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Polytypic quantum wells in Si and Ge: impact
of 2D hexagonal inclusions on electronic band
structure†

Anna Marzegalli, Francesco Montalenti and Emilio Scalise *

Crystal defects, traditionally viewed as detrimental, are now being

explored for quantum technology applications. This study focuses on

stacking faults in silicon and germanium, forming hexagonal inclu-

sions within the cubic crystal and creating quantum wells that modify

electronic properties. By modeling defective structures with varying

hexagonal layer counts, we calculated the formation energies and

electronic band structures. Our results show that hexagonal inclusions

in Si and Ge exhibit a direct band gap, changing with inclusion

thickness, effectively functioning as quantum wells. We find that Ge

inclusions have a direct band gap and form type-I quantum wells. This

research highlights the potential of manipulating extended defects to

engineer the optoelectronic properties of Si and Ge, offering new

pathways for advanced electronic and photonic device applications.

Crystal defects are distortions of the periodic crystal lattice that
are typically undesirable because they deteriorate the mechanical,
electrical, and optical properties of solids. Despite this, solid-state
point defects that act as single-photon sources and quantum bits
are among the most promising candidates for quantum technol-
ogies, with a long history in solid-state physics and quantum
information science.1 In contrast, extended defects are often
considered unwanted and detrimental for opto- and power-
electronic devices.2–6 However, these defects are intriguing from
a physical perspective and hold potential for innovative applica-
tions. They can form quantum wells within the material and, if
repeated periodically along the stacking direction, they may give
rise to superlattices.7 The most common and straightforward type
of extended defects, stacking faults (SFs), occur quite naturally in
many materials that exhibit polytypism. SFs can be viewed as
inclusions of a few layers of one polytype within the perfect layer
stacking of another polytype.8 They are generally not considered
the most significant defects in comparison to other types of

defects in silicon (Si) and germanium (Ge), such as dislocations,
vacancies, and interstitials. Nonetheless, errors in the stacking
sequence are often observed in Si and Ge nanostructures and
particularly in nanowires.9–11 Moreover, recent experiments report
on hexagonal germanium (hex-Ge) nanostructures within epitaxi-
ally grown cubic-Ge on silicon (Si(001)) substrates. These hexago-
nal inclusions, which are essentially stacking faults, form as a
result of strain-induced nanoscale crystal structure transforma-
tions under far-from-equilibrium growth conditions. In the same
study, Zhang and coauthors inferred that these hexagonal-Ge
nanostructures have direct-band gap features.12

In this work, we perform first-principles calculations to
determine the electronic band structures of these hexagonal
inclusions in Si and Ge. Our results prove that Ge inclusions
exhibit a direct band gap, with the band gap energy modulated
by the thickness of the inclusions.

SFs in the cubic diamond crystal alter its typical stacking
sequence of tetrahedra (T1T2T3) along the [111] direction. The
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New concepts
In this study, we theoretically demonstrate the novel concept of polytypic
quantum wells (QWs) in 3C-Si and Ge, uniquely formed by the inclusion
of 2D hexagonal structures within the same material matrix. These
inclusions are, in fact, types of extended defects already observed in Si
and Ge. This represents a paradigm shift from the traditional approach of
avoiding these defects to engineering them to exploit their properties as
direct bandgap QWs, particularly in Ge. Unlike conventional QWs, which
typically involve different materials or heterostructures, our approach
leverages the inherent properties of a single material type, creating
quantum wells through structural polytypism. Our findings reveal new
insights into the electronic band structure modifications induced by
these 2D hexagonal inclusions, which are predicted to exhibit unique
electronic and optical properties. This study provides a fresh perspective
on material and defect engineering at the nanoscale, introducing new
strategies for manipulating electronic properties within a homogeneous
material system. The implications of this work extend to advanced
semiconductor technologies, potentially enabling the monolithic
integration of light sources in photonic integrated circuits by exploiting
polytypic inclusions.
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defective cubic crystal becomes non-periodic along the latter
direction, and new sequences ascribable to the 2H tetrahedral
stacking sequence (e.g. T1T3

