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1 Introduction: the equilibrium problem

The problem of interest is the so-called equilibrium problem EP (f, C), which is defined as follows:

find x̄ ∈ C such that f(x̄, y) ≥ 0 for all y ∈ C,

where C ⊆ Rn is any nonempty closed set and the equilibrium bifunction f : Rn×Rn → R satisfies f(x, x) = 0

for all x ∈ C. Starting from the seminal papers [10, 11, 16] and following the Stampacchia tradition (see [4]),

many researchers have worked on this topic. The purpose of these works was to study the interdependence

between some particular problems as optimization, variational inequality, fixed point, complementarity, and

noncooperative games. Different concepts of monotonicity for bifunctions provide key tools both for the

theoretical investigations and the development of solution algorithms in this unified framework. The first

and most exploited one is indeed called monotonicity, namely a bifunction f is said to be monotone on the

set C if

f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C.

We briefly review the formulation of the above problems as equilibria underlying the connection of mono-

tonicity with suitable assumptions on the original problems.

1. Considering ϕ : C → R, the minimization problem asks for finding x̄ ∈ C such that ϕ(x̄) ≤ ϕ(y), for all

y ∈ C, and it can be formulated as an equilibrium problem setting f(x, y) = ϕ(y) − ϕ(x). The point

x̄ solves the optimization problem previously stated if and only if it solves EP (f, C). Note that this

bifunction f satisfies f(x, y) + f(y, x) = 0, hence it is monotone.

2. A special class of equilibrium problems, widely applied for studying e.g. economic equilibria, are

variational inequalities. Given F : C → Rn, the variational inequality consists in finding a vector

x̄ ∈ C such that

〈F (x̄), y − x̄〉 ≥ 0, ∀y ∈ C.

This problem can be formulated as an equilibrium problem EP (f, C) where f(x, y) = 〈F (x), y − x〉.
In this case, the bifunction f results to be monotone if and only if F is monotone, that is

〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ C.

When the set C is a cone (i.e. x ∈ C ⇒ τx ∈ C for all τ ≥ 0) the variational inequality problem is

equivalent to the complementarity problem, i.e. finding x̄ ∈ C such that F (x̄) ∈ C∗ and 〈F (x̄), x̄〉 = 0,

∗This paper has been published in “Recent Advances in Nonlinear Optimization and Equilibrium Problems: a Tribute to

Marco D’Apuzzo”, V. De Simone, D. di Serafino, and G. Toraldo (eds.), Quaderni di Matematica, Dipartimento di Matematica
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where C∗ is the dual cone of C:

C∗ = {d ∈ Rn : 〈d, v〉 ≥ 0, ∀v ∈ C}.

Therefore, a complementarity problem can be viewed as an equilibrium problem.

3. We can also formulate saddle point problems in terms of equilibria. Recall that, given ϕ : C1×C2 → R
where C1 ⊆ Rn1 and C2 ⊆ Rn2 are convex sets, a point (x̄1, x̄2) ∈ C1 ×C2 is said to be a saddle point

for ϕ if and only if

ϕ(x̄1, y2) ≤ ϕ(x̄1, x̄2) ≤ ϕ(y1, x̄2), ∀(y1, y2) ∈ C1 × C2.

This problem can be equivalently formulated as a suitable EP (f, C) choosing C = C1 × C2 and

f((x1, x2), (y1, y2)) = ϕ(y1, x2)− ϕ(x1, y2). Note that this bifunction is monotone since

f((x1, x2), (y1, y2)) + f((y1, y2), (x1, x2)) = 0.

4. Other important problems that can be viewed in terms of equilibria are the fixed point problems. Let

ϕ : C → C be given. A point x̄ ∈ C is a fixed point for ϕ if and only if ϕ(x̄) = x̄. This problem can be

equivalently formulated as an EP (f, C) where f(x, y) = 〈x− ϕ(x), y − x〉. Note that f is monotone if

and only if ϕ is non-expansive, i.e.

〈ϕ(x)− ϕ(y), x− y〉 ≤ ‖x− y‖2, ∀x, y ∈ C.

5. Let us consider the multiobjective optimization problem

minintR`
+
{g(x) : x ∈ C},

where g = (g1, g2, . . . , g`) : Rn → R` and C ⊆ Rn. The notation minintR`
+

marks optimality with

respect to the cone intR`+: x̄ ∈ C is said to be a weak vector minimum point of the multiobjective

problem if and only if there is no x ∈ C such that g(x̄) − g(x) ∈ intR`+ It is easy to show that x̄ is a

weak vector minimum point if and only if it solves EP (f, C) with f(x, y) = maxi=1,...,`[gi(y)− gi(x)].

