ωo −ωp) = F + Δ
2 A. Using such expression for P and since we are assuming

that A > 0, we obtain the following expression for the Jacobian matrix J (S) of the
system in Eq. 6 computed at S:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 − γ
−Δγ
2

Δγ
2

Δβγ (2esA+1)(1−σ)

2(esA+2)2
Δβ(Δγ (1−σ)+2(2σ+Δγ (1−σ))esA)

4(esA+2)2
−Δβ(Δγ (1−σ)+2(2σ+Δγ (1−σ))esA)

4(esA+2)2

−3Δβγ esA(1−σ)

2(esA+2)2
−ΔβesA(8σ+3Δγ (1−σ))

4(esA+2)2
ΔβesA(8σ+3Δγ (1−σ))

4(esA+2)2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1213Market sentiment and heterogeneous agents in ...



Rewriting the equilibrium condition Eq. 10 as A = esA−1
esA+2

, from which it follows

that esA = 2A+1
1−A

, and using such expression in J (S) we obtain that the characteristic

polynomial of J (S) is p(λ) = λ(−λ2 + sλ − d), where we set

s = βΔ

(
σ

3
− γ − 2A2σ

3
+ Aσ

3

)

+ γβΔ2
(
1

6
+ A

12
− σ

6
− A2

4
− Aσ

12
+ A2σ

4

)

+ 1

and

d = βΔ

3

(

σ(1 − γ )
(
−2A2 + A + 1

)
+ Δγ

(
1

2
+ A

4
− σ

2
− A2

2
− Aσ

4
+ 3A2σ

4

))

.

Polynomial p(λ) has a null eigenvalue, while for the other couple of eigenvalues it
holds that λ < 1 provided that 1− s +d > 0, which is equivalent to 2sA2−sA−s+
3 > 0,which, in turn, recalling thatA = esA−1

esA+2
, leads to e2As+eAs(4−3Δβσ)+4 >

0. Since, by Eq. 11, this condition coincides with h′(A) < 1, we have proven the
desired equivalence between the instability properties for A and S.

Proof of Prop. 2 The comparative statics results on equilibria S can be inferred from
those obtained for A in Lemma 1. We recall that function h defined in Eq. 10 is odd,
increasing and continuous on (−1, 1). Since the role of σ, Δ and β in the expressions
in Eq. 12 is exactly the same as that of q in h, being q = s = Δβσ, we can only deal
with one parameter, e.g. β. From P = F + I , with I = Δ

2 A, it immediately follows
that at the various non-fundamental steady states of Eq. 6 both P and I react in the
same manner as the non-null steady states of h to a variation in β.

To conclude the proof, we have to investigate the behavior of ωo and ωp at
S+, Ŝ+, Ŝ−, S− when β increases. Thanks to the symmetry characterizing such equi-
libria, we just focus on S+ and Ŝ+, which are related to the positive fixed points of
h. Assuming A > 0, A+ and Â+ are implicitly defined by

A = esA − 1

esA + 2
⇐⇒ esA = 1 + 2A

1 − A
.

Hence, for A > 0 it holds that

ω+
o (A) := e

s
2A

2e− s
2A + e

s
2A

= 1 − 2

2 + esA
= 1 − 2

2 + 1+2A
1−A

= 1 + 2A

3

and

ω+
p (A) := e− s

2A

2e− s
2A + e

s
2A

= 1

2 + esA
= 1

2 + 1+2A
1−A

= 1 − A

3
.

Thanks to the symmetry, we indeed have ω+
o (A) = ω−

p (−A), as well as ω+
p (A) =

ω−
o (−A). Noting that that we have ω+

o = ω+
o (A+) and ω̂+

o = ω̂+
o (Â+), it is straight-

forward to conclude that the behavior with respect to β of ω̂+
o and ω+

o is the same
of that of Â+ and A+ with respect to q, respectively, while that of ω̂+

p and ω+
p is the

opposite of that of Â+ and A+.
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Proof of Prop. 3 The Jacobian matrices of the system in Eq. 6 evaluated at S∗ =
(F, 1/3, 1/3) when I = Δ

2 (ωo − ωp) > 0 (J ∗+) and when I < 0 (J ∗−) are

J ∗± =

⎛

⎜
⎜
⎜
⎜
⎝

1 − γ −Δγ
2

Δγ
2

Δβγ (1−σ)
6 j± −j±

−Δβγ (1−σ)
6 −j∓ j∓

⎞

⎟
⎟
⎟
⎟
⎠

, j+ = Δβ(4σ + 3Δγ (1 − σ))

36
, j− = Δβ(8σ + 3Δγ (1 − σ))

36
.

It is easy to see that both J ∗+ and J ∗− have

p(λ) = λ

(

−λ2 +
(

Δβσ

3
− γ + Δ2βγ (1 − σ)

6
+ 1

)

λ − Δ2βγ (1 − σ)

6
+ Δβσ(γ − 1)

3

)

as characteristic polynomial. An eigenvalue of both Jacobian matrices is then λ = 0,
which means that S∗ is locally asymptotically stable if

1 + det(J ∗) + tr(J ∗) > 0 ⇐⇒ βσΔ(2 − γ (1 + Δ)) > γ (3 − Δ2β) − 6

1 − det(J ∗) > 0 ⇐⇒ βσΔ(γ (2 + Δ) − 2) > Δ2βγ − 6

1 + det(J ∗) − tr(J ∗) > 0 ⇐⇒ βσΔ < 3 (14)

where J ∗ may denote both J ∗+ and J ∗−, and in either case it holds that

tr(J ∗) = Δβσ

3
− γ + Δ2βγ

6
− Δ2βγσ

6
+ 1 = 2Δβσ + β(1 − σ)γΔ2

6
+ 1 − γ,

det(J ∗) = −
(

Δ2βγσ

6
− Δ2βγ

6
− Δβσ

3
+ Δβγσ

3

)

= Δ2βγ − Δ2βγσ + 2Δβσ − 2Δβσγ

6
.

