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Abstract
Wepresent a space–time ultra-weak discontinuousGalerkin discretization of the linear
Schrödinger equation with variable potential. The proposed method is well-posed and
quasi-optimal in mesh-dependent norms for very general discrete spaces. Optimal h-
convergence error estimates are derived for the method when test and trial spaces are
chosen either as piecewise polynomials or as a novel quasi-Trefftz polynomial space.
The latter allows for a substantial reduction of the number of degrees of freedom
and admits piecewise-smooth potentials. Several numerical experiments validate the
accuracy and advantages of the proposed method.
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1 Introduction

In this work we are interested in the approximation of the solution to the time-
dependent Schrödinger equation on a space–time cylinder QT = � × I , where � ⊂
R

d(d ∈ N) is an open, bounded polytopic domain with Lipschitz boundary ∂�,
and I = (0, T ) for some final time T > 0:

Sψ := i∂tψ + 1

2
�xψ − V ψ = 0 in QT ,
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ψ = gD on �D × I ,

∂nxψ = gN on �N × I , (1.1)

∂nxψ − iϑψ = gR on �R × I ,

ψ(x, 0) = ψ0(x) on �.

Here i is the imaginary unit; ∂nx(·) is the normal derivative-in-space operator; V :
QT → R is the potential energy function; ϑ ∈ L∞(�R × I ) is a positive “impedance”
function; the Dirichlet (gD), Neumann (gN), Robin (gR) and initial condition (ψ0) data
are given functions; �D, �N, �R are a polytopic partition of ∂�.

Themodel problem (1.1) has a wide range of applications. In quantum physics [25],
the solution ψ is a quantum-mechanical wave function determining the dynamics of
one or multiple particles in a potential V . In electromagnetic wave propagation [24],
it is called “paraxial wave equation” andψ is a function associated with the field com-
ponent in a two-dimensional electromagnetic problem where the energy propagates at
small angles from a preferred direction. In such problems, the function V depends on
the refractive index and the wave number. In underwater sound propagation [22], it is
referred to as “parabolic equation” andψ describes a time-harmonic wave propagating
primarily in one direction. In molecular dynamics [2], by neglecting the motion of the
atomic nuclei, the Born-Oppenheimer approximation leads to a Schrödinger equation
in the semi-classical regime.

Space–time Galerkin methods discretize all the variables in a time-dependent PDE
at once; this is in contrast with themethod of lines, which combines a spatial discretiza-
tion and a time-stepping scheme. Space–time methods can achieve high convergence
rates in space and time, and provide discrete solutions that are available on the whole
space–time domain.

The literature on space–time Galerkin methods for the Schrödinger equation is very
scarce. In fact, the standard Petrov-Galerkin formulation for the Schrödinger equation,
i.e., the analogous formulation to that proposed in [32] for the heat equation, is not
inf-sup stable, see [14, Sect. 2.2]. In [20], Karakashian and Makridakis proposed a
space–time method for the Schrödinger equation with nonlinear potential, combining
a conforming Galerkin discretization in space and an upwind DG time-stepping. This
method reduces to a Radau IIA Runge–Kutta time discretization in the case of con-
stant potentials. Moreover, under some restrictions on the mesh that are necessary to
preserve the accuracy of the method, it allows for changing the spatial mesh on each
time-slab, but not for local time-stepping. A second version of the method, obtained
by enforcing the transmission of information from the past through a projection, was
proposed in [21]. This version reduces to a Legendre Runge–Kutta time discretiza-
tion in the case of constant potentials. Recently, some space–time methods based on
ultra-weak formulations of the Schrödinger equation have been designed. The well-
posedness of such formulations requiresweaker assumptions on themesh.Demkowicz
et al., in [8], the authors proposed a discontinuous Petrov-Galerkin (DPG) formulation
for the linear Schrödinger equation. The method is a conforming discretization of an
ultra-weak formulation of the Schrödinger equation in graph spaces. Well-posedness
and quasi-optimality of the method follow directly from the inf-sup stability (in a
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graph norm) of the continuous Petrov-Galerkin formulation. In [14], Hain and Urban
proposed a space–time ultra-weak variational formulation for the Schrödinger equa-
tion with optimal inf-sup constant. The formulation in [14] is closely related to the
DPG method in [8], but differs in the choice of the test and trial spaces. While for
the method in [8] one first fixes a trial space and then construct a suitable test space,
the method in [14] requires the choice of a conforming test space and then the trial
space is defined accordingly. We are not aware of publications proposing space–time
DG methods for the Schrödinger equation other than [8, 14, 20, 21], outlined in this
paragraph, and the space–time Trefftz DG method in [11, 12], which motivated the
present paper.

Trefftz methods are Galerkin discretizations with test and trial spaces spanned by
local solutions of the considered PDE. Trefftz methods with lower-dimensional spaces
than standard finite element spaces, but similar approximation properties, have been
designed for many problems, e.g., Laplace and solid-mechanics problems [31]; the
Helmholtz equation [16]; the time-harmonic [15], and time-dependent [10]Maxwell’s
equations; the acoustic wave equation in second-order [1] and first-order [27] form;
the Schrödinger equation [11]; among others. Nonetheless, pure Trefftz methods are
essentially limited to problems with piecewise-constant coefficients, as for PDEs with
varying coefficients the design of “rich enough” finite-dimensional Trefftz spaces is
in general not possible. A way to overcome this limitation is the use of quasi-Trefftz
methods, which are based on spaces containing functions that are just approximate
local solutions to the PDE. In essence, the earliest quasi-Trefftz spaces are the gen-
eralized plane waves used in [17] for the discretization of the Helmholtz equation
with smoothly varying coefficients. More recently, a quasi-Trefftz DG method for
the acoustic wave equation with piecewise-smooth material parameters was proposed
in [19], where some polynomial quasi-Trefftz spaces were introduced. As an alterna-
tive idea, the embedded Trefftz DGmethod proposed in [23] does not require the local
basis functions to be known in advance, as they are simply taken as a basis for the
kernel of the local discrete operators in a standard DG formulation. This corresponds
to a Galerkin projection of a DG formulation with a predetermined discrete space
onto a Trefftz-type subspace. In practice, it requires the computation of singular or
eigenvalue decompositions of the local matrices.

In [11], the authors proposed a space–time Trefftz DG method for the Schrödinger
equation with piecewise-constant potential, whose well-posedness and quasi-optimality
in mesh-dependent norms were proven for general discrete Trefftz spaces. Optimal h-
convergence estimates were shown in [11] for a Trefftz space consisting of complex
exponential wave functions, and in [12] for a polynomial Trefftz space.

In this work we propose a space–time DG method for the discretization of the
Schrödinger equation with variable potentials, extending the formulation of [11] to
more general problems and discrete spaces. The main advantages of the proposed
method are the following:

• The proposed ultra-weak DG variational formulation of (1.1) is well-posed, sta-
ble, and quasi-optimal in any space dimension for an almost arbitrary choice of
piecewise-defined discrete spaces and variable potentials.
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• A priori error estimates in a mesh-dependent norm can be obtained by simply
analyzing the approximation properties of the local spaces.

• The method naturally allows for non-matching space-like and time-like facets and
all our theoretical results hold under standard assumptions on the space–timemesh,
which make the method suitable for adaptive versions and local time-stepping.

• Building on [19], for elementwise smooth potentials, we design and analyze a
quasi-Trefftz polynomial space with similar approximation properties of full poly-
nomial spaces but with much smaller dimension, thus substantially reducing the
total number of degrees of freedom required for a given accuracy.

Structure of the paper In Sect. 2 we introduce some notation on the space–
time meshes to be used and the proposed ultra-weak DG variational formulation on
abstract spaces. Section3 is devoted to the analysis of well-posedness, stability and
quasi-optimality of the method. In Sects. 4.2 and 4.3 we prove optimal h-convergence
estimates for the method when the test and trial spaces are taken as the space of piece-
wise polynomials or a novel quasi-Trefftz space, respectively. In Sect. 5 we present
some numerical experiments that validate our theoretical results and illustrate the
advantages of the proposed method. We end with some concluding remarks in Sect. 6.

2 Ultra-weak discontinuous Galerkin formulation

2.1 Space–timemesh and DG notation

Let Th be a non-overlapping prismatic partition of QT , i.e., each element K ∈ Th

can be written as K = Kx × Kt for a d-dimensional polytope Kx ⊂ � and a time
interval Kt ⊂ I . We use the notation hKx = diam(Kx), hKt = |Kt | and hK =
diam(K ) = (h2

Kx
+ h2

Kt
)1/2. We call “mesh facet” any intersection F = ∂K 1 ∩ ∂K 2

or F = ∂K 1 ∩ ∂ QT , for K1, K2 ∈ Th , that has positive d-dimensional measure and is
contained in a d-dimensional hyperplane. We denote by �nF = (�nxF , nt

F ) ∈ R
d+1 one

of the two unit normal vectors orthogonal to F with nt
F = 0 or nt

F = 1. We assume
that each internal mesh facet F is either

a space-like facet if �nxF = 0, or a time-like facet if nt
F = 0.

We further denote the mesh skeleton and its parts as

Fh :=
⋃

K∈Th

∂K , F0
h := � × {0} , FT

h := � × {T } ,

FD
h := �D × (0, T ), FN

h := �N × (0, T ), FR
h := �R × (0, T ),

Ftime
h := the union of all the internal time-like facets,

Fspace
h := the union of all the internal space-like facets.
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We employ the standard DG notation for the averages {{·}} and space �·�N and time �·�t

jumps for piecewise complex scalar w and vector τ fields:

{
{{w}} := 1

2

(
w|K1 + w|K2

)

{{τ }} := 1
2

(
τ |K1 + τ |K2

) on ∂K 1 ∩ ∂K 2 ⊂ Ftime
h ,

{
�w�N := w|K1 �nxK1

+ w|K2 �nxK2

�τ�N := τ |K1 · �nxK1
+ τ |K2 · �nxK2

on ∂K 1 ∩ ∂K 2 ⊂ Ftime
h ,

�w�t := w|K1nt
K1

+ w|K2nt
K2

= w− − w+, on ∂K 1 ∩ ∂K 2 ⊂ Fspace
h ,

where �nxK ∈ R
d and nt

K ∈ R are the space and time components of the outward-
pointing unit normal vectors on ∂K ∩ Ftime

h and ∂K ∩ Fspace
h , respectively. The

superscripts “−” and “+” are used to denote the traces of a function on a space-like
facet from the elements “before” (−) and “after” (+) the facet.

