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The human hand possesses both consolidated motor skills and remarkable flexibility in adapting to ongoing task demands. However,
the underlying mechanisms by which the brain balances stability and flexibility remain unknown. In the absence of external input or
behavior, spontaneous (intrinsic) brain connectivity is thought to represent a prior of stored memories. In this study, we investigated
how manual dexterity modulates spontaneous functional connectivity in the motor cortex during hand movement. Using magne-
toencephalography, in 47 human participants (both sexes), we examined connectivity modulations in the α and β frequency bands
at rest and during two motor tasks (i.e., finger tapping or toe squeezing). The flexibility and stability of such modulations allowed us
to identify two groups of participants with different levels of performance (high and low performers) on the nine-hole peg test, a test
of manual dexterity. In the α band, participants with higher manual dexterity showed distributed decreases of connectivity, speci-
fically in the motor cortex, increased segregation, and reduced nodal centrality. Participants with lower manual dexterity showed an
opposite pattern. Notably, these patterns from the brain to behavior are mirrored by results from behavior to the brain. Indeed, when
participants were divided using the median split of the dexterity score, we found the same connectivity patterns. In summary, this
experiment shows that a long-term motor skill—manual dexterity—influences the way the motor systems respond during
movements.
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Significance Statement

Using hands efficiently is central to our daily life. However, individuals differ in manual dexterity. We study whether the
brain’s functional organization encodes variability in manual behavior. Using a large set of MEG data acquired during
rest and a finger tapping task, we investigated how hand movements change the intrinsic functional connectivity and network
architecture. Specifically in the α band, we demonstrate that higher dexterity is associated with decreased connectivity,
increased segregation, and reduced nodal centrality. Low dexterous individuals show opposite patterns. We concluded
that manual dexterity influences how the motor system responds during movements. These findings yield high potential
to understand how intrinsic connectivity retains relevant behavior and to develop neural biomarkers of pathological behavior.

Introduction
Healthy individuals differ in their manual dexterity. This ability
is fundamental to efficiently interact with the environment.
There is evidence that manual dexterity correlates with structural
and functional changes in the motor cortex. For instance, key-
board and string players have larger primary motor cortex
(Amunts et al., 1997), gray matter density (Gaser and Schlaug,
2003; Han et al., 2009), and an extension of the sensory represen-
tation of the digits (Elbert et al., 1995; Elbert and Rockstroh,
2004) than nonexpert individuals. Furthermore, the anterior cor-
pus callosum is larger in experts than that in naive (Schlaug et al.,
1995), likely representing a morphological substrate of increased
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interhemispheric communication subserving hand motor
sequences. Finally, motor experts activate the motor cortex
more focally and efficiently (Pascual-Leone et al., 1995; Krings
et al., 2000). However, less is known about how the functional
organization of the brain correlates with long-term motor skills.

One leading hypothesis is that brain networks at rest (denoted
resting state networks, RSNs) are sculpted over the lifespan of an
individual by previous experiences and learning (Albert et al.,
2009; Lewis et al., 2009; Ma et al., 2011; Taubert et al., 2011).
Specifically, RSNs may represent a mechanism for storing and
keeping online behaviorally relevant representations (Pezzulo
et al., 2021). However, to our knowledge, no study to date has
shown that long-term motor skills are already encoded in
task-evoked changes of intrinsic activity and that such changes
influence oncoming behavior.

Intrinsic activity is both stable and flexible. Its topography is
stable across participants and recording sessions (Damoiseaux
et al., 2006) and resilient across behavioral states and levels of
consciousness (Greicius et al., 2008; Betti et al., 2013, 2018;
Cole et al., 2014; Krienen et al., 2014; Spadone et al., 2015). On
the other hand, performing a task modifies the strength of the
intrinsic functional connectivity (Lewis et al., 2009; Tambini
et al., 2010; Betti et al., 2013, 2018; Harmelech and Malach,
2013; Cole et al., 2014; Spadone et al., 2015), and these changes
can last for over a week after learning (Taubert et al., 2011).
This malleability meets the requirement of flexibility. Flexibility
means that connections that are highly correlated during resting
state change their strength, frequency content, or topological
organization during a motor task. Stability makes the functional
organization between rest and task performance highly similar.
In this study, we tested the hypothesis that the differences in dex-
terity may rely upon patterns of stability and flexibility of neural
communication, especially within the motor system.

Flexibility is a fundamental mechanism that allows adaptive
behavior and learning (Bassett et al., 2011). In terms of brain
connectivity, it requires both segregation (i.e., independent pro-
cessing in specialized networks) and integration (i.e., communi-
cation among networks; Bassett et al., 2011, 2015; Favaretto
et al., 2021). Crucially, a dynamic balance of segregation and
integration is critical for normal behavior (Fornito et al., 2012;
Shine et al., 2016). In addition, learning (e.g., motor learning
(Bassett et al., 2015) can modulate the underlying topology, for
example, modularity (decomposability into distinct partitions of
the network) and hub centrality (the role of highly interconnected
regions) of the brain.

Here, we study how brain networks measured with magneto-
encephalography (MEG) in healthy volunteers change from a
rest condition to performing motor tasks (hand or foot move-
ments). Brain networks are characterized in α and β bands
both in terms of large-scale connectivity (e.g., strength, frequency
content) and architecture (i.e., integration/segregation). Then,
we employ a data-driven analysis to characterize the individual
variability of MEG connectivity changes and identify two groups
of subjects. Finally, we relate these different connectivity profiles
to manual dexterity measured on a speeded visuomotor reaction
time task (nine-hole peg test). Specifically in the α band, we find
that individuals with higher dexterity show increased segrega-
tion/modularity and decreased nodal centrality when going
from rest to movement, especially in the motor cortex and dorsal
attention network (DAN). Opposite patterns were found in indi-
viduals with low dexterity. These results show that pre-existent
manual ability influences the way the motor cortex reorganizes
during ongoing task demands.

