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Abstract 18 

In order to preserve environmental quality, alternative strategies to chemical-intensive agriculture are 19 

strongly needed. In this study, we characterized in vitro the potential plant growth promoting (PGP) 20 

properties of a gamma-proteobacterium, named MIMR1, originally isolated from apple shoots in 21 

micropropagation. The analysis of the 16S rRNA gene sequence allowed the taxonomic identification of 22 

MIMR1 as Luteibacter rhizovicinus. The PGP properties of MIMR1 were compared to Pseudomonas 23 

chlororaphis subsp. aurantiaca DSM 19603T, which was selected as a reference PGP bacterium. By 24 

means of in vitro experiments, we showed that L. rhizovicinus MIMR1 and P. chlororaphis DSM 19603T 25 

have the ability to produce molecules able to chelate ferric ions and solubilize monocalcium phosphate. 26 

On the contrary, both strains were apparently unable to solubilize tricalcium phosphate. Furthermore, the 27 

ability to produce 3-indol acetic acid by MIMR1 was approximately three times higher than that of DSM 28 

19603T. By using fluorescent recombinants of strains MIMR1 and DSM 19603T, we also demonstrated 29 

that both bacteria are able to abundantly proliferate and colonize the barley rhizosphere, preferentially 30 

localizing on root tips and in the rhizoplane. Finally, we observed a negative effect of DSM 19603T on 31 

barley seed germination and plant growth, whereas MIMR1, compared to the control, determined a 32 

significant increase of the weight of aerial part (+ 22 %), and the weight and length of roots (+ 53 % and 33 

+ 32 %, respectively). The results obtained in this work make Luteibacter rhizovicinus MIMR1 a good 34 

candidate for possible use in the formulation of bio-fertilizers. 35 
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Introduction 39 

The massive increase in the use of nitrogen and phosphorus fertilizers during last decades by intensive 40 

agricultural practices has significantly contributed to severe environmental pollution (Vance 2001). 41 

Particularly, nitrogen is accumulating in the environment globally (Walvoord et al. 2003), leading to 42 

eutrophication, hypoxia, loss of biodiversity, and habitat degradation (Galloway et al. 2003). In order to 43 

preserve environmental quality, alternative strategies to chemical-intensive agriculture are strongly 44 

needed. Such environmental-friendly approaches are generally indicated as sustainable agriculture, which 45 

Golley et al. (1992) defined as agriculture “managed toward greater resource efficiency and conservation 46 

while maintaining an environment favorable for the evolution of all species”. A possible agricultural 47 

sustainable strategy consists in the use of biofertilizers, i.e. “a substance which contains living 48 

microorganisms which, when applied to seed, plant surfaces, or soil, colonizes the rhizosphere or the 49 

interior of the plant and promotes growth by increasing the supply or availability of primary nutrients to 50 

the host plant” (Vessey 2003). The microorganisms most commonly included in biofertilizers are 51 

rhizosphere-competent bacteria, which are able to benefit plants and consequently to improve crop 52 

production. For this reason, they are generally called “plant growth promoting rhizobacteria” (PGPR). 53 

PGPR can benefit plants development through multiple mechanisms, including antagonism to pathogenic 54 

fungi, siderophore production, nitrogen fixation, phosphate solubilization, the production of organic 55 

acids, indole acetic acid (IAA), NH3 and HCN, the release of enzymes (soil dehydrogenase, phosphatase, 56 

nitrogenase, etc.), and the induction of systemic disease resistance (Babalola 2010). The research 57 

throughout last 20 years identified PGPR strains in many different bacterial genera, belonging to the taxa 58 

α-proteobacteria (genera Acetobacter, Azospirillum, Beijerinckia, Gluconacetobacter, Ochrobactrum), β-59 

proteobacteria (Alcaligenes, Azoarcus, Zoogloea, Burkholderia, Derxia, Herbaspirillum), -proteobacteria 60 

(Enterobacter, Klebsiella, Pantoae, Pseudomonas, Serratia, Stenotrophomonas, Acinetobacter, 61 

Azotobacter), Actinobacteria (Rhodococcus, Arthrobacter), and Firmicutes (Bacillus) (Babalola 2010). 62 

