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Abstract

In the thesis, I will prove new extension results to obtain pseudo-Riemannian manifolds
of dimension n endowed with a Killing spinor, starting from a manifold of dimension
n-1 or n-3 with appropriate additional structure. I will also prove a generalization to
the smooth, indefinite setting of a known result on the diagonalization of metrics on a
3-dimensional manifold.

I will present a construction that revolves around z-standard Lie algebras, which
are standard Lie algebras g ⋊ Span {e0} endowed with a Sasaki structure (g, ξ, η, φ)
such that φ(e0) lies in the center z of g. There are two main results. The first one
guarantees that a suitable central extension g of a nilpotent pseudo-Kähler Lie algebra ǧ,
admitting a derivation Ď ∈ Der(ǧ) commuting with the complex structure and satisfying
an additional technical condition, extends to a z-standard Sasaki Lie algebra of the form
g ⋊D R, where D is a derivation of g extending Ď. The second result specializes the
first one to obtain z-standard pseudo-Sasaki-Einstein Lie algebras. I will also classify
z-standard Sasaki Lie algebras up to dimension 7 obtained extending abelian pseudo-
Kähler Lie algebras, Einstein-Sasaki z-standard Lie algebras up to dimension 7, and
present examples of the construction in dimension 9.

Moreover, I prove an extension result in the non-invariant, analytic setting. I obtain
a pseudo-Riemannian spin manifold carrying a Killing spinor by extending a manifold
endowed with a real or imaginary harmful structure, i.e., a pair of spinors (ψ,φ) satisfying
a coupled PDE system involving a symmetric endomorphism A which is additionally
required to satisfy d trA + δA = 0. I prove that the metric of the manifold extends
to an Einstein metric, in a space-like or time-like direction, depending on the harmful
structure, whether it is real or imaginary, respectively. I point out that, in the definite
setting, the condition on the endomorphism can be dropped. I then define the Killing
spinor by extending the harmful structure by parallel transport.

Finally, I prove that it is always possible to diagonalize the metric of a smooth,
Lorentzian, 3-dimensional manifold by applying the technique of moving frames. I show
that the existence of coordinates that diagonalize the metric is equivalent to the existence
of a coframe satisfying a specific PDE system, hence I prove that the system is diagonal
hyperbolic and that the associated Cauchy problem admits non-characteristic initial data.
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Introduction

An Einstein manifold is a (pseudo)-Riemannian manifold (Z, h) such that the metric
tensor satisfies the Einstein equation

ric(h) = λh,

where ric(h) is the Ricci tensor of h. A Killing spinor is a section Ψ of the spinor bundle
of a smooth pseudo-Riemannian spin manifold (Z, h) satisfying

∇XΨ = λX ·Ψ, X ∈ Γ(TZ), λ ∈ C.

The two, Einstein metrics and Killing spinors, have been of interest both from a math-
ematical and a physical point of view since at least the second half of the 20th century.
While there is no need for further introduction on Einstein metrics, I will spend a few
words on the geometry of manifolds carrying a Killing spinor.

From the standpoint of physics, Killing spinors appear in the literature in general
relativity since [76] and later in supergravity in [39]. From a mathematical point of view,
on a compact Riemannian manifold with positive curvature, Killing spinors realize the
lowest possible eigenvalue as eigenvectors of the Dirac operator (see [46]). Furthermore,
the geometry of a manifold (M, g) carrying a Killing spinor is particularly rigid (see
[5, 7]), the scalar curvature is forced to be 4n(n − 1)λ2 whenever Ψ is not identically
zero, hence λ is real or purely imaginary; in the case of a Riemannian manifold, the
metric is forced to be Einstein, and Ricci-flat for λ = 0, in which case the spinor is said
to be parallel. Moreover, the topology of the manifold changes if λ is real or purely
imaginary. In the former case, the manifold is compact, in the latter the manifold M can
be either the hyperbolic space or a warped product (see [7]). In the indefinite setting,
the constraint on the metric does not always hold. For instance, it was shown in [13] that
Lorentzian manifolds carrying a Killing spinor are forced to be Einstein only if the Killing
number λ is real; in the same paper, examples of Lorentzian manifolds carrying a Killing
spinor with λ ∈ iR which are not Einstein are presented. In both the Riemannian and
indefinite case, Killing and parallel spinors are studied in connection with holonomy (see
[77, 5, 10]). By [5], a Riemannian manifold carrying a Killing spinor is either Einstein-
Sasaki, 3-Einstein Sasaki, nearly-parallel G2, 6-dimensional nearly Kähler or a round
sphere.

One way to approach the classification of manifolds with special geometries, such as an
Einstein metric, is the study of necessary and sufficient conditions on lower-dimensional

v



vi

(pseudo)-Riemannian manifolds (M, g) such that the consequent metric extension (Z, h)
is endowed with the specific geometric structure.

The extension problem related to the Einstein equation has been studied by D. De-
Turck in [35], both in its physical and in mathematical flavor. In particular, in the
latter he characterizes smooth Riemannian manifolds that embed as hypersurfaces into
Lorentzian ones endowed with an Einstein metric, thanks to the hyperbolicity of the
PDE system that arises. On the other hand, when both the starting manifold and the
extension have a Riemannian metric, extension results generating Einstein manifolds
were obtained by N. Koiso in [56], where, in order to solve the elliptic PDE system, the
necessity to add the condition of real analyticity on the initial data arose. In the invariant
setting, Einstein metrics have been studied extensively in various papers in more recent
years. It was proved by J. Heber in [52] that for any completely solvable metric Lie
algebra, any Einstein metric is standard, i.e., the Lie algebra decomposes as g = n ⋊ a,
where n is nilpotent, a is abelian, and their sum is orthogonal. When talking about the
metric on a Lie algebra, what is actually meant is the left-invariant metric on the Lie
group considered at the identity and extended by left translation. Furthermore, in the
same paper, Heber introduces Iwasawa standard Lie algebras, i.e., standard Lie algebras
where for any A ∈ a the adjoint adA is symmetric, and proves that any standard Ein-
stein solvmanifold is isometric to a solvmanifold admitting an Iwasawa decomposition,
where a solvmanifold is intended to be a simply connected solvable Lie group with a
left-invariant metric. In 2008 Y. Nikolayevsky studied in [65] sufficient conditions on
Riemannian nilpotent Lie algebras so that they embed as nilradicals in Riemannian solv-
able Einstein Lie algebras. In particular, it was proven that every nilpotent Lie algebra
g carries a non-zero, semisimple derivation N , unique up to automorphism of the Lie
algebra, such that

tr(Nφ) = tr(φ), φ ∈ Der g,

where tr is the trace and Der(g) the space of derivations of g, called pre-Einstein or
Nikolayevsky derivation, which allows to variationally characterize the Einstein solvable
extension. In the same paper, the author points out that it should be possible to clas-
sify all Riemannian Einstein solvmanifolds depending on which nilpotent Lie algebra is
actually an Einstein nilradical. In [59], J. Lauret improved on the result from Heber,
showing that any Einstein solvmanifold is actually standard, while in [58] he proved that
the study of all invariant Ricci solitons on solvmanifolds can be reduced to the study of
nilsolitons. More recently, C. Böhm and R. A. Lafuente proved in [18] the Alekseevskii
conjecture: every connected homogeneous Einstein manifold of negative scalar curvature
is diffeomorphic to Rn. A subsequent approach to the study of (pseudo)-Riemannian
Einstein extensions of solvmanifolds is the study of nilsolitons, i.e. nilpotent Lie algebras
such that Ric = λ Id+D, where D is a derivation. In [28] the authors show that in
the indefinite setting, the classification of Einstein metrics is not reducible to the clas-
sification of nilsolitons, and extending a nilsoliton can induce four different geometries
depending on λ and D. In later works, D. Conti, V. Del Barco e F. A. Rossi introduced
a variation of the Nikolayevsky derivation, called metric Nikolayevsky, in order to study
the uniqueness of ad-invariant metrics on nilmanifolds up to automorphism (see [24]).
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The extension problem can also be related to manifolds carrying Killing spinors. It
is known that for parallel spinors, the restriction gives rise to generalized Killing spinors,
i.e., spinors that satisfy the equation

∇XΨ =
1

2
W (X) ·Ψ,

where W is the Weingarten operator of the embedding. In the Riemannian setting, it
was proved in [1] that this is also a characterization, which means that any real analytic
Riemannian manifold endowed with a generalized Killing spinor extends to a Riemannian
manifold of one dimension higher that is endowed with a parallel spinor. In this case, the
classification of the holonomy groups of a manifold with a parallel spinor in [77] allows
one to recast the problem in terms of G-structures and differential forms. Extending the
metric amounts to solving appropriate evolution equations in the sense of [54] (see also
[32, 25]); for some instances of G, the existence of a solution can then be proved using the
integrability of an exterior differential system associated to the G-structure (see [32, 17]).
In the case of time-like normal vector field, the restriction of the parallel spinor gives rise
to an imaginary generalized Killing spinor, i.e. one which satisfies

∇XΨ =
i

2
W (X) ·Ψ.

The real analytic assumption in both cases cannot be eschewed as counterexamples where
non-real analytic Riemannian manifolds with generalized Killing spinors which cannot
be extended were constructed in [17]. The extension problem is not fully understood
for general signature of the hypersurface, the first extension result having been obtained
in [6], where is assumed that the normal field is space-like and ∇W totally symmetric.
In the special case of Lorentzian extensions of Riemannian hypersurfaces, a proof of
existence was given in [11] for real analytic data, and [61] for smooth data, under the
condition

Uψ · ψ = iuψψ,

with Uψ denoting the Riemannian Dirac current and uψ its norm. This algebraic condi-
tion on the spinor corresponds to imposing that the parallel spinor on Z is null. For the
4-dimensional case, an alternative proof using the polyform associated to the square of
the spinor was given in [64]. In these results, the metric on Z is not automatically Ricci-
flat. In order to obtain a Ricci-flat metric, one needs to impose additional constraints
involving the tensor A and the scalar curvature s, namely

s = trA2 − (trA)2, d trA+ δA = 0.

It was shown in [63] that a Riemannian metric on a 3-manifold with a generalized Killing
spinor such that the previous equation holds can be extended to a Ricci-flat Lorentzian
manifold with a parallel spinor. The case where Z has dimension three has been studied
in [62]. Hypersurfaces inside a nearly-Kähler 6-manifold have been studied in [42], where
the corresponding evolution equations are also introduced. Also in this context, solving
the evolution equations can be used effectively to produce explicit metrics; this approach
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has been instrumental in the construction of inhomogeneous nearly-Kähler manifolds in
[45]. For real analytic data, the existence of an extension for the geometries corresponding
to nearly-Kähler, nearly-parallel G2 and Einstein-Sasaki structures on Z has been proved
in [23].

Another interesting topic in pseudo-Riemannian geometry is the diagonalizability of
the metric of a manifold. Let (M, g) be a smooth n-dimensional (pseudo)-Riemannian
manifold and let (x1, . . . , xn) be a set of coordinates of a chart around a point p ∈ M ,
such that the metric assumes the form

g =
n∑
i=1

fi(x
1, . . . , xn)dxi ⊗ dxi,

which will be called orthogonal chart. The question is if it is always possible to find
an atlas of orthogonal charts. In the 2-dimensional case, the answer is always affirma-
tive, as it was shown in [36]. In higher dimension, the problem was first tackled by D.
DeTurck and D. Yang in [37], where they were able to prove that smooth Riemannian
3-manifolds admit a set of global coordinates that diagonalize the metric applying the
technique of moving frames. The problem was then extended in two directions: higher
dimension, which was briefly mentioned in the aforementioned paper, and different sig-
nature. The first direction was investigated by P. Tod in [75], where he worked out the
precise conditions on the Riemann tensor, and more specifically on the Weyl tensor, that
allow the metric to be diagonalized. In the case of indefinite signature, O. Kowalski
and M. Sekizawa in [57] proved that real analytic Lorentzian 3-manifolds admit a global
set of coordinates that diagonalize the metric, proving the result with a more analytical
approach. More recently, P. Gauduchon and A. Moroianu proved in [49] that both the
complex and the quaternionic projective spaces CPn and HPq do not admit orthogonal
coordinates for n, q ≥ 2.

In this thesis, I will focus primarily on metric extensions in the indefinite setting
that lead to an Einstein manifold carrying a Killing spinor. I will also show how the
diagonalization of a 3-dimensional Lorentzian manifold is possible in the smooth category.

In Chapter 1, I will recall some definitions and results regarding Lie theory, spin
geometry and Kähler and Sasaki structures both on Lie groups and on general manifolds,
and take the chance to introduce the notation used for the remainder of the manuscript.
In particular, I will recall a result for standard Lie algebras g̃ = g ⋊ a which allows
one to obtain an isometric Lie algebra g̃∗ by projecting adX on its symmetric part,
first obtained in [4] and generalize it to the indefinite setting and extend it to non
necessarily standard Lie algebras (Proposition 1.1.5). At the end of the chapter, I will
also prove that pseudo-Sasaki Lie algebras never admit pseudo-Iwasawa decompositions
(Proposition 1.4.6). This obstruction motivates the choice to consider more general
standard decompositions of Lie algebras.

In Chapter 2, I will present new results concerning pseudo-Sasaki extensions of
pseudo-Kähler Lie algebras. I will first prove a number of useful formulas relating a
Lie algebra and a Sasaki structure, as well as some properties of the Ricci tensor of a
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nilmanifold endowed with an Einstein metric. Next, I will introduce a new decomposi-
tion of (pseudo)-Sasaki Lie algebra denoted z-standard, i.e., a standard decomposition
g ⋊ Span {e0} together with a compatibility condition relating the center z of g to the
Sasaki structure, and characterize the geometry of a quotient, showing that it is endowed
with a pseudo-Kähler structure, which will be called Kähler reduction. z-standard Lie
algebras were introduced in [30] in order to circumvent the obstruction mentioned in
the first chapter. Subsequently, I explain how to invert the reduction process and prove
two extension results, Theorem 2.4.1 and Theorem 2.4.9, in order to construct Sasaki
and Sasaki-Einstein Lie algebras g̃ = g⋊ Span {e0} by extending suitable pseudo-Kähler
nilpotent Lie algebras in three dimensions less. This procedure differs from the double
extension procedure considered in [14], in that the two “extra” dimensions span a definite
two-plane, rather than neutral. Finally, I will give a classification of z-standard Sasaki
and Sasaki-Einstein Lie algebras in dimension 3, 5 and 7, and provide some examples in
dimension 9. This extension by three dimension can actually be seen in the context of
hypersurfaces embedded in manifolds carrying Killing spinors, where the role of hyper-
surface is played by the Lie algebra g. These results appear in two papers ([30, 31]) in
collaboration with my supervisor D. Conti and F. A. Rossi.

In Chapter 3, I will provide a new embedding result in the more general context of
Killing spinor in any dimension. In particular, I will show that, in the analytic cat-
egory and under suitable assumptions, it is possible to isometrically embed a pseudo-
Riemannian manifold (M, g) of dimension n and signature (r, s) in a pseudo-Riemannian
manifold (Z, h) as a hypersurface, such that Z admits a Killing spinor. The first step will
be to recall some results obtained by N. Koiso in [56] and adapt them to the indefinite
setting. Subsequently, I will characterize the geometry of a hypersurface embedded in a
pseudo-Riemannian manifold endowed with a Killing spinor and, in Theorem 3.2.1, prove
that it admits two spinors (ψ,φ) satisfying the system{

∇ΣM
X ψ = 1

2A(X)⊙ ψ + λX ⊙ φ
∇ΣM
X φ = λX ⊙ ψ − 1

2A(X)⊙ φ

if the normal vector field to the hypersurface is space-like, or a similar system if the
normal is time-like. I will denote a manifold weakly harmful when it admits a pair of
spinors satisfying such a system, while it will be dubbed simply harmful with the addition
of a technical condition, namely d trA+ δA = 0, meaning to suggest the fact that such a
structure potentially leads to a Killing spinor on the extension. Thereafter, the extension
process begins. I first prove that it is possible to extend the metric of a manifold endowed
with a harmful structure, in order for it to be Einstein. Finally, I show that the harmful
structure extends to a Killing spinor. This result appears in [33], written in collaboration
with my supervisor.

In Chapter 4, I will extend the result first obtained by D. DeTurck and D. Yang in
the smooth Riemannian category to the smooth indefinite one. In particular, I will prove
that any smooth 3-dimensional Lorentzian manifold (M, g) admits an atlas such that the
metric written in coordinates assumes a diagonal form. I first recall some useful defini-
tions and existence results concerning systems of partial differential equations, namely
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symmetric and diagonal hyperbolic systems. I then prove, by applying the technique of
moving frames, that it is possible to rewrite the system of PDE’s defining the constraints
on the diagonalizability of the metric in the form of a diagonal hyperbolic system. Fi-
nally, I show that it is possible to construct non-characteristic initial data for the Cauchy
problem associated to the system, proving the initial statement.
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Chapter 1

Preliminary notions

In this chapter, I will recall known facts for future reference and to fix the notations and
conventions. The first section concerns Lie theory, where I will give some definitions and
classical results, as well as more recent theorems, more specific to the thesis, which will
prove useful in later chapters. In the second section, I will recall the definition of Clifford
algebras and the construction of the spin group, as well as present the classification of
Clifford algebras in terms of matrix algebras given in [60] and recall some properties
of the spinor representation. In the third section, I will recall the definition of a spin
structure over a manifold and the associated spinor bundle, as well as the construction
of the spin connection, ending the section with some examples. The last section provides
definitions of pseudo-Kähler and pseudo-Sasaki structures, and how they relate to each
other. I also prove that a (pseudo)-Sasaki solvmanifold never admits a (pseudo)-Iwasawa
decomposition (Proposition 1.4.6)

1.1 Lie theory

In this section, I will recall some basic notions to fix the notation and some relevant
results to the following discussion. Unless otherwise stated, definitions and results can
be found in [41].

A Lie group is a smooth manifold G with a group operation · compatible with the
differentiable structure. Given g ∈ G, one defines the left (resp. right) translation
Lg : G → G such that Lg(h) = g · h (resp. Rg : G → G, Rg(h) = h · g). A vector field
X ∈ Γ(TG) is called left-invariant if

(Lg)∗|h(X) = Xgh for any g, h ∈ G,

while the set g = {X ∈ Γ(TG) |X is left invariant} will be the Lie algebra of G with the
Lie bracket [X,Y ] = XY − Y X for X,Y ∈ g. Thanks to the left and right translations,
it is possible to define the adjoint map Ad: G→ Aut(g), defined as follows: Adg = (Ag)∗
where

Ag(h) =
(
Lg ◦Rg−1

)
(h) = ghg−1.