Materials and Methods
Participants
We analyzed MEG data from 47 participants (mean age ± SD= 27.8 ±
3.8 years, 25 females, 22 males), a subset of the freely available data
collected as part of the Human Connectome Project release (HCP
S1200 Release, WU-Minn HCP Consortium). Among the available
HCP data, we considered right-handed participants (mean handedness
score = 79.04 ± 18.76) who have both rest and task blocks and met the
minimal criteria for data quality (see below). HCP data were acquired
using protocols approved by the Washington University institutional
review board. Informed consent was obtained from all subjects.
Anonymized data are publicly available from ConnectomeDB (https://
db.humanconnectome.org).

Experimental design and statistical analysis
MEG data were acquired with a MAGNES 3600 scanner system with 248
channels (4D Neuroimaging), at a sampling rate of 2,034.5 Hz. Subjects
were first recorded during three blocks of visual fixation (rest), each last-
ing 6 min, and then during two runs of three types of tasks, the latter of
which consisted of a motor task lasting 14 min (Larson-Prior et al.,
2013). The motor task started after an approximately 10 min break, dur-
ing which EMG electrodes were mounted. During the motor task, partic-
ipants were presented with visual cues providing instructions about the
movement to perform with their right or left hand or right and left
foot. The hand movements consisted of a finger tapping task involving
the thumb and the index finger, whereas for the foot condition, they per-
formed toe squeezing. The design of the motor task (Fig. 1A) included 32
movement blocks, 8 for each hand and foot lasting 12 s and 10 inter-
leaved fixation blocks lasting 15 s. Each movement block was composed
of a 3 s cue suggesting the next movement for participants to perform fol-
lowed by a 1,050 ms black screen period. Then 10 repetitions of visual
pacing stimuli lasting 150 ms indicated the beginning of the movement
followed by a 1,050 ms black screen period in which the movement
should be performed. MEG data were recorded together with four elec-
tromyography (EMG) channels, placed on each hand and foot, two elec-
trooculography (EOG) channels, and one electrocardiography (ECG)
channel. The HCP database also provides preprocessed individual ana-
tomical models computed from structural MRI, necessary for source
reconstruction. We used the nine-hole peg test scores (provided by the
HCP) for assessing manual dexterity (Gershon et al., 2010). The dexterity
scores consist of the time in seconds employed to perform the test with
the dominant hand. Notably, such a test is a simple and low-cost measure
with high test–retest reliability (Wang et al., 2015), as recently shown also
on a sample of HCP participants (Ruck and Schoenemann, 2021), thus
representing a stable and long-term individual trait.

MEG data preprocessing and BLP estimation. MEG data released
under the WU-Minn HCP project include unprocessed channel-level
signals and channel-level preprocessed and source-level processed func-
tional data, together with individual anatomical data. Here, we used
channel-level preprocessed resting state data (Larson-Prior et al.,
2013). Data in the unprocessed format were used for the motor task or
when the processed data still contained artifacts. For these data, we
applied the same preprocessing pipeline which produced the resting state
data, to allow a reliable comparison among conditions. A brief descrip-
tion of the preprocessing pipeline is reported in the following. As a
first step, data were bandpassed (1.3–150 Hz) and notch-filtered
(59–61/119–121 Hz). Then, channels and signal segments contaminated
by large artifacts (i.e., excess residual noise in the shielded room or mus-
cular artifacts) were automatically identified and removed from further
analysis. Specifically, noisy channels were identified through the low sig-
nal similarity with neighbors and measured through correlation and var-
iance ratio and through the deviation from the distribution of channel
weights obtained by an independent component analysis (ICA)–based
approach (using FastICA with deflation approach). Then, we applied
again the same ICA approach to sensor space MEG signals to identify
environmental, physiological (e.g., cardiac, ocular), and residual channel
artifacts and brain-independent components (brain ICs) from sensor
space MEG signals, as previously reported (de Pasquale et al., 2010;
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Mantini et al., 2011; Betti et al., 2013). ICA separation was applied 20
times from different initial conditions. The ICs were automatically clas-
sified as brain or artifact for each of these iterations. For the classification,
we used six parameters: (1) correlation of the IC time course with those of
EOG and ECG channels filtered as the MEG data; (2) correlation of the
IC power spectral density (PSD) with those of EOG and ECG channels;
(3) correlation of the IC power time course with those of EOG and ECG
channels; (4) temporal kurtosis; (5) 1/f trend of the IC PSD; and (6)
flatness of the IC PSD. If none of these parameters was above the related
thresholds (which are set within the HCP script after an ROC analysis
over a set of independent HCP runs), then the IC was flagged as brain
IC. The decomposition resulting in the highest number of brain ICs
and the lowest level of artifact residual contamination (measured
through the average (across the ICs) correlation between the brain ICs
and the EOG/ECG channels) was retained as the best iteration and con-
sidered for successive steps. In our analysis, the same operator visually
inspected the classification of the best iteration for resting state and
task data, before proceeding.

The sensor maps of the brain IC were scaled to norm 100 and then
projected in the source space by means of a Tikhonov-regularized
minimum-norm estimator. The source space consisted of the individual
surface-registered cortical sheet comprising 8,004 vertices. The noise
level used by the WMNLS estimator was set to 8% of the maximum
weight amplitude for each IC. We limited the analysis to a subset of
the original 8,004 vertices, comprising functionally relevant nodes.
Specifically, we considered the parcellation of 164 regions of interest
(ROIs), consisting of vertices belonging to 10 networks depicted in
Figure 1B (de Pasquale et al., 2021).We then applied a leakage-correction
approach to the IC source space maps. Leakage is inevitable due to the
application of projection schemes to solve the ill-posed inverse problem

in MEG. Leakage typically yields a spatially blurred representation of the
underlying source distribution. Thus, source space leakage effects lead to
the spurious codependence of reconstructed sources, which heavily
affects connectivity analysis. Hence, before estimating the functional
connectivity, we applied the geometric correction scheme (GCS; Wens
et al., 2015) as previously reported (Betti et al., 2018), where all the related
formulas are reported. The GCS is a pairwise approach, that is, it models
and removes the leakage spreading from a source vertex toward all other
vertices based on the forward and inverse models. For each seed source,
the vector activity of all the other vertices in the set was estimated as the
linear combination of the brain IC time courses multiplied by the related
leakage-corrected source space weights. For both experimental condi-
tions, we then estimated the band-limited power (BLP) time courses as
the mean of the activity square module over a sliding window lasting
400 ms, with a sampling rate equal to 50 Hz.