In this study, we investigated the PGP abilities of the -proteobacterium Luteibacter rhizovicinus MIMR1, 63 

a microbial strain isolated from apple shoots (Malus domestica L. cultivar Golden Delicious) in 64 
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micropropagation (Piagnani et al. 2007). The results collected during this study showed that L. 65 

rhizovicinus MIMR1can colonize the rhizosphere of barley in vitro, promoting root development and 66 

plant growth. This is the first time that a member of the genus Luteibacter is proposed as PGPR. 67 

 68 

Material and methods 69 

Bacterial strains, culture conditions and plant seeds 70 

Pseudomonas chlororaphis subsp. aurantiaca DSM 19603T (purchased from Deutsche Sammlung von 71 

Mikroorganismen und Zellkulturen GmbH, DSMZ, Braunschweig, Germany) and Luteibacter sp. 72 

MIMR1 were routinely grown overnight at 28 °C in Luria Bertani broth under constant agitation (from 73 

100 to 250 rpm). In this study, we used seeds of Hordeum vulgare L. variety “Cometa” (Apsovsementi 74 

S.p.A., Voghera, Italy). 75 

 76 

Taxonomic identification and phylogenesis of Luteibacter sp. MIMR1 77 

The bacterial isolate Luteibacter sp. MIMR1 was taxonomically identified by means of 16S rRNA gene 78 

sequence analysis as previously described (Guglielmetti et al. 2010). The BLAST programs 79 

(http://www.ncbi.nlm.nih.gov/blast/) were used to conduct similarity searches against GenBank and 80 

EMBL sequence databases, with subsequent alignment and neighbour-joining phylogenetic analysis of 81 

16S rRNA gene sequences with bootstrap values (1000 replicates) using ClustalW and Treecon software. 82 

 83 

In vitro screening of bacterial strains for their plant growth promoting (PGP) activities 84 

Siderophore production. Bacterial strains were assayed for siderophores production on the Chrome azurol 85 

S agar medium (Sigma-Aldrich, Steinheim, Germany) according to Milagres et al. (1999). In brief, we 86 

prepared King’s B agar plates, removed half of the solid medium with a sterile scalpel, and poured 87 

Chrome azurol S agar. Test organisms were inoculated with a loop on King’s B medium and plates were 88 

incubated at 28 °C for 48–72 h. Development of yellow–orange halo on Chrome azurol S agar was 89 

considered as positive for siderophore production. 90 
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Inorganic phosphate solubilization. The qualitative analysis of solubilization of calcium hydrogen 91 

phosphate (CaHPO4) and tricalcium phosphate (Ca3(PO4)2) was made on agar plates containing T1 (10 g/l 92 

glucose, 2 g/l CaHPO4, 10 ml/l Alazarin Red 1 %, 5 g/l tryptone) or T2 (20 g/l glucose, 5 g/l Ca3(PO4)2, 93 

10 g/l MgCl2, 0.25 g/l MgSO4, 0.20 g/l KCl, 0.10 g/l (NH4)2SO4) agar medium, respectively. After the 94 

inoculation, plates were incubated at 28 °C. The formation of a clarification area around bacterial growth 95 

was considered a positive indication of the ability to solubilize phosphates. 96 

Indoleacetic acid (IAA) production. Quantitative analysis of IAA was performed in King’s B broth 97 

supplemented with 500 μg/ml of tryptophan according to Glickmann and Dessaux (1995). Bacterial 98 

cultures were incubated for 5 days at 28 °C; broth cultures were then centrifuged and 0.4 ml of the 99 

supernatant was mixed with 1.6 ml of Salkowski reagent (60 % H2SO4; 3 % of a 0.5 M FeCl3 solution). 100 

After 30 min of incubation at room temperature in dark, the optical density was measured at 530 nm. 101 

Concentration of IAA produced by cultures was measured with the help of standard graph of IAA 102 

obtained in the range of 4–500 μg/ml. 103 

 104 

Bacterial colonization of the rhizosphere of barley (Hordeum vulgare L.) 105 

Tagging of bacterial strains with Gfp. GFP-tagged bacteria were generated by transferring the 106 

plasmid pPnptII:gfp (Stiner and Halverson 2002) into Luteibacter sp. MIMR1 by electroporation and the 107 

plasmid pUTgfp2x (Tombolini et al. 1997) into P. chlororaphis DSM 19603T  by conjugation. 108 