1



2 CHAPTER 1. PRELIMINARY NOTIONS

By proceeding one step further in the same direction, it is possible to define ad: g →
End(g), defined as ad = Ad∗, which, for X,Y ∈ g, becomes ad(X)(Y ) = [X,Y ]. It is
now possible to define the Killing form as

B(X,Y ) = tr(ad(X) ◦ ad(Y )), X, Y ∈ g.

Furthermore, if (G, g) is a pseudo-Riemannian Lie group, the metric g is called left
invariant if Lg is an isometry for every g ∈ G. Recall that if (G, g) is connected and
simply-connected, and g is left-invariant, the metric structure on the Lie group is entirely
determined by the scalar product on TeG ∼= g. Thus, it is reasonable to study the
metric structure of a Lie algebra (pseudo-Riemannian, Einstein, Ricci-flat...), with the
understanding that the terms refer to the underlying connected, simply-connected Lie
group with its left-invariant metric. For this reason, the section will be focused on Lie
algebras. A Lie algebra g is a vector space together with a Lie bracket. Hence, a Lie
algebra is completely determined by the choice of a basis of the vector space and the
bracket relations. In the following, keeping this in mind, I will describe the structure of
a Lie algebra by the Chevalley-Eilenberg differentials, which are defined in the following
manner. Let (e1, . . . , en) be a basis for the vector space, which I will identify with Rn,
and (e1, . . . , en) its dual basis. Then the Lie algebra structure is determined if one sets
the differentials dei = cijke

j∧ek = cijke
jk for each i = 1, . . . , n by applying the differential

formula:
cijk = dei(ej , ek) = −ei([ej , ek]),

thus [ej , ek] = −cijkei, where the sum over repeated indices is implied. In general, a Lie
algebra g will be described by

g =
(
c1jke

jk, . . . , cnjke
jk
)
.

This notation is a variation of the one introduced by S. Salamon in [70].

Example 1.1.1. Recall that the 3-dimensional Heisenberg group H3 ⊂ GL(3,R) is the
Lie group generated by the matrices1 x y

0 1 z
0 0 1

 , x, y, z ∈ R,

while its Lie algebra is the subalgebra h3 ⊂ gl(3,R) generated by the matrices

e1 =

0 1 0
0 0 0
0 0 0

 , e2 =

0 0 1
0 0 0
0 0 0

 , e3 =

0 0 0
0 0 1
0 0 0

 .

Let e1, e2, e3 be a basis for h3 such that de1 = de2 = 0, de3 = e12. Then the only non-zero
bracket is [e1, e2] = e3, which is precisely the one defining the 3-dimensional Heisenberg
Lie algebra h3. In the notation introduced, one can write h3 = (0, 0, e12).
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Recall that the lower central series of a Lie algebra g is the sequence

g = g0 ⊇ [g, g] = g1 ⊇ [g1, g] ⊇ . . .

while the derived series is a sequence

g = g(0) ⊇ [g, g] = g(1) ⊇ [g(1), g(1)] ⊇ . . .

If for some n ∈ N the lower central series terminates, i.e. gn = 0, then g is called nilpotent,
while, if the derived series terminates, g is said to be solvable. As g(k) ⊆ gk, any nilpotent
Lie algebra is automatically solvable, but the converse is not true in general. Given a
Lie algebra g, its largest solvable ideal r ⊂ g is called the radical of g. A non-zero finite-
dimensional Lie algebra g is called semisimple if it has no non-zero solvable ideals, that
is, if r = 0.

Lemma 1.1.2 ([41, Lemma 4.7]). If g is a Lie algebra, then g/r is semisimple.

Now, let g be a Lie algebra endowed with a pseudo-Riemannian metric g. If g can
be decomposed as g = n⋊ a, where n is nilpotent, a is abelian and the decomposition is
orthogonal, then g will be called standard. A standard decomposition is pseudo-Iwasawa
if adX is symmetric for all X ∈ a. These definitions mimic and generalize analogous
definitions for Riemannian metrics (see [52]), and they have proved useful in the study
of Einstein metrics ([28]).

For the remainder of the section, I will present some general facts on the metric
of a Lie algebra which admits a semidirect decomposition. In particular, I will prove
some formulas about the Ricci tensor of a Lie algebra obtained by central extension,
an expression of the Levi-Civita connection on a standard Lie algebra and an isometry
result. Recall that a Lie algebra g is a central extension of a nilpotent Lie algebra ǧ if
they satisfy

0→ Rk → g→ ǧ→ 0;

where, as vector spaces, g = ǧ⊕ Rk. Let {es} be a basis of Rk; the elements {es} of the
dual basis can be viewed as elements of g∗, and the Lie algebra structure of g is entirely
determined by ǧ and the exterior derivatives {des}. Explicitly,

[v, w]g = [v, w]ǧ −
∑
s

des(v, w)es, v, w ∈ g.

Lemma 1.1.3 ([31, Lemma 3.1]). Let ǧ be a nilpotent Lie algebra with a metric ǧ; on
the central extension g = ǧ⊕ Rk, fix a metric of the form

g = ǧ +
∑
s

εse
s ⊗ es, εs = ±1.

Then, for v, w ∈ ǧ, the Ricci tensors of g and ǧ are related by

ric(v, w) = |ric(v, w)− 1

2

∑
s

εsg(v⌟ de
s, w⌟ des),

ric(v, es) =
1

2
εsg(dv

♭, des), ric(es, et) =
1

2
εsεtg(de

s, det).
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Proof. By construction, ad v = |adv−
∑

s v⌟ de
s⊗es. For one-forms α on ǧ, zero-extended

to g, one has dα = ďα. Since the musical isomorphisms relative to g and ǧ are compatible,
using [26, Proposition 2.1] one obtains

ric(v, w) =
1

2
g(dv♭, dw♭)− 1

2
g(ad v, adw)

=
1

2
g(ďv♭, ďw♭)− 1

2
g(|adv,|adw)− 1

2
g(
∑
s

v⌟ des ⊗ es,
∑
ℓ

w⌟ deℓ ⊗ eℓ)

= |ric(v, w)− 1

2

∑
s

εsg(v⌟ de
s, w⌟ des).

In general, for a metric Lie algebra, the Levi-Civita connection assumes the following
form

∇wv = − ad(v)sw − 1

2
(adw)∗v. (1.1)

The formula follows immediately from the Koszul formula. In order to specialize to the
standard case, I will need to fix an orthogonal basis {es} on the abelian factor a such
that g̃(es, es) = εs.

Lemma 1.1.4 ([30, Lemma 2.5]). Let g̃ be a Lie algebra with a standard decomposition
g̃ = g⊕ a. Then

∇̃HX = ãd(H)a(X), ∇̃XH = −ãd(H)s(X),

for all H ∈ a, X ∈ g̃. In addition, if {ei} is an orthogonal basis of a and v, w ∈ g, I have

∇̃wv = − ad(v)sw − 1

2
(adw)∗v +

∑
s

εsg̃(ãd(es)
sv, w)es, v, w ∈ g.

Proof. By applying (1.1) to ∇̃, one gets

∇̃HX = −ãd(X)sH − 1

2
(ãdH)∗X = −1

2
ãd(X)H − 1

2
ãd(X)∗H − 1

2
ãd(H)∗X

= ãd(H)a(X)

and
∇̃XH = −ãd(H)sX − 1

2
(ãdX)∗H = −ãd(H)sX.

Now observe that ãd(v)∗w = ad(v)∗w +
∑

s εsg̃([v, es], w)es. Therefore,

∇̃wv = −1

2
ãd(v)w − 1

2
ãd(v)∗w − 1

2
ãd(w)∗v

= −1

2
ad(v)w − 1

2
ad(v)∗w − 1

2
ad(w)∗v − 1

2

∑
s

εs
(
g̃([v, es], w)− g̃([w, es], v)

)
es

= − ad(v)sw − 1

2
ad(w)∗v +

1

2

∑
s

εs
(
g̃(ad(es)v, w) + g̃(ad(es)

∗v, w)
)
es.
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For the remainder of the thesis, given a Lie algebra g with a metric g, for any en-
domorphism f : g → g, I will write f = f s + fa, where f s is symmetric and fa is
skew-symmetric relative to the metric, i.e.,

fs =
1

2
(f + f∗), fa =

1

2
(f − f∗).

Next, consider a semidirect product g̃ = g⋊a, with a abelian, and fix any metric. In [40,
Section 1.8], [28, Proposition 1.19] and [4] it was shown that under certain conditions one
can obtain an isometric Lie algebra by projecting adX on its symmetric part, for each
X ∈ a. These results assume that the decomposition is standard; however, the proof
holds more generally, without assuming that the metric is standard and taking more
general projections:

Proposition 1.1.5 ([30, Proposition 2.2]). Let g̃ be a pseudo-Riemannian Lie algebra
(not necessarily standard) of the form g̃ = g ⋊ a; let χ : a → Der(g) be a Lie algebra
homomorphism such that, extending χ(X) to g̃ by declaring it to be zero on a,

χ(X)s = (adX)s, [χ(X), adY ] = 0, X, Y ∈ a. (1.2)

Let g̃∗ be the Lie algebra g⋊χ a. Then there is an isometry between the connected, simply
connected Lie groups with Lie algebras g̃ and g̃∗, with the corresponding left-invariant
metrics, whose differential at e is the identity of g⊕ a as a vector space.

Proof. Observe that for every X in a, χ(X) is a derivation of g that commutes with ad a
by (1.2), and therefore a derivation of g̃. For X in a, write adX = A(X) + χ(X), where
A(X) is an antisymmetric derivation of g̃. By construction, A(X) is zero on a.

The rest of the proof is identical to [28, Proposition 1.19], except that one replaces
(adX)a with A(X), and one cannot assume that exp g exp a equals the whole connected,
simply-connected group G̃ with Lie algebra g̃; however, it is clear that expA(X) fixes
the connected subgroup with Lie algebra a, which is what is needed.

As a consequence, one has a result analogous to [28, Proposition 1.19] for nonstandard
metrics ([30, Corollary 2.3]):

Corollary 1.1.6. Let g̃ be a pseudo-Riemannian Lie algebra of the form g̃ = g⋊ a; sup-
pose that, for every X in a, (adX)∗ is a derivation of g̃ vanishing on a, and furthermore

[(adX)∗, adY ] = 0, X, Y ∈ a. (1.3)

Define χ : a→ Der(g) as χ(X) = (adX)s. Let g̃∗ be the solvable Lie algebra g⋊χ a.
Then there is an isometry between the connected, simply connected Lie groups with

Lie algebras g̃ and g̃∗, with the corresponding left-invariant metrics, whose differential at
e is the identity of g⊕ a as a vector space.

Example 1.1.7. Consider the 5-dimensional Lie algebra

g̃ = (0,−2e12 − 2e34,−3e45 − e13 + 3e24, 3e35 − 3e23 − e14, 2e12 + 2e34),



6 CHAPTER 1. PRELIMINARY NOTIONS

with the metric

g̃ = −e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3 − e4 ⊗ e4 + e5 ⊗ e5.

To apply Proposition 1.1.5 let ad: g̃ → Der(g̃) be the adjoint representation for g̃ and
consider the decomposition g̃ = g⋊ a where

g = Span {e1, e2 − e5, e3, e4} and a = Span {e5} .

To obtain an isometric Lie algebra g̃∗, let ād be its adjoint representation defined as

ãde1 = ad e1, ãde2 = ad e2 − ad e5, ãde3 = ad e3, ãde4 = ad e4, ãde5 = (ad e5)
s.

Some easy computations show that

g̃∗ = (0,−2e12 − 2e34,−e13,−e14, 2e12 + 2e34),

g̃ = −e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3 − e4 ⊗ e4 + e5 ⊗ e5.

This Lie algebra admits a standard decomposition Span {e2, e3, e4, e5}⋊ Span {e1}, with

Span {e2, e3, e4, e5} ∼= (−2E23, 0, 0, 2E23)

and
ad e1 = 2e2 ⊗ (e2 − e5) + e3 ⊗ e3 + e4 ⊗ e4.

1.2 Clifford algebras and the spin group

Throughout this section, unless otherwise stated, all references to [60] refer to the first
chapter.

Let V be a vector-space on some field F, which will be assumed here and in the
following to have characteristic different from 2, and q : V → F a quadratic form, possibly
degenerate. Consider

(a) the tensor algebra

F(V ) =
∞∑
r=0

r⊗
V,

(b) the ideal Fq(V ) = ⟨v ⊗ v + q(v) · 1, v ∈ V ⟩ ⊂ F(V ).

It is called Clifford algebra associated to V and q the algebra defined as

Cl(V, q) = F(V )/Fq(V ).

Clearly V =
⊗1 V ↪→ Cl(V, q), furthermore, Cl(V, q) is generated by V and the identity

1 subject to the relation v · v = −q(v) · 1, where · is the multiplication of the algebra.
Furthermore, if v, w ∈ V , then it also holds that

v · w + w · v = −2q(v, w),

where 2q(v, w) = q(v + w)− q(v)− q(w).
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Proposition 1.2.1 ([60, Proposition 1.1]). Let f : V → A be a linear map between V
and an F-associative algebra such that f(v) · f(v) = −q(v) · 1. Then f extends uniquely
to a map

f̃ : Cl(V, q)→ A.

Remark 1.2.1. Using the previous result, it is easy to see that Clifford algebras are
functorial in the sense that if one considers

(V, q)
f−→ (V ′, q′)

g−→ (V ′′, q′′)

then one can find a unique

Cl(V, q)
f̃−→ Cl(V ′, q′)

g̃−→ Cl(V ′′, q′′)

and g̃ ◦ f = g̃ ◦ f̃ .

It follows then that

O(V, q) = { f ∈ GL(V, q) | f∗q = q } ⊆ Aut(Cl(V, q))

extends canonically. In particular, the reflection

α : V → V, α(v) = −v

extends linearly to a map α : Cl(V, q) → Cl(V, q). Since it is an involution, there is a
splitting in the +1 and −1 eigenspaces of α

Cl(V, q) = Cl0(V, q)⊕ Cl1(V, q),

where Cli(V, q) = {φ ∈ Cl(V, q) |α(φ) = (−1)iφ}. In particular Cl0(V, q) is a subalgebra
of Cl(V, q), called the even part, which contains the identity.

Proposition 1.2.2 ([60, Proposition 1.2]). For any quadratic form q : V → F, there is
a linear isomorphism Cl(V, q) ∼= Λ∗V .

Hence, Clifford algebras are more subtle than the exterior algebra of a vector space.
Indeed, the two coincide only if q ≡ 0 and v ∧ v = v · v.

Another consequence of this result is that if V1⊕q V2 = V , where ⊕q is the orthogonal
decomposition with respect to (with respect to) q, then there exists a natural isomorphism

Cl(V, q)→ Cl(V1, q1)⊕ Cl(V2, q2), qi = q|Vi
.

Given the tensor algebra F(V ), it is possible to define the transpose of an element
s ∈ F(V ), denoted by st, by setting for v1, . . . , vr elements of a basis of V

t : v1 ⊗ · · · ⊗ vr → vr ⊗ · · · ⊗ v1,
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that descends to Cl(V, q) since it preserves Iq(V ). Next, I will recall the construction of
the group Spin(V, q) as the two-sheeted cover of SO(V, q). In order to do so, consider

Cl×(V, q) = {φ ∈ Cl(V, q) | ∃φ−1, φ−1φ = φφ−1 = 1},

the multiplicative group of units in the Clifford algebra, containing { v ∈ V | q(v) ̸= 0 } ⊂
V . If F = R or C then Cl×(V, q) is a Lie group where one can define the adjoint
representation

Ad: Cl×(V, q)→ Aut(Cl(V, q)), Adφ(x) = φxφ−1.

Proposition 1.2.3 ([60, Proposition 2.2]). If v ∈ V is such that q(v) ̸= 0, then Adv(V ) =
V ; indeed

−Adv(w) = w − 2
q(v, w)

q(v)
v, ∀w ∈ V. (1.4)

Next, one needs to consider not only elements of V such that Adφ(V ) = V , but take
into account also elements from Cl×(V, q). Notice that

(Ad∗v q)(w) = q(w) if q(v) ̸= 0,

hence Adv ∈ O(V, q); furthermore define P (V, q) ⊆ Cl×(V, q) to be the group generated
by v ∈ V such that q(v) ̸= 0 and observe that the map Ad: P (V, q) → O(V, q) is a
representation. Set

Pin(V, q) = ⟨v ∈ V | q(v) = ±1⟩ and Spin(V, q) = Pin(V, q) ∩ Cl0(V, q).

Notice that the two groups are generated by the generalized unit sphere of (V, q) as

Pin(V, q) = {v1 · · · vr ∈ P (V, q) : q(vj) = ±1 for all j}

and
Spin(V, q) = {v1 · · · vr ∈ Pin(V, q) : r is even}.

The right side of (1.4) is the reflection ρv : V → V , with respect to v⊥ = Span {v}⊥, that
maps v → −v. But on the left side there is a minus sign, so one considers the twisted
adjoint representation

Ãdφ(x) = α(φ)xφ−1,

that is still an automorphism and that coincides with Ad in the case of φ even. In this
way

Ãdv(w) = w − 2
q(v, w)

q(v)
v

is exactly the reflection.

Proposition 1.2.4. If dimV <∞ and q is non-degenerate then, if

P̃ (V, q) = {φ ∈ Cl×(V, q) | Ãdφ(V ) = V } ⊇ P (V, q),

the map Ãd: P̃ (V, q)→ GL(V, q) has ker(Ãd) = F×.
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This characterization of the kernel is possible only for the twisted adjoint representa-
tion and only if the quadratic form is non-degenerate. Next, to prove that Pin(V, q) and
Spin(V, q) are the two-sheeted covers of O(V, q) and SO(V, q), one needs to prove that
the map Ãd: P̃ (V, q) → O(V, q) is a homomorphism, and is able to do so thanks to the
norm map N : Cl(V, q)→ Cl(V, q) defined as

N(φ) = φ · α(φt),

which, if restricted to P̃ (V, q), becomes a homomorphism to F. In this case, considering
φ = v1 · · · · · vr ∈ P (V, q), one has that

Ãdφ = ρv1 ◦ · · · ◦ φvr , ρvi reflection with respect to v⊥i .