We restricted our analysis to the α (8–15 Hz), low β (15–26 Hz), and
high β (26–35 Hz) bands, filtering the vector activity using separate high-
pass and low-pass Butterworth filters. This choice was driven by previous
studies showing that these frequency bands represented the neurophys-
iological correlates of RSNs (de Pasquale et al., 2010, 2012; Betti et al.,
2013; Betti et al., 2018). The definition of the specific frequency ranges
was based on the HCP manual and pipelines. Since the individual α
peak occurred at frequency values larger than 10 Hz, the limits of this
interval corresponded to the −3 dB value of the adopted high- and low-
pass filters. This is also in line with previous literature for networks differ-
ent from the MN (Spadone et al., 2021).

For the motor task only, we removed the evoked activity before BLP
estimation, as in the following. For each direction of the vector activity of
each vertex, we first averaged signals over epochs lasting 800 ms. The
epoch onsets corresponded to the EMG trigger stored in the HCP

Figure 1. Experimental paradigm and analysis pipeline. A, Participants performed a finger tapping (with their right or left hand) or a toe squeezing (with their right or left foot). The motor
task consisted of 32 movement blocks (16 hand and 16 foot). Each block consists of 10 trials. Three resting state runs lasting 6 min each precede the motor task. B, A set of 164-node brain
parcellation, comprising 10 networks, is used to estimate the BLP in the α (α, 8–15 Hz), low β (β, 15–26 Hz), and high β (26–35 Hz) band. C, The static functional connectivity is calculated as the
leakage-corrected correlation between each pair of nodes, separately for the resting state and the task data. D, Linear model for the relationship between rest and task. A K-means algorithm on
the β values of the model of each subject identifies two groups (i.e., high and low performers, blue and red, respectively). E, Measures of segregation/integration are computed.
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database. We then applied the Gram–Schmidt orthogonalization
approach as previously reported (Della Penna et al., 2004), retaining
the residual signal for the BLP time course estimation.

Estimation of BLP functional connectivity. The static functional con-
nectivity between a couple of nodes i and j was assessed as follows\scale
85%{:

FC(i, j) = NaN if d(i, j) ≤ 35 mm
otherwise

FC(i, j) = corr(BLP(i, i), BLP( j, i))+ corr(BLP( j, j), BLP(i, j))
2

{ }

where corr(x,y) is the Pearson’s correlation coefficient between signals x
and y, dij is the Euclidean distance between ROIs i and j, and NaN is a
“not a number” element for masking correlation coefficients closer
than 35 mm. This mask was applied because GCS could be affected by
local mis-correction effects, due to seed mislocalization (Wens et al.,
2015). The element BLP (i,j) represents the BLP of ROI i after removing
the bias due to the leakage spread from ROI j, and the diagonal element
BLP(i,i) represents the uncorrected BLP of node i. We computed the
average of the two pairwise correlations to account for slight asymmetries
induced by possible numerical errors.

For each run of rest data, the static connectivity was computed over
the entire session as the average of Pearson’s correlation over nonover-
lapping windows lasting 25 s. For the motor task, the static connectivity
was computed over 12 s BLP concatenated segments belonging to the
same class of movements. After averaging the interaction matrices across
runs, we obtained for each experimental condition individual- and
group-level static correlation matrices (Fig. 1C). To normalize the data,
we computed the z-fisher transform of the correlation data at the subject
level.

Analysis of network architecture. To investigate putative changes of
the global functional architecture induced by switching from rest to
the two motor tasks, the correlation matrices obtained for every subject
and experimental condition were analyzed with the Network-Based
Statistics (NBS) toolbox separately for each band. NBS is a statistical non-
parametric technique that operates directly on raw connectivity values
and seeks to identify potentially connected structures formed by a set
of suprathreshold links (graph components; Zalesky et al., 2010). For
the comparison between fixation and hand/feet movement, and between
high and low performers (see next subsection), changes in graph compo-
nents were tested by using a range of primary (t-statistic) thresholds,
ranging from 5 to 9. Permutation testing (n= 5,000) was then used to
ascribe a p-value. Each component identified by NBS satisfied p≤ 0.05.
For the graph visualization, we used the MATLAB toolbox BrainNet
Viewer (Xia et al., 2013). For each band, we then counted the relative
number of connections changed within the network, across networks,
and for each network. Then, we analyzed possible links between the cor-
relation changes and behavior. To this aim, according to clustering indi-
ces obtained from a K-means algorithm, we split our sample into two
groups, comparing the task versus rest differences. Finally, we counted
the number of component links modified within and across networks.
We are aware that the choice of this threshold certainly influences the
size of the obtained components also due to the contribution of false-
positive links in a component (Zalesky et al., 2010). Nevertheless, we
here computed the percentage of modified links involving each RSN,
normalized by their total number to compensate for the effect of false-
positive links.