The space–time prismatic meshes described in this section may include hanging
space-like and time-like facets, so the proposed method allows for local time-stepping
and local space–time refinements. Tent-pitched meshes are popular in space–time
methods for wave propagation problems; see, e.g., [30] and [27, Eq. 3]. However,
such meshes approximate the solution to the Schrödinger equation do not lead to
a semi-implicit discretization of the Schrödinger equation because the propagation
speed of its solutions, which dictates the slope of space-like facets of the tents, is
infinite.

We denote space–time broken function spaces as Hs(Th) := {v ∈ L2(QT ), v|K ∈
Hs(K ) ∀K ∈ Th}, Cs (Th) := {v : QT → C, v|K ∈ Cs (K ) ∀K ∈ Th}, for s ∈ N0.

2.2 Variational formulation of the DGmethod

For any finite-dimensional subspace Vhp (Th) of the broken Bochner–Sobolev space

V(Th) :=
∏

K∈Th

H1
(

Kt ; L2(Kx)
)

∩ L2
(

Kt ; H2 (Kx)
)

,

the proposed ultra-weakDGvariational formulation for the Schrödinger equation (1.1)
is:

Seek ψhp ∈ Vhp(Th) such that: A
(
ψhp; vhp

) = �(vhp) ∀vhp ∈ Vhp(Th), (2.1)

where

A
(
ψhp; vhp

) :=
∑

K∈Th

∫

K
ψhpSvhp dV +i

(∫

Fspace
h

ψ−
hp�vhp�t dx+

∫

FT
h

ψhpvhp dx

)

+1

2

∫

Ftime
h

( {{∇xψhp
}} · �vhp�N + iα�ψhp�N · �vhp�N
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− {{
ψhp

}}
�∇xvhp�N + iβ�∇xψhp�N�∇xvhp�N

)
dS

+1

2

∫

FD
h

(
∂nxψhp + iαψhp

)
vhp dS

+1

2

∫

FN
h

(−ψhp∂nxvhp + iβ
(
∂nxψhp

) (
∂nxvhp

))
dS

+1

2

∫

FR
h

(
δ∂nxψhp + (1 − δ)iϑψhp

) (
vhp + i

ϑ
∂nxvhp

)
dS

+i
∑

K∈Th

∫

K
μSψhpSvhp dV ,

�(vhp) := i
∫

F0
h

ψ0vhp dx + 1

2

∫

FD
h

gD
(
∂nxvhp + iαvhp

)
dS

+1

2

∫

FN
h

gN
(−vhp + iβ∂nxvhp

)
dS

+1

2

∫

FR
h

gR

(
(δ − 1)vhp + iδ

ϑ
∂nxvhp

)
dS,

for some mesh-dependent stabilization functions

α ∈ L∞(Ftime
h ∪ FD

h ), ess infFtime
h ∪FD

h
α > 0,

β ∈ L∞(Ftime
h ∪ FN

h ), ess infFtime
h ∪FN

h
β > 0,

δ ∈ L∞(FR
h ), 0 < δ ≤ 1

2
,

μ ∈ L∞(QT ), ess infQT μ > 0.

More conditions on these functions, in particular on their dependence on the local
mesh size, will be specified in Sect. 4.

The variational formulation (2.1) can be derived by integrating by parts twice in
space and once in time in each element as in [11], and treating the Neumann and the
Robin boundary terms similarly to [11, Rem. 3.7]. However, as the current setting
does not require the discrete space Vhp(Th) to satisfy the Trefftz property (Sψ|K =
0, ∀K ∈ Th), there are an additional volume term that is needed to ensure consistency
(the first integral over K in A (·; ·)), and a local Galerkin-least squares correction
term (the second integral over K in A (·; ·)) that were not present in the previous
method. Such additional terms vanish when Vhp(Th) is a discrete Trefftz space, thus
recovering the formulation in [11].

Remark 1 (Implicit time-stepping through time-slabs). The variational problem (2.1)
is a global problem involving all the degrees of freedom of the discrete solution for
the whole space–time cylinder QT . However, as upwind numerical fluxes are taken
on the space-like facets, if the space–time prismatic mesh Th can be decomposed into
time-slabs (i.e., if the mesh elements can be grouped in sets of the form � × [tn−1, tn]
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for a partition of the time interval of the form 0 = t0 < t1 < . . . < tN = T ), the
global linear system stemming from (2.1) can be solved as a sequence of N smaller
systems of the form

Kn�
(n)
h = bn 1 ≤ n ≤ N ,

where bn = Rn�
(n−1)
h for n = 2, . . . , N. This is comparable to an implicit time-

stepping, and it naturally allows for local mesh refinement in different regions of the
space–time cylinder QT . Moreover, when Th is a tensor-product space–time mesh, the
potential V does not vary in time, and the partition of the time interval is uniform, the
matrices Kn and Rn are the same for every time-slab.

Remark 2 (Self-adjointness and volume penalty term). The well-posedness of the
variational formulation (2.1) strongly relies on the L2(K )-self-adjointness of the
Schrödinger operator S(·) on each K ∈ Th (in the sense that

∫
K Sψ ϕ dV =∫

K ψ Sϕ dV for all ψ ∈ V(Th), ϕ ∈ C∞
0 (K ), thanks to the fact that the only odd

derivative in S is multiplied to the imaginary unit), which makes the local Galerkin-
least squares correction term consistent. On the one hand, such term is essential in
the proof of coercivity of the sesquilinear form A (· ; ·) (see Proposition 1 below). On
the other hand, numerical experiments suggest that it can be neglected without losing
accuracy and stability, see Sect. 5.1.2 below. This is also the case for the quasi-Trefftz
DG method for the Helmholtz equation [18, §5.1.3] and for the wave equation [19,
§5.1], where a similar correction term was used. Nonetheless, in the design of an
ultra-weak DG discretization for a PDE with a non-self-adjoint differential opera-
tor L(·) (e.g., the heat operator L(·) = (∂t − �x) (·)), the corresponding local least
squares correction term

∑
K∈Th

∫
K μLψhpLvhp dV would not control the consistency

term
∑

K∈Th

∫
K ψhpL∗vhp dV arising from the integration by parts.

Remark 3 (Time-dependent potentials). The variational problem (2.1) allows for time-
dependent potentials V . This is an important feature as, in such a case, the method of
separation of variables cannot be used to reduce the time-dependent problem (1.1) to
the time-independent Schrödinger equation.

3 Well-posedness, stability and quasi-optimality of the DGmethod

The theoretical results in this section are derived for any spatial dimension d, and are
independent of the specific choice of the discrete space Vhp(Th).

Recalling that the volume penalty function μ, the stabilization functions α, β and
the impedance function ϑ are positive, and that δ ∈ (0, 1

2 ), we define the following
mesh-dependent norms on V(Th):1

|||w|||2
DG

:=
∑

K∈Th

∥∥∥μ
1
2 Sw

∥∥∥
2

L2(K )
+ 1

2

(∥∥�w�t
∥∥2

L2(Fspace
h )

+ ‖w‖2
L2(FT

h ∪F0
h )

)

1 Observe that a factor 1
2 is missing in the first term of the DG norm in [11, Eqn. (3.2)].
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+1

2

(∥∥∥α
1
2 �w�N

∥∥∥
2

L2(Ftime
h )d

+
∥∥∥β

1
2 �∇xw�N

∥∥∥
2

L2(Ftime
h )

+
∥∥∥α

1
2 w

∥∥∥
2

L2(FD
h )

(3.1)

+
∥∥∥β

1
2 ∂nxw

∥∥∥
2

L2(FN
h )

+
∥∥∥∥
(
ϑ(1 − δ)

) 1
2 w

∥∥∥∥
2

L2(FR
h )

+
∥∥∥∥
(
δϑ−1) 1

2 ∂nxw

∥∥∥∥
2

L2(FR
h )

)
,

|||w|||2
DG+ := |||w|||2

DG
+

∑

K∈Th

∥∥∥μ− 1
2 w

∥∥∥
2

L2(K )
+ 1

2

∥∥w−∥∥2
L2(Fspace

h )

+1

2

(∥∥∥α− 1
2 {{∇xw}}

∥∥∥
2

L2(Ftime
h )d

+
∥∥∥α− 1

2 ∂nxw

∥∥∥
L2(FD

h )
(3.2)

+
∥∥∥β− 1

2 {{w}}
∥∥∥
2

L2(Ftime
h )

+
∥∥∥β− 1

2 w

∥∥∥
2

L2(FN
h )

+
∥∥∥δ− 1

2 ϑ
1
2 w

∥∥∥
2

L2(FR
h )

)
.

The sum of the L2(K )-type terms ensures that ||| · |||
DG+ is a norm. That ||| · |||DG is a

normonV(Th) follows from the following reasoning (see also [11,Lemma3.1]): ifw ∈
V(Th) and ‖w‖

DG = 0, then w is the unique variational solution to the Schrödinger
equation (1.1) with homogeneous initial and boundary conditions. Moreover, by the
energy conservation (if FR

h = ∅) or dissipation (if FR
h �= ∅), then ‖w(·, t)‖2L2(�)

≤
‖w(·, 0)‖2L2(�)

= 0, for all t ∈ (0, T ]; therefore, w = 0.
The DG norms in (3.1)–(3.2) are chosen in order to ensure the following properties

of the sesquilinear form A (·; ·) and the antilinear functional �(·), from which the
well-posedness and quasi-optimality of the method (2.1) follow.