Next, recall the classical result

Theorem 1.2.5 (Cartan-Dieudonné). Let V be a vector space of dimension n over a
field F endowed with a non-singular quadratic form q. Then every isometry σ : V → V
is the product of at most n symmetries with respect to non-singular hyperplanes.

For a proof, see for example Artin’s book [3]. A simple application allows one to
deduce that Ãd is surjective on O(V, q) and that its restriction

Ãd: SP (V, q) = P (V, q) ∩ Cl0(V, q)→ SO(V, q)

is also onto. The next step is to prove that the same holds for Pin(V, q) and Spin(V, q)
as well. Note that ρtv = ρv for every t ̸= 0, so when is always possible to rescale v to a v′

such that q(v′) = ±1 the surjectivity passes from P (V, q) and SP (V, q) to Pin(V, q) and
Spin(V, q) respectively. So if ∃ t ∈ F such that ±1 = q(v′) = q(tv) = t2q(v) is solvable
for t, i.e., the equation

t2 = ±a (1.5)

always admits a solution in F, then the surjectivity would pass down. If F = R or C then
this is true, if F = Q then it is not. If (1.5) is solvable, then Ãd is surjective and F is
said to be spin.

Proposition 1.2.6. Ãd(Pin(V, q)) and Ãd(Spin(V, q)) are normal subgroups of O(V, q).

What follows is a preliminary result that guarantees that at least Pin and Spin are
covers of the respective groups:

Theorem 1.2.7 ([60, Theorem 2.9]). Let V be a finite-dimensional vector-space over a
spin field F, q a quadratic form non degenerate over V . Then the following sequences are
exact

0 // F // Pin(V, q) // O(V, q) // 1

0 // F // Spin(V, q) // SO(V, q) // 1

where

F =

{
{ 1,−1 } = Z2

√
−1 /∈ F

{±1,±
√
−1 } = Z4 otherwise.
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Remark 1.2.2. The theorem still holds if one drops the hypothesis that F is a spin field,
but in place of SO(V, q) and O(V, q) one needs to place an appropriate normal subgroup
of the latter.

Sketch of the proof. Let φ = v1 · · · · · vr and assume φ ∈ ker Ãd. By Proposition 1.2.4 it
is known that φ ∈ F×, hence

φ2 = N(φ) = N(v1) · · · · ·N(vr) = ±1,

which establishes the kernel. Regarding surjectivity it suffices to notice that F is spin,
therefore any v ∈ V × may be renormalized to have q-length 1.

It is interesting to notice that if F is spin, then either

P̃ (V, q) = P (V, q) or P̃ (V, q)/P (V, q) = Z2.

Real case

Suppose F = R and write q(x) = x21 + · · · + x2r − x2r+1 − · · · − x2r+s where r, s ≥ 0 and
r ≤ n. One then says that q has signature (r, s). To emphasize the signature of q I will
write

O(V, q) =Or,s Pin(V, q) =Pinr,s P̃ (V, q) =P̃r,s

SO(V, q) =SOr,s Spin(V, q) =Spinr,s P (V, q) =Pr,s.

Recall that SOn is connected but not simply connected and that SOr,s has exactly two
connected components when r, s > 0. Moreover π1(SOn) = Z2 and

π(SO0
r,s) = π(SOr)× π(SOs)

whenever n ≥ 3, thus
π(SO0

r,s) = Z2 × Z2.

Finally, one gets the full version of the partial result, Theorem 1.2.7:

Theorem 1.2.8 ([60, Theorem 2.10]). For any (r, s) the following sequences are exact

0 // Z2
// Spinr,s

ξ // SOr,s
// 1

0 // Z2
// Pinr,s // Or,s

// 1.

Furthermore, if (r, s) ̸= (1, 1), the two-sheeted coverings are not trivial over each con-
nected component of Or,s. In the particular case of r = n, one has

0 // Z2
// Spinn

ξ0 // SOn
// 1

where the map ξ0 = Ãd is the universal covering of SOn.
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1.2.1 Classification of Clifford algebras and spinor representation

In the following, I will restrict the attention to the case where V = Rn endowed with a
quadratic form

q(x) = x21 + · · ·+ x2r − x2r+1 − · · · − x2r+s, r + s = n

of signature (r, s). In this case, I will write (Rn, q) = Rr,s and Cl(Rn, q) = Clr,s. A simple
way to present Clifford algebras in this setting is the following

Proposition 1.2.9. Let {ei} be a q-orthonormal basis of Rr+s ⊂ Clr,s. Then Clr,s can
be presented as generated by e1, . . . , er+s such that

eiej + ejei =

{
−2δij i ≤ r
2δij i > r.

A useful object in the study of the spin representations, which will be carried out sub-
sequently, is the volume element. Let e1, . . . , er+s be a positively-oriented orthonormal
base for Rr,s. Then the volume element of Clr,s is

ωr,s = e1 · · · er+s.

It is easy to see that the definition is independent of the choice of orthonormal base, but
not of the orientation. Next, I will recall some useful properties of the volume element.

Proposition 1.2.10 ([60, Proposition 3.3]). If r + s = n, the volume element for Clr,s
satisfies

ω2
r,s = (−1)

n(n+1)
2

+s, (1.6)

vωr,s = (−1)n−1ωr,sv, v ∈ Rr,s.

In particular, for n odd ω is central, if n is even then

φωr,s = ωr,sα(φ), φ ∈ Clr,s

Equation (1.6) is equivalent to saying that

ω2
r,s =

{
1 r − s = 0, 3 mod 4

−1 r − s = 1, 2 mod 4
.

The following two results concern decompositions of Clr,s depending on the evenness of
the dimension.

Proposition 1.2.11. Assume r+s is odd and the volume element satisfies ω2
r,s = 1, and

let π± = 1
2(1± ωr,s). Then Clr,s decomposes as

Clr,s = Cl+r,s⊕Cl−r,s,

where Cl±r,s = π± · Clr,s and α(Cl±r,s) = Cl∓r,s.
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A similar result holds for Clr,s-modules when r + s is even. Indeed

Proposition 1.2.12. Assume r+ s is even and ω2
r,s = 1. If V is a Clr,s-module, then it

decomposes as
V = V + ⊕ V −

in the +1 and −1 eigenspaces for the multiplication by ωr,s. In particular

V + = π+ · V and V − = π− · V.

Furthermore, multiplication by a non-light-like vector interchanges the modules, i.e.

e : V ± −→ V ∓, e ∈ Rr,s, ⟨e, e⟩ ≠ 0.

I will now present a description of the Clifford algebras Clr,s, summarizing everything
in a table which can be also found in [60, Chapter 1]. I will first recall the first few Clifford
algebras Clr,s for r + s ≤ 2. Let e1, e2 be a basis for Rr,s.

• Cl0,0 = Span {1} = R as there are no non-zero vectors.

• Cl1,0 = Span {1, e1} ∼= C since e1 · e1 = −1, hence e1 acts as i.

• Cl0,1 = Span {1, e1} ∼= R⊕R since e1 ·e1 = 1, and e1 and 1 are linearly independent,
so e1 = (1,−1).

• Cl2,0 = Span {1, e1, e2, e1e2} ∼= H since ei · ei = −1 = (e1 · e2) · (e1 · e2), and all
three anti-commute, hence e1 = i, e2 = j and e1e2 = k.

• Cl1,1 = Span {1, e1, e2, e1 · e2} ∼=M(2,R) by setting

e1 =

(
0 1
−1 0

)
, e2 =

(
0 1
1 0

)
and noticing that e1 · e1 = −Id = −e2 · e2.

• Cl0,2 = Span {1, e1, e2, e1 · e2} ∼=M(2,R) by setting

e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
1 0

)
and noticing that e1 · e1 = Id = e2 · e2.

Remark 1.2.3. Notice that by letting H act on a + jb ∈ C2 by left multiplication, one
can represent Cl2,0 as complex matrices, i.e.,

i =

(
i 0
0 −i

)
, j =

(
0 −1
1 0

)
, k =

(
0 −i
−i 0

)
.

The next result shows that there exist some relations between Clifford algebras of different
dimension.
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Proposition 1.2.13 ([60, Theorem 4.1]). Let e1, . . . , er+s be an orthonormal basis of
Rr,s ⊂ Clr,s, with

⟨ei, ei⟩ =

{
1 i ≤ r
−1 i > r

.

There are isomorphisms

1. Clr+1,s+1 = Cl1,1⊗Clr,s =M(2,Clr,s), with a positively-oriented orthonormal basis
of Rr+1,s+1 given by (

ei 0
0 −ei

)
,

(
0 1
−1 0

)
,

(
0 1
1 0

)
.

2. Cls+2,0 = Cl2,0⊗Cl0,s = Cl0,s⊗H ⊂ M(2,Cl0,s⊗C), with a positively-oriented
orthonormal basis of Rs+2,0 given by(

0 −iei
−iei 0

)
,

(
i 0
0 −i

)
,

(
0 −1
1 0

)
.

3. Cl0,r+2 = Cl0,2⊗Clr,0 = M(2,Clr,0), with a positively-oriented orthonormal basis
of R0,r+2 given by (

0 ei
−ei 0

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)
.

Sketch of the proof. Let s1, s2 be the generators of Cl1,1, and notice that

G = {e1 ⊗ s1s2, . . . , er+s ⊗ s1s2, 1⊗ s1, 1⊗ s2}

is a set of generators for Clr,s⊗Cl1,1. One then defines a map between an orthonormal
basis B = {b1, . . . , bn+2} of Rr+1,s+1 and G as

f(bi) =


ei ⊗ s1s2 i ≤ n
1⊗ s1 i = n+ 1

1⊗ s2 i = n+ 2.

It is easy to verify that the map satisfies the hypothesis of Proposition 1.2.1, hence it
extends to a map f̃ : Clr+1,s+1 → Clr,s⊗Cl1,1, which is onto G, hence surjective on the
algebra. As dimClr+1,s+1 = dim(Clr,s⊗Cl1,1), the map is actually an isomorphism. The
same strategy is applied to prove the other two cases, defining a similar map f .

Furthermore, one can deduce some more relations, indeed

Proposition 1.2.14 ([60, Theorem 4.5]). For all n ∈ N the following holds:

Cln+8,0
∼= Cln,0⊗Cl8,0, Cl0,n+8

∼= Cl0,n⊗Cl0,8,

where
Cl8,0 = Cl0,8 = R(16) =M(16,R).
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Thanks to the preceding results, table 1.1 at the end of the chapter encodes all the
Clifford algebras realizations as matrix algebras. Next, I will present the construction of
the spin representations. Recall that a representation for the algebra Clr,s is an R-algebra
homomorphism

ρ : Clr,s → HomK(W,W ),

where K ⊇ R is a field and W is a finite dimensional vector space over K. W will be called
a Clr,s-module over K. As usual, I will write ρ(φ)(w) = φ · w for φ ∈ Clr,s and w ∈ W .
In the following, K = R or C. The K-representation ρ is reducible if W decomposes as
W1 ⊕W2, with ρ(φ)(Wj) ⊆ Wj for any φ ∈ Clr,s. If a representation is not reducible,
it is called irreducible. Any representation of a Clifford algebra can be decomposed into
the sum of irreducible representations. Two representations

ρj : Clr,s → HomK(Wj ,Wj)

are equivalent if there exists a K-linear map F : W1 →W2 such that F ◦ ρ1(φ) = ρ2(φ) ◦
F for any φ ∈ Clr,s. It is possible to count the number of irreducible, inequivalent
representations of Clr,s thanks to the following

Theorem 1.2.15 ([60, Theorem 5.7]). Let νr,s denote the number of inequivalent irre-
ducible representations of Clr,s. Then

νr,s =

{
2 r − s+ 1 ≡ 0 mod 4

1 otherwise.

Now recall that Clr,s ∼= Cl0r+1,s and hence

Spinr,s ⊂ Cl0r,s
∼= Clr−1,s

for any r, s. Thus, to obtain the representations of Spinr,s one can restrict the attention
to Clr−1,s. Recall also that, by Propositions 1.2.11 and 1.2.12,

Cl±r,s = (1± ωr,s) Clr,s .

When ω2
r,s = 1, the representation of the Clifford algebra can be described based on the

action of the volume element. The following two results describe the situation for real
Clifford algebras.

Proposition 1.2.16 ([60, Proposition 5.9]). Let r − s = 3 mod 4 and consider any
irreducible real representation ρ : Clr,s → HomR(W,W ). Then either

ρ(ωr,s) = Id or ρ(ωr,s) = − Id,

which can both occur. The corresponding representations are inequivalent.
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Proposition 1.2.17 ([60, Proposition 5.10]). Let ρ : Clr,s → HomR(W,W ) be an irre-
ducible real representation and r + s = 4m. Furthermore, consider the splitting

W =W+ ⊕W−, W± = (1± ρ(ωr,s)) ·W.

Then the subspaces W± are invariant under the action of Cl0r,s and, by the isomorphism
Cl0r,s

∼= Clr−1,s, these correspond to the irreducible real representations obtained in the
previous proposition.

The real spinor representation of Spinr,s is the homomorphism

∆r,s : Spinr,s → GL(S)

defined as the restriction of an irreducible real representation of Clr,s → Hom(S, S) to
Spinr,s ⊂ Cl0r,s ⊂ Clr,s. The representation depends on n = r + s as described in the
following

Proposition 1.2.18. Let n = r + s and consider the real spinor representation

∆n : Spinr,s → GL(S).

One has that:

• if n ≡ 3 mod 4, ∆n does not depend on the choice of the irreducible representation
of Clr,s obtained in Proposition 1.2.16;

• if n ≡ 1, 2 mod 8, then ∆n is the sum of two equivalent irreducible representations
of Clr,s;

• if n ≡ 5, 7 mod 8, then ∆n is irreducible;

• if n ≡ 0 mod 4, then it decomposes as

∆4m = ∆+
4m ⊕∆−

4m

where ∆±
4m are inequivalent irreducible representations of Spin4m.

The representation of Spinr,s induces a representation at the Lie algebra level. Recall
that Cl×r,s is a Lie group with Lie algebra cl×r,s = (Clr,s, [·, ·]), where [φ,ψ] = φ ·ψ−ψ ·φ,
and has an exponential mapping

exp: cl×r,s → Cl×r,s exp(ψ) =

∞∑
k=0

1

k!
ψk.

One is then able to study the Lie algebra spinr,s as a subalgebra of cl×r,s. In order to do
so, one first defines for an orthonormal basis (e1, . . . , er, er+1, . . . , er+s) of Rn such that

⟨ei, ei⟩ = εi =

{
1 i ≤ r
−1 i > r,
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and the correspondence

(v ∧ w)(x) ≡ (v♭ ⊗ w − w♭ ⊗ v)(x), (1.7)

where v♭ = g(v, · ) is the usual musical isomorphism, and notices that, under this iden-
tification, v ∧ w generate sor,s as a vector space, which corresponds to the space of
skew-self-adjoint linear maps. It holds that

Proposition 1.2.19 ([60, Corollary 6.3]). Let ∆: Spinr,s → SO(W ) be a representation
obtained by restricting a representation of the Clifford algebra Clr,s → Hom(W,W ). Let
∆∗ : sor,s → so(W ) be the corresponding associated representation of the Lie algebras
obtained via pullback. Then under the correspondence sor,s ∼= Λ2Rn one has

∆∗(ei ∧ ej) =
1

4
[ei, ej ] ·

where the dot denotes the Clifford multiplication on W .

To see why this is true, recall that the adjoint representation gives a surjective ho-
momorphism

Spinr,s
ξ−→ SOr,s .

This, in turn, induces a Lie algebra isomorphism Ξ: spinr,s −→ sor,s and spinr,s
∼= Λ2Rn.

Proposition 1.2.19 then follows, since this isomorphism is given explicitly on a basis
{eiej}i<j of spinr,s by

Ξ(eiej) = 2ei ∧ ej
and

Ξ−1(ei ∧ ej) =
1

4
[ei, ej ]

by [60, Proposition 6.2].

1.3 Spin structures and spin bundles

In this section, I will recall the theory behind the existence of a spin structure over a
manifold and the construction of the spinor bundle. Unless otherwise stated, references
to [60] refer to the second chapter.

Let E π→ X be an oriented n-dimensional pseudo-Riemannian fiber bundle with
signature (r, s). One can define the orientation bundle of E as

Or(E) = PO(E)/ SOr,s

where PO(E) is the principal Or,s-bundle of orthonormal frames, in which the fiber in x
is the set of possible oriented orthonormal bases of Ex. Note that Or(E) is a 2-sheeted
covering of X and that E is orientable if and only if Or(E) is the trivial covering. There
is a natural isomorphism

Cov2(X)
w1∼= H1(X,Z2)
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where Cov2(X) is the set of equivalence classes of 2-sheeted coverings of X, hence
Or(E) ∈ Cov2(X) and one calls w1(Or(E)) = w1(E) the first class of Stiefel-Whitney of
E. By the previous considerations

E orientable ⇐⇒ w1(E) = 0 ∈ H1(X,Z2)

and clearly there are only two possible orientations. This definition

(i) is natural: w1(f
∗E) = f∗w1(E) for any E π→ X and f : X ′ → X continuous;

(ii) satisfies the following: if E is the n-Grassmanian bundle on BOr,s, classifying space,
then w1(E) ̸= 0 ∈ H1(BOn,Z2).

Digression on classifying spaces

If G is a Lie group, let PG(X) be a principal G-bundle over some space X and denote
by PG(X) to be its isomorphism class. Furthermore, given any two topological spaces
X,Y and a continuous map f : X → Y , denote by f̄Htp. the homotopy class of f . Then
a classifying space for G is a connected topological space BG together with a principal
G-bundle EG→ BG such that

{PG(X) | X cpt. and Hausdorff } 1:1⇐⇒ { f̄Htp. : X → BG | X cpt. and Hausdorff } ,

where the one-to-one correspondence is induced by the pull-back.

Example 1.3.1. • S1 is the classifying space for the infinite cyclic group Z and the
principal Z-bundle is EZ = R;

• RP∞ is the classifying space for Z2 = Z/2Z where the principal Z2-bundle is
EZ2 = S∞ seen as direct limit of Sn over n;

• Gr(N,R∞), the Grassmanian of n-planes in R∞, is the classifying space for Or,s

and EOr,s = V (n,R∞) is the Stiefel manifold of n ordered, orthonormal vectors
in R∞.