Transformation of strain MIMR1 was carried out according to a method conventionally employed for the 109 

electro-transformation of Escherichia coli. Conjugation experiments were carried out according to Unge 110 

et al. (1997). In brief, strain DSM 19603T was co-incubated with Escherichia coli SM10/λ pir, which is 111 

the donor of vector pUTgfp2x. After 18 hours of growth in LB medium at 28 °C under agitation (100 112 

rpm), 0.1 ml aliquots were spread on LB agar plates containing  25 μg/ml kanamycin (selection for 113 

plasmid pUTgfp2x) and 10 μg/ml chloramphenicol (selection for DSM 19603T). Mutant strains, named 114 

MIMR1Gfp and DSM 19603Gfp, were maintained in LB medium supplemented with 25 μg/ml kanamycin. 115 

Both recombinant strains were highly stable and could be maintained for more than 5 days of culture 116 

without antibiotic selection. 117 
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Colonization of barley rizosphere by gfp-tagged bacteria. Healthy  Hordeum vulgare  seeds  were  118 

washed for 5 min with filter-sterilized 70 % ethanol and for 1 min with 3 % hydrogen peroxide, followed  119 

by five washes with sterile distilled water. Seeds were incubated in the dark at room temperature for 2/3 120 

days for germination on plates containing water agar (10 g/l agar in tap water). Seedlings with 1 cm long 121 

radicles were sterilely transferred into 1 l Roux bottles (one plant per bottle) containing Fahreus mineral 122 

agar medium (0.01 g/l CaCl2; 0.12 g/l MgSO4; 0.1 g/l KH2PO4; 0.15 g/l Na2HPO4; 1.650 g/l NH4NO3;  123 

0.005 g/l ferric citrate; traces of Mn, Cu, Zn, B, Mo; 0.8 % agar). Afterwards, each plantlet was sprinkled 124 

with 0.5 ml of the bacterial suspension, which contained 109 cells. Bacterial suspensions were prepared as 125 

follows. Bacterial cells were grown over night in LB broth supplemented with 25 μg/ml kanamycin, 126 

washed once with saline, counted by means of a Neubauer-improved counting chamber (Marienfeld 127 

GmbH, Lauda-Königshofen, Germany), and resuspended in 10 mM MgSO4 at a concentration of 2109 128 

cell/ml. After bacterial inoculation, Roux bottles were kept in a greenhouse programmed for 12h 129 

photoperiod, temperature of 25 °C and 70 % relative humidity. Uninoculated seedlings served as control. 130 

Hordeum vulgare plants were harvested 5 days after inoculation and the roots were gently removed. Root 131 

samples were finally observed using fluorescence optical digital microscope Leica DM1000 (Leica 132 

Microsystems, Wetzlar, Germany). 133 

 134 

Bacterial promotion of barley growth 135 

The first experiment was carried out as described above for the root colonization experiments. After 5-136 

days incubation in greenhouse, the following parameters were recorded: root length, root weight, leaf 137 

(aerial part) length and aerial part weight. 138 

In the second experiment, we incubated bacteria with barley seeds before germination. Specifically, 139 

we prepared Petri plates (20 cm diameter) containing 40 ml of Fahreus agar medium and 107 bacterial 140 

cell/ml (uninoculated plates served as control). Afterwards, 21 sterilized non-germinated barley seeds 141 

were laid down on a single Petri plate and incubated as described above. After 5 days of incubation, the 142 

following parameters were recorded: number of germinated seeds, root length, root weight, aerial part 143 

length and aerial part weight. 144 
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 145 

Results 146 

Taxomonic identification of the bacterial isolate MIMR1 147 

In the present study, we obtained the nucleotidic sequence of about 1400 bp from the 16S rRNA gene of 148 

MIMR1. Following GenBank database search by nBLAST and phylogenetic analysis, strain MIMR1 was 149 

identified as Luteibacter rhizovicinus (99 % sequence similarity with the type strain Luteibacter 150 

rhizovicinus LJ96T, Fig. 1). 151 

 152 

Phenotypic characterization of strain MIMR1 153 

In order to understand the potential PGP properties of MIMR1, we performed in vitro assays aimed to 154 

determinate the ability of the bacterial isolate under study to chelate iron, to produce indol acetic acid 155 