0) appear in between the 3C stack-
ing sequences. These planar defects constitute 2D-hexagonal
inclusions in the 3C crystal structure, as evidenced in Fig. 1a.
We modelled defective structures that include between 2 and 5
layers (named 2L–5L), which can be identified with the hex-
agonal stacking sequence. In other words, we include from one
to four 2H unit cells in a large supercell of 3C crystals, which is
ideally semi-infinite along the [111] direction. The 2L and 3L
structures are better known in the literature as twin boundaries
(TB) and intrinsic stacking faults (ISFs), respectively.13–17 We
report in Table 1 the formation energies calculated as the
energy difference (per atom) between all defective structures
shown in Fig. 1 and equivalent pristine 3C cells. For both Si and
Ge, these values are very similar to those obtained using the
ANNNI model and exploiting the polytype cohesive energies, as
described in the method sections of the ESI.† Although no
previous calculations were found for the 4L and 5L structures,
the formation energies calculated for the TB and ISF (i.e., 2L
and 3L structures, respectively) agree well with the values

reported most recently in the literature.13 These energies are
calculated within the framework of density functional theory (DFT)
using the generalized gradient approximation (GGA) and a modified
version of the Perdew–Burke–Ernzerhof (PBE) functional optimized
for solids.18 For the formation energy values calculated with the
ANNNI model, we also include values obtained by exploiting the
non-empirical strongly constrained and appropriately normed
(SCAN) meta-generalized gradient approximation (meta-GGA)
exchange–correlation functional,19,20 which has been shown to
provide more accurate energies of several molecules and
materials.21 Indeed, especially for Si, the calculated value with SCAN
for the ISF is closer to the experimental value of 55 � 7 mJ m�2.22

One may notice that the formation energies in Ge are about
twice as large as the corresponding ones in Si. However,
especially for Si, these values are not much higher than the
formation energies calculated for the ISF in other materials
with a zinc blende structure such as III–Vs or II–VIs22,24 or even
SiC,8 where these kinds of defects are very often experimentally
observed. This suggests that to get inclusions of the 2D hexago-
nal layers in Si and Ge, synthesis conditions and kinetic aspects
are more important than thermodynamics. Thus, special expe-
dients such as exploiting strain and far-from-equilibrium growth
conditions as in the recent work of Zang and coauthors,12 may
allow one to obtain and engineer 2D hexagonal inclusions in 3C
crystals. Then, understanding the optoelectronic properties of
these Si and Ge structures is crucial. We provide some funda-
mental knowledge by the electronic band structures calculated
ab initio and discussed below.

3C-Si and Ge have a crystal structure with a face-centred
cubic (FCC) Bravais lattice and 2 atoms in the basis. The
corresponding first Brillouin zone (BZ) is illustrated in Fig. 1c
with black lines. The hexagonal phase (2H) has a hexagonal
closed packed (HCP) lattice with 4 atoms per unit cell, and its
corresponding BZ is also illustrated in Fig. 1c with dark grey
lines. Both structures have tetrahedral coordination but with a
different stacking sequence of the tetrahedron in the [111] and
[0001] directions for 3C and 2H, respectively (see Fig. 1b).

Considering an ideal hexagonal lattice with c=a ¼
ffiffiffiffiffiffiffiffi
8=3

p
and

identical in-plane lattice parameters as the cubic lattice (ac = ah

in Fig. 1b), the cubic primitive cell will have half of the volume
compared to the hexagonal one. Then, the folding of the cubic
diamond band structure in the hexagonal Brillouin zone (dark
grey lines in Fig. 1c) is expected. In particular, the LFCC