Proposition 1 (Coercivity). For all w ∈ V(Th) the following identity holds

Im
(
A (w; w)

) = |||w|||2
DG

.

Proof The result follows from the following identities (see [11, Prop. 3.2] for more
details):

∫

Fspace
h

(
Re

(
v−�v�t

)− 1

2
�|v|2�t

)
dx = 1

2

∫

Fspace
h

∣∣�v�t
∣∣2 dx ∀v∈ H1(Th),

∫

Ftime
h

({{v}} �τ�N + {{τ }} · �v�N
)
dS =

∫

Ftime
h

�vτ�N dS ∀(v, τ )∈ H1(Th)×H1(Th)d ,

Im

⎛

⎝
∑

K∈Th

∫

K
wSw dV

⎞

⎠ = −1

2

(∫

Fspace
h

�|w|2�t dx +
∫

FT
h

|w|2 dx −
∫

F0
h

|w|2 dx
)

+1

2
Im

(∫

Ftime
h

�w∇xw�N dS+
∫

∂�×I
w∂nxw dS

)
∀w∈V(Th).

��
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Proposition 2 (Continuity). The sesquilinear form A (·; ·) and the antilinear func-
tional �(·) are continuous in the following sense: ∀v,w ∈ V(Th)

|A (v; w)| ≤ 2|||v|||
DG+ |||w|||DG , (3.3a)

|�(v)| ≤
(
2 ‖ψ0‖2

L2(F0
h)

+
∥∥∥α

1
2 gD

∥∥∥
2

L2(FD
h )

+
∥∥∥β

1
2 gN

∥∥∥
2

L2(FN
h )

+
∥∥∥ϑ− 1

2 gR
∥∥∥
2

L2(FR
h )

) 1
2 |||w|||

DG+ . (3.3b)

Proof The terms on Fspace
h ,FT

h ,F0
h,Ftime

h and FD
h are controlled as in [11, Prop. 3.3].

The remaining terms are bounded similarly using Cauchy–Schwarz inequality and the
inequality δ ≤ 1 − δ < 1. ��
Theorem 1 (Quasi-optimality). For any finite-dimensional subspace Vhp(Th) of
V(Th), there exists a unique solution ψhp ∈ Vhp(Th) satisfying the variational for-
mulation (2.1). Additionally, the following quasi-optimality bound holds:

|||ψ − ψhp|||DG ≤ 3 inf
vhp∈Vhp(Th)

|||ψ − vhp|||DG+ . (3.4)

Moreover, if gD = 0 and gN = 0 (or �D = ∅ and �N = ∅), then

|||ψhp|||DG ≤
(
2 ‖ψ0‖2

L2(F0
h)

+
∥∥∥ϑ−1/2gR

∥∥∥
2

L2(FR
h )

)1/2

. (3.5)

Proof Existence and uniqueness of the discrete solution ψhp ∈ Vhp(Th) of the
variational formulation (2.1), and the quasi-optimality bound (3.4) follow directly
from Propositions 1–2, the consistency of the variational formulation (2.1) and
Lax–Milgram theorem. The continuous dependence on the data (3.5) follows from
Proposition 1, and the fact that if gD = 0 and gN = 0 (or �D = ∅ and �N = ∅), the
term ‖w‖

DG+ on the right-hand side of (3.3b) can be replaced by ‖w‖
DG . ��

Theorem 1 implies that it is possible to obtain error estimates in themesh-dependent
norm ||| · |||DG by studying the best approximation in Vhp(Th) of the exact solution in
the |||·|||

DG+ norm.Moreover, according to Proposition 3 below, a priori error estimates
can be deduced from the local approximation properties of the spaceVhp(Th) only, as
the ||| · |||

DG+ norm can be bounded in terms of volume Sobolev seminorms and norms.
The proof of error estimates in mesh-independent norms on the full computational
domain for ultra-weakDGmethods is a delicate issue; see, e.g., [15, Lemma1] and [27,
§5.4] for related results concerning Trefftz methods for the Helmholtz and the wave
equations, respectively.

So far, we have not imposed any restriction on the space–timemesh Th . Henceforth,
in our analysis we assume:

• Uniform star-shapedness: There exists 0 < ρ ≤ 1
2 such that, each ele-

ment K ∈ Th is star-shaped with respect to the ball B := BρhK (zK , sK ) centered
at (zK , sK ) ∈ K and with radius ρhK .
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• Local quasi-uniformity in space: there exists a number lqu(Th) > 0 such
that hK 1

x
≤ hK 2

x
lqu(Th) for all K 1 = K 1

x × K 1
t , K 2 = K 2

x × K 2
t ∈ Th such

that K 1 ∩ K 2 has positive d-dimensional measure.

The proof of Proposition 3 is a direct consequence of a collection of trace inequali-
ties (see [3, Theorem 1.6.6] and [27, Lemma 2]), which in our space–time setting can
be written for any element K = Kx × Kt ∈ Th as

‖ϕ‖2L2(Kx×∂Kt )
≤Ctr

(
h−1

Kt
‖ϕ‖2L2(K )

+hKt ‖∂tϕ‖2L2(K )

)
∀ϕ∈ H1

(
Kt ; L2(Kx)

)
,

‖ϕ‖2L2(∂Kx×Kt )
≤Ctr

(
h−1

Kx
‖ϕ‖2L2(K )

+hKx ‖∇xϕ‖2L2(K )d

)
∀ϕ∈ L2

(
Kt ; H1 (Kx)

)
,

(3.6)

‖∇xϕ‖2L2(∂Kx×Kt )d ≤ Ctr

(
h−1

Kx
‖∇xϕ‖2L2(K )d + hKx

∥∥∥D2
xϕ

∥∥∥
2

L2(K )d×d

)

∀ϕ∈ L2
(

Kt ; H2 (Kx)
)

,

where D2
xϕ is the spatialHessian ofϕ, andCtr ≥ 1 only depends on the star-shapedness

parameter ρ.

Proposition 3 Fix δ = min(ϑhKx ,
1
2 ), and assume that V ∈ L∞(K ), ∀K ∈ Th. For

all ϕ ∈ V(Th), the following bound holds

|||ϕ|||2
DG+ ≤ 3

2
Ctr

∑

K=Kx×Kt ∈Th

[
h−1

Kt
‖ϕ‖2L2(K )

+ hKt ‖∂tϕ‖2L2(K )
+ a2K h−1

Kx
‖ϕ‖2L2(K )

+(
a2K hKx + b2K h−1

Kx

) ‖∇xϕ‖2L2(K )d + b2K hKx

∥∥D2
xϕ
∥∥2

L2(K )d×d +
∥∥∥μ

1
2 ∂tϕ

∥∥∥
2

L2(K )

+
∥∥∥μ

1
2 �xϕ

∥∥∥
2

L2(K )
+ ‖V ‖2L∞(K )

∥∥∥μ
1
2 ϕ

∥∥∥
2

L2(K )
+
∥∥∥μ− 1

2 ϕ

∥∥∥
2

L2(K )

]
,

where

a2K :=max

{
ess sup

∂K∩
(
Ftime

h ∪FD
h

)α,

(
ess inf

∂K∩(Ftime
h ∪FN

h )

β

)−1

, ess sup
∂K∩FR

h

ϑ

}
,

b2K :=max

{(
ess inf

∂K∩
(
Ftime

h ∪FD
h

)α

)−1

, ess sup
∂K∩(Ftime

h ∪FN
h )

β, hKx

}
.

The factor 3
2Ctr appearing in the bound of Proposition 3 is due to the integral

terms with arguments 1
2α |[[w]]N| 2, 1

2β
−1 |{{w}}|2 on Ftime

h in the definition (3.1) of

the ||| · |||
DG+ norm. The volume term

∥∥∥μ
1
2Sw

∥∥∥
2

L2(K )
is controlled by the inequality

|y|1 ≤ √
n |y|2, ∀y ∈ C

n .
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Remark 4 (Inhomogeneous Schrödinger equation). The space–time ultra-weak DG
variational formulation in (2.1) can be easily extended to approximate the solution to
inhomogeneous Schrödinger-type problems with a sufficiently smooth term f : QT →
C at the right-hand side of the first equation in (1.1); see [26, Ch. 3,§ 10] for the well-
posedness of such problems. In order to preserve the consistency of the method, it is
necessary to add the following term to the antilinear functional �(·):

∑

K∈Th

∫

K
f
(
vhp + iμSvhp

)
dV .

The existence and uniqueness of the discrete solution for any choice of the discrete
spaceVhp(Th), as well as the quasi-optimality estimate (3.4), follow from the coercivity
and continuity of the sesquilinear form A (·; ·) on the continuous space V(Th) in
Propositions 1 and 2, together with the consistency of the method. Thus, optimal
convergence rates can be proven for the full polynomial space as in Sect. 4.2, since
this space provides a good enough approximation of any sufficiently smooth solution.
On the other hand, the quasi-Trefftz space introduced in Sect. 4.3 would require some
adjustments in order to approximate the solution of an inhomogeneous problem.

Remark 5 (Energy dissipation). It is well known that the Schrödinger equation (1.1)
with homogeneous Dirichlet and/or Neumann boundary conditions and �R = ∅
preserves the energy (or probability) functional E(t;ψ) := 1

2

∫
�

|ψ(x, t)|2 dx, i.e.,
d
dt E(t;ψ) = 0.