Regression model task-rest and clustering algorithm. For each subject,
band, and network, we aimed at estimating to which extent intrinsic con-
nectivity predicted task connectivity. First, for each RSN we considered
all within and across-network connections. Then, we adopted the follow-
ing linear model for the task versus rest connectivity for each RSN
(Tommasin et al., 2018):

T = bR+ 1,

where T is the BLP connectivity for the motor task, R is the BLP connec-
tivity during rest, β is the slope of the linear model, and ε is the error. We
used all the pairwise connectivity values of each RSN to estimate β. This
provides, for each subject and frequency band, a matrix of β (network ×
network). Specifically, βij close to or different from 1 signaled respectively
similarity or dissimilarity between rFC and tFC for the across-RSN inter-
action involving RSN i and j. Then, we used a data-driven approach run-
ning a K-means algorithm on the individual β matrices to cluster them
(Fig. 1D). To estimate the optimal number of clusters, we varied the
number of clusters from 2 to 10 choosing the best value as the one pro-
ducing the maximum average value of the silhouette (Kaufman and
Rousseeuw, 1990) provided that its values were always positive
(Extended Data Fig. 3-1). We then analyzed the link between the clusters
and the manual dexterity through t test comparisons.

Analysis of segregation/integration. We then investigated possible
links between the individual manual skill and the task-induced modula-
tions of the segregation/integration balance. First, the individual BLP
connectivity matrices were transformed into binary graphs according
to a percolation analysis (de Pasquale et al., 2021) looking for the max-
imum threshold ensuring the full connectedness of the graph (i.e., the
number of graph components was equal to the graph size). Then, we
applied Louvain modularity, as implemented in the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010) to estimate the global modularity
for each subject and condition (rest, hand motor task). The Louvain
modularity was estimated at 10,000 times for each subject, retaining
the maximum modularity value together with the corresponding mod-
ules. We then applied a mixed ANOVA with condition (rest, motor
task) and subject group (according to the clustering results) as factors.
Duncan post hoc was applied to significant effects. In addition to segre-
gation analysis, we also investigated how the motor task modulated the
central role of networks and hubs. Thus, for each cluster, the nodal par-
ticipation index (PI) was estimated over the modules in each condition.
The PI values were analyzed at the RSN level, through the mean PI over
the nodes in each RSN, and at the nodal level. In the first case, we ana-
lyzed possible differences in the PI across groups, conditions, and
RSNs through a mixed ANOVA, with Duncan post hoc for the analysis
of significant effects. Finally, at the nodal level, we ran a t test comparing
task and rest conditions in each group (p < 0.05). Nodes significantly
changing their PI were displayed on the cortex through BrainNet Viewer.

Results
Hand movements decrease the strength of functional
connectivity
In analogy with previous studies (Betti et al., 2013; Cole et al.,
2014; Krienen et al., 2014; Spadone et al., 2015), we found that
the execution of motor tasks preserved the overall topography
of MEG connectivity across all RSNs. The observed similarity
(Mantel test, p < 0.05, r > 0.83) between rest andmotor tasks indi-
cates a similar functional architecture across conditions
(Extended Data Fig. 2-1). Next, we investigated the influence of
movements (hand, foot) on intrinsic FC (rest). Since all subjects
were right-handed, we focused our analysis on the right hand,
considering the left hand as a control.

We ran a repeated measures ANOVA with band (α, low β,
high β), condition (right hand-rest vs foot-rest), and network
(all RSNs) as within-subject factors on the connectivity modula-
tion (task-rest) averaged across connections of each RSN.
Right-hand (Fig. 2A) and foot movements (Extended Data Fig.
2-3A) induced an overall decrement of connectivity across all
RSNs and bands. Specifically, we found a significant main
effect of band (F(2,92)= 12.14 p= 0.000021, pη2 = 0.21) with
smaller decrements in α as compared with all other bands
(mean FCα=−1.55, FClow β=−3.73, FChigh β=−2.50, post hoc
Duncan corrected, p= 0.000058 and p= 0.036, respectively).
There was also a significant main effect of condition (F(1,46) =
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6.03, p= 0.018, pη2 = 0.12) with stronger decrements during foot
as compared with right-hand movement (mean FCrright hand =
−2.22, mean FCfeet =−2.97; pBonff= 0.018) (Fig. 2A and
Extended Data Fig. 2-3A). Furthermore, we found a significant
effect of network (F(9,414) = 11.77, p= 1.1 × 10

−16, pη2 = 0.20) as
well as a band–network interaction (F(18,828) = 7.25, p < 0.001,
pη2 = 0.14) due to a weaker decrement in the motor network
in the α band (FCα MN=−1.29) as compared with the low
β (FClow β MN=−3.69; pBonff= 0.00001) and high β bands
(FChigh β MN=−2.67; pBonff= 0.000017). Finally, all the other
interactions were significant (all p-values <0.05) except for the
band–condition interaction.

As a control analysis, we ran the same repeated measures
ANOVA on the task performed with the left hand (Extended
Data Fig. 2-2A). Again, we found a significant main effect of
band (F(2,92) = 13.44 p= 0.000008, pη2 = 0.23), with α connectiv-
ity values higher than all other bands (mean FCα=−1.42,

FClow β=−3.88, FChigh β=−2.73, post hoc Duncan corrected,
p = 0.00005 and p=0.007, respectively). We found a trend for
the main effect of condition (F(1,46) = 3.97, p= 0.05) with decre-
ments during feet movements slightly higher compared with left-
hand movements (mean FCleft hand =−2.39, mean FCfeet =−2.97).

Once again, we found a significant band–network interaction
(F(18,828) = 6.89, p = 2.2 × 10−16, pη2 = 0.13) due to a weaker decre-
ment in the motor network in the α band (FCαMN=−1.18) as
compared with the low β (FClow β MN=−3.86) (pBonff= 0.00001)
and high β bands (FChigh β MN=−2.98; pBonff=5× 10−9). All other
interactionswere significant except for band–condition and condi-
tion–network interactions (all p-values < 0.05).