Fig. 1 (a) Tetrahedral stacking sequence of the different defective struc-
tures modelled. The red and plum triangles highlight the twinned or
normal tetrahedra and correspond to down or up spin configurations of
the layers, according to the axial next-nearest-neighbor Ising (ANNNI)
model.23 The h and c letters indicate hexagonally and cubically stacked
layers, respectively. Similarly, atoms having all of their first and second
nearest neighbours positioned on hexagonal (cubic) diamond lattice sites
are coloured in red (plum). T1;2;3 and T01;2;3 labels indicate the tetrahedral
stacking sequences of the different structures. (b) Tetrahedral stacking
sequence of the cubic and hexagonal diamond crystals together with their
primitive vectors ac, ah and c. Both are represented using hexagonal cells
made of three and two layers, for the cubic and hexagonal one, respec-
tively. (c) FCC and HCP Brillouin zones are illustrated in black and grey
colours, respectively. Their G points are superimposed with the b3 reci-
procal vectors oriented in the same direction. Because the volume of the
HCP BZ is half of the FCC one, a periodic replica of the HCP Brillouin zone
is also shown in light grey. Note that the drawing would change slightly if
the (hexagonal) reciprocal lattice of the 3C crystal in the hexagonal cell, as
shown in (b), is represented instead of the HCP Brillouin zone: the
hexagonal lattice shown in gray in (c) has shrunk along b3. Accordingly,
one gets MHCP � L>FCC and LHCP � XFCC, but GHCP c L8FCC. This means that
when using a hexagonal cell instead of the 3C primitive one, the L point will
be folded to X (not to G, see Fig. S1 in the ESI†).

Table 1 Formation energies g (in mJ m�2) calculated using PBEsol (or
SCAN) functionals and exploiting the energy of defective supercells or the
ANNNI model

g2L g3L g4L g5L

Si
Supercell 9.28 34.59 60.06 85.81
ANNNI 7.66 35.17 55.32 82.84
ANNNI (SCAN) 19.29 51.13 78.61 110.46

Ge
Supercell 31.02 70.20 109.74 146.22
ANNNI 31.30 69.51 105.49 143.70
ANNNI (SCAN) 42.51 81.08 119.30 157.87
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symmetry point becomes coincident with the GHCP point of the
replica of the central cell. Thus, the bands at LFCC backfold
to GHCP, and for Ge this induces the L6 conduction band
minimum of the 3C to backfold to the G8 conduction band
minimum at the zone center of the 2H, explaining the reason
for the direct gap in 2H-Ge.25,26

When 2D hexagonal layers are inserted into a perfect 3C-Si
or Ge crystal, the cubic crystal periodicity along the [111]
direction is broken and hexagonal supercells are more con-
venient to model the defective crystals. In principle, the pristine
3C crystal could also be modelled using a hexagonal supercell
with three layers having the (T1T2T3) stacking sequence, as
illustrated in Fig. 1b. The hexagonal unit cell has the same in-
plane lattice parameters (ac) as the primitive cubic cell but with

a vertical size equal to 3� ac
ffiffiffiffiffiffiffiffi
2=3

p
, thus being 3/2 the c

parameter of the ideal 2H cell. If the 3C structure is modelled
with such a hexagonal cell, band unfolding is necessary to
correctly visualize the band structure along the high-symmetry
points of the FCC Brillouin zone. Firstly, we validated this
approach by calculating the band structure for both 3C-Si and
Ge in a hexagonal cell containing 18 layers, thus replicating 6
times the hexagonal unit cell in the [111] direction, as shown in
Fig. S1 of the ESI.† In the Si case, the folding of the bands does
not modify the nature of the gap, but the minimum of the
conduction band (CB) near the X point is backfolded near the L
point, and this muddles the order of the band transitions. The
situation is even worse in Ge, where the band folding creates
three minima of the CB at the L, G and X points with roughly
the same energy. We verified that after the band unfolding, the
expected band structures for both Si and Ge are obtained,
showing a gap of about 1.27 eV for Si and 0.66 eV for Ge. These
results are obtained by using the modified Becke–Johnson
(MBJ) exchange functional, which has been shown to provide
very accurate band gaps both for 3C and 2H-Si and Ge, similar
to the hybrid HSE06 functional but with considerably less
computational effort.13,26–30