6. Also the Nash equilibrium, one of the most used solution concept in game theory, can be be viewed in

terms of the equilibrium problem EP (f, C). Suppose we have a finite set of N players, each labeled

by an integer i = 1, . . . , N . Player i has a real valued payoff function θi that depends on all players

strategies x = (x1, . . . , xN ), where each component xi ∈ Rni represents the strategy of the i-th player.

The vector of strategies x ∈ Rn with n =
N∑
i=1

ni is denoted by x = (xi, x−i), where x−i denotes the

strategy vector of all the players different from player i. Let Ci denote the strategy set of the i-th player

and C =
N∏
i=1

Ci. In this setting, each player faces the problem of choosing a strategy that minimizes

its payoff, fixed the strategies of the other players, that is player i solves the following optimization

problem:

min
xi∈Ci

θi(xi, x−i).

A vector of strategies x̄ ∈ C is called a Nash equilibrium point if, for all i = 1, . . . , N , one has

θi(x̄i, x̄−i) ≤ θi(xi, x̄−i), ∀xi ∈ Ci.

In other words, x̄ is a Nash equilibrium if no player can make any profit with a unilateral change of

strategy. Now consider the so called Nikaido-Isoda bifunction

f(x, y) =

n∑
i=1

[θi(yi, x−i)− θi(xi, x−i)] .

The vector x̄ is a Nash equilibrium if and only if it is a solution of the equilibrium problem EP (f, C).
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2 Existence results

It is well known that the famous Fan-Knaster-Kuratowski-Mazurkiewicz Theorem [15, 22] played a very

important role in the study of nonlinear analysis. Many of the existence results for EP (f, C) are based on

this theorem. In this section we recall some of the most important ones.

Theorem 2.1 ([6]). Let C be convex and compact. Suppose that

(i) f is properly quasimonotone, i.e.

min
i=1,...,k

f(xi, y) ≤ 0

for all x1, . . . , xk ∈ C and y ∈ conv {x1, . . . , xk};

(ii) f(·, y) is upper sign continuous for every y ∈ C, i.e.

f((1− t)x+ ty, y) ≥ 0 ⇒ f(x, y) ≥ 0

for every x ∈ C and for every t ∈ (0, 1);

(iii) f(x, ·) is quasiconvex for every x ∈ C, i.e the level sets

{y ∈ C : f(x, y) ≤ α}

are convex for every α ∈ R;

(iv) the level set {y ∈ C : f(x, y) ≤ 0} is closed, for every x ∈ C;

(v) if f(x, y) = 0 and f(x, z) < 0, then f(x, (1− t)y + tz) < 0, for every t ∈ (0, 1).

Then EP (f, C) has a solution.

The next results deal with the case of an unbounded feasible set. In order to study this case, the following

coercivity condition, introduced in [6], has been widely used:

∃r > 0 s.t. ∀x ∈ C with ‖x‖ > r, ∃y ∈ C with ‖y‖ < ‖x‖ s.t. f(x, y) ≤ 0. (1)

Theorem 2.2 ([6]). Let C be convex. Suppose that f satisfies the assumptions (ii), (iii) (iv) and (v) of

Theorem 2.1 and the coercivity condition (1). Moreover suppose that

(i’) f is pseudomonotone on the set C, i.e.

f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0

for all x, y ∈ C.

Then EP (f, C) has a solution.

If we weaken the assumption of pseudomonotonicity on f and we deal with quasimonotone bifunctions,

we need a stronger notion of upper sign continuity in order to obtain an existence result with an unbounded

feasible set.

Theorem 2.3 ([6]). Let C be convex. Suppose that f satisfies the assumptions (ii), (iii), (iv) and (v) of

Theorem 2.1 and the coercivity condition (1). Moreover suppose that
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(i”) f is quasimonotone on the set C, i.e.

f(x, y) > 0 ⇒ f(y, x) ≤ 0

for all x, y ∈ C;

(ii’) for every x, y, z ∈ C and for every t ∈ (0, 1)

f((1− t)x+ ty, z) ≤ 0 ⇒ f(x, z) ≤ 0;

(v’) if f(x, y) = 0 and f(x, z) > 0, then f(x, (1− t)y + tz) > 0, for every t ∈ (0, 1).

Then EP (f, C) has a solution and the solution set is bounded.