We recall that when stability is lost due to a violation of the first (resp. second) con-
dition in Eq. 14, the steady state S∗ incurs a flip (resp. Neimark-Sacker) bifurcation.
If σ = 0, conditions Eq. 14 become

{
γ (3 − Δ2β) − 6 < 0
Δ2βγ − 6 < 0

which easily provides 3(γ − 2) < Δ2βγ < 6, while setting σ = 1 we have
⎧
⎨

⎩

(γ − 2)(Δβ + 3) > 0
Δβγ + 3 − Δβ > 0
βΔ < 3

which, since the third condition implies the second one, provides the assertion.

Proof of Prop. 4 Let us consider the three conditions in Eq. 14. Under assumption
γ < 2, the first condition is fulfilled for any σ ∈ [0, 1] if γ < 2

Δ+1 , while it is

satisfied for σ < min
{
1, 6+γ (βΔ2−3)

βΔ(γ (Δ+1)−2)

}
if γ > 2

Δ+1 . The second stability condition

is satisfied for every σ ∈ [0, 1] if 2

Δ + 2
< γ <

6

βΔ2
, for no σ ∈ [0, 1] if 6

βΔ2 <
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γ < 2
Δ+2 , for σ >

γβΔ2−6
βΔ(γ (Δ+2)−2) if max

{
2

Δ+2 ,
6

βΔ2

}
< γ < 2 and for σ <

6−γβΔ2

βΔ(2−γ (Δ+2)) if 0 < γ < min
{

2
Δ+2 ,

6
βΔ2

}
.

Against this background, the unconditionally unstable scenario occurs for example
when 6

βΔ2 < γ < 2
Δ+2 , while the unconditionally stable scenario occurs for example

when βΔ < 3 and 2
Δ+2 < γ < min

{
6

βΔ2 ,
2

Δ+1

}
(for instance, for β = 12 and

Δ = 1 the unconditionally unstable scenario occurs for 1/2 < γ < 2/3, while for
β = Δ = 1 the unconditionally stable scenario occurs for 2/3 < γ < 1).

The destabilizing scenario occurs for example when 2
Δ+2 < γ < min

{
2

Δ+1 ,
6

βΔ2

}

and 3 < βΔ (for example, for β = Δ = 2, γ = 7/12, S∗ is stable for σ < 3/4).
The stabilizing scenario occurs e.g. when max{ 2

Δ+1 ,
6

βΔ2 } < γ < 2, βΔ < 3,

0 <
γβΔ2−6

βΔ(γ (Δ+2)−2) < 1 <
6+γ (βΔ2−3)

βΔ(γ (Δ+1)−2) (for instance, for β = 5/4, Δ = 2, γ = 3/2
we have that S∗ is stable for σ > 3/20).

Finally, the mixed scenario occurs for example when max
{

2
Δ+2 ,

6
βΔ2

}
< γ <

2
Δ+1 , 0 <

γβΔ2−6
βΔ(γ (Δ+2)−2) < 3

βΔ
< 1 (for example, for β = 8, Δ = 1, γ = 7/8 we

have that S∗ is stable for 1/5 < σ < 3/8). No other scenarios are possible.

Proof of Prop. 5 Let us consider the three conditions in Eq. 14. The first one, since
γ > 2, is not satisfied for any σ ∈ [0, 1] if βΔ2 < 3 and γ > 6

3−βΔ2 , while it is

satisfied for σ < min
{
1, 6+γ (βΔ2−3)

βΔ(γ (Δ+1)−2)

}
if βΔ2 > 3 or if βΔ2 < 3 and γ < 6

3−βΔ2 .

The second stability condition is satisfied for every σ ∈ [0, 1] if γ < 6
βΔ2 , while it is

satisfied for σ >
γβΔ2−6

βΔ(γ (Δ+2)−2) if γ > max
{
2, 6

βΔ2

}
.

Against this background, we observe that both unconditionally stable and stabiliz-

ing scenarios can not occur, as a direct check shows that condition 6+γ (βΔ2−3)
βΔ(γ (Δ+1)−2) > 1

is equivalent, when the denominator is positive, to γ < 2.
The unconditionally unstable scenario occurs for example when βΔ2 < 3 and

γ > 6
3−βΔ2 (for example, for β = Δ = 1 the unconditionally unstable scenario

occurs for γ > 3).

The destabilizing scenario occurs when γ < min
{

6
βΔ2 ,

6
3−βΔ2

}
, βΔ2 < 3 and

min
{

3
βΔ

,
6+γ (βΔ2−3)

βΔ(γ (Δ+1)−2)

}
< 1 (for example, for β = 8, Δ = 1/2, γ = 5/2 we have

that S∗ is stable for σ < 1/2) .
Finally, the mixed scenario occurs for example when γ > 6

βΔ2 , βΔ2 > 3, 0 <

γβΔ2−6
βΔ(γ (Δ+2)−2) < min

{
3

βΔ
,

6+γ (βΔ2−3)
βΔ(γ (Δ+1)−2)

}
< 1 (for example, for β = 1, Δ = 2, γ =

3 we have that S∗ is stable for 3/10 < σ < 9/14) . No other scenarios are possible.
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