Although the 2H inclusions break the cubic symmetry and
also slightly modify the atomic positions of the 3C-like layers,
the band unfolding is still very effective in identifying back-
folded bands, which appear in the band structure plots of such
defective structures. Fig. 2 illustrates the calculated band
structure for the 2L structures of Si and Ge for which we used
a colour scale to dim the backfolded bands from the rest. One
may indeed notice (Fig. 2) that the more intense points, in dark
blue, form bands closely resembling the bulk Si and Ge band
structures (unfolded band structures plotted in Fig. S1 of the
ESI† can be used for the comparison). But the minimum of the
CB at the G point, which appears very intense (blue colour) both
in Si and Ge is strange, in light of the above discussion on the
band folding: bands backfolded at the G point, due to the
repetition of the 3C cell along the [111] direction, should
almost disappear after band unfolding. Focusing on the Si
case, in the top-left panel of Fig. 2 and making the comparison
with the pristine Si band structure (shown in Fig. S1 of the
ESI†), the minimum of the CB at G would be expected at around
3.25 eV from the valence band (VB) edge. Dark blue bands are

indeed present in the band structure of the 2L-Si structure, at
about 3.25 eV and around the G point, but other branches at
lower energies also appear in blue colour. Weighting addition-
ally the colour intensity by the local density of states of atoms
belonging to the 3C-like layers or 2H inclusions (plum and red
atoms, respectively, in Fig. 1), we can distinguish more clearly
the contributions of the hexagonal inclusions to the band
structure, as illustrated in the middle-right panels of Fig. 2.
The CB minimum at about 2.3 eV in G is indeed attributable
mainly to the two hexagonal layers. Being the hexagonal inclu-
sions non-periodic along the [111] direction (or [0001] for the
hexagonal crystal), they have a 2D-hexagonal BZ, which is
illustrated by the blue plane in Fig. 1c. Thus, in this case, the
backfolding in G of the energy states in the [111] direction is an
actual physical effect but not merely an artefact of the supercell.
This effect is even more peculiar in Ge, because similar to the
bulk 2H case,25 the bottom of the CB appears at the G point,
thus leading to a direct bandgap. This is due to the zone folding
and the hexagonal crystal field: the latter is responsible for
splitting the degenerate top valence band levels at G, forming
two bands, the fourfold-degenerate G6 and twofold G1, which
are separated by the hexagonal crystal field energy when spin–
orbit interactions are still neglected. When also the spin–orbit
interactions are considered, the G6 splits into the G9 heavy hole
and G7 light hole state, with G1 getting the G7 crystal-field split-
off state31 (see Fig. S1 in the ESI†). In other words, the large
crystal field energy in hexagonal Ge up-shifts the top of the VB
level, and is thus responsible for the reduction of the direct
energy gap at G in 2H-Ge, as compared to the indirect 3C band-
gap.25,26 Indeed, a built-in crystal field due to the 2D-hexagonal
inclusions into the 3C-phase can be assumed for the defective
structure considered here. In turn, this crystal field is expected
to reduce the energy gap at G as compared to the pristine case.

Fig. 2 2L-Si and -Ge band structures (top and bottom panels, respec-
tively) unfolded into the primitive cubic cell (colour scale). Energies are
plotted relative to the top of the VB. The middle and right panels highlight
the different contributions to the band states of the pristine-like and
defective atoms (red and plum atoms, respectively, as shown in Fig. 1).
This is obtained by further weighting the colour intensity by the normalized
local density of states of the different atoms.
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This is indeed observed in Fig. 2 for the Ge case, and the right
panel attributes the bottom of the CB at the zone center to the
hexagonal layers, with a reduced gap of about 0.54 eV. On the
contrary, the central panel of Fig. 2, which highlights only the
contribution of the pristine layers to the band structure, con-
firms that it is closer to the band structure of the bulk 3C-Ge,
thus with an indirect gap.