Going back to the main discussion, one can obtain w1 in another way. If X is
connected, starting from the fibration Or,s → PO(E)→ X, one obtains

0 // H0(X,Z2) // H0(PO(E),Z2) // H0(Or,s,Z2)
wE // H1(X,Z2).

Setting w1(E) = wE(g1), where g1 is the generator of H0(Or,s,Z2), gives again the first
Stiefel-Whitney class.
Remark 1.3.1. Choosing an orientation on E is equivalent to choosing a principal SOn-
bundle.
Remark 1.3.2. In the construction of PO(E) there is no requirement that E is orientable,
that is only needed when one wants to replace Or,s with the special subgroup SOn. In
this way, one can guarantee the existence of a continuously defined, positive vector field
over X. It is then natural to ask if the structure group can be simplified further.
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Now, for a spin structure, the idea is the same. Let E π→ X be an oriented pseudo-
Riemannian bundle of dimension r + s = n ≥ 3 and PSO(E) its principal SOr,s-bundle
given by its orientation. Recall from the previous section that

ξ : Spinr,s → SOr,s, ker ξ = {−1, 1 } ∼= Z2

is the 2-sheeted covering. Then a spin structure over the bundle E is a principal Spinr,s-
bundle PSpin(E) together with a 2-sheeted covering

PSpin(E)
ξ̄−→ PSO(E),

such that ξ̄(pg) = ξ̄(p)ξ(g) for p ∈ PSpin(E) and g ∈ Spinr,s. The diagram of the fibration
is the following

Spinr,s
ξ //

��

SOr,s

��

Z2

::

$$
PSpin(E)

ξ̄ //

π′

$$

PSO(E)

π

{{
X

On the other hand if PSpin(E)→ PSO(E) is a 2-sheeted covering not trivial on the fibers
of X, i.e., the diagram

Spinr,s
ξ0 //

��

SOr,s

��

Z2

::

$$
PSpin(E)

ξ̄ // PSO(E)

commutes, then PSpin(E) is a fiber bundle on X setting π′ = ξ ◦ π. Lifting the action
SOr,s ↷ PSO(E) to a compatible action Spinr,s ↷ PSpin(E), one obtains the desired
principal Spinn-bundle.

Theorem 1.3.2 ([60, Theorem 1.4]). The spin structures on E are in 1:1 correspondence
with the 2-sheeted coverings of E that are not trivial over the fibers of PSO(E).

As for the orientation of a fiber bundle, one can trace back the existence of a spin
structure to a fibration at the cohomology level. Consider the fibration

0 // H1(X,Z2)
π∗
// H1(PSO(E),Z2)

i∗ // H1(SOn,Z2)
wE // H2(X,Z2)
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and define the second Stiefel-Whitney class of E as w2(E) = wE(g2) where g2 is the
generator of H1(SOn,Z2) ∼= Z2. Following a similar reasoning to w1’s case, one obtains
the following

Theorem 1.3.3 ([60, Theorem 1.7]). If E is an oriented vector bundle over X then E
admits a spin structure if and only if w2(E) = 0.

Summarizing, if ⇝ denotes the reduction of the structural group, then{
PO(E)⇝ PSO(E) =⇒ E orientable =⇒ ∃V ∈ Γ(E), Vp ̸= 0,∀ p ∈ X
PSO(E)⇝ PSpin(E) =⇒ spin structure =⇒ ∃ spinor field.

Then a spin manifold is a pseudo-Riemannian manifold endowed with a spin structure
on its tangent bundle.

1.3.1 The associated spinor bundle and spin connection

I will now recall the construction of the associated fiber bundle to a principal bundle
by a continuous map. Even though the construction can be given in a more general
setting, I will present only the smooth case, as this one will be the only one needed.
Let π : P → X be a smooth principal G-bundle, G a Lie group, and let Diff(F ) be the
group of diffeomorphisms of a manifold F . For any ρ : G → Diff(F ), one can define the
associated fiber bundle to P by ρ as follows. Let G act on P × F freely as

φg(p, f) = (pg−1, ρ(g)f), g ∈ G, (p, f) ∈ P × F.

The associated bundle to the representation ρ is

πρ : P ×ρ F → X

where P ×ρ F = P × F/φ is the quotient by the action of G.

Remark 1.3.3. Recall that a bundle is totally described by the transition functions. So
if gαβ : Uα ∩ Uβ → G are the transition functions for P then

ρ ◦ gαβ : Uα ∩ Uβ → Diff(F )

are the transition functions for P ×ρ F and hence different ρ’s give different associated
bundles. An example is given shortly, when it will be discussed the difference between
the Clifford and the spinor bundles.

Example 1.3.4. Let X be a manifold and consider P = PGL(X) the GLn(R)-bundle
over X. Then, if ρn : GLn(R)→ GL(Rn) is the standard representation, one obtains

TX = PGL(X)×ρ Rn;
ΛkTX = PGL(X)×∧kρ Λ

kRn;
⊗rsTX = PGL(X)×⊗r

sρ ⊗
r
sRn.
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In general, when E is an oriented vector bundle over X then

E = PSO(E)×ρ Rn;
ΛkE = PSO(E)×∧kρ Λ

kRn;
⊗rE = PSO(E)×⊗rρ ⊗rRn;

where ∧kρ and ⊗pqρ are the induced exterior power and tensor product. This also holds
in general signature r, s.

Similarly, since an orthogonal transformation of Rr,s induces one on Clr,s that pre-
serves the multiplication, the map

cl(ρr,s) : SOr,s → Aut(Clr,s)

is a representation. Then, the Clifford bundle over a pseudo-Riemannian vector bundle
E is

Cl(E) = PSO(E)×cl(ρr,s) Clr,s .

Notice that the Clifford bundle Cl(E) could be also thought of as a bundle of Clifford
algebras over X, where the fiberwise multiplication in Cl(E) induces an algebra structure
on the space of sections Γ(Cl(E)). Furthermore, the decomposition of Clifford algebras
translates to Clifford bundles, that is

Cl(E) = Cl0(E)⊕ Cl1(E)

corresponding to the eigenvalues of the automorphism α : Cl(E) → Cl(E), obtained by
extending the map E → E, which sends v → −v.

Now, let E be a pseudo-Riemannian vector bundle with w2(E) = 0 and a spin
structure ξ : PSpinr,s(E)→ PSOr,s(E). A real spinor bundle over E is the bundle

S(E) = PSpinr,s(E)×µM,

where M is a left module for Clr,s and µ : Spinr,s → SO(M) is the representation given
by left multiplication by elements of Spinr,s ⊂ Cl0r,s.

Next, in order to define the spin connection on a spin bundle, I will recall a different
definition of connection specifically for principal bundles, which will prove useful in the
following. Let π : P → X be a principal G-bundle, where G is a Lie group. An element
v ∈ g defines a vector field ṽ on P by setting

ṽp =
d

dt
(p · exp(tv))|t=0

.

Using this association one obtains an isomorphism g ∼= Vp, where the latter is the tangent
plane to the orbit thorough p. The orbit are the fibers of π, while Vp is the “vertical”
space with respect to π, so a connection is a choice of invariant n-spaces complementary
to Vp and “horizontal”. A connection on P is a G-invariant n-distribution τ on P such
that the linear map

π∗ : τp → Tπp(X)



1.3. SPIN STRUCTURES AND SPIN BUNDLES 21

is an isomorphism for all p ∈ P . The distribution that defines the connection is associated
to a g-valued 1-form ϑ that can be defined in the following way. At every p ∈ P , τp defines
a projection Tp(P )→ Vp that combined with the isomorphism g ∼= Vp gives a linear map

ϑp : TpP → g. (1.8)

This defines the connection 1-form ϑ whose kernel is the distribution τ . This form has
the following properties:

ϑ(ṽ) ≡ v ∀ v ∈ g

g∗(ϑ) = Adg−1 ϑ ∀ g ∈ G↷ P.

Given a connection is now possible to define the curvature, that is, the g-valued 2-form
Θ given by

Θ = dϑ+ [ϑ, ϑ].

The curvature has the following properties

Θ(ṽ, . ) ≡ 0, ∀ v ∈ g

g∗(Θ) = Adg−1 Θ, ∀ g ∈ G↷ P.

Example 1.3.5. Consider a principal SOr,s-bundle P = PSO(E), where E is a smooth,
oriented, pseudo-Riemannian vector bundle. A connection 1-form on P is a n×n-matrix
of 1-forms (ϑij) such that ϑij = −εiεjϑji. Clearly, when r = n, this means that (ϑij) is
skew-symmetric and, under the identification (1.7), may be written as

ϑ = −
∑
i<j

ϑijei ∧ ej . (1.9)

As usual, one defines the covariant derivative of a smooth vector bundle π : E → X
as a linear map

∇ : Γ(E)→ Γ(T ∗X ⊗ E)

such that ∇(fs) = df ⊗ s+ f∇s for all smooth functions f and sections s of E.

Proposition 1.3.6 ([60, Proposition 4.4]). Consider the principal bundle P = PSO(E) as
in Example 1.3.5 and let E = (e1, . . . , en) be an orthonormal frame for E. There is a one-
to-one correspondence between smooth connection 1-forms ϑ and covariant derivatives on
E, related by

∇ei =
n∑
j=1

ϑ̃ji ⊗ ej , (1.10)

where ϑ̃ = E∗ϑ, whenever, for any v ∈ TX and s1, s2 ∈ Γ(E), the covariant derivative
satisfies

v⟨s1, s2⟩ = ⟨∇vs1, s2⟩+ ⟨s1,∇vs2⟩.
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The same can be done for the curvature 2-form and R = ∇̃ ◦ ∇, where

∇̃ : Γ(T ∗X ⊗ E)→ Γ(Λ∗X ⊗ E),

obtaining the relation

Rei =
n∑
j=1

Θ̃ji ⊗ ej , Θ̃ = E∗Θ.

Now consider π : P → X a principal G-bundle, ρ : G→ SOr,s a representation of G and
Eρ = P ×ρ Rn the associated pseudo-Riemannian vector bundle. A connection τ on P
induces in a canonical way τρ on P (Eρ) = P ×ρSOr,s by extending it trivially to P ×SOn

and pushing it to P (Eρ). If the representation ρ is faithful, the map

i : P → P (Eρ), i(p) = [(p, e)]

is an embedding. The following relates the connection 1-forms and curvature 2-forms of
P and P (Eρ)

Proposition 1.3.7 ([60, Proposition 4.7]). Let ϑ be the connection 1-form on P and ϑρ
the one induced on P (Eρ). Then, for P ⊂ P (Eρ), it holds that

(ϑρ)|P = ρ∗ϑ.

where ρ∗ : g→ son is the Lie algebra homomorphism associated to ρ. The same equation
holds for the curvature 2-forms Θ and Θρ.

Now let E be a pseudo-Riemannian vector bundle of dimension n endowed with a
connection τ on PSO(E) and a spin structure ξ : PSpin(E)→ PSO(E). The connection τ
lifts to τ̃ on PSpin(E) via the covering map, which induces on the associated real spinor
bundle S(E) = Spinr,s ×µM a connection and a covariant derivative. One then obtains

Proposition 1.3.8 ([60, Proposition 4.11]). The covariant derivative ∇ on S(E) acts
as a derivative with respect to the module structure over Cl(E) :

∇(φ · σ) = (∇φ) · σ + φ · (∇σ)

for φ, σ sections of Cl(E) and S(E) respectively.

Now, one wants to get an equation similar to (1.10) for the spinorial covariant deriva-
tive. In order to do so, first consider the representation µ : Spinr,s → SO(M). In par-
ticular, it is known from Proposition 1.2.19 that µ∗ : spinr,s → so(M) has the form
µ∗(ei ∧ ej) = 1

4 [ei, ej ], that is

µ∗(ei ∧ ej)(σ) =
1

4
[ei, ej ] · σ, (1.11)

for any σ ∈ M , where the dot is the Clifford multiplication. Next, fix an open and
contractible U ⊂ X and an oriented orthonormal frame E = (e1, . . . , en) over U , i.e., a



1.3. SPIN STRUCTURES AND SPIN BUNDLES 23

section of PSO(E). The section E can be lifted to a section Ẽ of PSpin(E), again over U ,
in two different ways, both sections satisfying ξ ◦ Ẽ = E , having ξ : Spin → SO as the
double cover defined in the previous section. The connection 1-form on PSpinr,s(E) is
then defined by simply lifting the one on PSOr,s(E) as ϑ̃ = ξ∗ϑ, then, using the section
Ẽ , it is brought down to U , i.e.,

ϑ̃ = Ẽ∗(ξ∗ϑ) = (ξ ◦ Ẽ)∗ϑ = E∗ϑ.

A similar process is repeated with S(E) in place of E. As there is a canonical embed-
ding PSpin(E) ⊂ PSO(S(E)), Ẽ can be seen as an oriented orthonormal frame of S(E).
Hence, if ϑs is the connection form on PSO(S(E)), the one sought is ϑ̃s = Ẽ∗ϑs, that
is, the restriction to PSpin(E) of ϑs. Now, thanks to Proposition 1.3.7, ϑs restricted to
PSpin(E) ⊂ PSO(S(E)) is also µ∗(ϑ̃). Hence

ϑ̃s = µ∗ϑ̃,

and, by lowering the appropriate index, writing ϑ̃ as in (1.9) and using (1.11), the con-
nection 1-form becomes

ϑ̃s = −1

2

∑
i<j

εiϑ̃ijeiej . (1.12)

Finally, as mentioned before, the embedding PSpin(E) ⊂ PSO(S(E)) implies that the
section Ẽ induces a section L of PSO(S(E)). To summarize, an oriented orthonormal
frame E for E induces two possible sections L = (σ1, . . . , σN ) and −L = (−σ1, . . . ,−σN )
of PSO(S(E)), depending on the choice of the lift of E to PSpin(E).

Theorem 1.3.9 ([60, Theorem 4.14]). Let ϑ be the connection 1-form on PSpin(E) and
let S(E) be a spinor bundle. Then for a local orthonormal frame E = (e1, . . . , en) of E
and an induced orthonormal frame L = (σ1, . . . , σN ) of S(E), the covariant derivative
∇s is

∇sσα = −1

2

∑
i<j

εiϑ̃ij ⊗ eiej · σα, (1.13)

where ϑ̃ = E∗(ϑ).

Given a pseudo-Riemannian spin manifold (M, g) with a spinor connection ∇s, a
complex number λ ∈ C and a (real) symmetric section A ∈ Γ(End(TM)), there are four
special classes of spinors that one can define. A spinor Ψ is said to be:

• a parallel spinor if
∇sXΨ = 0;

• a Killing spinor if
∇sXΨ = λX ·Ψ;

• a generalized Killing spinor if

∇sXΨ =
1

2
A(X) ·Ψ;
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• an imaginary A-Killing spinor (see for example [11]) if

∇sXΨ =
i

2
A(X) ·Ψ.

The importance of these classes of spinors is given by the geometry that they define on
the manifold over which they are defined. In particular, it is possible to prove (see for
instance [12]) that if (M, g) is a pseudo-Riemannian spin manifold and Ψ is a Killing
spinor satisfying ∇sXΨ = λX ·Ψ then

Ric(X) ·Ψ = 4nλ2X ·Ψ.

At least in the Riemannian case, this implies that the scalar curvature of the manifold
satisfies scal(g) = 4n(n − 1)λ2, hence the Killing number λ must be real or purely
imaginary and the metric is Einstein. If Ψ is parallel then the manifold is Ricci-flat.
Generalized Killing spinors, on the other hand, arise naturally as restrictions of parallel
spinors to a hypersurface of the manifold and the symmetric tensor A takes the role of
the second fundamental form. If the normal to the hypersurface is space-like, then the
equation satisfied by the restricted spinor is ∇sXΨ = 1

2A(X) ·Ψ; if the normal is time-like
then the restriction satisfies ∇sXΨ = i

2A(X) ·Ψ. In the Riemannian setting, it was shown
by [62] that the restriction of a Killing spinor to a surface satisfies

∇Xψ =
1

2
A(X)⊙ ψ + λX ⊙ ω ⊙ ψ,

and I will present the case in general dimension and signature in Chapter 3.

1.3.2 Examples of spin representations and spin connections

Finally, I present some explicit spin representations and an example of spin connection.
It will be useful to prove a spinor analogue to Proposition 1.2.13, as it allows one to
construct the higher-dimensional spin representations starting from the basic ones. These
are Cl0,0 = R, with Σ0,0 = C; Cl1,0 = C, with e1 = i acting as multiplication on Σ1,0 = C;
Cl0,1 = R⊕ R, with e1 = (1,−1), acting on Σ0,1 = C as the identity.

Proposition 1.3.10. In the setting of Proposition 1.2.13, one has that in each case the
matrix realizations determine the r + s+ 2-dimensional spinor representations in terms
of Σr,s ⊗C C2 = Σr,s ⊕ Σr,s. In the even case, the half-spin representations are given by

Σ+
r+1,s+1 = Σ+

r,s ⊕ Σ−
r,s, Σ−

r+1,s+1 = Σ−
r,s ⊕ Σ+

r,s.

Σ+
s+2,0 =

{(
v+ + v−
−v+ + v−

)
| v± ∈ Σ±

0,s

}
, Σ−

s+2,0 =

{(
v+ + v−
v+ − v−

)
| v± ∈ Σ±

0,s}
}

Σ+
0,r+2 =

{(
v+ + v−
iv+ − iv−

)
| v± ∈ Σ±

r,0

}
, Σ−

0,r+2 =

{(
v+ + v−
−iv+ + iv−

)
| v± ∈ Σ±

r,0}
}
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Clifford multiplication by a vector interchanges the Σ+
r,s with Σ−

r,s eigenspaces, and Cl0r,s
preserves them.

In the odd case, the volume form acts on Σr,s as

ρr,sψ = i
r−s+1

2 ψ, (1.14)

for ψ ∈ Σr,s.

Proof. Assume r + s is even. To see the half-spin representations, one writes down the
volume form ρr+1,s+1 in each case, in terms of the volume form ρr,s of Rr,s. For Clr+1,s+1,
one gets

ρr+1,s+1 =

(
ρr,s 0
0 −ρr,s

)
.

Since r−s = (r+1)−(s+1), the eigenvalue of each Σ±
r+1,s+1 is the same as the eigenvalue

of Σ±
r,s. Thus, the half-spin representations are the subspaces of Σr,s ⊕ Σr,s given by

Σ+
r+1,s+1 = Σ+

r,s ⊕ Σ−
r,s, Σ−

r+1,s+1 = Σ−
r,s ⊕ Σ+

r,s.