(IAA) and to solubilize phosphates. We also included in the study strain DSM 19603T, which belongs to 156 

the taxon Pseudomonas chlororaphis subsp. aurantiaca, a subspecies known to display PGP properties 157 

(Andrés et al. 2011) and for this reason often included in industrial bio-fertilizer products. 158 

After four days of incubation at 28 °C, strain MIMR1 and, more prominently, strain DSM 19603T 159 

induced a change of the color from blue to orange in CAS agar (Supplementary information 1), indicating 160 

the potential ability of both bacteria to produce molecules able to chelate Fe3+ (syderophores). 161 

Furthermore, we observed the ability of L. rhizovicinus MIMR1 and P. chlororaphis DSM 19603T to 162 

solubilize Ca(HPO4)2. On the contrary, both strains were apparently unable to solubilize the inorganic 163 

phosphate Ca3(PO4)2 (Data not shown). 164 

We also assessed spectrophotometrically the capacity of strains MIMR1 and DSM 19603T to produce 165 

3-indol acetic acid (IAA) in King’s B broth supplemented with 500 μg/ml of L-tryptophan. After five 166 

days of incubation, the cell production index (CPI, i.e. μg of IAA per billion of cells) of strain MIMR1 167 

was approximately three times higher than the CPI of strain DSM 19603T (Table 1). 168 

 169 

Colonization of barley (Hordeum vulgare L.) rhizosphere 170 
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In order to assess the ability of the bacteria under investigation to colonize barley rhizoshere, 109 cells of 171 

the recombinant strains L. rhizovicinus MIMR1Gfp and P. chlororaphis DSM 19603Gfp, expressing a green 172 

fluorescent protein (Gfp), were inoculated on barley plantlets in Fahreus mineral agar medium. After one 173 

week of incubation, fluorescence microscope observation of roots revealed that both bacteria were able to 174 

abundantly proliferate and colonize the rhizosphere. Particularly, MIMR1Gfp and DSM 19603Gfp were 175 

preferentially localized on root tips and in the rhizoplane (Fig. 2). 176 

 177 

Impact of bacteria on barley vegetal growth 178 

Two different experiments were carried out in order to assess the effect of Luteibacter rhizovicinus 179 

MIMR1 and Pseudomonas chlororaphis DSM 19603T on barley plant development. In the first 180 

experiments, 3-days old barley plants germinated in water agar were transferred to agarized Fahreus 181 

mineral solution and inoculated with 109 bacterial cells. After 5 days of incubation in greenhouse, plant 182 

growth parameters were measured. Concerning the aerial parts, the only significant differences observed 183 

between samples consisted in a reduction of length (- 11 %) and weight (- 12 %) induced by strain DSM 184 

19603T compared to MIMR1 (Table 2; Data not shown 2, only for referees). Also root weight was 185 

decreased by the incubation with DSM 19603T (- 33 %) compared to strain MIMR1 and the control (no 186 

inoculated bacterial cells). More interestingly, plants incubated with strain MIMR1 had significantly 187 

longer roots compared to the control (+ 20 %) and strain DSM 19603T (+ 76 %) (Table 2; Supplementary 188 

information 2). 189 

In the following experiment, 107 bacterial cells per ml were inoculated directly in agarized Fahreus 190 

medium before sawing not-yet-germinated barley seeds. After 5 days of incubation, we counted the 191 

number or germinated seeds and measured plant growth parameters. First, we observed a drastic negative 192 

effect of P. chlororaphis DSM 19603T on all considered plant parameters, germination rate included (Fig. 193 

3). On the contrary, L. rhizovicinus MIMR1, compared to the control, determined a significant increase of 194 

the weight of aerial part (+ 22 %), and the weight and length of roots (+ 53 % and + 32 %, respectively) 195 

(Fig. 3). Germination rate was substantially unaffected by the presence of L. rhizovicinus MIMR1. 196 

 197 
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Discussion 198 

The need to integrate traditional farming practices with more environmentally friendly approaches 199 

stimulated the interest towards plant growth promoting rhizobacteria (PGPR) since the early 80's. Over 200 

the past 20 years, research and industry developed bio-fertilizer products containing PGPR micro-201 

organisms, which have been specifically selected to increase the bioavailability of the primary plant 202 

nutrients in the soil and acting as bio-control agents against plant pathogens (Vessey 2003). 203 