The energy gap reduces further in the case of the 3L
structures, with values of 1.25 eV and 0.45 eV for Si and Ge,
respectively, as illustrated in Fig. 3. This is not unexpected
considering that the crystal field energy has been shown to
increase linearly with the percentage of hexagonality of the Si
and Ge crystal phases,13 which is defined as the ratio between
the number of hexagonal and cubic layers. In principle, the
defective structure shown in Fig. 1a would be composed of an
infinite number of cubic layers with a few inclusions of
hexagonal layers. However, if we consider just a fixed number
of total layers around the inclusions, beyond which the effect of
the hexagonal inclusion vanishes, then one could assess that
the hexagonality of the defective structures evidently increases
with the number of hexagonal inclusions. Hence, the crystal
field would also increase, and in turn, a decrease in the gap is
expected when the number of hexagonal inclusions increases.
This tendency is confirmed by the results of the 4L and 5L
structures, whose band structures for Ge are illustrated in
Fig. 4, while the corresponding graphs for Si are included in
Fig. S2 and S3 of the ESI.†

Note that the decrease in the band gap is much less evident
in Si compared to Ge, because in the former case the bottom of
the CB is not at the L point as for Ge; therefore, the LFCC -

GHCP band folding does not change the nature of the gap in this
case. Still, the direct gap at G is also reduced for Si with the 2D
hexagonal inclusions, but remains much larger than the indir-
ect band gap. The latter is practically identical for 2L compared

to the calculated 3C-Si value, but decreases slightly with the
number of hexagonal inclusions, reaching the minimum of
1.21 eV for the 5L-Si case (shown in Fig. S3 of ESI†). This trend
is again in qualitative agreement with the decrease in the
indirect band gap energy with hexagonality, as predicted for Si
polytypes.13 Although the indirect band gap of 2L-Si is very
close to that of 3C-Si, the spatially resolved band structures in
Fig. 2 reveal small changes in the band edges between the
defective and pristine parts of the structure. In particular, the
top of the valence band at G rises by about 80 meV moving from
the pristine 3C layers to the hexagonal inclusions, while the
bottom of the conduction band (close to X) is almost not
shifting at all. This means that the thinnest inclusion of 2D-
hexagonal layers in 3C-Si (2L structure) forms a quasi-type-II
quantum well, with holes trapped in the well and electrons
more delocalized in all the layers (predicted band offsets for the
CB and VB are DEC = 0 and DEV = 80 meV, respectively). The
visualization in real space of the wavefunctions corresponding
to the band edges of 2L-Si confirms this conclusion and is
shown in the ESI† (Fig. S4). When the number of hexagonal
layer inclusions in Si increases, the bottom of the conduction
band also rises further, and type-II quantum wells are formed
with localization of holes in the 2D-hexagonal layers and
electrons in the pristine 3C layers, as confirmed by visualiza-
tion in real space of the wavefunctions corresponding to the
band edges of 5L-Si (shown in Fig. S4 of the ESI†). The largest
band offsets are observed for the 5L structure, with values of
DEC = �40 and DEV = 120 meV.

In Fig. 5 the visualization in real space of the
wavefunctions32,33 for the Ge structures is shown, particularly
for the 2L and 5L structures. In these cases, because of the
LFCC - GHCP band folding and the consequent bottom of the
CB at G for the 2D hexagonal Ge inclusions, the CB offsets are
inverted compared to the Si case. In fact, the wave functions
corresponding to the states at the CB edge are localized within

Fig. 3 3L-Si and -Ge band structures (top and bottom panels, respec-
tively) unfolded into the primitive cubic cell (colour scale). Energies are
plotted relative to the top of the VB. The middle and right panels highlight
the different contributions to the band states of the pristine-like and
defective atoms (red and plum atoms, respectively, as shown in Fig. 1).