The proposed DG method is dissipative, but the energy loss can be quantified in
terms of the local least squares error, the initial condition error, the jumps of the
solution on the mesh skeleton, and the error on FD

h ∪ FN
h due to the weak imposition

of the boundary conditions. More precisely, for gD = 0, gN = 0 and FR
h = ∅, the

discrete solution to (2.1) satisfies

E(0;ψ0) − E(T ;ψhp) = Eloss := δE + 1

2

∥∥ψ0 − ψhp
∥∥2F0

h
,

where

δE :=
∑

K∈Th

∥∥∥μ
1
2Sψhp

∥∥∥
2

L2(K )
+ 1

2

∥∥�ψhp�t
∥∥2

L2(Fspace
h )

+ 1

2

( ∥∥∥α
1
2 ψhp

∥∥∥
2

L2(FD
h )

+
∥∥∥β

1
2 ∂nxψhp

∥∥∥
2

L2(FN
h )

+
∥∥∥α

1
2 �ψhp�N

∥∥∥
2

L2(Ftime
h )d

+
∥∥∥β

1
2 �∇xψhp�N

∥∥∥
2

L2(Ftime
h )

)
.

This follows from the definition of the ||| · |||DG norm of the solution ψhp, the coercivity
of the sesquilinear form A (· ; ·), the definition of the antilinear functional �(·) and
simple algebraic manipulations; see [11, Rem. 3.6].
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4 Discrete spaces and error estimates

In this section we prove a priori h-convergence estimates on the ||| · |||
DG+ norm of the

error for some discrete polynomial spaces. In particular, for each element K ∈ Th , we
consider two different polynomial spaces: the spacePp(K ) of polynomials of degree p
on K , and a quasi-Trefftz subspaceQT

p (K ) ⊂ P
p(K )with much smaller dimension,

i.e., dim(QT
p (K )) � dim(Pp(K )) (see Proposition 5 below). A polynomial Trefftz

space for the case of zero potential V has been studied in [12]. We denote the local
dimensions nd+1,p := dim(QT

p (K )) and rd+1,p := dim(Pp(K )) in dependence of
the space dimension d of the problem and the polynomial degree p, but independent of
the element K . For simplicity, we only describe the case where the same polynomial
degree is chosen in every element; the general case can easily be studied.

4.1 Multi-index notation and preliminary results

We use the standard multi-index notation for partial derivatives and monomials,
adapted to the space–time setting: for j = ( jx, jt ) = (

jx1, . . . , jxd , jt
) ∈ N

d+1
0 ,

j ! := jx1 ! · · · jxd ! jt !, | j | := ∣∣ jx
∣∣ + jt := jx1 + · · · + jxd + jt ,

D j f := ∂
jx1
x1 · · · ∂ jxd

xd ∂
jt

t f , x jx t jt := x
jx1
1 · · · x

jxd
d t jt .

We also recall the definition and approximation properties of multivariate Taylor
polynomials, which constitute the basis of our error analysis. On an open and bounded
set ϒ ⊂ R

d+1, the Taylor polynomial of order m ∈ N (and degree m − 1), centered
at (z, s) ∈ ϒ , of a function ϕ ∈ Cm−1 (ϒ) is defined as

T m
(z,s) [ϕ] (x, t) :=

∑

| j |<m

1

j ! D jϕ(z, s)(x − z) jx(t − s) jt .

If ϕ ∈ Cm (ϒ) and the segment [(z, s), (x, t)] ⊂ ϒ , the Lagrange’s form of the Taylor
remainder (see [4, Corollary 3.19]) is bounded as follows:

∣∣∣ϕ(x, t) − T m
(z,s) [ϕ] (x, t)

∣∣∣ ≤ |ϕ|Cm
(ϒ)

∑

| j |=m

1

j !
∣∣∣(x − z) jx (t − s) jt

∣∣∣

≤ (d + 1)
m
2

m! hm
ϒ |ϕ|Cm

(ϒ)
,

where hϒ is the diameter of ϒ . In particular, if ϒ is star-shaped with respect to (z, s),
then the following estimate is obtained

∥∥∥ϕ(x, t) − T m
(z,s) [ϕ] (x, t)

∥∥∥
L2(ϒ)

≤ (d + 1)
m
2 |ϒ | 12

m! hm
ϒ |ϕ|Cm

(ϒ)
,
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which, together with the well-known identity (see [3, Prop. (4.1.17)]) D jT m
(z,s) [ϕ] =

T m−| j |
(z,s)

[
D jϕ

]
, | j | < m, gives the estimate

∣∣∣ϕ−T m
(z,s) [ϕ]

∣∣∣
Hr (ϒ)

≤
(

d + r

d

) 1
2 (d+ 1)

m−r
2 |ϒ | 12

(m − r)! hm−r
ϒ |ϕ|Cm

(ϒ)
r <m, ∀ϕ∈Cm (ϒ) .

(4.1)
The Bramble–Hilbert lemma provides an estimate for the error of the averaged Taylor
polynomial, see [9] and [3, Thm. 4.3.8].

Lemma 1 (Bramble–Hilbert). Let ϒ ⊂ R
d+1, 1 ≤ d ∈ N, be an open and bounded

set with diameter hϒ , star-shaped with respect to the ball B := Bρhϒ (z, s) centered
at (z, s) ∈ ϒ and with radius ρhϒ , for some 0 < ρ ≤ 1

2 . If ϕ ∈ Hm (ϒ), the averaged
Taylor polynomial of order m (and degree m − 1) defined as

Qm [ϕ] (x, t) := 1

|B|
∫

B
T m

(z,s) [ϕ] (x, t) dV (z, s),

satisfies the following error bound for all s < m

∣∣ϕ−Qm [ϕ]
∣∣

Hs (ϒ)
≤Cd,m,ρ hm−s

ϒ |ϕ|Hm (ϒ) ≤2

(
d + s

d

)
(d+ 1)m−s

(m− s− 1)!
hm−s

ϒ

ρ
d+1
2

|ϕ|Hm (ϒ) .

A sharp bound on Cd,m,ρ > 0 is given in [9, p. 986] in dependence of d, s, m and ρ,
and the second bound is proven in [27, Lemma 1].

4.2 Full polynomial space

In next theorem, we derive a priori error estimates for the DG formulation (2.1) for
the space of elementwise polynomials

Vhp(Th) =
∏

K∈Th

P
p(K ). (4.2)

Theorem 2 Let p ∈ N, fix δ as in Proposition 3 and assume that V ∈ L∞(QT ).
Let ψ ∈ V(Th) ∩ H p+1 (Th) be the exact solution of (1.1) and ψhp ∈ Vhp(Th) be
the solution to the variational formulation (2.1) with Vhp(Th) given by (4.2). Set the
volume penalty function and the stabilization functions as

min
{

h2
Kt

, h2
Kx

}
≤ μ|K ≤ max

{
h2

Kt
, h2

Kx

}
,

α|F = 1

hFx

∀F ⊂ Ftime
h ∪ FD

h , β|F = hFx ∀F ⊂ Ftime
h ∪ FN

h ,
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where

{
hFx = hKx if F ⊂ ∂K ∩ (

FD
h ∪ FN

h

)
,

min{hK 1
x
, hK 2

x
} ≤ hFx ≤ max{hK 1

x
, hK 2

x
} if F = K 1 ∩ K 2 ⊂ Ftime

h ,

then the following estimate holds

|||ψ − ψhp|||DG ≤ 3
√
6Ctrρ

− p+1
2

(d + 1)p+1

p!
∑

K=Kx×Kt ∈Th

[
h

− 1
2

Kt
h p+1

K

+ ph
1
2
Kt

h p
K + lqu(Th)

(
h−1

Kx
h p+1

K + 2ph p
K + (p − 1)p

2

(
d + 2

d + 1

)
hKxh p−1

K

)

+ p max{hKx , hKt }h p
K + (p − 1)p

2

(
d + 2

d + 1

)
max{hKx , hKt }h p−1

K

+ ‖V ‖L∞(K ) max{hKx , hKt }h p+1
K + min{h−1

Kx
, h−1

Kt
}h p+1

K

]
|ψ |H p+1(K ) .

Moreover, if hKx � hKt for all K ∈ Th, there exists a positive constant C independent
of the element sizes hKx , hKt , but depending on the degree p, the L∞(QT ) norm of V ,
the trace inequality constant Ctr in (3.6), the local quasi-uniformity parameter lqu(Th)

and the star-shapedness parameter ρ such that

|||ψ − ψhp|||DG ≤ C
∑

K∈Th

h p
K |ψ |H p+1(K ) .

Proof The proof follows from the choice of the volume penalty function μ and the
stabilization functions α, β, the quasi-optimality bound (3.4), Proposition 3, the
inequality

√|v|1 ≤ ∑N
i=1

√|vi | ∀v ∈ R
N , the fact thatQp+1 [ψ|K

] ∈ Vhp(K ) for all
elements K ∈ Th , and the Bramble-Hilbert Lemma 1. ��

4.3 Quasi-Trefftz spaces

We now introduce a polynomial quasi-Trefftz space. Let p ∈ N and assume that V ∈
Cp−2 (K ). For each K ∈ Th we define the following local polynomial quasi-Trefftz
space:

QT
p (K ) :=

{
qp ∈ P

p(K ) : D jSqp(xK , tK ) = 0, | j | ≤ p − 2
}

, (4.3)

for some point (xK , tK ) in K . We consider the following global discrete space

Vhp(Th) =
∏

K∈Th

QT
p (K ) . (4.4)
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For all j ∈ N
d+1, if V ∈ C| j | (K ) and f ∈ C| j |+2 (K ), then by themulti-index Leibniz

product rule for multivariate functions we have

D jS f (xK , tK ) =i D jx, jt +1 f (xK , tK ) + 1

2

d∑

�=1

D jx+2e�, jt f (xK , tK )

−
∑

z≤ j

(
j
z

)
D j−zV (xK , tK )Dz f (xK , tK ),

(4.5)

where {e�}d
�=1 ⊂ R

d is the canonical basis,

(
j
z

)
= j !

z!( j − z)! , and j ≤ z ⇔ jxi ≤ zxi (1 ≤ i ≤ d) and jt ≤ zt .