In this study, we characterized in vitro the potential PGP properties of two bacterial strains: 204 

Pseudomonas chlororaphis subsp. aurantiaca DSM 19603T and Luteibacter rhizovicinus MIMR1. 205 

Members of the bacterial taxon Pseudomonas chlororaphis subsp. aurantiaca have been already proposed 206 

as bio-control agents towards fungal pathogens (Rosas et al. 2001). Furthermore, recent studies have also 207 

demonstrated the ability of these bacteria to promote plant growth through mechanisms independent from 208 

the antagonism against plant pathogens (Carlier et al. 2008; Rosas et al. 2009; Andrés et al. 2011). For 209 

these reasons, we selected Pseudomonas chlororaphis subsp. aurantiaca DSM 19603T as a PGPR 210 

reference strain to compare with MIMR1, a bacterial strain that has been isolated from shoots of the apple 211 

cultivar “Golden Delicious” in micropropagation (Piagnani et al. 2007). The isolate MIMR1 did not affect 212 

apple shoot proliferation and growth, but was associated to a sensible loss of leaf organogenic ability and 213 

to a more abundant callus production (Piagnani et al. 2007). We therefore supposed that strain MIMR1 214 

could deliver growth regulators to the plant cells. 215 

The genus Luteibacter belongs to γ-proteobacteria, a class of microorganisms frequently proposed 216 

and even commercially employed as PGPR, such as, for instance, Azotobacter chroococcum (Kumar and 217 

Narula 1999), Pseudomonas chlororaphis and Pseudomonas putida (Cattelan et al. 1999), Xanthomonas 218 

maltophilia (de Freitas et al. 1997). Members of the species Luteibacter rhizovicinus were described for 219 

the first time as yellow-pigmented bacteria isolated from the rhizosphere of barley (Hordeum vulgare L.; 220 

Johansen et al. 2005). According to the above mentioned observations, we decided to evaluate whether 221 

strain MIMR1 could affect the growth of barley plants. 222 

Initially, the ability of L. rhizovicinus MIMR1 and P. chlororaphis subsp. aurantiaca DSM 19603T 223 

to produce siderophores, solubilize inorganic phosphates and synthetize phytohormonal compounds was 224 
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tested in vitro. These features are considered common ways through which PGPR promote the 225 

development of the host plant (Glick 1995). The experiments performed in this study showed that both 226 

DSM 19603T and MIMR1 can produce agar-diffusible molecules capable of chelating trivalent iron ions, 227 

thus suggesting the hypothesis of siderophore production by these bacteria. The siderophores are 228 

compounds belonging to different classes of molecules, which possess the property of chelating Fe3+, thus 229 

favoring the bioavailability of this micronutrient. It was reported the ability of numerous members of the 230 

genus Pseudomonas, and more generally of the γ-proteobacteria, to produce a great variety of soluble 231 

siderophores, which reflects the wide capacity of these microorganisms to colonize numerous diverse 232 

ecological niches (Cornelis and Matthijs 2002). 233 

Phosphorus is an important micronutrient for plants and represents about 0.2 % of their dry weight. 234 

Although the total amount of phosphorus in the soil is generally high, it is often present in non-235 

bioavailable forms. The ability to solubilize the complexed forms of phosphorus thus plays a very 236 

important role in improving the nutritional status of crop plants. Both microorganisms under study 237 

displayed phosphate-lytic activity towards the monocalcium phosphate. This activity was particularly 238 

accentuated for strain DSM 19603T. On the contrary, tricalcium phosphate was apparently not solubilized 239 

by the bacteria. Since the modalities through which the PGPR solubilize inorganic phosphates are linked 240 

to the synthesis of specific enzymes (phosphatases) or the activity of acidification through the secretion of 241 

organic acids (Kim et al. 1998), further investigations should be carried out to better understand the 242 

mechanism underlying this capacity. 243 

In the next step, the ability of MIMR1 and DSM 19603T to produce compounds with auxinic 244 

activity, such as 3-indole-acetic acid (IAA), was investigated. IAA is the most active phytohormone 245 

within the class of auxins and the major player in the stimulation of the processes of rooting and cell 246 

distension (Salisbury 1994). The root exudates of various plants contain rich supplies of tryptophan, 247 

which are used by the microorganisms for synthesis and release of auxins as secondary metabolites in the 248 

rhizosphere (Kravchenko 2004). In the experimental conditions adopted in this study, the in vitro 249 

production of IAA by MIMR1 was found to be significantly greater than that of strain DSM 19603T. This 250 
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result suggests the potential ability of MIMR1 to affect plant rooting and growth. This hypothesis has 251 

been tested in the following experiments. 252 

Irrespective  of  the  mode  of  action, efficient colonization of root surfaces is a key feature of all 253 

plant-beneficial bacteria (Whipps 2001). Therefore, we studied the rhizosphere competence of strains 254 