In order to avoid any assumption of convexity both for the domain C and for the bifunction, some authors

(see for instance [1, 7, 10, 28] and references therein) proposed a different approach which allows to obtain

existence results for EP (f, C) assuming the following triangle inequality property:

f(x, y) ≤ f(x, z) + f(z, y), ∀x, y, z ∈ C. (2)

Now we recall some recent existence results for EP (f, C) when the bifunction f satisfies property (2). First

we recall the following continuity definitions introduced in [14] that are useful in the sequel.

Definition 2.1. A function ϕ : Rn → R is said to be

• lower semicontinuous from above at x0 ∈ Rn if, for any sequence {xk} converging to x0 and satisfying

ϕ(xk+1) ≤ ϕ(xk), for all k ∈ N, we have ϕ(x0) ≤ limk→+∞ ϕ(xk);

• upper semicontinuous from below at x0 ∈ Rn if, for any sequence {xk} converging to x0 and satisfying

ϕ(xk+1) ≥ ϕ(xk), for all k ∈ N, we have ϕ(x0) ≥ limk→+∞ ϕ(xk).

The function ϕ is said to be lower semicontinuous from above (resp. upper semicontinuous from below) on

Rn if it is lower semicontinuous from above (resp. upper semicontinuous from below) at every point of Rn.

It is clear that lower (resp. upper) semicontinuity implies lower semicontinuity from above (resp. upper

semicontinuity from below) but the reverse implications do not hold. Nevertheless it was proved in [14] that

these two conditions are sufficient to establish a generalization of the Weierstrass Theorem which is the main

tool to prove the following result.

Theorem 2.4 ([12]). Suppose that f satisfies property (2) and C is compact.

(a) If there exists z̄ ∈ C such that f(z̄, ·) is lower semicontinuous from above, then EP (f, C) has a solution.

(b) If there exists z̄ ∈ C such that f(·, z̄) is upper semicontinuous from below, then EP (f, C) has a solution.

The last result concerns the case when C is unbounded.

Theorem 2.5 ([12]). Suppose that f satisfies property (2). If the coercivity condition (1) holds and f(x, ·)
is lower semicontinuous from above for all x ∈ C, then EP (f, C) has a solution.
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3 Equivalent reformulations

We investigate when two equilibrium problems are equivalent, i.e. they have the same solution set. This

kind of equivalence may be exploited to transform the initial equilibrium problem in a new one with some

additional nice properties, which can be profitable to obtain existence results or to formulate iterative solution

methods. First, we give a sufficient condition which guarantees the equivalence between two equilibrium

problems in which the bifunctions are pseudoconvex and Lipschitz with respect to the second variable.

Afterwards, we consider pseudomonotone equilibrium problems and we show how this additional assumption

allows to characterize problems that are equivalent for every convex set C. In the next section the first

equivalence result is used to obtain a gap function for the original equilibrium problem with better regularity

properties than the simplest one.

Given a locally Lipschitz function ϕ : Rn → R ∪ {+∞} we denote by ∂◦ϕ(x) the Clarke subdifferential

at x and ϕ is said to be ∂◦–pseudoconvex if for every x, y ∈ Rn and x∗ ∈ ∂◦ϕ(x) such that 〈x∗, y − x〉 ≥ 0

we have ϕ(y) ≥ ϕ(x).

In this section we suppose that the bifunction f is extended-valued and f(x, ·) is locally Lipschitz for

all x ∈ Rn. We denote by ∂◦yf(x, y) the Clarke subdifferential of f(x, ·) at y. Given a multivalued map

T : Rn ⇒ Rn we denote by D(T ) the domain of T and by Z(T ) the set of zeros of T , i.e.

Z(T ) = {x ∈ Rn : 0 ∈ T (x)}.

Definition 3.1. Two maps T1, T2 are called equivalent, shortly T1 ∼ T2, if D(T1) = D(T2), Z(T1) = Z(T2),

and for every x ∈ Rn \ Z(T1), ⋃
r>0

rT1(x) =
⋃
s>0

sT2(x).

The class of multivalued maps used in the sequel is defined by x⇒ ∂◦yf(x, x) where f is any bifunction.

Theorem 3.1. Let f and g be two equilibrium bifunctions with the same domain and assume that g(x, ·) is

∂◦–pseudoconvex for all x ∈ C. If

(i) Z(∂◦yf(·, ·)) ∩ C ⊆ Z(∂◦yg(·, ·)) ∩ C;

(ii) for every x ∈ C \ Z(∂◦yf(·, ·))
∂◦yf(x, x) ⊆

⋃
s>0

s∂◦yg(x, x);

then every solution of EP (f, C) is a solution of EP (g, C).