The next proposition is the key ingredient to prove optimal convergence rates in
Theorem 3 for the DG method (2.1) when Vhp(Th) is chosen as the quasi-Trefftz
polynomial space defined in (4.3).

Proposition 4 Let p ∈ N and K ∈ Th. Assume that V ∈ Cmax{p−2,0} (K ) and ψ ∈
Cp (K ) satisfies Sψ = 0 in K , then the Taylor polynomial T p+1

(xK ,tK ) [ψ] ∈ QT
p (K ).

Proof By the definition of the Taylor polynomial, T p+1
(xK ,tK ) [ψ] ∈ P

p(K ). Therefore,

it only remains to show that D jST p+1
(xK ,tK ) [ψ](xK , tK ) = 0 for all | j | ≤ p − 2.

Taking f = T p+1
(xK ,tK ) [ψ] in (4.5), all the derivatives of T p+1

(xK ,tK ) [ψ] at (xK , tK ) that
appear in (4.5) are at most of total order | j | + 2 ≤ p, so they coincide with the
corresponding derivatives of ψ . Furthermore, since Sψ = 0, then

D jST p+1
(xK ,tK ) [ψ](xK , tK ) = D jSψ(xK , tK ) = 0,

which completes the proof. ��

Proposition 4 allows for the use of the Taylor error bound (4.1) in the analysis of
the quasi-Trefftz DG scheme.

Theorem 3 Let p ∈ N, fix δ as in Proposition 3 and assume that V ∈ L∞(QT ) ∩
Cmax{p−2,0} (Th) . Let ψ ∈ V(Th)∩Cp+1 (Th) be the exact solution of (1.1) and ψhp ∈
Vhp(Th) be the solution to the variational formulation (2.1) with Vhp(Th) given
by (4.4). Set the volume penalty function μ and the stabilization functions α, β as
in Theorem 2. Then, the following estimate holds

|||ψ − ψhp|||DG ≤ 3

2

√
6Ctr |QT | 12 (d + 1)

p+1
2

(p + 1)!
∑

K=Kx×Kt ∈Th

[
h

− 1
2

Kt
h p+1

K

123



   15 Page 16 of 34 S. Gómez, A. Moiola

+ (p + 1)h
1
2
Kt

h p
K + lqu(Th)

(
h−1

Kx
h p+1

K + 2(p + 1)h p
K + p(p + 1)

(
d + 2

2(d + 1)

) 1
2

hKxh p−1
K

)

+ (p + 1)max{hKx , hKt }h p
K + p(p + 1)

(
d + 2

2(d + 1)

) 1
2

max{hKx , hKt }h p−1
K

+ ‖V ‖C0
(K )

max{hKx , hKt }h p+1
K + min{h−1

Kx
, h−1

Kt
}h p+1

K

]
|ψ |Cp+1

(K )
.

Moreover, if hKx � hKt for all K ∈ Th, there exists a positive constant C independent
of the mesh size h, but depending on the degree p, the L∞(QT ) norm of V , the trace
inequality constant Ctr in (3.6), the local quasi-uniformity parameter lqu(Th) and the
measure of the space–time domain QT such that

|||ψ − ψhp|||DG ≤ C
∑

K∈Th

h p
K |ψ |Cp+1

(K )
.

Proof The proof follows from the choice of the volume penalty function μ and the
stabilization functions α, β, the quasi-optimality bound (3.4), bound (3), the inequal-
ity

√|v|1 ≤ ∑N
i=1

√|vi | ∀v ∈ R
N , Proposition 4, and the estimate (4.1). ��

The a priori error estimate in Theorem 3 requires stronger regularity assumptions
on ψ than Theorem 2 (namely ψ ∈ Cp+1 (Th) instead of ψ ∈ H p+1(Th)) due to
the fact that QT

p (K ) is tailored to contain the Taylor polynomial T p+1
(xK ,tK ) [ψ], but in

general it does not contain the averaged Taylor polynomial Qp+1 [ψ].

Remark 6 (Non-polynomial spaces) Optimal h-convergence estimates can also be
derived for non-polynomial spaces, by requiring the local space Vhp(K ) to contain
an element whose Taylor polynomial coincides with that of the exact solution. This is
the approach in [11] for the Trefftz space of complex exponential wave functions for
the Schrödinger equation with piecewise-constant potential.

4.3.1 Basis functions and dimension

So far, we have not specified the dimension and a basis for the spaceQT
p (K ), which

is the aim of this section.
Recalling that rd,p = dim

(
P

p(Rd)
) = (p+d

d

)
, let {m̂α}rd,p

α=1 and {m̃β}rd,p−1
β=1 be bases

of Pp(R
d) and Pp−1(R

d), respectively. We define

nd+1,p := rd,p + rd,p−1 =
(

p + d

d

)
+
(

p + d − 1

d

)
= (p + d − 1)!(2p + d)

d!p! ,

and the following nd+1,p elements of QT
p (K )

⎧
⎨

⎩bJ ∈ QT
p (K ) :

⎧
⎨

⎩
bJ

(
x(1)

K , ·
)
= m̂ J and ∂x1bJ

(
x(1)

K , ·
)
=0 if J ≤rd,p

bJ

(
x(1)

K , ·
)
=0 and ∂x1bJ

(
x(1)

K , ·
)
= m̃ J−rd,p if rd,p < J ≤nd+1,p

⎫
⎬

⎭ ,

(4.6)
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where g
(
x(1)

K , ·
)
denotes the restriction of g : K → C to x1 = x(1)

K , where x(1)
K is the

first component of xK ∈ R
d .

Any element qp ∈ QT
p (K ) can be expressed in the scaled monomial basis as

qp(x, t) =
∑

| j |≤p

C j

(
x − xK

hK

) jx
(

t − tK

hK

) jt
,

for some complex coefficients
{
C j

}
| j |≤p. By the conditions D jSqp(xK , tK ) = 0 for

all | j | ≤ p −2, in the definition ofQT
p (K ), we have the following relations between

the coefficients

i

hK
( jt + 1)C jx, jt +1 + 1

2h2
K

d∑

�=1

( jx�
+ 1)( jx�

+ 2)C J
jx+2e�, jt

−
∑

z≤ j

h| j |−|z|
K

( j − z)! D j−zV (xK , tK )C J
z = 0,

which can be rewritten as

C jx+2e1, jt = 1

( jx1 + 1)( jx1 + 2)

(
− 2ihK ( jt + 1)C J

jx, jt +1 (4.7)

−
d∑

�=2

( jx�
+ 1)( jx�

+ 2)C J
jx+2e�, jt + 2

∑

z≤ j

h| j |−|z|+2
K

( j − z)! D j−zV (xK , tK )C J
z

)
.

The conditions imposed in (4.6) on the restriction of bJ to x1 = x(1)
K fix the coefficients

of their expansion for all j with jx1 ∈ {0, 1}. In Figs. 1 and 2, we illustrate how the
coefficients that are not immediately determined by the conditions in (4.6) (i.e., those
for j x1 ≥ 2) are uniquely defined and can be computed for the (1 + 1)- and (2 + 1)-
dimensional cases using the recurrence relation (4.7).

Proposition 5 The set of functions {bJ }nd+1,p
J=1 defined in (4.6) are a basis for the

space QT
p (K ). Therefore,

dim
(
QT

p (K )
)=nd+1,p = (p + d − 1)!(2p + d)

d!p!
=Op→∞(pd )�dim(Pp(K ))=

(
d + 1 + p

d + 1

)
=Op→∞(pd+1).

Proof We first observe that the set of polynomials {bJ }nd+1,p
J=1 is linearly independent

due to their restrictions to x1 = x(1)
K . On the other hand, the relations (4.7), imply

that qp is uniquely determined by its restriction qp(x
(1)
K , ·) and the restriction of its
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Fig. 1 A representation of the relations defining the coefficients of bJ for the (1+1)-dimensional case. The

colored dots in the ( jx , jt ) plane represent the coefficients C jx jt . Each shape connects three dots
located at the points ( jx , jt + 1), ( jx , jt ) and ( jx + 2, jt ): this shape represents one of the equations (4.7)
which, given C jx ( jt +1) and C jx jt , allows to compute C( jx +2) jt . If the 2p + 1 values with jx ∈ {0, 1}
(corresponding to the blue nodes in the shaded region) are given, then these relations uniquely determine
all the other coefficients, which can be computed sequentially using the relations (4.7) by proceeding left
to right in the diagram. In the figure p = 7, the number of nodes is r2,p = 36, the number of nodes in the
shaded region is n2,p = 15, the number of relations is r2,p − n2,p = 21

derivative ∂x1qp(x
(1)
K , ·). In addition, there exist some complex coefficients {λs}nd+1,p

s=1
such that

qp

(
x(1)

K , ·
)

=
rd,p∑

s=1

λsm̂s(·) =
rd,p∑

s=1

λsbs

(
x(1)

K , ·
)

,

∂x1qp

(
x(1)

K , ·
)

=
nd+1,p∑

s=rd,p+1

λsm̃s−rd,p (·) =
nd+1,p∑

s=rd,p+1

λs∂x1bs(x
(1)
K , ·),

whence qp = ∑nd+1,p
s=1 λsbs , which completes the proof. ��

Remark 7 (Quasi-Trefftz basis construction: difference between Schrödinger and
wave equations). The definition of the basis functions bJ in (4.6) can be modified by fix-
ing the restriction of bJ and its partial derivative ∂x�

bJ to x� = x(�)
K for any 1 ≤ � ≤ d.