For Cls+2,0, assuming s to be even, one gets that the volume form is

ρs+2,0 = −is+1

(
0 ρ0,s
ρ0,s 0

)
.

Therefore the eigenspaces are

Σ+
s+2,0 =

{(
v+ + v−
−v+ + v−

)
| v± ∈ Σ±

0,s

}
, Σ−

s+2,0 =

{(
v+ + v−
v+ − v−

)
| v± ∈ Σ±

0,s}
}

For Cl0,r+2 with r even, the volume form is

ρ0,r+2 = (−1)r/2
(

0 ρr,0
−ρr,0 0

)
.

Therefore the eigenspaces are

Σ+
0,r+2 =

{(
v+ + v−
iv+ − iv−

)
| v± ∈ Σ±

r,0

}
,

Σ−
0,r+2 =

{(
v+ + v−
−iv+ + iv−

)
| v± ∈ Σ±

r,0}
}

It is straightforward in each case to see that Clifford multiplication by a vector inter-
changes the eigenspaces. Therefore, even elements preserve the eigenspaces.

Now consider the case of odd n. For Clr+1,s+1, one has

ρr+1,s+1 =

(
ρr,s 0
0 ρr,s

)
.
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For Cls+2,0,

ρs+2,0 = is+1

(
ρ0,s 0
0 ρ0,s

)
.

For Cl0,r+2,

ρ0,r+2 = (−1)(r+1)/2

(
ρr,0 0
0 ρr,0

)
= ir+1

(
ρr,0 0
0 ρr,0

)
.

Observing that ρ1,0 acts on the spin representation as i and ρ0,1 acts as 1, it is now easy
to see by induction on r + s that ρr,s acts as i

r−s+1
2 .

Next, I will present some examples, in particular the spin representations of Cl3,1 and
Cl4,1.

Example 1.3.11. By Proposition 1.2.13 one can write Cl3,1 = M(2,Cl2,0) = M(2,H),
with an orthonormal basis of R3,1 given by(

i 0
0 −i

)
,

(
j 0
0 −j

)
,

(
0 1
−1 0

)
,

(
0 1
1 0

)
.

Notice that in this case

ρ =

(
k 0
0 −k

)
,

so

Σ+
3,1 =

{(
(1 + j)a
(1− j)b

)
, a, b ∈ C

}
, Σ−

3,1 =

{(
(1− j)u
(1 + j)v

)
, u, v ∈ C

}
.

Example 1.3.12. It is known that Cl4,1 = M(2,Cl3,0), Cl3,0 = Cl0,1⊗H, and Cl0,1 =
R⊕ R generated by ε = (1,−1) acting as the identity on Σ0,1 = C. Hence, one has that
Cl3,0 = H⊕H with basis(

0 −iε
−iε 0

)
= kε = a1,

(
i 0
0 −i

)
= i(1, 1) = a2,

(
0 −1
1 0

)
= j(1, 1) = a3,

which act as k, i, j ∈ H respectively, while Cl4,1 =M(2,H)⊕M(2,H) with basis(
a1 0
0 −a1

)
,

(
a2 0
0 −a2

)
,

(
a3 0
0 −a3

)
,

(
0 1
−1 0

)
,

(
0 1
1 0

)
which will be called respectively E1, E2, E3, E4, E5. Accordingly, Σ0,1 = C where ε acts
as the identity, and Σ3,0 = C⊕ C by Proposition 1.2.13, with

Σ3,0 = {(a, b) | a, b ∈ C}.

Hence Σ4,1 = Σ3,0 ⊕ Σ3,0 = C2 ⊕ C2, where for a spinor Φ = (a, b; a′, b′) one has, for
instance, E1Φ = (a1(a, b);−a1(a′, b′)) since ε acts as the identity on the spinor represen-
tation.
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Finally, I present an example of the spin covariant derivative. I take this opportunity
to introduce a particular Lie algebra, which will be reoccurring in later chapters.

Example 1.3.13. Consider the Lie algebra

g = (−2e23, 3e13 − 3e34,−3e12 + 3e24, 2e23)

and the metric on the connected, simply connected Lie group G, associated to the scalar
product

g = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 − e4 ⊗ e4.

The corresponding connection form on G is

ϑG =


0 −e3 e2 0
e3 0 −2e1 − 2e4 e3

−e2 2e1 + 2e4 0 −e2
0 e3 −e2 0

 .

Thanks to the classification Table 1.1, it is easy to see that Cl3,1 = M(2,H), generated
by the orthonormal basis of R3,1 given by

E1 =

(
i 0
0 −i

)
, E2 =

(
j 0
0 −j

)
, E3 =

(
0 1
−1 0

)
, E4 =

(
0 1
1 0

)
,

and notice that in this case

ω3,1 =

(
k 0
0 −k

)
.

Consider the correspondence ei ←→ Ei, then the spin covariant derivative is

∇ΣG =
1

2

[
2e1 ⊗ E2E3 − e2 ⊗ (E1E3 + E3E4) + e3 ⊗ (E1E2 + E2E4) + 2e4 ⊗ E2E3

]
.

1.4 Pseudo-Kähler and pseudo-Sasaki manifolds

In this section, I will recall the basic definitions and properties of pseudo-Kähler and
pseudo-Sasaki manifolds. A more thorough treatment may be found in [19, 74].

In the following, (M, g) is a pseudo-Riemannian manifold of dimension n. If n is even,
let J : TM → TM be an isomorphism of the tangent bundle of M . The isomorphism J
is an almost complex structure if J ◦ J = −Id. It is said to be integrable if the Nijenhuis
tensor

NJ(X,Y ) = [JX, JY ]− [X,Y ]− J [X, JY ]− J [JX, Y ], X, Y ∈ TM

vanishes everywhere. A Kähler structure on a pseudo-Riemannian manifold (M, g) is
the pair (g, J), where J is an integrable almost complex structure compatible with the
metric, i.e.,

g(JX, JY ) = g(X,Y ), X, Y ∈ TM,
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and the Kähler 2-form, defined as

ω(X,Y ) = g(X, JY ), X, Y ∈ TM,

is closed. In the future, I will reference a Kähler structure on a manifold M by indicating
the Kähler and the almost complex structure (J, ω).

If n is odd, one can construct a counterpart to the Kähler structure. An almost
contact structure on a (2n+1)-dimensional manifold M is a triple (φ, ξ, η), where φ is a
tensor field of type (1, 1), ξ is a vector field, and η is a 1-form, such that

η(ξ) = 1, η ◦ φ = 0, φ2 = − Id+η ⊗ ξ.

Given a pseudo-Riemannian metric g on M , the quadruple (φ, ξ, η, g) is called an almost
contact metric structure if (φ, ξ, η) is an almost contact structure and

g(ξ, ξ) = ε ∈ {±1}, η = εξ♭, g(φX,φY ) = g(X,Y )− εη(X)η(Y ),

for any vector fields X,Y . Since if (φ, ξ, η, g) is an almost contact metric structure with
g(ξ, ξ) = ε = −1, then defining ḡ = −g one has that (φ, ξ, η, ḡ) is another almost contact
metric structure such that ḡ(ξ, ξ) = ε̄ = 1, I will assume ε = 1 as it does not entail
any loss of generality. One then defines the fundamental 2-form associated to the almost
contact metric structure (φ, ξ, η, g) as

Φ = g(·, φ·).

In addition, in analogy with the Nijenhuis tensor field for complex manifolds, one can
define

Nφ(X,Y ) = φ2[X,Y ] + [φX,φY ]− φ[φX, Y ]− φ[X,φY ].

An almost contact metric structure (φ, ξ, η, g) is said to be Sasaki if (φ, ξ, η, g) satisfies
Nφ + dη ⊗ ξ = 0 and dη = 2Φ.

Remark 1.4.1. The endomorphism φ is always skew-symmetric: indeed,

g(φ(X), Y ) = −g(φX,φ2Y − η(Y )ξ) = −g(X,φ(Y )) + η(X)η(φ(Y )) = −g(X,φ(Y )).

In fact, if φ is assumed to be skew-symmetric, g(φX,φY ) = g(X,Y ) − εη(X)η(Y ) is
equivalent to φ2 = − Id+η ⊗ ξ.

Sasaki structures can be characterized in terms of the covariant derivative ∇φ; as
usual, I will denote by ∇ the Levi-Civita connection, by R its curvature tensor, by ric
its Ricci tensor.

Lemma 1.4.1 ([74, Proposition 1]). Given an almost contact metric structure (φ, ξ, η, g)
on a manifold of dimension 2n+ 1 such that

(∇Xφ)Y = g(X,Y )ξ − η(Y )X,

the following hold:
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1. ∇Xξ = −φ(X);

2. ξ is a Killing vector field;

3. R(X,Y )ξ = η(Y )X − η(X)Y ;

4. ric(ξ,X) = 2nη(X).

Pseudo-Sasaki manifolds are related to pseudo-Kähler geometry in the following way.
Arguing as in [16, Theorem 7.3.16], one obtains:

Proposition 1.4.2. Let (φ, ξ, η, g) be an almost contact pseudo-Riemannian metric
structure on M . The following are equivalent:

1. (φ, ξ, η, g) is Sasaki;

2. the cone (R+ ×M,J, ω) with metric h = t2g + dt2 is pseudo-Kähler;

3. (∇Xφ)Y = g(X,Y )ξ − η(Y )X;

4. ∇XΦ = η ∧X♭.

Furthermore, one has

Proposition 1.4.3 ([67]). Let M have a pseudo-Riemannian Sasaki structure (φ, ξ, η, g).
Then the space of leaves of the Reeb foliation has an induced pseudo-Kähler structure.

Recall also that given a Sasaki structure (φ, ξ, η, g) and a positive constant a, one
can define another Sasaki structure by

φ̂ = φ, ξ̂ = a−1ξ, η̂ = aη, ĝ = ag + (a2 − a)η ⊗ η.

Such a transformation is called a D-homothety. This defines an equivalence relation
between Sasaki structures on a given manifold.

There is a strong relation between (pseudo)-Kähler and (pseudo)-Sasaki structures
on the one hand, and parallel and Killing spinors on the other. In particular, in the
Riemannian setting the following two results hold:

Theorem 1.4.4 ([53, 77])). Let (M, g) be a simply connected, Kähler, Ricci-flat spin
manifold. Then M admits a parallel spinor.

and

Theorem 1.4.5 ([5]). Let (M, g) be a complete and simply connected n-dimensional spin
manifold admitting a Killing spinor with Killing number λ = ±1

2 . If n ≥ 5 and odd, then
it admits a Sasaki-Einstein structure.

Conversely, a complete and simply connected Sasaki-Einstein spin manifold, then it
carries a Killing spinor.
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Remark 1.4.2. The last result summarizes a more detailed classification obtained in [5],
where additional information on the geometry of the manifold is given, such as the
existence of 3-Sasaki structures, the number of linearly independent Killing spinors and
the sign of their Killing number.

In the indefinite setting, the situation is different. Indeed, the first result does not hold
anymore, in particular there are examples of parallel spinors on 3-dimensional Lorentzian
manifolds that are not Ricci-flat. The same is true for Killing spinors, as there are exam-
ples of Lorentzian manifolds admitting imaginary Killing spinors that are not Einstein
(see [13]).

In the next chapter, I will introduce a new type of standard decomposition for metric
Lie algebras, called z-standard. The reason to explore a different type of decomposition
is given by the following result:

Proposition 1.4.6 ([30, Proposition 2.6]). Let g̃ be a solvable Lie algebra with a Sasaki
pseudo-Riemannian metric g. Then there is no pseudo-Iwasawa decomposition.

Proof. Assume by contradiction that g̃ = g⊕a is a pseudo-Iwasawa decomposition. Then
by Lemma 1.1.4 and Lemma 1.4.1 one has

0 = ∇̃Hξ = −φ(H), H ∈ a.

This implies that a is one-dimensional and spanned by ξ. Hence,

−φX = ∇̃Xξ = −ãd(ξ)X.

However φ is skew-symmetric, while ãd(ξ) is symmetric, giving a contradiction.
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Table 1.1: The isomorphism of the Clifford algebras Clr,s. The table can be found in
[60].

V
al

ue
s

fo
r
r

0
1

2
3

4
5

6
7

8

Valuesfors

0
R

C
H

H
⊕
H

H
(2
)

C
(4
)

R
(8
)

R
(8
)
⊕
R
(8
)

R
(1
6)

1
R
⊕
R

R
(2
)

C
(2
)

H
(2
)

H
(2
)
⊕
H
(2
)

H
(4
)

C
(8
)

R
(1
6)

R
(1
6
)
⊕
R
(1
6)

2
R
(2
)

R
(2
)
⊕
R
(2
)

R
(4
)

C
(4
)

H
(4
)

H
(4
)
⊕
H
(4
)

H
(8
)

C
(1
6)

R
(3
2)

3
C
(2
)

R
(4
)

R
(4
)
⊕
R
(4
)

R
(8
)

C
(8
)

H
(8
)

H
(8
)
⊕
H
(8
)

H
(1
6)

C
(3
2)

4
H
(2
)

C
(4
)

R
(8
)

R
(8
)
⊕
R
(8
)

R
(1
6)

C
(1
6)

H
(1
6)

H
(1
6)
⊕
H
(1
6
)

H
(3
2
)

5
H
(2
)
⊕
H
(2
)

H
(4
)

C
(8
)

R
(1
6)

R
(1
6)
⊕
R
(1
6)

R
(3
2)

C
(3
2
)

H
(3
2)

H
(3
2)
⊕
H
(3
2
)

6
H
(4
)

H
(4
)
⊕
H
(4
)

H
(8
)

C
(1
6)

R
(3
2)

R
(3
2
)
⊕
R
(3
2)

R
(6
4
)

C
(6
4)

H
(6
4
)

7
C
(8
)

H
(8
)

H
(8
)
⊕
H
(8
)

H
(1
6)

C
(3
2)

R
(6
4)

R
(6
4)
⊕
R
(6
4
)

R
(1
28
)

C
(1
28
)

8
R
(1
6
)

C
(1
6
)

H
(1
6)

H
(1
6)
⊕
H
(1
6)

H
(3
2)

C
(6
4)

R
(1
28
)

R
(1
2
8)
⊕
R
(1
28
)

R
(2
56
)
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Chapter 2

Pseudo-Sasaki Einstein extensions of
pseudo-Kähler Lie algebras

The structures now known as Sasaki were introduced in [71] as an odd-dimensional coun-
terpart to Kähler geometry; they are characterized by an almost contact structure which
is both normal and contact. Beside the analogy, they bear a strong relation to Kähler
geometry in that both the cone over a Sasaki manifold and the space of leaves of the
Reeb foliation carry a Kähler structure. For pseudo-Riemannian metrics, a completely
analogous definition of Sasaki structure can be given, which was first considered in [74];
the relation to pseudo-Kähler geometry is the same as in the definite setting. Arguably,
the most interesting Sasaki metrics are those satisfying the Einstein condition ric = 2ng,
where the Einstein constant is fixed by the dimension. Both in the Riemannian and indef-
inite case, Einstein-Sasaki metrics are characterized by the existence of a Killing spinor
(see [8, 47]). Since I will be interested in the construction of Einstein-Sasaki Lie algebras,
I will consider standard Lie algebras as all Riemannian Einstein solvmanifolds are of this
type (see [52, 59]), and even in the indefinite case the standard condition has proved quite
effective to produce examples (see [28, 29]). In the latter situation, however, things are
more complicated (see e.g. [27]), but it is still possible to construct Einstein solvmani-
folds by extending a nilsoliton; indeed, there is a correspondence between nilsolitons and
a class of Einstein solvmanifolds for which g̃ admits a pseudo-Iwasawa decomposition
(see [28]).

In this chapter, I will present and prove two extension results that hold in any even
dimension, which allow one to extend pseudo-Kähler solvmanifolds by three dimensions,
landing on a particular class of Sasaki structures on Lie algebras called z-standard. A
z-standard Lie algebra is a Lie algebra with a standard decomposition g⋊ a and a com-
patibility condition with the Sasaki structure, related to the center z of g, that gives
rise to a natural notion of reduction to a Kähler Lie algebra in three dimensions less.
First, I will characterize the geometry of the reduction of a z-standard Sasaki Lie algebra
by three dimensions, showing that it inherits a Kähler structure as well as a particular
derivation. Then, given a (2n − 2)-dimensional pseudo-Kähler Lie algebra ǧ, I take a
suitable central extension g = ǧ ⊕ Span {b, ξ} and, using the appropriate derivation D

33
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found in the previous step, I consider the semidirect extension g ⋊D Span {e0}. The
resulting Lie algebra will have a z-standard Sasaki structure that, depending on the as-
sumptions on D, will have an Einstein metric (Theorem 2.4.1 and Proposition 2.4.6).
I will also present a Kähler analogue of this construction, which follows similar steps,
and results in the construction of an Einstein pseudo-Kähler Lie algebra ḡ that is not of
pseudo-Iwasawa type (Corollary 2.4.8).

In the first section, I will lay out some groundwork, useful formulas and equivalent
conditions for a Lie algebra to admit a pseudo-Sasaki structure. Next, I will give a
geometric interpretation of the new structure and characterize the reduction to a codi-
mension 3 pseudo-Kähler quotient. In the following section, I will present a constructive
way to obtain z-standard Sasaki Lie algebras and a classification result up to dimension
7. Subsequently, I will specialize the previous results to the Einstein setting. I will de-
fine a different version of the Nikolayevsky derivation introduced in [65], which will be
denoted cu(p, q)-Nikolayevsky, which will play a role in the construction of z-standard
Einstein-Sasaki Lie algebras. In the last two sections of the chapter, I will prove the
aforementioned extension result, give a classification of z-standard Einstein Sasaki Lie
algebras up to dimension 7 and give some examples in dimension 9. The material present
in this chapter appears in two papers I wrote in collaboration with my supervisor and
Federico A. Rossi [31, 30].

2.1 Sasaki structures on Lie algebras

In this section, I consider rank one standard decompositions of solvable Lie algebras,
meaning that the abelian factor a is one-dimensional. Accordingly, g̃ will be a solvable
Lie algebra endowed with a standard decomposition g⋊D Span {e0}, with D a derivation
of g and ad e0 = D; I will denote by [ , ] and d the Lie bracket and exterior derivative on
g.