Proof. If x̄ solves EP (f, C) then it minimizes f(x̄, ·) on the feasible set C. ¿From the first order optimality

condition there exists x̄∗f ∈ ∂◦yf(x̄, x̄) such that −x̄∗f ∈ N(C, x̄), where N(C, x̄) is the normal cone of C

at x̄. If 0 ∈ ∂◦yf(x̄, x̄), from (i) and pseudoconvexity, g(x̄, ·) has a global minimum at x̄. Otherwise, from

(ii) we deduce that there exist s > 0 and x̄∗g ∈ ∂◦yg(x̄, x̄) such that x̄∗f = sx̄∗g; hence, dividing by s and

using the fact that N(C, x̄) is a cone, from the optimality condition we have −x̄∗g ∈ N(C, x̄). But g(x̄, ·) is

pseudoconvex and the previous condition guarantees that x̄ is a global minimizer for g(x̄, ·) on C. Hence

g(x̄, y) ≥ g(x̄, x̄) = 0 for all y ∈ C.

As immediate consequence of Theorem 3.1 we deduce the following sufficient condition for the equivalence

between two pseudoconvex equilibrium problems.

Corollary 3.1. Let f and g be two equilibrium bifunctions with the same domain and assume that f(x, ·),

g(x, ·) are ∂◦–pseudoconvex for all x ∈ C. If

∂◦yf(·, ·) ∼ ∂◦yg(·, ·) (3)
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then EP (f, C) and EP (g, C) are equivalent.

It is clear that the converse is not true. Indeed, the differentiable bifunctions f, g : R2 ×R2 → R defined

by

f(x, y) = y21 + 2y22 − x21 − 2x22 and g(x, y) = 2y21 + y22 − 2x21 − x22
have the same unique solution (x̄1, x̄2) = (0, 0) on the set C = [−1, 1] × [−1, 1]; nevertheless, for every

(x1, x2) ∈ C with x1x2 6= 0 there is no positive constant α such that α(2x1, 4x2) = (4x1, 2x2).

Now we show that the reformulation of suitable equilibrium problems as generalized variational inequali-

ties (see [25]) can be viewed as a particular application of our result. We recall that if K ⊆ Rn is a nonempty

convex and closed set then ∂◦σ(0|K) = K, where

σ(x|K) = sup{〈x∗, x〉 : x∗ ∈ K}

is the support function associated to K. ¿From Corollary 3.1 we deduce that the solution set of any EP (f, C)

coincides with the set of x̄ ∈ C such that

σ(y − x̄|∂◦yf(x̄, x̄)) ≥ 0, ∀y ∈ C. (4)

Moreover, since F (x) = ∂◦yf(x, x) is compact, problem (4) collapses into the generalized variational inequality

GV I(F,C), which consists in finding x̄ ∈ C and ȳ∗ ∈ ∂◦yf(x̄, x̄) such that

〈ȳ∗, y − x̄〉 ≥ 0, ∀y ∈ C.

In the particular case when f(x, ·) is a convex and differentiable function, the equilibrium problem EP (f, C)

is equivalent to the variational inequality:

find x̄ ∈ C such that 〈∇yf(x̄, x̄), y − x̄〉 ≥ 0 for all y ∈ C. (5)

Some preliminary ideas on this result can be found in [36, 40]. Though condition (3) does not characterize

equivalent equilibrium problems, some conclusions can still be drawn if we assume that f and g are pseu-

domonotone. In order to obtain such a result we recall that a multivalued map T : Rn ⇒ Rn is said to

be

• pseudomonotone if for all x, y ∈ Rn and all x∗ ∈ T (x) satisfying the inequality 〈x∗, y − x〉 ≥ 0 then

〈y∗, x− y〉 ≤ 0 for all y∗ ∈ T (y);

• cyclically pseudomonotone if for all x1, x2, . . . , xk ∈ Rn and x∗i ∈ T (xi) with i = 1, 2, . . . , k − 1 such

that 〈x∗i , xi+1 − xi〉 ≥ 0 then 〈x∗k, x1 − xk〉 ≤ 0 for all x∗k ∈ T (xk).

Lemma 3.1. Let f : Rn × Rn → R be (cyclically) pseudomonotone, Lipschitz and ∂◦–pseudoconvex in the

second variable, then the associated operator ∂◦yf(·, ·) is (cyclically) pseudomonotone.

Proof. Let’s prove only the cyclically case. Fix x1, x2, . . . , xk ∈ Rn and x∗i ∈ ∂◦yf(xi, xi) with i = 1, . . . , k−1

such that 〈x∗i , xi+1 − xi〉 ≥ 0. Hence, from the pseudoconvexity of f(xi, ·) we deduce

f(xi, xi+1) ≥ f(xi, xi) = 0, ∀i = 1, 2, . . . , k − 1.