To summarize, in agreement with previous MEG reports on
visual stimuli (Betti et al., 2013, 2018), all RSNs decreased their
connectivity during task (motor) performance, despite mainte-
nance of the overall resting state topography. Functional connec-
tivity decrements spread along the entire cortical mantle and

Figure 2. Changes of functional connectivity and topology induced by the finger tapping with the right hand. A, Group-level difference connectivity matrices task-rest for α, low β, and high β
bands. For visualization purposes, the matrices depict node-to-node correlation values. B, changes of network topology. Right-hand movements modulate fewer links in the α band, especially
within the motor network (green edges). Conversely, in the β band, we observed a widespread topological reorganization across all networks. C, Percentage of modulated links. Within-network
connections are color-coded, between-network connections are shown in gray. See Extended Data Figures 2-1–2-4.
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were stronger for the foot than hand movements. Interestingly, α
band decrements were less prominent than in other bands, espe-
cially in the motor network.

Reorganization of network topology during finger tapping
Next, we investigated changes in functional topology induced by
the two motor tasks by means of NBS (Zalesky et al., 2010).
Figure 2B shows the graph components that significantly
decreased for each frequency band for the right-hand movement
(see Extended Data Fig. 2-2B for the left hand). In the α band, the
task produced a high proportion of decreased connections (n=
121), especially in the motor network (namely 23%, computed
as the ratio between the number of changed connections within
the motor network divided by the total number of changed con-
nections; Fig. 2B, upper panel, green lines). Differently, in the low
β band, while a larger number of connections (namely 1,303,
approximately one order of magnitude larger than in the α
band) were also reduced, we did not observe a predominant pro-
portion involving the motor network (only 8%; Fig. 2B, middle
panel). The same applies to the high β band, where we observed
an intermediate number of decreased connections (namely 213;
Fig. 2B, lower panel). In this case, the percentage contribution
within the motor network was 4%. To illustrate the contribution
of each RSN, Figure 2C shows the between- (gray) and within-
network (color-coded) connections. It can be noted that, only
in the α band, do we observe a predominant contribution within
connections of the motor networks. In the other bands, changes
were more uniformly distributed across RSNs.

As a control, we performed, separately, the same analyses for
toe squeezing and finger tapping performed with the left hand.
The results on the left hand mirrored the ones found on the right
hand, supporting a larger modulation within the motor network
in the α band (Extended Data Fig. 2-2B,C). As before, in the β
bands (Extended Data Fig. 2-2C, middle and lower panels), we
found a modulation of network topology involving all RSNs.

In general, foot movements reorganized many connections in
all bands (Extended Data Fig. 2-3). This was further corroborated
by NBS analysis comparing the two motor tasks with rest
(hand-rest vs foot-rest). Among these decreased connections,
the vast majority involved connections between networks with
a small contribution of links within the motor network
(Extended Data Fig. 2-4). In summary, motor tasks induce an
extensive topological reorganization in both β bands. For the
hand movement, it involved predominantly the motor network
in the α band.

The modulation of α band connectivity encodes manual
dexterity
To test the behavioral relevance of intrinsic connectivity modu-
lation in the motor cortex, we tested its relationship to manual
dexterity, as measured by the nine-hole peg test.

First, to evaluate the similarity between FC at rest (rFC) and dur-
ing the task (tFC), we adopted a linear model: tFC=β× rFC+ e
(Fig. 1D), and we studied the variations of β values (i.e., the
slope). Specifically, for every RSN, we considered its set of con-
nections (both within and across RSNs), and from them, we esti-
mated the β values. This provides, for each subject and frequency
band, a matrix of β, with βij representing the tFC–rFC relation-
ship between networks i and j. Specifically, the larger the distance
of βij from one, the higher the change from rFC to tFC. Hence, for
each participant, we obtained a specific profile of functional reor-
ganization between rest and task. Then, subjects were clustered
based on their β profiles using a K-means clustering. We selected

the number of clusters based on the maximum average value of
the silhouette (Kaufman and Rousseeuw, 1990). For the α
band, the optimal number of clusters was two (Extended Data
Fig. 3-1).

We then analyzed the link between the clusters and the man-
ual dexterity through t test comparisons.

The centroids of the obtained clusters, that is, the average of
the β matrices within each class, are shown in Figure 3A. In
the first group (Fig. 3A, left panel), β values were smaller than
1 (mean value = 0.77), suggesting changes in the considered con-
nections between task and rest. By contrast, in the other cluster
(Fig. 3A, right panel), β values were closer to 1 (mean value =
1.16), suggesting a higher similarity between rFC and tFC. This
different trend in the two groups is evident in Figure 3B, where
we report the complete β pattern for each subject in the two
groups. Then, we tested whether the two groups reflected a differ-
ent behavioral performance, as investigated through the manual
dexterity task (i.e., the nine-hole peg test). Interestingly, we
obtained a significant difference in terms of dexterity (t(45) =
−2.80, p= 0.008). The first group was characterized by faster
reaction times (mean RT± SD= 95.70 ± 10.85 s; i.e., high per-
formers), while the second one showed slower reaction times
(mean RT± SD= 103.60 ± 8.48 s; i.e., low performers; Fig. 3C).
Of note, these differences cannot be ascribed to either demo-
graphic or cognitive differences, as reported in Extended Data
Table 3-2 (upper part). Specifically, the cognitive differences
were tested through a Flanker test, provided by the HCP data-
base. Notably, this result was specific to the α band. We did
not obtain any significant clustering either in low or high β bands
(Extended Data Table 3-1).