However, it is not possible to assign the values for a given time t = tK , as the order
of the time derivative appearing in the Schrödinger equation is lower than the order
of the space derivatives. How this affects the basis construction is visible from Fig. 1:
the coefficients (the colored dots) can be computed sequentially when all the other
coefficients of a relation (the Y-shaped stencil) are known, so it is possible to reach all
dots moving left to right, but not moving bottom to top. Imposing the values at a given
time is possible for the wave equation, as it is done in [19, §4.4], precisely because in
that case time and space derivatives have the same order.
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Fig. 2 A representation of the relations defining the coefficients of bJ for the (2+1)-dimensional case. The
colored dots in position j = ( jx , jy , jt ), | j | ≤ p, correspond to the coefficients C jx jy jt (here p = 5
and r p = 56). Each white circle is connected by the segments to four nodes and represents one of the
equations in (4.7): given C jx jy jt , C jx jy ( jt +1) and C jx ( jy+2) jt , it allows to compute C( jx +2) jy jt (the
leftmost of the four nodes connected to a given white circle) using (4.7). The red dot exemplifies one of
these relations, for j = (0, 1, 2). Given the (p + 1)2 coefficients with jx ∈ {0, 1} (the blue dots), all other
coefficients are uniquely determined

Remark 8 (Constant potential case). The space QT
p (K ) does not reduce to a Trefftz

space for the case of constant potential V . Nonetheless, the pure Trefftz space Tp(K )

defined as
Tp(K ) = {

qp ∈ P
p(K ) : Sqp = 0

}
,

does not possess strong enough approximation properties to guarantee optimal h-
convergence. In particular, it does not contain the Taylor polynomial of all local
solutions to the Schrödinger equation; for d = 1, p = 1 and V = 0, Tp(K ) =
span {1, x}; however, ψ(x, t) = exp

(
x + i

2 t
)

satisfies Sψ = 0, and T p+1
(0,0) [ψ] =

1 + x + i
2 t /∈ Tp(K ).

Remark 9 (Trefftz dimension). As seen in Proposition 5, the quasi-Trefftz polynomial
space has considerably lower dimension than the full polynomial space of the same
degree. This “dimension reduction” is common to all Trefftz and quasi-Trefftz schemes.
In particular, the dimension nd+1,p ofQT

p (K ) is equal to the dimension of the space of
harmonic polynomials of degree ≤ p inRd+1, the Trefftz space of complex exponential
wave functions for the Schrödinger equation with piecewise-constant potential in [11],
the Trefftz and quasi-Trefftz polynomial space for the wave equation in [27, Eqs. (42)–
(43)] and [19].
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5 Numerical experiments

In this section we validate the theoretical results regarding the h-convergence of
the proposed method, and numerically assess some additional features such as p-
convergence and conditioning. Although we do not report the results here, optimal
convergence rates of order O

(
h p+1

)
are observed for the error in the L2(QT )-norm.

We list some aspects regarding our numerical experiments

• We use Cartesian-product space–time meshes with uniform partitions along each
direction, which are a particular case of the situation described in Remark 1.

• We choose (xK , tK ) in the definition of the quasi-Trefftz space QT
p (K ) in (4.3)

as the center of the element K .
• In all the experiments we consider Dirichlet boundary conditions.
• The linear systems are solved using Matlab’s backslash command.
• The quasi-Trefftz basis functions {bJ }nd+1,p

J=1 are constructed by choosing m̂ J and
m̃ J in (4.6) as scaled monomials and by computing the remaining coefficients Cj
with the relations (4.7).

• In the h-convergence plots, the numbers in the yellow rectangles are the empirical
algebraic convergence rates for the quasi-Trefftz version (continuous lines). The
dashed lines correspond to the errors obtained for the full polynomial space.

5.1 (1+ 1)-dimensional test cases

We first focus on the (1+1)-dimensional case, for which families of explicit solutions
are available for some well-known potentials V .

5.1.1 h-convergence

In order to validate the error estimates in Theorems 2 and 3, we consider a series of
problems with different potentials V . No significant difference in terms of accuracy
between the quasi-Trefftz and the full polynomial versions of the method with the
same polynomial degree p (corresponding to different numbers of DOFs nd+1,p and
rd+1,p, respectively) is observed in all the experiments.

Harmonic oscillator potential (V (x) = ω2x2
2 ) For this potential, the Schrödinger

equation (1.1) models the situation of a quantum harmonic oscillator for an angular
frequency ω > 0. On QT = (−3, 3) × (0, 1), we consider the following well-known
family of solutions (see, e.g., [13, Sect. 2.3])

ψn(x, t) = 1√
2nn!

(ω

π

)1/4
Hn

(√
ωx

)
exp

(
−1

2

(
ωx2 + (2n + 1)iωt

))
n ∈ N,

(5.1)
where Hn(·) denotes the n-th physicist’s Hermite polynomials as defined in [29,
Table 18.3.1, denoted by Hn(·)].

In Fig. 3, we present the errors obtained for ω = 10, n = 2 and a sequence of
Cartesian meshes with uniform partitions and hx = ht = 0.05 × 2−i , i = 0, . . . 4.
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Fig. 3 h-convergence for the (1+ 1) quantum harmonic oscillator problem with potential
(

V (x) = 50x2
)

and exact solutionψ2 in (5.1). Convergencewith respect to themesh size h (top panels) and the total number
of degrees of freedom (bottom panels)

Rates of convergence of order O (h p) in the DG norm are observed, as predicted by
the error estimate in Theorem 3. A convergence of at least orderO

(
h p+1

)
is observed

for the L2-error at the final time, which is faster (by a factor h) than the order that
can be deduced from the estimates in Theorems 2 and 3. We have also included the
plots for the error decay with respect to the total number of degrees of freedom, where
the same h-convergence rates are observed for both versions of the method (see also
the p-convergence plot in Fig. 4a for a clearer understanding of the dependence of the
error on p).

Due to the fast decay of the exact solution close to the boundary (see Fig. 5 (panel a),
the energy is expected to be preserved. In Fig. 6, we show the evolution of the energy
error, and the convergence of the energy loss Eloss to zero for the quasi-Trefftz version.
In the latter, rates of order O

(
h2p

)
are observed, which follows from Remark 5 and

the error estimates in Theorems 2 and 3.

Reflectionless potential (V (x) = −a2sech2(ax)) This potential was studied in [5] as
an example of a reflectionless potential. On the space–time domain QT = (−5, 5) ×
(0, 1), we consider the Schrödinger equation with exact solution (see [13, Problem
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Fig. 4 p-convergence for the coarsest mesh in the (1 + 1)-dimensional problems

2.48])

ψ(x, t) =
(√

2i − a tanh(ax)√
2i + a

)
exp

(
i
(√

2x − t
))

. (5.2)

In Fig. 7, we show the errors obtained for a sequence of meshes with hx = 2ht =
0.2 × 2−i , i = 0, . . . , 4, and a = 1. As in the previous experiment, rates of conver-
gence of order O (h p) and O

(
h p+1

)
are observed in the DG norm and the L2 norm

at the final time, respectively. The real part of the exact solution is depicted in Fig. 5
(panel b).

Morse potential (V (x) = D(1 − e−αx)2) This potential was introduced by Morse
in [28] to obtain a quantum-mechanical energy level spectrum of a vibrating, non-
rotating diatomic molecule. There, the following family of solutions was presented
(see also [6])

ψλ,n(x, t) = N (λ, n)ξ(x)λ−n−1/2
L

(2λ−2n−1)
n (ξ(x)) (5.3)
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Fig. 5 Real part of the exact solutions for the (1 + 1)-dimensional problems

× exp

(
−ξ(x)

2
− i t

⌊
(n + 1/2) − 1

2λ
(n + 1/2)2

⌋
ωo

)
,

where �·� is thefloor function,n = 0, . . . , �λ−1/2�,L(α)
n denote the general associated

Laguerre polynomials as defined in [29, Table 18.3.1] and

N (λ, n)=
⌊

(2λ−2n−1)�(n+1)

�(2λ−n)

⌋ 1
2

, λ=
√
2D

α
, ξ(x)=2λ exp(−αx), ωo =√

2Dα.

In Fig. 8, we show the errors obtained for the Morse potential problem with D = 8,
α = 4 and exact solution ψ1,1 on the space–time domain QT = (−0.5, 1.5) × (0, 1)
for a sequence of meshes with hx = ht = 0.1×2−i , i = 0, . . . , 4. The observed rates
of convergence are in agreement with those obtained in the previous experiments. The
real part of the exact solution is depicted in Fig. 5 (panel c).

Square-well potential We now consider a problem taken from [11], whose exact
solution is not globally smooth. On the space–time domain QT = (−√

2,
√
2) ×

(0, 1), we consider the Schrödinger equation with homogeneous Dirichlet boundary
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Fig. 6 Time-evolution of the energy error for the quantum harmonic oscillator problem with poten-

tial
(

V (x) = 50x2
)
and exact solution ψ2 in (5.1)
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Fig. 7 h-convergence for the (1 + 1) problem with potential V (x) = −sech2(x) and exact solution (5.2)
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Fig. 8 h-convergence for the (1+1)-dimensional problemwithMorse potential V (x) = D(1−exp(−αx))2

for D = 8 and α = 4 with exact solution (5.3)
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Fig. 9 h-convergence for the (1 + 1)-dimensional problem with the square-well potential V (x) in (5.4)

conditions and the following square-well potential

V (x) =
{

0 x ∈ (−1, 1),
V∗ x ∈ (−√

2,
√
2) \ (−1, 1),

(5.4)

for some fixed V∗ > 0. The initial condition is taken as an eigenfunction (bound state)
of − 1

2∂
2
x + V on (−√

2,
√
2):

ψ0(x)=
⎧
⎨

⎩
cos

(
k∗

√
2x
)

x ∈ (−1, 1),
cos(k∗)

sinh(
√

V∗−k2∗)
sinh

(√
V∗ − k2∗(2 − √

2|x |)) x ∈(−√
2,

√
2) \ (−1, 1),

where k∗ is a real root of the function f (k) := √
V∗ − k2 − k tan(k) tanh(

√
V∗ − k2).