MIMR1 and DSM 19603T by using fluorescent recombinants. In our experimental conditions, when 255 

barley shoots were incubated with bacteria for five days, we observed directly (i.e. microscopically) the 256 

marked ability of fluorescent MIMR1Gfp and DSM 19603Gfp recombinants to colonize homogeneously the 257 

rhizoplane, locating on the whole radical surface. The use of confocal microscopy could demonstrate 258 

whether, besides rhizosphere competence, the bacteria under investigation could also colonize plant 259 

tissues in endophytic manner. This feature, in fact, has already been reported for P. chlororaphis subsp. 260 

aurantiaca (Rosas et al. 2005). 261 

In the last part of this research, potential ability of the bacteria to stimulate plant growth was tested. 262 

This analysis was carried out by evaluating various parameters such as the weight and length of the roots, 263 

and the weight and the height of the aerial part of barley plants. The results showed that Luteibacter 264 

rhizovicinus MIMR1 has the potential to increase the length and weight of the roots. The microorganisms 265 

of the species Luteibacter rhizovicinus were originally isolated from the rhizosphere of barley; it, 266 

therefore, seems plausible that these bacteria may have physiological characteristics that allow a 267 

symbiotic interaction with plants of barley, as confirmed by the results collected in this study. Our results 268 

could be partly explained by the ability of MIMR1 to efficiently produce auxins, which are 269 

phytohormones able to induce a variety of effects on plants, including cell proliferation and elongation, 270 

and the formation of new roots. 271 

On the contrary, in the same experiments P. chlororaphis DSM 19603T showed negative effects on 272 

barley growth, both on the aerial part and roots. This bacterium displayed a very marked ability to 273 

colonize the rhizosphere of barley. It is therefore possible that the negative effects observed might be due 274 

to an excessive proliferation of the bacterium, facilitated by the conditions of sterility in which the tests 275 

were conducted, which are characterized by the absence of microbial competitors. Unexpectedly, a 276 
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dramatic inhibitory activity of DSM 19603T on barley seed germination was also observed. This result, 277 

which appears in contrast with previous studies (Cattelan et al. 1999), could be due to the use of a too 278 

high bacterial cell concentration in contact with the seeds, which may have determined the colonization of 279 

internal seed tissues, limiting their germination. On the contrary, plant tolerance toward MIMR1 cells 280 

appeared to be higher, suggesting a potential evolutive mutual adaptation between barley and Luteibacter 281 

rizhovicinus. 282 

This study is a preliminary work, which has the aim to propose Luteibacter rhizovicinus as a 283 

potential new PGP bacterium. Since it is preliminary, this study has several limitations. Firstly, the 284 

bacteria under examination were investigated in the absence of a complex microbial community 285 

associated to plants. In field conditions, live roots and root exudates provide a diverse range of resources 286 

to soil organisms, the vast majority of which are bacteria (with densities as high as 109 cells per gram of 287 

soil) that compete with each other for these carbon resources (Hol et al. 2013). At this stage, it is 288 

questionable if strain MIMR1 can efficiently compete with other soil bacteria when exogenously added to 289 

barley rhizosphere in field. Nonetheless, the root colonization ability displayed by this bacterium in 290 

greenhouse trials is noticeable and encourages the achievement of field experiments involving strain 291 

MIMR1. 292 

 293 

In conclusion, the results obtained in this work highlighted the potential PGP capabilities of 294 

Luteibacter rhizovicinus MIMR1, which makes this bacterium a good candidate for a possible use in the 295 

formulation of bio-fertilizers. In perspective, open field and greenhouse trials will be carried out in order 296 

to assess the ability of this bacterium to promote plant growth in relation to physical and nutritional 297 

stressors. 298 
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Figure legends 366 