In the α band, we then tested the stability of the β values and
the related clustering when pruning, at increasing levels, the orig-
inal set of connections, to assess which was the range of connec-
tions mainly driving the classification. To do so, we thresholded
the connectivity matrices preserving only connections above an
N percentile value (Extended Data Table 3-1), from N= 0 to
N = 0.99. We then computed β values again for each network
subset and we repeated K-means clustering. Our results demon-
strate that the algorithm separates two groups, only for connec-
tions not exceeding the 85th percentile. The two groups could not
be separated when looking at the strongest connections (>85th
percentile). However, the characterization of these connections
is beyond the scope of this paper. The analysis shown in
Extended Data Table 3-1 suggests that the clustering results are
consistent and reproducible with respect to the choice of the
adopted thresholds. Notably, the same analyses did not produce
any consistent results either in low β or high β frequency bands.

In summary, this analysis shows that the modulation of func-
tional connectivity, in the α band, encodes the behavioral
performance.

Differences in brain connectivity between high and low
dexterity participants
Figure 4A shows the different patterns of FCmodulation in going
from rest to task (finger tapping) in high and low performers.
High performers show an overall significant decrease in connec-
tivity across all RSNs (Fig. 4A, left). Conversely, low performers
display a generally significant increase in FC strength involving
all RSNs, apart from MN and DAN (Fig. 4A, right). We tested,
separately for the two groups, which graph components were
modulated by finger tapping. As shown in Figure 4B (upper
panel), participants with higher dexterity showed significant dec-
rements of correlation mainly between networks. On the
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contrary, low performers showed significant increments of corre-
lation, both between- and within-network (lower panel).

To further validate this relationship between modulations of
FC and dexterity (from brain to behavior), we first divided par-
ticipants based on their performance, and then we analyzed the

connectivity modulations (Fig. 4C; from behavior to brain).
We adopted a median split approach to obtain high and low per-
formers (based on RTs on the nine-hole peg test), as shown in
Figure 4D. Then, as in the previous analysis (Fig. 4A), we com-
pared the FCmodulations within these two groups. In agreement

Figure 3. K-means clustering identifies high and low performers. A, Centroids of the two clusters, consisting of β values, identified by K-means. B Scatterplot depicting the linear relationship
between rest and task connectivity in the two groups (blue, high performers; red, low performers). A distinct linear trend is evident. C, The two groups differed in terms of manual dexterity. The
dexterity score was measured as mean RTs on the nine-hole peg test (see Materials and Methods). The histogram for the dexterity scores is reported for high land low performers. See Extended
Data Figure 3-1.
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with the first analysis, high performers show large FC decrements
across all RSNs, differently from low performers characterized by
smaller FC changes (Fig. 4C). Again, these differences cannot be
ascribed to either demographic or cognitive differences, as
reported in Table 3-2.

The brain-to-behavior approach shows a specificity attrib-
uted to the α band (as revealed through the clustering
approach). To test this specificity also in the behavior-to-brain
approach, we considered the division of high and low perform-
ers obtained from the median split. Then, we tested the similar-
ity of their connectivity modulation matrices in the α, low β, and
high β bands, across subjects through an unpaired t test (α =
0.05, two-tailed test). In the α band, we obtained that a large
number of connectivity changes resulted in a significant differ-
ence between the two groups. Conversely, both in the low and
high β, this number was highly reduced (∼40% of the connec-
tion changes observed in α). This suggests a higher similarity
in the two groups in the β as compared with the α band. In

this band, in the high performers, we observed an overall
reorganization involving all RSNs. This pattern was completely
different in the β bands, where we observed changes involving
only VFN, VPN, and DAN networks (Extended Data Fig. 4-1).
This seems to suggest a specificity for the α band and also for
the behavior-to-brain approach.

It must be considered that these analyses address the con-
nectivity–behavior link from two opposite perspectives: from
the FC to behavior and the other way around. Thus, in the
first case, the connectivity modulations in the two groups are
naturally enhanced, being optimized by the clustering, while
the resulting group division is somehow smoother. In the sec-
ond analysis, instead, the groups are more clearly distinguished,
being separated by the median split, while the corresponding
differences in FC modulations are more moderate than in the
previous case. However, it is noteworthy that in both analyses
the results are consistent in showing opposite FC patterns
between groups.

Figure 4. From brain-to-behavior and behavior-to-brain approach: the modulation of functional connectivity encodes manual dexterity. A, Difference (task-rest) connectivity matrices for high
performers (left panel) and low performers (right panel). Only significant connections are reported (t test). High performers exhibit an overall decrease of FC in all networks, while low performers
show a slight increase, with stability in the motor network. B, Modulation of topology in high and low performers and rate of reorganization expressed as a percentage of modulated links.
Within-network connections are colored-coded, and between-network connections are shown in gray. C, As in panels A and B, we report the difference (task-rest) connectivity matrices for the
high performers (left panel) and low performers (right panel) identified through a median split on the behavioral performance (nine-hole peg test). According to the results extracted through the
K-means, high performers exhibit a decrease in FC, while low performers show similarity between rest and task matrices. D, Histogram for the dexterity scores for high land low performers,
according to the median split procedure. See Extended Data Figure 4-1.
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Task-induced modulations of segregation/integration reflect
subjects’ dexterity
Our previous findings show that specific patterns of FC modu-
lation from rest to movement depend on the participants’
motor skills (i.e., performance on the nine-hole peg task).
Based on past evidence of motor learning inducing increased
segregation of the sensorimotor system and reduction of hub
centrality (Bassett et al., 2015), we estimated graph modularity
in the α band by quantifying the amount of segregation. We first
applied a percolation analysis (Bordier et al., 2017) to obtain
individual binary graphs. Then, we applied the Louvain modu-
larity (Lancichinetti and Fortunato, 2009) and ran a mixed
model ANOVA on modularity, with group (high and low per-
formers) as the between-subject factor and experimental condi-
tion (rest, hand motor task) as the within-subject factor. We
found a significant group–condition interaction (F(1,45) =
20.46, p = 0.00004, pη2 = 0.31) explained by an increase of net-
work modularity when going from rest (fixation) to hand move-
ments (finger tapping) in high performers (p = 0.002) and a
decrease of modularity in low performers (p = 0.007).
Moreover, modularity in high performers was significantly
smaller than that in low performers at rest (p = 0.03), while it
became larger than that in low performers during finger tapping
(p = 0.0002; Fig. 5A).