Since f is cyclically pseudomonotone then f(xk, x1) ≤ 0. Applying the Lebourg mean value theorem to the

functions f(xk, ·) on the segment (x1, xk) we deduce the existence of z = tx1 + (1− t)xk with t ∈ (0, 1) and

z∗ ∈ ∂◦yf(xk, z) such that

0 ≤ f(xk, xk)− f(xk, x1) = 〈z∗, xk − x1〉 = t−1〈z∗, xk − z〉.
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¿From ([35, Theorem 4.1]) the multivalued map ∂◦yf(xk, ·) is pseudomonotone and then

0 ≥ 〈x∗k, z − xk〉 = t〈x∗k, x1 − xk〉, ∀x∗k ∈ ∂◦yf(xk, xk)

which completes the proof.

The last result proves, in a sense, the converse of Corollary 3.1 under the further assumption of pseudomono-

tonicity.

Theorem 3.2. Let f, g : Rn × Rn → R be pseudomonotone, Lipschitz and ∂◦–pseudoconvex in the second

variable. If EP (f, C) and EP (g, C) are equivalent for every convex subset C ⊆ Rn, then

∂◦yf(·, ·) ∼ ∂◦yg(·, ·).

Proof. Set F (x) = ∂◦yf(x, x) and G(x) = ∂◦yg(x, x). Since EP (f, C) and EP (g, C) are equivalent to the

generalized variational inequalities GV I(F,C) and GV I(G,C) respectively, then GV I(F,C) and GV I(G,C)

have the same solution sets. Moreover the maps F and G have compact convex values and, from the previous

lemma, they are pseudomonotone. Hence, from [18, Proposition 3.3] F ∼ G as required.

4 Solution methods

Different approaches to solve equilibrium problems have been proposed in literature, often extending solution

methods originally conceived for optimization problems or variational inequalities to the framework of more

general equilibrium problems.

A class of methods is based on a fixed-point formulation via the auxiliary problem principle. These

methods are based on iterative convex minimization procedure and extend the classical projection-type

algorithms for variational inequalities. They ask for the solution of one appropriate convex minimization

problem at each iteration and converge under strong monotonicity and Lipschitz-type conditions on f [29,

31]. Bundle techniques can be exploited to extend the approach to nonsmooth equilibrium problems by

approximating the function f(x, ·) with a convex piecewise linear function [32].

Another approach is based on proximal-like techniques [2, 17, 24, 31, 33, 37]. Convergence is achieved

under pseudomonotonicity assumptions, but generally two convex minimization problems have to be solved

at each iteration as in the extragradient-type methods developed in [2, 17, 33, 37]. The optimization problems

to be solved at each iteration may be constrained [2, 17, 37]. In [33] an interior-quadratic proximal term

replaces the usual quadratic proximal term. An inexact proximal point method for solving nonmonotone

equilibrium problems is developed in [24], replacing the original problem with a sequence of regularized ones.

In [23] a method in which two convex minimization problems are solved at each iteration is developed as

well for smooth monotone equilibrium problems, and it relies on hyperplane projection techniques.

In [21] another approach has been considered: the equilibrium problem is reformulated as a convex feasi-

bility problem and the solution methods developed for this latter problem (see [5]) are applied. Each iteration

requires the approximate solution of one minimization problem (generally not convex) and a projection, and

convergence holds under pseudomonotonicity assumptions.

In this section we focus on descent methods, which are based on the reformulation of the equilibrium

problem as a global optimization problem through appropriate gap functions [8, 9, 13, 26, 27, 30, 38, 39, 40].

Solution methods for optimization problems generally converge to a stationary point, which may be not a

global optimum unless strong assumptions are made. Therefore assumptions, which guarantee that all the

stationary points of the gap function are actually solutions of the equilibrium problem, are a key point to

most of the methods which have been developed up to now [13, 26, 27, 30, 38, 39]. In order to devise solution

methods which do not require the above “stationarity property”, a parametric family of auxiliary equilibrium
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problems and the corresponding family of gap function can be exploited [8, 9]. Descent algorithms have also

been developed for specific classes of equilibrium problems such as Nash ones [19, 20, 34].