The solution of the corresponding initial boundary value problem (1.1) is ψ(x, t) =
ψ0(x) exp(−ik2t) andbelongs to thespace H p+1(Th)∩C∞ (

I ; C1 (�)
) \C∞ (

I ; C2 (�)
)

for all p ∈ N, provided that Th is aligned with the discontinuities of the potential V ;
therefore, Theorems 2 and 3 apply. Among the finite set of values k∗ for a given V∗, in
this experiment we take the largest one, corresponding to faster oscillations in space
and time.

In Fig. 9, we show the errors obtained for V∗ = 20 (k∗ ≈ 3.73188) and a sequence
of meshes with ht = √

2hx = 0.1× 2−i , i = 0, . . . , 4. Optimal convergence in both
norms is observed for the errors of the quasi-Trefftz version of the method.

5.1.2 Effect of stabilization and volume penalty terms

In this experiment we are interested in the effect of neglecting some of the terms
in the variational formulation (2.1). To do so, we consider the (1 + 1)-dimensional
quantum harmonic oscillator problem with exact solution (5.1). In Tables 1 and 2
(quasi-Trefftz space) and Tables 3 and 4 (full polynomial space) we present the errors
in the DG norm obtained for the same sequence of meshes and approximation degrees
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Table 1 h-convergence for the quasi-Trefftz version applied to the quantum harmonic oscillator problem
with potential V (x) = 50x2 and exact solution ψ2 in (5.1) for different combinations of the stabilization
parameters α, β and volume penalty parameter μ �= 0. Convergences rates are shown in bold

μ = max{hKt , hKx }
h α = 1

hFx
, β = hFx α = 0, β = 0 α = 1

hFx
, β = 0 α = 0, β = hFx

DG error Rate DG error Rate DG error Rate DG error Rate

p = 1

7.07e−02 1.00e+00 — 9.81e−01 — 1.01e+00 — 1.00e+00 —

3.54e−02 7.67e−01 0.39 4.76e−01 1.04 6.72e−01 0.58 6.53e−01 0.62

1.77e−02 4.40e−01 0.80 2.14e−01 1.15 3.62e−01 0.89 3.40e−01 0.94

8.84e−03 2.29e−01 0.94 1.01e−01 1.08 1.85e−01 0.97 1.70e−01 1.00

4.42e−03 1.16e−01 0.98 4.96e−02 1.03 9.31e−02 0.99 8.49e−02 1.00

p = 2

7.07e−02 4.47e−01 — 2.59e−01 — 2.99e−01 — 4.37e−01 —

3.54e−02 1.27e−01 1.82 6.90e−02 1.91 8.24e−02 1.86 1.20e−01 1.87

1.77e−02 3.28e−02 1.95 1.78e−02 1.96 2.15e−02 1.94 3.05e−02 1.97

8.84e−03 8.29e−03 1.98 4.50e−03 1.98 5.48e−03 1.97 7.68e−03 1.99

4.42e−03 2.08e−03 1.99 1.13e−03 1.99 1.38e−03 1.98 1.93e−03 2.00

p = 3

7.07e−02 8.54e−02 — 5.73e−02 — 5.87e−02 — 8.65e−02 —

3.54e−02 1.27e−02 2.75 8.00e−03 2.84 8.28e−03 2.83 1.27e−02 2.77

1.77e−02 1.77e−03 2.84 1.08e−03 2.89 1.12e−03 2.88 1.75e−03 2.86

8.84e−03 2.35e−04 2.91 1.42e−04 2.93 1.48e−04 2.93 2.32e−04 2.92

4.42e−03 3.04e−05 2.95 1.82e−05 2.96 1.90e−05 2.96 2.99e−05 2.96

p = 4

7.07e−02 1.06e−02 — 9.36e−03 — 9.27e−03 — 1.08e−02 —

3.54e−02 7.93e−04 3.74 6.56e−04 3.84 6.64e−04 3.80 7.95e−04 3.76

1.77e−02 5.97e−05 3.73 4.59e−05 3.84 4.66e−05 3.83 5.94e−05 3.74

8.84e−03 4.42e−06 3.76 3.16e−06 3.86 3.21e−06 3.86 4.39e−06 3.76

4.42e−03 3.13e−07 3.82 2.11e−07 3.90 2.14e−07 3.90 3.11e−07 3.82

as in the previous section, for different combinations of the stabilization terms α, β

and the volume penalty parameter μ. Although the proof of well-posedness of the
method (2.1) relies on the assumption that α, β and μ are strictly positive, in our
numerical experiments, the matrices of the arising linear systems are non-singular and
optimal convergence rates are observed even when all these parameters are set to zero.
Moreover, the errors obtained when α = 0 or β = 0 are smaller as some terms in
the definition (3.1) of ‖·‖DG vanish, while the presence of μ seems to have just a mild
effect in the results. Not shown here, similar effects were observed for the error in
the L2(FT

h )-norm.
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Table 2 h-convergence for the quasi-Trefftz version applied to the quantum harmonic oscillator problem
with potential V (x) = 50x2 and exact solution ψ2 in (5.1) for different combinations of the stabilization
parameters α, β and volume penalty parameter μ = 0. Convergences rates are shown in bold

μ = 0
h α = 1

hFx
, β = hFx α = 0, β = 0 α = 1

hFx
, β = 0 α = 0, β = hFx

DG error Rate DG error Rate DG error Rate DG error Rate

p = 1

7.07e−02 1.04e+00 — 1.16e+00 — 1.07e+00 — 1.09e+00 —

3.54e−02 7.78e−01 0.43 5.02e−01 1.21 6.84e−01 0.64 6.69e−01 0.70

1.77e−02 4.42e−01 0.81 2.18e−01 1.20 3.64e−01 0.91 3.42e−01 0.97

8.84e−03 2.29e−01 0.95 1.02e−01 1.09 1.85e−01 0.97 1.71e−01 1.00

4.42e−03 1.16e−01 0.99 4.98e−02 1.04 9.32e−02 0.99 8.50e−02 1.01

p = 2

7.07e−02 4.63e−01 — 2.96e−01 — 3.23e−01 — 4.60e−01 —

3.54e−02 1.29e−01 1.84 7.38e−02 2.00 8.58e−02 1.91 1.23e−01 1.90

1.77e−02 3.31e−02 1.97 1.84e−02 2.01 2.19e−02 1.97 3.09e−02 1.99

8.84e−03 8.33e−03 1.99 4.58e−03 2.00 5.54e−03 1.99 7.73e−03 2.00

4.42e−03 2.09e−03 2.00 1.14e−03 2.00 1.39e−03 1.99 1.93e−03 2.00

p = 3

7.07e−02 8.73e−02 — 7.84e−02 — 7.59e−02 — 8.85e−02 —

3.54e−02 1.31e−02 2.74 9.65e−03 3.02 9.72e−03 2.96 1.31e−02 2.76

1.77e−02 1.82e−03 2.85 1.20e−03 3.01 1.23e−03 2.98 1.80e−03 2.86

8.84e−03 2.39e−04 2.92 1.50e−04 3.00 1.55e−04 2.99 2.36e−04 2.93

4.42e−03 3.07e−05 2.96 1.87e−05 3.00 1.95e−05 2.99 3.02e−05 2.97

p = 4

7.07e−02 1.09e−02 — 1.71e−02 — 1.56e−02 — 1.12e−02 —

3.54e−02 7.97e−04 3.77 9.77e−04 4.13 9.60e−04 4.02 7.98e−04 3.81

1.77e−02 6.02e−05 3.73 5.97e−05 4.03 5.98e−05 4.00 5.99e−05 3.73

8.84e−03 4.50e−06 3.74 3.71e−06 4.01 3.74e−06 4.00 4.48e−06 3.74

4.42e−03 3.19e−07 3.82 2.31e−07 4.00 2.34e−07 4.00 3.17e−07 3.82

5.1.3 p-convergence

We now study numerically the p-convergence of the method, i.e., for a fixed space–
time mesh Th , we study the errors when increasing the polynomial degree p. We
consider the (1 + 1)-dimensional problems above with the same parameters and the
coarsest meshes for each case. In Fig. 4, we compare the errors obtained for the
method with the two choices for the discrete space Vhp(Th) analyzed in the previous
sections: the full polynomial space (4.2) and the quasi-Trefftz polynomial space (4.4).
As expected, for the quasi-Trefftz version we observe exponential decay of the error of
orderO

(
e−bNDoFs

)
, where NDoFs denotes the total number of degrees of freedom. As

for the full polynomial space, only root-exponential convergence O
(

e−c
√

NDoFs

)
is
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Table 3 h-convergence for the full polynomial version applied to the quantum harmonic oscillator problem
with potential V (x) = 50x2 and exact solution ψ2 in (5.1) for different combinations of the stabilization
parameters α, β and volume penalty parameter μ �= 0. Convergences rates are shown in bold