Fig. 4 4L-Ge and 5L-Ge band structures (top and bottom panels, respec-
tively) unfolded into the primitive cubic cell (colour scale). Energies are
plotted relative to the top of the VB. The middle and right panels highlight
the different contributions to the band states of the pristine-like and
defective atoms (red and plum atoms, respectively, as shown in Fig. 1).
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the 2D hexagonal inclusions. Thus, in Ge, the quantum wells
formed by the hexagonal inclusions trap electrons in the well.
However, in the 2L-Ge case, the top of the VB for the 2D
inclusions and the pristine layers are quite aligned (see
Fig. 2), and in fact the wavefunctions corresponding to VB edge
states are quite delocalized in the whole structure, as illustrated
in the left panels of Fig. 5, providing again a quasi type-II
quantum well (DEV = 0 and DEC = 100 meV). Similarly, the
3L-Ge remains a quasi-type-II quantum well (DEV = 0 and DEC =
180 meV). However, by increasing the number of 2D hexagonal
Ge inclusions, the valence band offsets increase and type-I
quantum wells are formed in the case of the 4L and 5L
structures (DEV = 12 and 15 meV, DEC = 210 and 250 meV,
for 4L and 5L, respectively), the latter is shown with the plot of
the wavefunctions in real space evidencing the trapping of both
charge carriers in the quantum well. Note that the band offsets
listed above, and schematically shown in Fig. 6 for the 2L and
5L structures, are estimated by analysing the localization of the
wavefunctions in real space and considering the corresponding
eigenvalues near the band edges. Possibly, these band offset
values are slightly underestimated, due to the marginal over-
estimation of bulk-like Si and Ge bandgaps in our different slab
calculations.

In general, our calculated band offsets are qualitatively in
agreement with the band alignment calculated for the polytypic
Si and Ge homojunction13 and also with the predicted band
offsets of the 3C/2H junctions of Si and Ge.11 However, we show
that the inclusions of 2D hexagonal layers in Si and Ge form
very thin quantum wells, with a width between B6.3 Å and
B15.7 Å for Si or B6.5 Å and B16.5 Å for Ge. They are type-II
quantum wells with indirect band gaps for Si and type-I
quantum wells with direct band gaps in Ge, but both get
quasi-type-II for the thinner inclusions. We show that the band
offsets of these quantum wells are mainly driven by the changes
in the stacking sequence. Particularly for Ge, these quantum
wells can take advantage of the reduced dimensionality, and
especially of the Brillouin zone-folding conferring the direct
bandgap, thus leading to an enhancement of optical transi-
tions. Effects of external stress, not investigated here, could
further affect the optical properties. Although not explicitly
shown here for the 2D-hexagonal inclusions, another typical
advantage of structures with reduced dimensionality is that
quantum confinement enhances the oscillator strength.34

Moreover, local asymmetry caused by random insertions and

different distances between the 2D hexagonal structures can
cause breaking of the k-conservation rules and enhance further
the optical transitions, as in the case of hexagonal silicon-
germanium alloys.35,36 Our results and the discussion above
qualitatively support the strong photoluminescence (PL) peak
observed recently by Zhang et al.12 Some questions remain
however open. For instance, the PL peak observed in ref. 12
seems to be located at larger values (B0.79 eV) with respect to
the present, theoretical predictions of the bandgap for the 2D
hexagonal inclusions. Moreover, at least 2L, 3L and 4L struc-
tures were observed in the samples of ref. 12 so one could
expect a few different PL peaks, not just one, as the here
predicted direct bandgaps depend on the width of the hexago-
nal inclusions. We notice that this latter scenario agrees with
the theoretical and experimental findings for Wurtzite inclu-
sions in Zincblende GaP.37

In conclusion, our study reveals that hexagonal inclusions
within cubic Si and Ge structures can induce significant
electronic band structure modifications by forming diverse
types of quantum wells. Specifically, the inclusion of 2D hex-
agonal layers reduces the band gap, leading to a direct band
gap in Ge. This finding opens new avenues for tailoring the
optoelectronic properties of Si and Ge through the controlled
introduction of stacking faults and hexagonal inclusions, with
potential applications in quantum technology and photonics.

Data availability

All the information to reproduce the results shown in this
article has been included as part of the ESI.†
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Fig. 5 Real-space wavefunction (squared) for the states at the VB and CB
edges of the 2L and 5L-Ge.

Fig. 6 Band alignments of (a) bulk 3C-Si and 2L-Si, (b) bulk 3C-Si and
5L-Si, (c) bulk 3C-Ge and 2L-Ge, and (d) bulk 3C-Ge and 5L-Ge.
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