Based on the equivalence between equilibrium problems and variational inequalities (see (5)), equilibrium

problems could be solved just exploiting the available algorithms for variational inequalities. On the other

hand, the computation of the operator of the equivalent variational inequality (5) requires the explicit

evaluation of the partial derivatives of f and algorithms may require further smoothness assumptions on the

operator and eventually the computation of the second order derivatives of f . On the contrary, devising

solution methods directly for equilibrium problems via optimization requires weaker smoothness assumptions

and the evaluation of derivatives may be not needed at all (if, for instance, the computation of the gap function

is made via derivative-free methods). In fact, in what follows the equilibrium bifunction f is supposed to be

just continuously differentiable.

A function g : C → R is said to be a gap function for EP (f, C) if g is nonnegative on C and x̄ solves

EP (f, C) if and only if x̄ ∈ C and g(x̄) = 0. Thus the solution set of EP (f, C) coincides with the set of

global minima of g on C. The simplest gap function is given by

ϕ(x) = − inf{f(x, y) : y ∈ C}, (6)

provided that the infimum is attained for every x ∈ C. Such function, which in general is not differentiable,

coincides with the one introduced in [3] when EP (f, C) is a variational inequality. The exploitation of

auxiliary equilibrium problems allows to obtain continuously differentiable gap functions [30]. Given α > 0

and a continuously differentiable bifunction h : Rn × Rn → R such that

h(x, y) ≥ 0 for all x, y ∈ C and h(z, z) = 0 for all z ∈ C, (7)

h(x, ·) is strongly convex for all x ∈ C, (8)

∇yh(z, z) = 0 for all z ∈ C, (9)

〈∇xh(x, y) +∇yh(x, y), y − x〉 ≥ 0 for all x, y ∈ C, (10)

the original problem EP (f, C) is equivalent to the auxiliary problem EP (fα, C), where fα = f +αh satisfies

fα(x, x) = 0 for all x ∈ C. In fact, condition (9) guarantees the equality ∇yf(x, x) = ∇yfα(x, x) and

therefore the equivalence follows from Corollary 3.1. Thus the gap function (6) associated to the auxiliary

problem, i.e.

ϕα(x) = −min{fα(x, y) : y ∈ C},

provides a gap function also for EP (f, C). Moreover, the continuity and the strong convexity of fα(x, ·)
imply the existence of a unique minimizer yα(x). Since f(x, x) = 0, the solution set of EP (f, C) coincides

with the set of the fixed points of the function yα. Furthermore, classical results guarantee that ϕα is

continuously differentiable with

∇ϕα(x) = −∇xfα(x, yα(x)).

Notice that the most used regularizing bifunction h(x, y) = ‖y − x‖2 satisfies all the above assumptions.

Though condition (10) is not needed for the equivalence between EP (f, C) and the auxiliary problem

EP (fα, C), it is useful in the development of solution methods. Indeed, assumptions of this kind are the key

tools to devise descent methods.

Definition 4.1. A differentiable bifunction f is called

• ∇–monotone on C if 〈∇xf(x, y) +∇yf(x, y), y − x〉 ≥ 0 for all x, y ∈ C;

• strictly ∇–monotone on C if 〈∇xf(x, y) +∇yf(x, y), y − x〉 > 0 for all x, y ∈ C with x 6= y;
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• strongly ∇–monotone on C if there exists τ > 0 such that

〈∇xf(x, y) +∇yf(x, y), y − x〉 ≥ τ‖y − x‖2, ∀x, y ∈ C.

Obviously, strong ∇-monotonicity implies strict ∇-monotonicity, which implies ∇-monotonicity. When

EP (f, C) is a variational inequality, the (strict, strong) ∇-monotonicity collapses to the (strict, strong)

monotonicity of the operator F . Moreover, ∇-monotonicity and monotonicity of bifunctions are not related

(see Example 2.2 in [8]).

Another useful assumption is the following [8]:

f(x, y) + 〈∇xf(x, y), y − x〉 ≥ 0, ∀x, y ∈ C. (11)

All the bifunctions for which f(·, y) is concave for all y ∈ C satisfy (11). When EP (f, C) is a variational

inequality, condition (11) collapses to the monotonicity of the operator F . Moreover, it is stronger than

∇-monotonicity, but it is not related to strict ∇-monotonicity.

The standard descent method for ϕα works fine for EP (f, C) under suitable assumptions: though the

gap function is not convex on C, and therefore finding its global minima is not an easy task, the strict

∇-monotonicity of f guarantees that its stationary points coincide with the global minima; moreover, the

same assumption provides a natural descent direction.

Theorem 4.1 ([8, 30]). Suppose that f is strictly ∇–monotone on C.

(a) If x̄ is a stationary point of ϕα over C, i.e. 〈∇ϕα(x̄), y− x̄〉 ≥ 0 for all y ∈ C, then x̄ solves EP (f, C).