Fig. 1. Neighbour Joining dendrogram obtained through clustalW alignment of 1384 bp of the 16S rRNA 367 

gene of Luteibacter sp. MIMR1 and the corresponding region of the phylogenetically most closely related 368 

microbial strains available in GenBank, according to a nBLAST search. L. = Luteibacter; P. = 369 

Pseudomonas. Outgroup: P. chlororaphis subsp. aurantiaca DSM19603T. Percentual bootstraps higher 370 

than 50 % are shown. Total bootstrap: 1000. 371 

 372 
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 Fig. 2. Barley roots observed with an optical microscope. A, bright field. B, autofluorescence of plant 373 

tissues observed with and epifluorescence microscope. C and D, green fluorescent Pseudomonas 374 

chlororaphis subsp. aurantiaca DSM19603T cells on root tips and rhizoplane. From image E to I, green 375 

fluorescent Luteibacter rhizovicinus MIMR1 cells on root tips and rhizoplane. Magnification bar: 20 μm. 376 

 377 
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Fig. 3. Effect of Luteibacter rhizovicinus MIMR1 (B) and Pseudomonas chlororaphis  DSM19603T  on 378 

barley seed germination and plant growth on Fahreus agar mineral medium after 5 days of incubation at 379 

25 °C. C, control (without bacterial cells). 380 

 381 

382 
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Tables 383 

Table 1. In vitro characterization of potential plant growth-promoting activities exerted by Luteibacter 384 

rhizovicinus MIMR1 and Pseudomonas chlororaphis subsp. aurantiaca DSM19603T. IAA: indole acetic 385 

acid (average of two experiments conducted in triplicate  standard deviation). CPI: cell production index 386 

(average of two experiments conducted in triplicate  standard deviation). 387 

Strain 
Fe3+ 

chelation 

Ca(HPO4)2 

solubilization 

Ca3(PO4)2 

solubilization 

IAA production 

(mg/l) 

CPI 

(μg/109 cells) 

MIMR1 + + – 127.3  8,8 14.1  1,6  

DSM19603T + + – 24.9  1,6 4.8  0.8 
+: presence of activity 388 
–: absence of activity 389 

 390 

Table 2. Effect of bacterial strains on barley growth parameters. Germinated barley seeds were incubated 391 

for 7 days in Roux bottles containing Fahreus agar medium in presence of 107 cell per ml of Luteibacter 392 

rhizovicinus MIMR1, Pseudomonas chlororaphis subsp. aurantiaca DSM19603T or without bacteria 393 

(control). Data are reported as the mean measures per plant calculated on two independent experiments (6 394 

plants per tested condition per experiment) ± standard deviation. 395 

 
Aerial parts Roots 

length (cm) weight (mg) length (cm) weight (mg) 

Control 13.6 ± 2.2  ab 200 ± 20  a 17.9 ± 3.1  a 12 ± 3  a 

MIMR1 14.1 ± 1.7  a 222 ± 35  a 21.5 ± 3.2  b 12 ± 3  a 

DSM19603T 12.6 ± 1.0  b 195 ± 28  b 12.2 ± 4.5  c 8 ± 2  b 
Values with different suffix letters significantly differ at 0.05 level according to unpaired t Student’s test. 396 

 397 

Table 3. Effect of bacterial strains on barley seed germination and plant growth. Seeds were incubated in 398 

Petri plates with Fahreus agar medium containing 107 cells per ml of Luteibacter rhizovicinus MIMR1, 399 

Pseudomonas chlororaphis subsp. aurantiaca DSM19603T or without bacteria (control). Data are 400 

reported as the mean measures per plant calculated on four independent experiments (21 plants per tested 401 

condition per experiment) ± standard deviation. 402 

 
Aerial parts Roots Germinated 

seeds (%) length (cm) weight (mg) length (cm) weight (mg) 

Control 9.3 ± 1.2  a 178 ± 11  a 13.7 ± 1.3  a 30 ± 3  a 75.0 

MIMR1 10.3 ± 0.4  a 217 ± 18  b 18.0 ± 1.7  b 46 ± 7  b 73.8 

DSM19603T 2.1 ± 0.3  b 96 ± 5  c 5.1 ± 0.4  c 7 ± 1  c 53.6 
Values with different suffix letters significantly differ at 0.05 level according to unpaired Student’s t test. 403 