Lemma 2.1.1. Let g be a nilpotent Lie algebra with a pseudo-Riemannian metric g, let
D be a derivation, and let τ = ±1. Then g̃ = g ⋊D Span {e0} has an almost contact
metric structure (φ, ξ, η, g̃) such that

g̃ = g + τe0 ⊗ e0, ∇̃ξ = −φ

if and only if ξ ∈ g and, writing b = Da(ξ), for all u,w ∈ g

φ(w) =
1

2
(adw)∗(ξ) + τg(b, w)e0, φ(e0) = −b, (2.1)

D(ξ) = 0, (ad ξ)s = 0, (ad b)∗(ξ) = 0, (2.2)

g(w, u) = g(ξ, w)g(ξ, u) + τg(b, w)g(b, u) +
1

4
g((adw)∗ξ, (adu)∗ξ). (2.3)

Proof. Given g̃ = g + τe0 ⊗ e0 and ξ ∈ g̃, define η = ξ♭ and φ = −∇̃ξ.
Write

ξ = v + ae0, v ∈ g, a ∈ R.
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By Lemma 1.1.4, one has

∇̃wξ = ∇̃wv + a∇̃we0 = − ad(v)sw − 1

2
(adw)∗v + τ g̃(Ds(w), v)e0 − aDs(w),

∇̃e0ξ = Da(v).

Since φ(X) = −∇̃Xξ, I can write

φ(w) = ad(v)sw +
1

2
(adw)∗v − τ g̃(Ds(w), v)e0 + aDs(w),

φ(e0) = −Da(v).

This determines an almost-contact metric structure if and only if φ is skew-symmetric
and

g̃(X,Y )− η(X)η(Y ) = g̃(φX,φY ). (2.4)

The skew-symmetric condition implies

g̃(φ(w), e0) + g̃(φ(e0), w) = −τ2g̃(Ds(w), v)− g̃(Da(v), w) = −g̃(D(v), w),

giving D(v) = 0. In addition,

0 =g̃(φ(w), u) + g̃(φ(u), w)

=g(ad(v)sw, u) + g(ad(v)su,w) +
1

2

(
g((adw)∗v, u) + g((adu)∗v, w)

)
+ a
(
g(Ds(w), u) + g(Ds(u), w)

)
=2g(ad(v)sw, u) + 2ag(Ds(w), u),

giving ad(v)s + aDs = 0 and

φ(w) =
1

2
(adw)∗(v)− τg(Ds(v), w)e0 =

1

2
(adw)∗(v) + τg(Da(v), w)e0.

Evaluating (2.4) on w, e0 one gets

−aτg(v, w) = g̃(w, e0)− η(w)η(e0) = g̃(φ(w), φ(e0))

= g̃(
1

2
(adw)∗(v) + τg(Da(v), w)e0,−Da(v))

= g(
1

2
(adw)∗v + τg(Da(v), w)e0,−Da(v))

= −1

2
g((adw)∗v,Da(v)) = −1

2
g(v, [w,Da(v)])

=
1

2
g(w, (adDa(v))∗v).

This holds for all w if and only if (adDa(v))∗v = −2aτv. Since g is nilpotent, the
operator adDa(v) and its transpose are nilpotent, so a = 0 and (adDa(v))∗v = 0.
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Therefore, ξ = v, b = Da(v) and (ad b)∗v = 0, showing that φ takes the form (2.1) and
ξ satisfies (2.2). Evaluating (2.4) on w, u gives

g(w, u)− g(w, ξ)g(u, ξ) = g̃(φ(w), φ(u))

= g

(
1

2
(adw)∗ξ + τg(b, w)e0,

1

2
(adu)∗ξ + τg(b, u)e0

)
=

1

4
g((adw)∗ξ, (adu)∗(ξ)) + τg(b, w)g(b, u),

proving (2.3).
Lastly, evaluating (2.4) on e0, e0, I get

τ = g̃(e0, e0)− η(e0)η(e0) = g̃(−b,−b) = g(b, b);

however, this is a redundant condition, for g(b, ξ) = g(Da(ξ), ξ) = 0, so (2.3) and (2.2)
imply g(b, u) = τg(b, b)g(b, u) for all u, which is equivalent to g(b, b) = τ .

The converse is proved in the same way.

Now observe that one can write

g((adw)∗(v), u) = g(v, [w, u]) = −dv♭(w, u) = −g((w⌟ dv♭)♯, u),

so (adw)∗(ξ) = −(w⌟ dη)♯. Recall that d denotes the Chevalley-Eilenberg operator on g,
not g̃.

Lemma 2.1.2. Let g be a metric on a Lie algebra g. Let Φ be a 2-form. Then

∇xΦ =
1

2
LxΦ−

1

2
(adx)∗Φ+

1

2
αΦ
x ,

where
αΦ
x (u,w) = Φ(ad(u)∗(x), w)− Φ(ad(w)∗(x), u).

Proof. Using (1.1) I have:

∇xΦ(u,w) = −Φ(∇xu,w)− Φ(u,∇xw)

=
1

2

(
Φ((adx)∗u+ (adu)x+ (adu)∗x,w)

− Φ((adx)∗w + (adw)x+ (adw)∗x, u)
)

= −1

2
(adx)∗Φ(u,w)− 1

2
Φ(Lxu,w) +

1

2
Φ(Lxw, u) +

1

2
αΦ
x (u,w)

= −1

2
(adx)∗Φ(u,w) +

1

2
LxΦ(u,w) +

1

2
αΦ
x (u,w).

Proposition 2.1.3. Let g be a nilpotent Lie algebra with a pseudo-Riemannian metric
g, let D be a derivation and τ = ±1. Then g̃ = g ⋊D Span {e0} has a Sasaki structure
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(φ, ξ, η, g̃) such that g̃ = g + τe0 ⊗ e0 if and only if for some ξ ∈ g, b = Da(ξ), η = ξ♭,
writing

αx(u,w) = dη(ad(u)∗(x), w)− dη(ad(w)∗(x), u),
the following hold for x, y ∈ g:

D(ξ) = 0, (ad ξ)s = 0, (ad b)∗(ξ) = 0, (2.5)
Da(dη) = 0, Da(b) = −τξ, (2.6)

η ∧ x♭ = 1

4
αx −

1

4
(adx)∗(dη) +

1

4
d(Lxη) + τb♭ ∧Ds(x)♭, (2.7)

Ds(x)⌟ dη + x⌟ db♭ + b⌟ dx♭ + [x, b]♭ = 0. (2.8)

Then φ is given by

φ(w) =
1

2
(adw)∗(ξ) + τg(b, w)e0, φ(e0) = −b, w ∈ g.

Proof. Suppose (φ, ξ, η, g̃) is a Sasaki structure as in the hypothesis. Since Sasaki struc-
tures satisfy ∇̃Xξ = −φ(X), by Lemma 2.1.1 equations (2.1), (2.2), (2.3) hold.

Then (φ, ξ, η, g) is an almost contact metric structure, and it is Sasaki if and only if

η ∧X♭ = ∇̃XΦ. (2.9)

For u, v ∈ g one has

Φ(u,w) = g̃(u, φ(w)) =
1

2
g(u, (adw)∗(ξ)) = −1

2
g([u,w], ξ), (2.10)

Φ(e0, w) = g̃(e0, φ(w)) = g(b, w).

Hence, by Lemma 1.1.4, equation (2.9) for X = e0 implies

0 = (∇̃e0Φ)(u,w) = −Φ(∇̃e0u,w)− Φ(u, ∇̃e0w) = −Φ(Da(u), w)− Φ(u,Da(w))

=
1

2
g([Da(u), w], ξ) +

1

2
g([u,Da(w)], ξ) = −1

2
dη(Da(u), w)− 1

2
dη(u,Da(w))

=
1

2
(Dadη)(u,w).

Similarly,

τg(w, ξ) = −(∇̃e0Φ)(e0, w) = Φ(e0, ∇̃e0w) = Φ(e0, D
a(w)) = g(b,Da(w))

= −g(Da(b), w),

i.e. Da(b) = −τξ. On the other hand, equation (2.9) for X = x ∈ g, evaluated on
u,w ∈ g, gives

η ∧ x♭(u,w) =(∇̃xΦ)(u,w) = −Φ(∇̃xu,w)− Φ(u, ∇̃xw)

=Φ(ad(u)s(x) +
1

2
(adx)∗(u)− τg(Ds(u), x)e0, w)

− Φ(ad(w)s(x) +
1

2
(adx)∗(w)− τg(Ds(w), x)e0, u).



38 CHAPTER 2. SASAKI-EINSTEIN EXTENSIONS OF KÄHLER LIE ALGEBRAS

Next, since φ(e0) = −b, by equation (2.10), one gets

η ∧ x♭(u,w) =− 1

2
g

(
[ad(u)s(x) +

1

2
(adx)∗(u), w]− [ad(w)s(x) +

1

2
(adx)∗(w), u], ξ

)
− τg(b, w)g(Ds(x), u) + τg(b, u)g(Ds(x), w)

=− 1

4
g
([
[u, x] + (adu)∗x+ (adx)∗u,w

]
−
[
[w, x] + (adw)∗x+ (adx)∗w, u

]
, ξ
)

+ τ(b♭ ∧Ds(x)♭)(u,w)

=− 1

4
g
([
(adu)∗x+ (adx)∗u,w

]
−
[
(adw)∗x+ (adx)∗w, u

]
+ [[u,w], x], ξ

)
+ τ(b♭ ∧Ds(x)♭)(u,w).

Finally, recalling that dη(u, v) = 2Φ(u, v), again by equation (2.10), one gets

4η ∧ x♭(u,w) =η(ad(u)∗x+ (adx)∗u,w)− dη(ad(w)∗x+ (adx)∗w, u)− dη(x, [u,w])
+ 4τ(b♭ ∧Ds(x)♭)(u,w)

=αx(u,w)− (adx)∗(dη)(u,w) + d(Lxη)(u,w) + 4τ(b♭ ∧Ds(x)♭)(u,w),

so

η ∧ x♭ = 1

4
αx −

1

4
(adx)∗(dη) +

1

4
d(Lxη) + τ(b♭ ∧Ds(x)♭).

Finally,

0 = (∇̃xΦ)(e0, w) = −Φ(∇̃xe0, w)− Φ(e0, ∇̃xw)

= Φ(Ds(x), w)− Φ(e0,∇xw) =
1

2
g([w,Ds(x)], ξ)− g(b,∇xw)

=
1

2
g(Ds(x), (adw)∗(ξ)) + g

(
b, ad(w)s(x) +

1

2
(adx)∗(w)

)
= −1

2
dη(w,Ds(x)) +

1

2
g
(
b, ad(w)(x) + (adw)∗(x) + (adx)∗(w)

)
.

Equivalently,

0 = −dη(w,Ds(x)) + g(b, ad(w)(x) + (adw)∗(x) + (adx)∗(w))

= −dη(w,Ds(x)) + db♭(x,w) + dx♭(b, w) + g([x, b], w)

= (Ds(x)⌟ dη + x⌟ db♭ + b⌟ dx♭ + [x, b]♭)(w).

Conversely, define (φ, ξ, η, g̃) as in the statement, and assume that (2.5)–(2.8) hold. Since
ad ξ is antisymmetric,

ad ξ = −(ad ξ)∗, ξ⌟ dη = −(ad ξ)∗(ξ)♭ = (ad ξ)(ξ)♭ = 0.



2.2. SASAKI STRUCTURES ON EINSTEIN LIE ALGEBRAS 39

Evaluating (2.7) on u, ξ, one obtains

g(u, ξ)g(x, ξ)− g(x, u) = 1

4
dη(ad(u)∗x+ (adx)∗u, ξ)− 1

4
dη(ad(ξ)∗x+ (adx)∗ξ, u)

− 1

4
dη(x, [u, ξ]) + τ(b♭ ∧Ds(x)♭)(u, ξ)

= −1

4
dη(−[ξ, x], u)− 1

4
dη(x, [u, ξ])

− 1

4
dη((adx)∗ξ, u) + τg(b, u)g(Ds(x), ξ)

= −1

4
η([ξ, [u, ξ]]) +

1

4
(u⌟ dη)((adx)∗ξ) + τg(b, u)g(x,Dsξ)

= −1

4
g((adu)∗ξ, (adx)∗ξ)− τg(b, u)g(x, b),

which is equivalent to (2.3). Since (2.5) is assumed to hold and φ is defined so as to
satisfy (2.1), Lemma 2.1.1 implies that (φ, ξ, η, g̃) is an almost contact metric structure.
In order to prove that it is Sasaki, one only needs to verify that (2.9) holds, which follows
from the computations above.

Remark 2.1.1. The 2-form αΦ
x of Lemma 2.1.2 and the 2-form αx of Proposition 2.1.3

are related by αdηx = αx.

Remark 2.1.2. Using Lemma 2.1.2, one sees that (2.7) can be rewritten as

η ∧ x♭ = 1

2
∇xdη + τb♭ ∧Ds(x)♭. (2.11)

Using equation (1.1), one can read condition (2.8) as:

Ds(x)⌟ dη = ∇xb.

Remark 2.1.3. It is well known that on a Sasaki Lie algebra g̃ the center is contained in
Span {ξ}; indeed, any element of the center satisfies v⌟ dη = 0, so it is a multiple of ξ.

If g̃ has nontrivial center, then z(g̃) = Span {ξ} and the quotient ǧ = g/Span {ξ} has
an induced pseudo-Kähler structure (ǧ, J, ω) by Proposition 1.4.3.

Remark 2.1.4. The equations of Proposition 2.1.3 simplify if one assumes that the center
is nontrivial, because then ad ξ = 0. However, the center may be trivial on a Sasaki
Lie algebra, as is the case for the first Lie algebra g̃ appearing in Example 1.1.7. It
is noteworthy that g̃ is isometric to a standard Lie algebra with nontrivial center (see
Example 1.1.7).

2.2 Sasaki structures on Einstein Lie algebras

I will now specialize the previous discussion to include the Einstein condition on standard
Lie algebras g ⋊ Span {e0}, without assuming the pseudo-Iwasawa condition as Sasaki
Lie algebras never admit such decomposition as seen in the previous chapter. I will
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write down the conditions that the induced metric g and the derivation D = ad e0 must
satisfy, generalizing the nilsoliton equation. In particular, the conditions are satisfied if
g is Ricci-flat and the symmetric part of D is an appropriate multiple of the identity.

I will then recall and generalize the construction of the Nikolayevsky and metric
Nikolayevsky derivation ([66, 24]). I will show that a nilpotent Lie algebra admits a
standard Einstein extension with the symmetric part of D equal to a multiple of the
identity if and only if it is Ricci-flat and the metric Nikolayevsky derivation is nonzero.
In this case, the extension is unique up to isometry.

Recall that in the Riemannian setting J. Lauret proved in [58] that there is a one-to-
one correspondence between Einstein solvmanifolds and nilsolitons, i.e., nilpotent solv-
manifolds such that the metric satisfies

Ric = λ Id+D

for some derivation D. In the indefinite setting, the nilsoliton equation can still be used,
although the situation becomes more complicated, as there are four different geometries
that arise (see [26]), which are all of pseudo-Iwasawa type. Thus, due to Proposition
1.4.6, one needs a more general equation to study Einstein-Sasaki solvmanifolds.

Recall that given endomorphisms f1, f2 of g, one has

g(f1, f2) = tr(f1f
∗
2 ) = tr(f1(f

s
2 − fa2 )).

Proposition 2.2.1. Let g be a nilpotent Lie algebra with a pseudo-Riemannian metric
g, D a derivation and τ = ±1. Then the metric g̃ = g+ τe0⊗ e0 on g̃ = g⋊D Span {e0}
is Einstein if and only if

Ric = τ
(
− tr((Ds)2) Id−1

2
[D,D∗] + (trD)Ds

)
, (2.12)

tr(ad v ◦D∗) = 0, v ∈ g;

in this case, r̃ic = −τ tr((Ds)2)g̃.

Proof. By [28, Proposition 1.10], one has

r̃ic(v, w) = ric(v, w) + τ g̃(
1

2
[D,D∗](v), w)− τ(trD)g̃(Ds(v), w)

r̃ic(v, e0) =
1

2
g̃(ad v,D)

r̃ic(e0, e0) = −
1

2
g̃(D,D)− 1

2
trD2 = −1

2
trD(Ds −Da)− 1

2
trD(Ds +Da)

= − trDDs = − tr(Ds)2.

Thus, the Einstein condition R̃ic = λ Id holds if and only if

λ Id = Ric+
1

2
τ [D,D∗]− τ(trD)Ds, tr(ad v ◦D∗) = 0, λ = −τ tr(Ds)2.
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Remark 2.2.1. Notice that if the derivation D is symmetric then the equation (2.12) is
the usual Nilsoliton equation. Indeed, D = Ds, [D,D∗] = 0, hence

Ric = τ
(
− tr(D2) Id+(trD)D

)
.

Remark 2.2.2. If h = −g, then h, g have the same Ricci tensor and opposite Ricci
operators; the operators D 7→ D∗ and D 7→ Ds are identical. Therefore, if g satisfies

Ricg = τ
(
− tr((Ds)2) Id−1

2
[D,D∗] + (trD)Ds

)
, tr(ad v ◦D∗) = 0, v ∈ g,

then

Rich = (−τ)
(
− tr((Ds)2) Id−1

2
[D,D∗] + (trD)Ds

)
, tr(ad v ◦D∗) = 0, v ∈ g.

This amounts to the fact that g + τe0 ⊗ e0 is Einstein if and only if so is h− τe0 ⊗ e0.
Remark 2.2.3. One can write

[D,D∗] = [Da +Ds,−Da +Ds] = 2[Da, Ds].

Although I will not need it in the rest of the thesis, I show for completeness that the
condition that tr(ad v ◦D∗) vanish can be eschewed under a suitable assumption on the
eigenvalues of D.

Corollary 2.2.2. Let g be a nilpotent Lie algebra with a pseudo-Riemannian metric g,
D a derivation such that − trD is not an eigenvalue of D and τ = ±1. Then the metric
g̃ = g + τe0 ⊗ e0 on g̃ = g⋉D Span {e0} is Einstein if and only if equation (2.12) holds,
and in this case r̃ic = −τ tr((Ds)2)g̃.