(b) If x ∈ C is not a solution of EP (f, C), then 〈∇ϕα(x), yα(x)− x〉 < 0.

Therefore, a descent algorithm follows immediately from the above result.

Algorithm 1.

0. Choose α > 0, x0 ∈ C and set k = 0.

1. Compute yk = arg min{f(xk, y) + αh(xk, y) : y ∈ C}, set dk = yk − xk.

2. If dk = 0, then STOP.

3. Compute tk = arg min{ϕα(xk + t dk) : t ∈ [0, 1]}.

4. Set xk+1 = xk + tk d
k, k = k + 1 and goto step 1.

Theorem 4.2 ([30]). If C is bounded and f is strictly ∇–monotone on C, then Algorithm 1 either stops at

a solution of EP (f, C) after a finite number of iterations or it produces a sequence {xk} such that any of its

cluster points solves EP (f, C).

Remark 4.1. In [13, 26, 30] descent methods with Armijo-type inexact line search have been proposed

under assumptions which guarantee the strong ∇–monotonicity of f . However, it is possible to achieve

the convergence just requiring strict ∇–monotonicity if the line search procedure is slightly modified setting

tk = γs, where s is the smallest non-negative integer such that

ϕα(xk + γs dk) ≤ ϕα(xk)− β γ2s ‖dk‖,

being β, γ ∈ (0, 1) fixed parameters.

Remark 4.2. When C is not bounded, some additional assumptions are needed to obtain a global error bound

for the solution of EP (f, C) and hence to guarantee the convergence of Algorithm 1. Such assumptions could

be the strong monotonicity of f [30] or other monotonicity type conditions for f and h [13].
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The strict ∇–monotonicity assumption cannot be relaxed to ∇–monotonicity in order to guarantee that

yα(x) − x is a descent direction for ϕα. In fact, under ∇–monotonicity there can be stationary points of

ϕα which are not solution of EP (f, C), and Algorithm 1 may get trapped into one of them (see Example

2.5 in [8]). In order to overcome this drawback, condition (11) can be exploited to devise a solution method

which does not look for the stationary points of a given gap function. The main idea is to rely on the whole

family of the auxiliary equilibrium problems EP (fα, C) and the corresponding family of gap functions: a

descent direction is searched exploiting also the parameter α.

Theorem 4.3 ([8]). If condition (11) holds, then:

(a) for any α > 0 and x ∈ C

〈∇ϕα(x), yα(x)− x〉 ≤ −ϕα(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉] ;

(b) if x ∈ C is not a solution of EP (f, C) and η ∈ (0, 1), then for any α sufficiently small

−ϕα(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉] < −η ϕα(x), (12)

and therefore yα(x)− x is a descent direction for ϕα at x.

This result provides the key idea to formulate the method: given a value for α, the corresponding gap

function ϕα is exploited as long as inequality (12) holds and yα(x)−x provides a descent direction; when this

is no longer the case, the value of α is decreased and a new search is performed with the new gap function.

Algorithm 2

0. Choose η, γ ∈ (0, 1), β ∈ (0, η), a sequence αk ↓ 0, x0 ∈ C and set k = 1.

1. Set z0 = xk−1 and j = 0.

2. Compute yj = arg min{f(zj , y) + αkh(zj , y) : y ∈ C}, set dj = yj − zj .

3. If dj = 0, then STOP.

4. If inequality (12) holds,

then compute the smallest non-negative integer s such that

ϕαk
(zj + γsdj) ≤ ϕαk

(zj)− βγsϕαk
(zj),

set tj = γs, zj+1 = zj + tj d
j , j = j + 1 and goto step 2

else set xk = zj , k = k + 1 and goto step 1.

Theorem 4.4 ([8]). If C is bounded and (11) holds, then Algorithm 2 either stops at a solution of EP (f, C)

after a finite number of iterations or it produces either an infinite sequence {xk} or an infinite sequence {zj}
such that any of its cluster points solves EP (f, C).

When the set C is given by a set of possibly nonlinear convex constraints, the evaluation of ϕα could be

computationally expensive. For such a reason in [9] a new gap function has been introduced replacing C by

a polyhedral approximation. Suppose that C is the intersection of a bounded polyhedron

D = {y ∈ Rn : 〈aj , y〉 ≤ bj , j = 1, . . . , r}

where aj ∈ Rn and bj ∈ R, and a convex set given by

C̃ = {x ∈ Rn : ci(x) ≤ 0, i = 1, . . . ,m},
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where ci : Rn → R are twice continuously differentiable convex functions, and there exists x̂ ∈ D such that

ci(x̂) < 0 for all i = 1, . . . ,m.