Then, we measured modulations of centrality through the PI
(de Pasquale et al., 2018). The results obtained from a mixed
model ANOVA, with group (high and low performers) as a cat-
egorical factor and experimental condition (rest, finger tapping)
and RSNs (all networks) as within-subject factors, revealed a
significant condition–group–RSN interaction (F(9,405) = 2.84,
p = 0.003, pη2 = 0.06). When going from rest to task, high per-
formers showed a significant decrease of the PI in the control net-
work (CON; p= 0.02), DAN (p= 0.04), and MN (p= 0.000007).
Conversely, low performers showed a significant increase in
DAN (p= 0.003) and MN (p= 0.04). For the sake of clarity,
Figure 5B shows the difference between task and rest in the
two groups. At the level of individual regions (see Materials
and Methods), high performers showed a significant decrease
of centrality in nodes of the MN (dmSPL, vCS, S2, dPoCe,
mdSPL), FPN (PrCu), DAN (mIPS), and AN (mSTG).
Conversely, low performers showed significant PI increases in
the MN (vPoCe, lvPoCe), DAN (vPoCe-SMG, dPoCe, FEF),
VAN (vPrCe, MFC2), and VFN (LO; Fig. 5C).

In summary, when executing the finger tapping task, dexter-
ous individuals show an increase in the segregation of the intrin-
sic network topology. In parallel, they show a reduction of
centrality, mainly in the MN, DAN, and CON. The reduction
of PI indicates that, during the finger tapping task, the

Figure 5. Functional integration and segregation in high/low performers. A, High performers exhibit a statistically significant higher modularity during finger tapping than rest (*p< 0.05,
**p< 0.01, ***p< 0.001); conversely, modularity decreases in low performers when switching from rest to motor task. The different modularity in the two groups suggests that segregation
relates to the performance. B, The PI shows a decrease of nodal centrality (averaged over nodes in each RSN) in high performers, especially in the motor, control network, and DAN. Conversely, in
low performers, the PI increases. This modulation is significant in the motor network and control network. C, Nodes with significant decreases in PI between rest and task in high (left) and
increases in PI in low performers (right). Here, the differences in PI between task and rest for each RSN are depicted for visualization purposes. The statistically significant nodes are enlarged in
the figure.
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connections underlying the hub centrality involve more within-
network connections than across-network ones. This suggests a
“focusing” effect of the involved networks that reduces their com-
munication with other RSNs. Opposite patterns were found in
low performers, with an increase in across-network communica-
tion mainly involving the DAN and MN.

Discussion
Manual dexterity is a long-term skill that varies among individ-
uals, and this study investigated how this characteristic is
reflected in the task-induced modulation of spontaneous brain
connectivity. We confirmed that the underlying network topog-
raphy observed at rest closely resembled that observed during a
motor task. However, in the α and β frequency bands, this stable
topography is combined with consistent changes in connectivity
strength and topology. Notably, in the α band, a specific reorga-
nization of connections enabled the differentiation of high per-
formers from low performers. This reorganization manifested
in opposite directions for the two groups: high performers dis-
played primarily decreased motor network connections, while
low performers exhibited more widespread changes that
extended beyond the motor network, with slight increases or
greater stability. Notably, high performers demonstrated an
“internal focusing” effect in network topology. This was charac-
terized by increased network modularity, indicating enhanced
segregation, and decreased nodal centrality. Conversely, low per-
formers displayed an opposite trend, suggesting a dysfunctional
integration.

Proficiency in using hands is revealed through specific mod-
ulations of functional architecture in the α band. The functional
significance of this rhythm is multifaceted and under debate.
Traditionally, its amplitude has been associated with the inhibi-
tion of task-irrelevant regions in the brain (Klimesch et al., 2007;
Jensen and Mazaheri, 2010). α is an “idling” rhythm
(Pfurtscheller et al., 1996), that is, denoting a state of inactivity
of the brain circuits, which is then desynchronized during a
task. The α connectivity needs to be suppressed because more
specific task-related functional patterns emerge (Betti et al.,
2013, 2018). Such an effect (Fig. 2, Extended Data Figs. 2-2,
2-3) is also in line with decrements of correlated cortical noise
occurring during tasks or stimulus presentation, observed in
the monkey and cat visual cortex (Smith and Kohn, 2008;
Nauhaus et al., 2012). These α oscillations have been also linked
with high-order cognitive functions, such as memory and atten-
tion (Klimesch, 2012; Sadaghiani and Kleinschmidt, 2016). They
correlate with faster reaction times, better memory performance,
and information processing (Klimesch et al., 1993, 1996;
Angelakis et al., 2004). A link between α rhythm and behavior
has been recently highlighted during resting state, particularly
in expert populations. In a sample of pianists, the spontaneous
phase coupling in the α band correlates with the motor perfor-
mance of finger tapping (Allaman et al., 2020). Analogously, in
expert dancers, resting state connectivity in the μ rhythm, suc-
cessfully decodes the level of motor expertise (Amoruso et al.,
2017, 2022). Accordingly, motor (Albert et al., 2009; Tambini
et al., 2010; Ma et al., 2011; Taubert et al., 2011; Gabitov et al.,
2019) and perceptual learning (Lewis et al., 2009) shapes intrinsic
connectivity in a behaviorally relevant manner. In addition, rest-
ing state cortical connectivity predicts future motor skill and
visual perceptual learning acquisition (Baldassarre et al., 2012;
Wu et al., 2014; Dyck et al., 2021) and interindividual variability
in motor performance (Roshchupkina et al., 2022).