μ = max{hKt , hKx }
h α = 1

hFx
, β = hFx α = 0, β = 0 α = 1

hFx
, β = 0 α = 0, β = hFx

DG error Rate DG error Rate DG error Rate DG error Rate

p = 1

7.07e−02 1.00e+00 — 9.81e−01 — 1.01e+00 —

3.54e−02 7.67e−01 0.39 4.76e−01 1.04 6.72e−01 0.58 1.00e+00 —

1.77e−02 4.40e−01 0.80 2.14e−01 1.15 3.62e−01 0.89 3.40e−01 0.94

8.84e−03 2.29e−01 0.94 1.01e−01 1.08 1.85e−01 0.97 1.70e−01 1.00

4.42e−03 1.16e−01 0.98 4.96e−02 1.03 9.31e−02 0.99 8.49e−02 1.00

p = 2

7.07e−02 4.46e−01 — 2.55e−01 — 2.96e−01 — 4.34e−01 —

3.54e−02 1.27e−01 1.81 6.88e−02 1.89 8.22e−02 1.85 1.20e−01 1.86

1.77e−02 3.28e−02 1.95 1.77e−02 1.95 2.15e−02 1.94 3.05e−02 1.97

8.84e−03 8.29e−03 1.98 4.50e−03 1.98 5.48e−03 1.97 7.68e−03 1.99

4.42e−03 2.08e−03 1.99 1.13e−03 1.99 1.38e−03 1.98 1.93e−03 2.00

p = 3

7.07e−02 7.62e−02 — 4.67e−02 — 4.93e−02 — 7.65e−02 —

3.54e−02 1.03e−02 2.89 6.22e−03 2.91 6.68e−03 2.88 1.01e−02 2.92

1.77e−02 1.33e−03 2.96 8.05e−04 2.95 8.71e−04 2.94 1.29e−03 2.97

8.84e−03 1.68e−04 2.98 1.03e−04 2.97 1.11e−04 2.97 1.62e−04 2.99

4.42e−03 2.11e−05 2.99 1.30e−05 2.99 1.41e−05 2.98 2.03e−05 2.99

p = 4

7.07e−02 8.63e−03 — 6.05e−03 — 6.14e−03 — 8.74e−03 —

3.54e−02 5.82e−04 3.89 3.95e−04 3.94 4.10e−04 3.90 5.77e−04 3.92

1.77e−02 3.74e−05 3.96 2.54e−05 3.96 2.66e−05 3.95 3.67e−05 3.97

8.84e−03 2.37e−06 3.98 1.62e−06 3.97 1.69e−06 3.97 2.32e−06 3.99

4.42e−03 1.49e−07 3.99 1.02e−07 3.99 1.07e−07 3.98 1.45e−07 3.99

expected. The superiority of the quasi-Trefftz version is evident in all cases. Exponen-
tial convergence of space–time Trefftz and quasi-Trefftz schemes has been observed in
several cases [1, 11, 17, 30] but no proof is available yet (differently from the stationary
case [16, §3]). In general, for a (d + 1)-dimensional problem, we expect exponential
convergence of order O(e−b d√NDoFs ) and O(e−c (d+1)√NDoFs ) for the quasi-Trefftz and
full polynomial versions, respectively.

5.1.4 Conditioning

We now assess the conditioning of the stiffness matrix. In Fig. 10 we compare the
2-condition number κ2(·) for the stiffness matrixKn defined in Remark 1, for the free
particle problem V = 0 on the space–time domain QT = (0, 1)× (0, 1). We consider
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Table 4 h-convergence for the full polynomial version applied to the quantum harmonic oscillator problem
with potential V (x) = 50x2 and exact solution ψ2 in (5.1) for different combinations of the stabilization
parameters α, β and volume penalty parameter μ = 0. Convergences rates are shown in bold

μ = 0
h α = 1

hFx
, β = hFx α = 0, β = 0 α = 1

hFx
, β = 0 α = 0, β = hFx

DG error Rate DG error Rate DG error Rate DG error Rate

p = 1

7.07e−02 1.04e+00 — 1.16e+00 — 1.07e+00 — 1.09e+00 —

3.54e−02 7.78e−01 0.43 5.02e−01 1.21 6.84e−01 0.64 6.69e−01 0.70

1.77e−02 4.42e−01 0.81 2.18e−01 1.20 3.64e−01 0.91 3.42e−01 0.97

8.84e−03 2.29e−01 0.95 1.02e−01 1.09 1.85e−01 0.97 1.71e−01 1.00

4.42e−03 1.16e−01 0.99 4.98e−02 1.04 9.32e−02 0.99 8.50e−02 1.01

p = 2

7.07e−02 4.63e−01 — 2.93e−01 — 3.22e−01 — 4.57e−01 —

3.54e−02 1.29e−01 1.84 7.36e−02 1.99 8.57e−02 1.91 1.23e−01 1.90

1.77e−02 3.31e−02 1.97 1.84e−02 2.00 2.19e−02 1.97 3.09e−02 1.99

8.84e−03 8.33e−03 1.99 4.58e−03 2.00 5.54e−03 1.98 7.72e−03 2.00

4.42e−03 2.09e−03 2.00 1.14e−03 2.00 1.39e−03 1.99 1.93e−03 2.00

p = 3

7.07e−02 8.09e−02 — 5.42e−02 — 5.54e−02 — 8.19e−02 —

3.54e−02 1.06e−02 2.93 6.74e−03 3.01 7.12e−03 2.96 1.04e−02 2.97

1.77e−02 1.35e−03 2.98 8.41e−04 3.00 9.02e−04 2.98 1.31e−03 3.00

8.84e−03 1.69e−04 2.99 1.05e−04 3.00 1.13e−04 2.99 1.64e−04 3.00

4.42e−03 2.12e−05 3.00 1.31e−05 3.00 1.42e−05 3.00 2.04e−05 3.00

p = 4

7.07e−02 9.27e−03 — 6.96e−03 — 6.94e−03 — 9.48e−03 —

3.54e−02 6.03e−04 3.94 4.27e−04 4.03 4.39e−04 3.98 5.99e−04 3.99

1.77e−02 3.81e−05 3.98 2.66e−05 4.01 2.76e−05 3.99 3.74e−05 4.00

8.84e−03 2.39e−06 3.99 1.66e−06 4.00 1.73e−06 3.99 2.34e−06 4.00

4.42e−03 1.50e−07 4.00 1.04e−07 4.00 1.08e−07 4.00 1.46e−07 4.00

the proposed polynomial quasi-Trefftz space in (4.4), the full polynomial space in (4.2)
and the pure Trefftz space of complex exponential wave functions Tp(Th) proposed

in [11]. A basis {φ�}2p+1
�=1 ⊂ Tp(Th) was defined in [11] as

φ�(x, t) = exp

(
i

(
κ�x − κ2

�

2
t

))
, � = 1, . . . , 2p + 1. (5.5)

We consider two choices for the parameters κ�: the arbitrary choice used in [11]
κ� = −p, . . . , p, and the choice κ� = 2π�/hx which makes the basis orthogonal
in each element. The conditioning number κ2(K) for the quasi-Trefftz space, the full
polynomial space, and the Trefftz space with orthogonal basis asymptotically grows
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Fig. 10 Conditioning of the stiffness matrix for the DG method with different discrete spaces

as O
(
h−1

)
for all p ∈ N, while for the Trefftz space with a non-orthogonal basis,

asymptotically grows as O
(
h−(2p+1)

)
. Unfortunately, with higher dimensions and

non-Cartesian elements, choosing the parameters and directions defining the basis
functions {φ�} so as to obtain an orthogonal basis is more challenging.

5.2 (2+ 1)-dimensional test cases

We now present some numerical test for space dimension d = 2. We recall that we
use Cartesian space–time meshes with uniform partitions along each direction.

5.2.1 h-convergence

Singular time-independent potential (V (x, y) = 1 − 1/x2 − 1/y2) We consider the
(2+ 1)-dimensional problem on QT = (0, 1)2 × (0, 1) with exact solution (see [33])

ψ(x, y, t) = x2y2eit . (5.6)

123



A space–time DG method for the Schrödinger equation... Page 31 of 34    15 

-1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5
0.93

0.96
0.98

2.00

2.02

2.02

3.08

3.05

3.03

p = 1
p = 2
p = 3

-1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6
-7

-6

-5

-4

-3

-2
2.19

2.16
2.04

3.05

3.06

3.05

4.14

3.95

3.90

p = 1
p = 2
p = 3

Fig. 11 h-convergence for the (2 + 1)-dimensional problem with potential V (x, y) = 1 − 1/x2 − 1/y2

and exact solution (5.6)

In Fig. 11, we show the errors obtained for a sequence of meshes with hx =
hy = ht = 0.1, 0.0667, 0.05, 0.04 and different degrees of approximation p. As
in the numerical results for the (1 + 1)-dimensional problems, we obtain rates of
convergence of order O (h p) in the DG norm, and O

(
h p+1

)
in the L2 norm at the

final time.
Time-dependent potential (V (x, y, t) = 2 tanh2(

√
2x)−4(t−1/2)3+2 tanh2(

√
2y)−

2)We now consider amanufactured problemwith a time-dependent potential (see [7]).
On the space–time domain QT = (0, 1)2 × (0, 1) the exact solution is

ψ(x, y, t) = iei(t−1/2)4sech(x)sech(y). (5.7)

In Fig. 12we show the errors obtained for the sequence ofmeshes from the previous
experiment, and optimal convergence is observed in both norms.
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Fig. 12 h-convergence for the (2 + 1)-dimensional problem with time-dependent potential V (x, y, t) =
2 tanh2

(√
2x
)

− 4 (t − 1/2)3 + 2 tanh2
(√

2y
)

− 2 and exact solution (5.7)
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Fig. 13 p-convergence for the (2 + 1)-dimensional problems

5.2.2 p-convergence

In Fig. 13 we show the results obtained for the p-version of the method applied to the
(2+1)-dimensional problems above, on the coarsestmesh.As expected, for the (2+1)-
dimensional case, the error of the quasi-Trefftz version decays root-exponentially

as O
(

e−b
√

NDoFs

)
.

6 Concluding remarks

We have introduced a space–time ultra-weak discontinuous Galerkin discretization
for the linear Schrödinger equation with variable potential. The DG method is well-
posed and quasi-optimal in mesh-dependent norms for any space dimension d ∈ N,
and for very general prismatic meshes and discrete spaces. We proved optimal h-
convergence of order O (h p), in such a mesh-dependent norm, for two choices of
the discrete spaces: the space of piecewise polynomials, and a novel quasi-Trefftz
polynomial space with much smaller dimension. When the space–time mesh has a
time-slab structure, the method allows for the decomposition of the resulting global
linear system into a sequence of smaller problems on each time-slab: this is equivalent
to an implicit time-stepping, possibly with local refinement in space–time. We present
several numerical experiments that validate the accuracy of the method for different
potentials and high-order approximations.
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