The function

ϕ̃α(x) = −min{fα(x, y) : y ∈ P (x)},

where

P (x) = {y ∈ D : ci(x) + 〈∇ci(x), y − x〉 ≤ 0, i = 1, . . . ,m},

is a polyhedral approximation of the feasible region C, is a gap function for EP (f, C) [9]. Denote by ỹα(x)

the unique minimizer of fα(x, ·) over P (x) and by Λα(x) the corresponding set of Lagrange multipliers

(λ, µ) ∈ Rm+ ×Rr+, where the multipliers λ are associated to the linearized constraints and the multipliers µ

to the linear constraints.

The underlying idea is the same as in Algorithm 2: exploiting ỹα(x)− x as a search direction. However,

ỹα(x) ∈ P (x) while in general it does not lie in C, and thus the new point generated could be unfeasible. A

penalization of the gap function is required: the exact penalty function

ψα,ε(x) = ϕ̃α(x) +
1

ε
‖(c+1 (x), . . . , c+m(x))‖, (13)

where c+i (x) = max{0, ci(x)} and ε > 0, is considered.

When the assumption (11) holds on the polyhedron D, results similar to Theorem 4.3 can be obtained.

In particular, ỹα(x) − x is a descent direction for ψα,ε at x either if x is feasible and the regularization

parameter α is small enough or if x is infeasible and the penalization parameter ε is small enough.

Theorem 4.5 ([9]). If condition (11) holds on D, then:

(a) for any x ∈ D, α > 0, ε > 0

ψ◦α,ε(x; ỹα(x)− x) ≤ −ψα,ε(x)− α [h(x, ỹα(x)) + 〈∇xh(x, ỹα(x)), ỹα(x)− x〉] ,

where ψ◦α,ε(x; ỹα(x) − x) denotes the generalized directional derivative of ψα,ε at x in the direction

ỹα(x)− x;

(b) if x ∈ C does not solve EP (f, C) and η ∈ (0, 1), then for any ε > 0 and α sufficiently small

−ψα,ε(x)− α [h(x, ỹα(x)) + 〈∇xh(x, ỹα(x)), ỹα(x)− x〉] ≤ −η ψα,ε(x) < 0,

and therefore ỹα(x)− x is a descent direction for ψα,ε at x;

(c) if x ∈ D \ C and (λ, µ) ∈ Λα(x), then ψ◦α,ε(x; ỹα(x) − x) < 0 holds for any α > 0 and ε such that

1/ε > ‖λ+‖, where

λ+i =

{
λi if ci(x) > 0

0 otherwise.

The method exploits ψα,ε as long as ỹα(x)− x provides a descent direction, otherwise both the value for

α and ε are decreased.

Algorithm 3

0. Choose β, γ, δ, η ∈ (0, 1), sequences αk, εk ↓ 0, x0 ∈ D and set k = 1.

1. Set z0 = xk−1 and j = 0.

2. Compute yj = arg min{f(zj , y) + αkh(zj , y) : y ∈ D ∩ P (zj)} and λj any Lagrange multiplier vector

corresponding to the linearized constraints. Set dj = yj − zj .
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3. If dj = 0, then STOP.

4. If the following relations hold

• 1/εk ≥ ‖(λj)+‖+ δ,

• ψαk,εk(zj) > 0,

• −ψαk,εk(zj)− αk
[
h(zj , yj) + 〈∇xh(zj , yj), yj − zj〉

]
≤ −η ψαk,εk(zj)

then compute the smallest non-negative integer s such that

ψαk,εk(zj + γs dj) ≤ ψαk,εk(zj)− β γ2s ‖dj‖

set tj = γs, zj+1 = zj + tj d
j , j = j + 1 and goto step 2

else set xk = zj , k = k + 1 and goto step 1.

Theorem 4.6 ([9]). If C is bounded and (11) holds on D, then Algorithm 3 either stops at a solution of

EP (f, C) after a finite number of iterations or it produces either an infinite sequence {xk} or an infinite

sequence {zj} such that any of its cluster points solves EP (f, C).

Another well-known optimization approach for solving EP (f, C) is based on the so-called D-gap functions,

which are the difference between two gap functions and allow to reformulate EP (f, C) as an unconstrained

minimization problem. In [27, 38] the authors introduce the D-gap functions, give conditions for the equiv-

alence between stationary points of a D-gap function and the solutions of EP (f, C), and conditions under

which a D-gap function provides a global error bound for EP (f, C). Descent algorithm for minimizing the

equivalent optimization problem have been proposed in [27, 39].
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