Our findings add novel information to this body of work.
In fact, although theoretical models predict that spontaneous

connectivity reflects the training of cortical networks in the
course of development, first, and then daily life, most of the
experiments performed to date adopted laboratory tasks
(Harmelech and Malach, 2013; Betti et al., 2021; Pezzulo et al.,
2021). Here, we considered a finger tapping task, a controlled
movement that closely resembles the precision grip thumb index
(NAPIER, 1956; Castiello, 2005), used frequently and consis-
tently by people in daily life (Sili et al., 2023). Hence, one might
argue that this movement, frequently repeated during grasping of
small objects, may be stored in patterns of intrinsic connectivity
within the motor cortex. We show that finger tapping differen-
tially modulates α, not β, band connectivity in the motor cortex,
especially for participants displaying stronger manual dexterity
in the nine-hole peg task. There are two specific modulations.
Firstly, higher dexterity participants showed regionally specific
decrements in the α band, especially in the motor network.
Moreover, the connectivity changes were more focal and segre-
gated. Instead, lower dexterity individuals showed no changes
in the motor network and increased connectivity with more inte-
gration across networks. Secondly, toe squeezing, a movement
less frequently performed in daily life, caused a global and wide-
spread reduction of the intrinsic α connectivity across all
networks.

The widespread connectivity decrements in α caused by the
less practiced toe squeezing nicely dovetails with our previous
work in the visual system where we observed that natural stimuli
produced specific decrements in connectivity and temporal pat-
terns of BLP correlation, which were more limited and more sim-
ilar to resting state topography, and dynamics than widespread
changes produced by synthetic temporally scrambled movies
(Betti et al., 2018). The stronger similarity between spontaneous
dynamics and dynamics produced by natural stimuli versus syn-
thetic stimuli has been also shown in single-unit work in mon-
keys and ferrets (Fiser et al., 2004; Berkes et al., 2011). We have
argued that this similarity reflects the function of spontaneous
activity as a spatiotemporal generativemodel of the environment,
body, and cognition (Pezzulo et al., 2021).

In contrast to α, β connectivity seems to be related to the
movement itself, thus being highly modulated during both motor
tasks, without specific topographic changes (Fig. 2 and Extended
Data Fig. 2-3). Being β the default rhythm of the motor system,
task-induced modulations of connectivity may reverberate even
transiently after the task and correlate with motor learning
(Mary et al., 2017). However, such an effect is not shown here,
as our study is not properly designed to explore the short-term
training effects.

In addition, we show that the level of long-term expertise in
manual dexterity biases how the motor network responds to a
common motor task. Interestingly, higher-performance individ-
uals showmore segregation while lower-performance individuals
show more integration. This result has been replicated in healthy
subjects where stronger network segregation predicts higher cog-
nitive, behavior, and health performance (Smith et al., 2015) and
in stroke patients where lesions cause abnormalities of cognitive
functions that linearly relate to the degree of modularity and
recover proportionally to its improvement (Corbetta et al., 2018).

Previous studies showed that network segregation and inte-
gration mechanisms have been associated with behavioral per-
formance (Fornito et al., 2012; Cohen and D’Esposito, 2016;
Wang et al., 2021). In our study, in high performers, the required
segregation seems to steer the system toward an “internal
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focusing” of task-related networks. In fact, the segregation is
observed through an increase in functional modularity, going
from rest to task. This agrees with previous studies where mod-
ularity has been reported as sensitive to individual differences
occurring during motor training (Bassett et al., 2011; Baniqued
et al., 2019). An increase in modularity during active motor beha-
vior may represent a strategy for responding more efficiently to
the task demand. In fact, learned procedures are automated
(Milton et al., 2004) and characterized by focal brain activity
(Pascual-Leone et al., 1995; Krings et al., 2000; Kelly and
Garavan, 2005). Specifically, we observed an increase in modu-
larity achieved through an important switch of the participation
indices of functional hubs (Fig. 5). In high performers, hubs of
the motor and control networks showed a significant reduction
of their PI when switching from rest to task. The observed trend
in the PI suggests a shift in the role of the involved hubs from
linking nodes of distinct communities to linking nodes within
the same community. This seems to realize the above-mentioned
“internal focusing” of these RSNs. This is in line with previous
studies (Shine et al., 2016). As far as it regards low performers,
we observed an opposite reorganization of the functional archi-
tecture, characterized by dysfunctional higher integration.
Interestingly, the loss of network segregation has been reported
as a dysfunctional mechanism in many disconnection syndromes,
such as stroke (Spadone et al., 2022).

In summary, through the lifespan, learning processes and
experience build an intrinsic scaffold of communication that
needs to be stable to store procedural and semantic memories.
However, in the presence of a task, it must also be flexible to
enhance and support the performance. Our study suggests that
these properties are embedded in the topography and topology
of the modulation of the intrinsic connectivity in the α band.
Jointly these observations suggest the intriguing possibility that
long-term priors may be coded in α connectivity, while short-
term learning in β connectivity. This hypothesis shall be tested
in future experiments. Taken together, these results suggest an
intriguing novel role of the functional connectivity in the α
band and its relationship with behavior, well beyond the typically
reported simple suppression.

Overall, our results pave the way for the development of
novel and personalized therapeutic strategies for restoring
pathophysiological mechanisms arising from an impairment
in the coordination of distributed neural activity. This applies
to a large variety of pathological disorders ranging from trau-
matic and vascular lesions to neurodegenerative diseases
(Hohenfeld et al., 2018). For example, it has already been
shown that stroke patients exhibit dysfunctional intra- and
interhemispheric connectivity patterns, and this impairment
in the balance of communication can predict behavioral
impairment (Corbetta et al., 2018; Siegel et al., 2018). In this
perspective, our results are particularly relevant, as we provide
evidence that dexterity, transversal to various motor compe-
tencies, is already sculpted in neural communication.
Intervening in these neural communication patterns can allow
us to develop recovery strategies with potential positive
impacts on daily living activities.
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