Proof. One direction follows from Proposition 2.2.1. For the other direction, assume that
f = (trD) Id+D is invertible and (2.12) holds. Since ad v is a derivation,

0 = tr(ad v ◦ Ric) = − tr((Ds)2) tr ad v − 1

2
tr([D,D∗] ◦ ad v) + (trD) tr(ad v ◦Ds)

= −1

2
tr([ad v,D] ◦D∗) +

1

2
(trD) tr(ad v ◦ (D +D∗))

=
1

2
tr(adDv ◦D∗) +

1

2
(trD) tr(ad v ◦D∗)

=
1

2
tr(ad(f(v)) ◦D∗),

where I have used tr(ad v ◦ D) = 0 (see e.g. [15, Chapter 1, Section 5.5]). Since f is
invertible, this implies that tr(adw ◦ D∗) = 0 for all w, so g̃ is Einstein by Proposi-
tion 2.2.1.

Example 2.2.3. Fix the Lie algebra g = (0, 0, e12, 0), which is the direct sum of the
Heisenberg Lie algebra and R; the notation, inspired by [70], means that g∗ has a fixed
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basis of 1-forms e1, e2, e3, e4 with de3 = e1 ∧ e2 and the other forms closed. The two-
parameter family of metrics g = ae1 ⊙ e2 + be3 ⊙ e4 has Ricci operator equal to

Ric =


0 0 0 0
0 0 0 0

0 0 0 − b
2a2

0 0 0 0

 .

Consider the derivation

D =


−µ

4 λ 0 0

−µ2

8λ −µ
4 0 0

0 0 −µ
2 − b

3a2µτ

0 0 0 µ

 ,

where λ and µ are nonzero parameters. Then equation (2.12) is satisfied for any τ = ±1.
In this case

Ds =


−µ

4 λ 0 0

−µ2

8λ −µ
4 0 0

0 0 µ
4 − b

3a2µτ

0 0 0 µ
4

 ,

hence tr(Ds) = 0 and tr((Ds)2) = 0.
In order to obtain a standard Einstein metric, it is sufficient, thanks to Corollary 2.2.2,

to show that trD = 0 is not an eigenvalue. Since µ is assumed not to be zero, D is not
singular and 0 cannot be an eigenvalue. Moreover, since τ can be positive or negative,
we obtain two possible Einstein metrics, one of signature (3, 2) and one with the opposite
signature.

Notice that the resulting standard Einstein Lie algebra g̃ = g⋊Span {e0} has derived
algebra equal to g, because D is surjective. Therefore, the standard decomposition is
unique. In addition, it is not possible to use Proposition 1.1.5 to obtain an isometric
standard Lie algebra of pseudo-Iwasawa type because D and Ds do not commute.

As a particular case, consider solutions of (2.12) such that Ds = a Id. The case
a = 0 corresponds to a standard extension by a skew-symmetric derivation of a Ricci-flat
metric, which by Proposition 1.1.5 yields a Ricci-flat metric isometric to a product with
a line.

In the case a ̸= 0, one has that D is a derivation in the Lie algebra

co(r, s) = so(r, s)⊕ Span {Id} ,

where (r, s) is the signature of g, and the inclusion co(r, s) ⊂ gl(g) is determined by fixing
an orthonormal frame. Additionally, D has nonzero trace. This implies that the metric
Nikolayevsky derivation N is nonzero. I will now proceed to recall the construction of
N , giving a slight generalization for use in later sections. For the proof, I refer to [66]
and [24, Theorem 4.9].
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Proposition 2.2.4. Let h be an algebraic subalgebra of gl(n,R). There exists a semisim-
ple derivation N in h ∩Der g such that

tr(Nψ) = trψ, ψ ∈ h ∩Der g.

The derivation N is unique up to automorphisms of h.

Remark 2.2.4. The algebraic hypothesis is present in order to be able to apply Levi’s de-
composition of a Lie algebra g in the semidirect product of the radical r and a semisimple
subalgebra s.

For h = gl(n,R) the derivation N of Proposition 2.2.4 corresponds to the pre-Einstein
or Nikolayevsky derivation introduced in [66]; accordingly, I will refer to the derivation N
of Proposition 2.2.4 as the h-Nikolayevsky derivation. For h = co(r, s), the h-Nikolayevsky
derivation is the metric Nikolayevsky derivation introduced in [24].

Notice that the h-Nikolayevsky derivation is zero if and only if all derivations in h are
traceless (i.e. h is contained in sl(n,R)). In particular, one sees that there is derivation
with Ds = Id if and only if the metric Nikolayevsky is nonzero.

In later sections, I will consider Lie algebras with an almost pseudo-Hermitian struc-
ture and use the cu(p, q)-Nikolayevsky derivation, where

cu(p, q) = u(p, q)⊕ Span {Id} .

Like the Nikolayevsky and the metric Nikolayevsky, the cu(p, q)-Nikolayevsky derivation
turns out to have rational eigenvalues:

Proposition 2.2.5. Let g be a Lie algebra with an almost pseudo-Hermitian structure.
Then the cu(p, q)-Nikolayevsky derivation of g has rational eigenvalues.

Proof. The proof follows from [66] and [24, Theorem 4.9]. One can characterize elements
of cu(p, q) as elements of co(2p, 2q) that commute with the complex structure J .

If N is the cu(p, q)-Nikolayevsky derivation, let gC =
⊕

bt be the decomposition into
eigenspaces and let πt : gC → bt denote the projections. Define

n =
{∑

νtπt |
∑

νtπt ∈ (Der g ∩ co(2p, 2q))C
}
.

Since N commutes with J , each bt is J-invariant. Therefore, J commutes with projec-
tions, and I can write

n =
{∑

νtπt |
∑

νtπt ∈ (Der g ∩ h)C
}
.

One can now proceed as in [24, Theorem 4.9] and show that N is the unique element of
n such that trNψ = ψ for all ψ ∈ n, and its coefficients νt are rational numbers.

Lemma 2.2.6. Let H be an algebraic subgroup of SO(r, s) with Lie algebra h and let g be
a nilpotent Lie algebra with a H-structure. If D,D′ are two elements of (h⊕Span {Id})∩
Der g with the same trace, then the H-structures on g⋊D Span {e0} and g⋊D′ Span {e0}
are equivalent.
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Proof. The Lie algebra k = (h ⊕ Span {Id}) ∩ Der g is algebraic. Observe that that
two commuting derivations of k with the same trace determine equivalent extensions by
Proposition 1.1.5, as their difference is in h ∩ so(p, q). I will use this fact repeatedly.

Denote by r the radical of k. By [22], the fact that k is algebraic implies that r is
also algebraic, and I can write r = n⋊ a, where a is an abelian Lie algebra consisting of
semisimple elements and n is the nilradical. Since a is abelian, any two derivations in a
with the same trace determine isometric extensions. Thus, I only need to show that for
any D ∈ k there is an element of a determining an equivalent extension.

Since k is algebraic, one can write D = Dss + Dn, where Dss is semisimple, Dn is
nilpotent, and [Dss, Dn] = 0. Since Dn has trace zero, D and Dss determine isometric
extensions. Since Dss is semisimple, so are

adDss : k→ k, adDss : k0 → k0,

where k0 = k ∩ so(p, q). One can choose a decomposition

k = r⊕W,

where W is contained in h and adDss-invariant. Indeed, it suffices to choose for W an
adDss-invariant complement of k0 ∩ r in k0.

Accordingly, write Dss = Dr +DW . Then

[Dss, DW ] = [Dr, DW ];

the left-hand side belongs to the adDss-invariant space W , and the right-hand side to
the ideal r, so both must vanish.

Therefore, Dss and Dr are commuting derivations with the same trace, and they
determine equivalent extensions.

Using the Jordan decomposition in the algebraic Lie algebra r, one sees that Dr

determines, up to equivalence, the same standard extension as its semisimple part. On
the other hand, the latter is conjugate in r to an element of a by [55, Section 19.3]. The
conjugation is realized by an element of the Lie group with Lie algebra k which can be
assumed to have determinant one, and therefore by an element of H.

Theorem 2.2.7. Let g be a nilpotent Lie algebra with a pseudo-Riemannian metric g
such that the metric Nikolayevsky derivation N is nonzero. Then g is Ricci-flat and g
has an Einstein standard extension g⋊N Span {e0}.

Conversely, suppose g is a nilpotent Lie algebra with a pseudo-Riemannian metric g
and an Einstein standard extension with Ds = a Id. Then g is Ricci-flat and, up to a
scaling factor, the extension is isometric to either g⊕ R or g⋊N Span {e0} according to
whether a is zero or not.

Proof. Let D be a multiple of N such that Ds = Id. Every metric of the form etg can
be written as g(exp(tD)·, exp(tD)·), i.e. it is related to g by an isomorphism. The Ricci
tensor transforms accordingly; however, the Ricci tensor of etg coincides with that of
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g, and this forces it to be zero. Then [D,D∗] = [D, 2 Id−D] = 0 and (2.12) holds. In
addition,

tr(ad v ◦D∗) = tr(ad v ◦ (2 Id−D)) = tr(2 ad v − ad v ◦D) = 0,

where ad v and ad v ◦D are traceless because g is nilpotent and D is a multiple of the
Nikolayevsky derivation. Thus, Proposition 2.2.1 implies that g⋊D Span {e0} is Einstein.

I claim that replacing D with a nonzero multiple, say D′ = kD, has the effect of
giving the same standard extension up to isometry and rescaling. Indeed, observe that
{exp tD} acts on the metric g by rescaling while leaving D unchanged. This means that
the g̃ = g + e0 ⊗ e0 and g̃′ = k2g + e0 ⊗ e0 are isometric metrics on g̃ = g⋊D Span {e0}.
Setting e′0 = ke0, one can write g̃′ = k2(g + (e0)′ ⊗ (e0)′), and g̃ = g⋊D′ Span {e0}.

Now suppose that g has a standard Einstein extension with Ds = a Id. In this case,
if g has dimension n and Ds = a Id, then [D,D∗] = 2[Da, Ds] = 0 and (2.12) becomes

Ric = τ(−a2n Id+na2 Id) = 0.

If a = 0, D is skew-symmetric; by Proposition 1.1.5, one can assume D = 0 up to
isometry, obtaining a direct product g× R.

If a ̸= 0, D has nonzero trace and the metric Nikolayevsky N is nonzero, so it too
has nonzero trace. I already observed that rescaling N yields an isometric extension up
to isometry. Therefore, one can assume that D and N have the same trace and conclude
by Lemma 2.2.6.

2.3 z-Standard Sasaki structures

In this section, I will study the particular case for standard Lie algebras where the vector b
of Proposition 2.1.3 is central in g. More precisely, I say that a Sasaki structure (φ̃, ξ̃, η̃, g̃)
on a Lie algebra g̃ is z-standard if there is a standard decomposition g̃ = g⋊D Span {e0}
with b = −φ̃(e0) in the center of g and g̃ = g + τe0 ⊗ e0, with τ = ±1.

I will start by giving a geometric interpretation of this condition; to that end, I will
recall a well-known construction: the moment map. Let g̃ be a Lie algebra with a Sasaki
structure (ξ̃, η̃, g̃, φ̃). LetX be a nonzero vector in g̃. The associated, left-invariant Sasaki
structure on the connected, simply connected group G̃ with Lie algebra g̃ is invariant
under the left action of the group {exp tX}. The fundamental vector field X∗ is defined
by

X∗
g =

d

dt
(exp tX)g,

so identifying TgG̃ with g̃ by left-translation one gets

Lg−1∗X
∗
g =

d

dt
g−1(exp tX)g = Ad(g−1)X.

The moment map is by definition

µ(g) = η(Ad(g−1)X).
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Therefore,

dµg(Lg∗v) =
d

dt
|t=0µ(g exp tv) =

d

dt
|t=0η(Ad(exp−tv)Ad(g−1)X)

= −η([v,Ad(g−1)X]).

Now, if µ(g) = 0 one has that Ad(g−1)X ∈ ker η. This implies that Ad(g−1)X⌟ dη is
nonzero, i.e. there is some v such that η([v,Ad(g−1)X]) ̸= 0. Thus, 0 is a regular value
and µ−1(0) is a hypersurface.

Since X∗ is nowhere zero, the action of {exp tX} is well-defined on µ−1(0). Therefore,
the quotient

G̃//{exp tX} = µ−1(0)/{exp tX}

is well-defined (locally), and it has an induced Sasaki structure.
z-standard Sasaki structures can be characterized as follows:

Lemma 2.3.1. Let g̃ be a Lie algebra with a Sasaki structure (φ, ξ, η, g̃). The following
are equivalent:

(i) there is a standard decomposition g̃ = g ⋊D Span {e0} with φ(e0) in the center of
g;

(ii) g̃ contains a vector X with g̃(X,X) ̸= 0 such that z(X) is a nilpotent ideal of
codimension one;

(iii) the simply connected Lie group G̃ with Lie algebra g̃ has a one-parameter subgroup
{exp tX} such that

• g̃(X,X) ̸= 0;

• g̃(X,X) ̸= 0 such that the zero set of the moment map is a normal nilpotent
subgroup G; and

• {exp tX} commutes with G.

Proof. If (i) holds, observe that e0 is not a multiple of ξ by Proposition 2.1.3; thus,
X = −φ(e0) has centralizer equal to g. This implies (ii).

Now assume that (ii) holds; then g̃ is solvable, as it contains a codimension one ideal.
The zero level set of the moment map {g | η(Ad(g−1)(X) = 0} is the connected subgroup
with Lie algebra z(X), giving (iii).

Finally, suppose that (iii) holds. Since µ−1(0) is a normal nilpotent subgroup, its Lie
algebra is the nilpotent ideal

g = kerX⌟ dη.

In addition, µ−1(0) contains the identity, so η(X) = 0. This implies that g has codi-
mension one. By construction, e0 = φ(X) is orthogonal to g. Since X is not lightlike,
the restriction of the metric to g is definite; hence one has a standard decomposition
g̃ = g⋊ Span {e0}. By construction, φ(e0) = −X, so it is central in g, giving (i).
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Given a z-standard Sasaki structure, Lemma 2.3.1 implies that {exp tX} is central
in G, so the right action of {exp tX} preserves the Sasaki structure and the quotient
G/ exp{tX} is a Lie group with Lie algebra z(X)/Span {X}, which is Sasaki by con-
struction. Conversely, one can express z(X) as a central extension of X, and then express
g as a standard extension of z(X).

Example 2.3.2. In Example 1.1.7, {exp te2} satisfies the conditions of Lemma 2.3.1;
the three-dimensional quotient in this case is the Heisenberg algebra, with its Sasaki
structure.

In the language of Proposition 2.1.3, one can express this as follows:

Corollary 2.3.3. Let g be a nilpotent Lie algebra with a pseudo-Riemannian metric g, D
a derivation and τ = ±1. Assume g̃ = g⋊D Span {e0} has a z-standard Sasaki structure
(φ, ξ, η, g̃). Then, if h ∈ R and b, ξ ∈ z(g), the following hold for x ∈ g:

D(ξ) = 0, D(b) = −2τξ + hb, Da(dη) = 0, D(dη) = 2db♭,

η ∧ x♭ = 1

2
∇xdη + τb♭ ∧Ds(x)♭,

dη(Ds(x), y) = dη(x,Ds(y)).

Furthermore, φ is given by

φ(w) =
1

2
(adw)∗(ξ) + τg(b, w)e0, φ(e0) = −b, w ∈ g.

In addition, g/ Span {b} has a Sasaki structure (φ̌, ξ̌, η̌, ǧ) induced by the identification
Span {e0, b}⊥ ∼= g/Span {b}; at the level of the corresponding Lie groups, this amounts
to taking the Sasaki reduction by the left action of the one-parameter subgroup {exp tb}.

Proof. I will specialize Proposition 2.1.3 with b = −φ(e0) central. Then (ad b)∗ and
b⌟ dx♭ are zero. In particular, from (2.8), I get

Ds(x)⌟ dη + x⌟ db♭ = 0. (2.13)

For x = b, this implies Ds(b)⌟ dη = 0. Since dη is non-degenerate on Span {b, ξ}⊥, this
implies that Ds(b) ∈ Span {b, ξ}. Furthermore, one has

g(Ds(b), ξ) = g(b,Ds(ξ)) = g(b,−b) = −τ,

so Ds(b) = −τξ + hb for some real constant h. Therefore,

D(b) = −2τξ + hb.

Since D is a derivation, one has

0 = D[b, x] = [D(b), x] + [b,D(x)] = −2τ [ξ, x].
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Therefore ξ is in the center of g. Next, by (2.6), Da(dη) = 0, so I observe that

Dsdη(x, y) = Ddη(x, y) = −dη(Dx, y)− dη(x,Dy)
= η([Dx, y] + [x,Dy]) = η(D[x, y]) = −2g(b, [x, y]) = 2db♭(x, y). (2.14)

Therefore, D(dη) = 2db♭ and (2.13) becomes equivalent to

0 = dη(Ds(x), y) +
1

2
(Dsdη)(x, y) =

1

2

(
dη(Ds(x), y)− dη(x,Ds(y))

)
.

For the last part, observe that g is the centralizer of b in g̃, and apply the observation
before the statement. The fact that (φ̌, ξ̌, η̌, ǧ) is Sasaki descends from η ∧ x♭ = 1

2∇̌xdη.

One can describe the situation of the preceding corollary in terms of the Kähler
quotient, as in the following theorem

Theorem 2.3.4. Let g be a nilpotent Lie algebra with a pseudo-Riemannian metric g, D
a derivation and τ = ±1. Assume g̃ = g⋊D Span {e0} has a z-standard Sasaki structure
(φ, ξ, η, g̃). Then ξ is central in g and there is h ∈ R such that

1. g(ξ, ξ) = 1, g(b, b) = τ , g(b, ξ) = 0;

2. the quotient ǧ = g/Span {b, ξ} has a pseudo-Kähler structure (ǧ, J, ω) with (g, g)→
(ǧ, ǧ) a Riemannian submersion, ω = 1

2dη and Ď(ω) = db♭;

3. relative to the splitting Span {b, ξ}⊥ ⊕ Span {b} ⊕ Span {ξ}, D takes the form

D =

Ď 0 0
0 h 0
0 −2τ 0

 ;

4. [J, Ď] = 0;

5. Ď is a derivation and [Ďs, Ďa] = hĎs − 2(Ďs)2.

Remark 2.3.1. The situation of Theorem 2.3.4 can be visualized as follows

g̃

//b

��

µ−1(0)

&&
g

/⟨b⟩

tt
/⟨b,ξ⟩

��

g̃//b

/⟨ξ⟩
&&
ǧ
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where the arrows denote a determines-type relation. Note that the arrows labeled
“µ−1(0)” and “//b” refer to the reduction process mentioned at the start of the section,
and the latter is the well-known contact reduction.

Proof. Defining b = φ(e0), since g(ξ, ξ) = 1 by definition of Sasaki structure and

g(b, ξ) = g̃(b, ξ) = −g̃(e0, φ(ξ)) = 0, g(b, b) = g̃(e0, e0) = τ

one gets the first condition.
Next, let ǧ = g/ Span {b, ξ}. Then arguing as in Proposition 1.4.3 one sees that ∇̌dη

is the projection of ∇dη; projecting the equation (2.11), it can be seen that dη is ∇̌-
parallel. Furthermore, for x orthogonal to b, ξ, by taking the interior product of (2.11)
with ξ one gets that

x♭ =
1

2
ξ⌟∇xdη − g(Ds(x), ξ)τb♭ =

1

2
ξ⌟∇xdη;

and, by using Lemma 2.1.2, it becomes

x♭ =
1

4
ξ⌟ (αx − (adx)∗dη + Lxdη) =

1

4
(adx)∗ξ⌟ dη. (2.15)

This implies that dη is non-degenerate. Now set

J(x) = −1

2
(x⌟ dη)♯.

Then in Span {b, ξ}⊥ equation (2.15) reads

x♭ = −1

4
(x⌟ dη)♯⌟ dη =

1

2
J(x)⌟ dη = −

(
J ◦ J(x)

)♭
= −

(
J2(x)

)♭
;

therefore, J is an almost complex structure, and (ǧ, J, dη) is a pseudo-Kähler structure.
This proves the second statement.

In particular, I can write
dη(x, y) = 2g(x, Jy).

Now, from Corollary 2.3.3 write

dη(Ds(x), y) = dη(x,Ds(y))

as
g(JDs(x), y) = g(Jx,Ds(y)) = −g(x, JDs(y)),

i.e. JDs = −(JDs)∗ = DsJ . In addition, Dadη = 0 can be rewritten as

0 =Dadη(x, y) = dη(Dax, y) + dη(x,Day) = 2g(Dax, JY ) + 2g(x, JDay)

=2g(x, [J,Da]y).

This shows that J and D commute, which proves the fourth statement.
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The Lie bracket on ǧ and the Lie bracket on g are related by

[x, y] = [x, y]ǧ − τdb♭(x, y)b− dη(x, y)ξ;

b, ξ are in the center for g. Relative to the splitting Span {b, ξ}⊥ ⊕ Span {b} ⊕ Span {ξ},
D takes the form

D =

Ď 0 0
0 h 0
0 −2τ 0

 , (2.16)

which proves the third statement.
To prove the fifth statement, notice that a linear map D of the form (2.16) automat-

ically satisfies D[x, y] = [Dx, y] + [x,Dy] when x lies in Span {b, ξ}; therefore, D is a
derivation if and only if for x, y in Span {b, ξ}⊥ one has

0 = D[x, y]− [Dx, y]− [x,Dy] =Ď[x, y]ǧ − τdb♭(x, y)(hb− 2τξ)

− [Ďx, y]ǧ + τdb♭(Ďx, y)b+ dη(Ďx, y)ξ

− [x, Ďy]ǧ + τdb♭(x, Ďy)b+ dη(x, Ďy)ξ.

Thus, D is a derivation if and only if Ď is a derivation of ǧ and

hdb♭(x, y) = db♭(Ďx, y) + db♭(x, Ďy),

−2db♭(x, y) = dη(Ďx, y) + dη(x, Ďy),

where the latter is again 2db♭ = Ďdη. Then using [J,D] = 0,

db♭(x, y) =
1

2
Ďdη(x, y) = −1

2
dη(Ďx, y)− 1

2
dη(x, Ďy) = −g(Ďx, Jy)− g(x, JĎy)

= −g(x, (Ď∗J + JĎ)y) = −2g(x, ĎsJy).

Thus

2hg(x, ĎsJy) = −hdb♭(x, y) = db♭(Ďx, y) + db♭(x, Ďy)

= 2g(Ďx, ĎsJy) + 2g(x, ĎsJĎy)

= 2g(x, (Ďs − Ďa)ĎsJy) + 2g(x, ĎsĎJy).

Therefore,
hĎsJ = (Ďs − Ďa)ĎsJ + ĎsĎJ = 2(Ďs)2J + [Ďs, Ďa]J,

i.e.
hĎs − 2(Ďs)2 = [Ďs, Ďa].

In the situation of Theorem 2.3.4, I will say that the pseudo-Kähler Lie algebra ǧ is
the Kähler reduction of the z-standard Sasaki structure of g̃. Notice that ǧ is indeed a
Kähler reduction in the sense of symplectic geometry, arising from the action of {exp tb}
on the pseudo-Kähler nilmanifold g̃/ Span {ξ}.
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Example 2.3.5. In Example 1.1.7, one has

ǧ = Span {e3, e4} , Ď = I, b = −e2, h = 2, τ = −1,
ω = e34, db♭ = de2 = −2e34, dη = 2e34.

Corollary 2.3.3 has a Kähler analogue, which can be viewed as a consequence of
Theorem 2.3.4, using the fact that any pseudo-Kähler Lie algebra yields a Sasaki Lie
algebra by taking a central extension. Notice that this construction only works one way
in general, i.e. it is not generally true that a Sasaki Lie algebra is a central extension of
a pseudo-Kähler Lie algebra. This only occurs when ξ is central, which happens to be
true in the situation of Theorem 2.3.4.

Proposition 2.3.6. Let ĝ be a nilpotent Lie algebra with a pseudo-Riemannian metric g,
let D be a derivation and τ = ±1. Suppose that ḡ = ĝ⋊D Span {e0} has a pseudo-Kähler
structure (J̄ , ḡ, ω̄) such that ḡ = ĝ + τe0 ⊗ e0, with b = −J̄e0 in the center of ĝ. Then

1. the quotient ǧ = ĝ/ Span {b} has a pseudo-Kähler structure (ǧ, J̌ , ω̌) where the map
π : (ĝ, ĝ)→ (ǧ, ǧ) is a Riemannian submersion, π∗ω̌ = ω̃|g and D(ω) = db♭;

2. relative to the splitting Span {b}⊥ ⊕ Span {b}, D takes the form

D =

(
Ď 0
0 h

)
;

3. [J̌ , Ď] = 0;

4. Ď is a derivation and [Ďs, Ďa] = hĎs − 2(Ďs)2.

Proof. Write ǧ = Span {b}⊥ in ĝ, and let ω be the restriction of ω̃ to ǧ. Then

ω̃ = ω − τb ∧ e0.

Let h = ĝ⊕ Span {ξ} be the central extension of ĝ by the cocycle 2ω, ȟ the quotient
h/ Span {b}, and h̃ the semidirect product h⋊D′ Span {e0}, where D′ is defined by

D′v = Dv, v ∈ ǧ, D′ξ = 0, D′b = Db− 2τξ.

One can summarize the situation as follows

ȟ = ǧ⊕ Span {ξ} , h = ǧ⊕ Span {b, ξ} , h̃ = ǧ⊕ Span {b, ξ, e0} .

One can view equivalently h̃ as the central extension of ḡ by 2ω̄. In particular, h̃ has a
Sasaki metric (φ̃, ξ, h̃, η̃) induced by the pseudo-Kähler metric of ḡ (see [51]). Explicitly,
η̃ is the 1-form on h̃ that vanishes on ḡ, with η̃(ξ) = 1, so that dη = 2ω̃, one has

h̃ = ḡ + η̃ ⊗ η̃, φ̃ = J̄ .
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Since b is central in h, I can apply Theorem 2.3.4. Then (ǧ, J̌ , ω̌) is pseudo-Kähler, and
Ďω = db♭,

D′ =

Ď 0 0
0 h 0
0 −2τ 0

 ,

proving items 1 and 2. Items 3 and 4 follow directly from Theorem 2.3.4.

By joining Theorem 2.3.4 and Proposition 2.3.6, the diagram of Remark 2.3.1 can be
expanded as in Figure 2.1, where the arrows labeled “//b” denote either the contact or
the symplectic reduction.

g̃
/⟨ξ⟩

xx
//b

��

µ−1(0)

&&
ḡ

//b

��

µ−1(0)
��

g

/⟨b⟩
��

/⟨b,ξ⟩

��

ĝ

/⟨b⟩
%%

g̃//b

/⟨ξ⟩
xx

ǧ

Figure 2.1: Diagram of reductions of a z-standard pseudo-Sasaki Lie algebra (g̃, g̃, ξ, η, φ)
of dimension 2n + 3, down to its Kähler reduction ǧ of dimension 2n. Arrows denote a
determines-type relation. In the diagram, g̃ and g̃//b have a pseudo-Sasaki structure, ḡ
and ǧ have a pseudo-Kähler structure, g and ĝ are subalgebra determined by the moment
map.

2.4 Extension of pseudo-Kähler Lie algebras

In this section, I show how the reduction process of Theorem 2.3.4 can be inverted and
describe a constructive way of obtaining z-standard Sasaki structures. Furthermore, I
specialize the result in order to obtain an extension such that the metric is also Einstein.

Theorem 2.4.1. Let (ǧ, J, ω) be a pseudo-Kähler nilpotent Lie algebra. Let Ď be a
derivation of ǧ, τ = ±1, and g = ǧ ⊕ Span {b, ξ} a central extension of ǧ with a metric
of the form:

g(x, y) = ǧ(x, y), g(x, b) = 0 = g(x, ξ), g(ξ, ξ) = 1, g(b, b) = τ, g(b, ξ) = 0,

where x, y ∈ ǧ. Assume furthermore

• dξ♭ = 2ω, where the right-hand-side is implicitly pulled back to g̃;
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• db♭ = Ďω, where the right-hand-side is implicitly pulled back to g̃;

• [J, Ď] = 0;

• [Ďs, Ďa] = hĎs − 2(Ďs)2 for some constant h.

Let g̃ = g⋊ Span {e0}, where

[e0, x] = Ďx, [e0, b] = hb− 2τξ, [e0, ξ] = 0;

then g̃ has a z-standard Sasaki structure (φ, η, ξ, g̃) given by

g̃ = g + τe0 ⊗ e0, φ(x) = J(x) + τg(b, x)e0, φ(e0) = −b, x ∈ g.

Conversely, every z-standard Sasaki Lie algebra arises in this way.

Proof. The fact thatD = Ď+τb♭⊗(hb−2τξ) is a derivation is proved as in Theorem 2.3.4.
Then one uses Proposition 2.1.3. To prove (2.8), write

db♭(y, x) = Ďω(y, x) = −ω(Ďy, x)− ω(y, Ďx) = −g(Ďy, Jx)− g(y, JĎx)
= −g(y, (Ď∗J + JĎ)x) = −g(y, J(Ď + Ď∗)x) = −2ω(y, Ďsx) = −dη(y, Ďsx);

then Ds(x)⌟ dη + x⌟ db♭ = 0, which is equivalent to (2.8) since b is central.
To prove (2.11), notice that projecting this equation to Λ2ǧ simply says that ω is

parallel on ǧ. The interior product with ξ yields (2.15), which holds by construction. Fi-
nally, taking interior product of (2.11) with b and using the fact that Ds(b) ∈ Span {b, ξ},
one computes

0 =
1

4
b⌟ (αx − (adx)∗dη + Lxdη) +Ds(x)♭ =

1

4
((adx)∗b⌟ dη) +Ds(x)♭

=

(
1

2
J((adx)∗b) +Ds(x)

)♭
.

It also holds that ad(x)∗b = ad(Ds(x))∗ξ = −2J(Ds(x)). Therefore, this equation
reduces to J2(Ds(x)) = −Ds(x), which is automatically satisfied.

The other hypotheses of Proposition 2.1.3 are trivially satisfied; therefore, g̃ has a
Sasaki structure with

φ(w) =
1

2
(adw)∗ξ + τg(b, w)e0 = −w⌟ω + τ(g, b, w)e0 = Jw + τ(g, b, w)e0.

Remark 2.4.1. It is no loss of generality to assume h ≥ 0; indeed, changing the sign of
Ď, e0, b and h gives the same Sasaki Lie algebra up to isometric isomorphism.
Remark 2.4.2. The hypotheses of Theorem 2.4.1 are preserved if one rescales both h and
Ď. This yields different metrics on g̃, which are however related by a D-homothety (in
particular, they have different curvature).

Accordingly, one can assume that either h = 0 or h = 2 up to D-homothety. The
condition h = 0 implies that tr(Ďs)2 = 0. If ǧ is Riemannian, Ďs is diagonalizable, so
h = 0 implies that Ď is skew-symmetric.
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Remark 2.4.3. One can always reverse the sign of the metric ǧ and the 2-form ω and
obtain a different Sasaki metric on an isomorphic Lie algebra g̃′; the isomorphism is
realized by the mapping b 7→ −b′, ξ 7→ −ξ′.

Let (ǧ0, J0, g0, ω0), (ǧ1, J1, g1, ω1) be pseudo-Kähler Lie algebras, with ǧ1 abelian. Let
ρ : ǧ0 → gl(ǧ1) be a representation such that

ρ(X)ω1 = 0, [J1, ρ(X)] + [ρ(J0X), J1]J1 = 0. (2.17)

Then ǧ0 ⋉ ǧ1 has an almost Hermitian structure (g, J, ω), with g = g0 + g1, ω = ω0 +ω1,

and J =

(
J1 0
0 J2

)
. It is straightforward to check that ω is closed and J integrable, i.e.

ǧ0 ⋉ ǧ1 is pseudo-Kähler. In addition, the projection π1 on the factor ǧ1 is a derivation,
giving a one-parameter family of derivations Ď = h

2π1 that satisfy the hypotheses of
Theorem 2.4.1. The resulting Sasaki extension g̃ takes the form

(ǧ0 ⋉ ǧ1 ⊕ Span {b, ξ})⋊ Span {e0} , dξ♭ = 2ω, db♭ = −hω,

[e0, X0] = 0, [e0, X1] =
h

2
X1, [e0, b] = hb− 2τξ, [e0, ξ] = 0,

(2.18)

where X0 denotes the generic element of ǧ0 and X1 the generic element of ǧ1.

Proposition 2.4.2. In the hypotheses of Theorem 2.4.1, if Ďs is a derivation and
[Ďs, Ďa] = 0, one can assume up to isometry that ǧ is a semidirect product ǧ = ǧ0⋉ρ ǧ1,
where ǧ0, ǧ1 are pseudo-Kähler with ǧ1 abelian, Ď = h

2π1 and g̃ takes the form (2.18).

Proof. Write g̃ = g⋊ Span {e0}, where ad(e0) = Ď + hb∗ ⊗ (hb− 2τξ). Then define

χ : Span {e0} → Der g, χ(e0) = Ďs + hb∗ ⊗ (hb− 2τξ).

Then χ(e0)
s = ad(e0)

s and [χ(e0), ad e0] = 0. Thus, the Lie algebra g ⋊χ Span {e0} is
isometric to the Lie algebra g̃ constructed in Theorem 2.4.1. In other words, replacing
Ď with Ďs gives the same metric g̃ up to isometry. In addition, Ďω = Ďsω, so db♭ is
unchanged.

By Theorem 2.4.1, the minimal polynomial of Ď divides p(t) = ht − 2t2. Thus Ď is
diagonalizable over R, and takes the form(

0 0

0 h
2 I

)
in some basis; since Ď commutes with J , its eigenspaces are J-invariant. Since it is
symmetric, they are orthogonal. Since a diagonalizable derivation defines a grading, one
has ǧ = ǧ0 ⋉ρ ǧ1, hence the Kähler form splits as ω0 + ω1 and

J =

(
J0 0
0 J1

)
.

Thus, (ǧ0, J0, ω0) is Kähler, ǧ1 is abelian, and (2.17) holds.
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Corollary 2.4.3. In the hypotheses of Theorem 2.4.1, if Ďs is a derivation, and it is
diagonalizable over C, then one can assume up to isometry that ǧ is a semidirect product
ǧ = ǧ0 ⋉ρ ǧ1, where ǧ0, ǧ1 are pseudo-Kähler with ǧ1 abelian, Ď = h

2π1 and g̃ takes the
form (2.18).

Proof. Denote by ǧC the complexification of ǧ, with the scalar product obtained by
complexifying the scalar product of ǧ. The complexified endomorphisms (Ďs)C : ǧC → ǧC,
(Ďa)C : ǧC → ǧC are symmetric and antisymmetric, respectively. Furthermore, one gets

[(Ďs)C, (Ďa)C] = h(Ďs)C − 2((Ďs)C)2. (2.19)

By hypothesis, there exists an orthonormal basis of eigenvectors of (Ďs)C. Then (Ďs)C

is diagonal in this basis, and (Ďa)C has zero on the diagonal. Therefore, [(Ďs)C, (Ďa)C]
has zero on the diagonal, so (2.19) implies that it vanishes, and one can apply Proposi-
tion 2.4.2.

Next, in order to study Einstein metrics, I will present some results concerning the
Ricci tensor of the metric constructed in Theorem 2.4.1.

Lemma 2.4.4. The Ricci tensor of the metric on g constructed in Theorem 2.4.1 is

Ric(v) = −2(τ(Ďs)2 + Id)v, v ∈ Span {b, ξ}⊥ ,
Ric(b) = τ tr((Ďs)2)b− (tr Ď)ξ, Ric(ξ) = (2n− 2)ξ − τ(tr Ď)b.

where dim g = 2n.

Proof. Since ǧ is pseudo-Kähler and nilpotent, |ric is zero by [43, Lemma 6.3]. By
Lemma 1.1.3, one has

ric(v, w) = −1

2
τg(v⌟ db♭, w⌟ db♭)− 1

2
g(v⌟ dη, w⌟ dη)

= −1

2
τg(Ďs(v)⌟ dη, Ďs(w)⌟ dη)− 1

2
g(v⌟ dη, w⌟ dη)

= −2τg(JDs(v), JDs(w))− 2g(Jv, Jw) = −2τg(Ds(v), Ds(w))− 2g(v, w).

Then

ric(v, b) =
1

2
τg(dv♭, db♭) =

1

2
τg(dv♭, Ďω), ric(v, ξ) =

1

2
τg(dv♭, dη) = τg(dv♭, ω),

ric(b, b) =
1

2
g(db♭, db♭) =

1

2
g(Ďω, Ďω), ric(b, ξ) =

1

2
g(db♭, dη) = g(Ďω, ω),

ric(ξ, ξ) =
1

2
τg(dη, dη) = 2g(ω, ω).

It is possible to simplify these formulae by observing that

Ďω(x, y) = −ω(Ďx, y)− ω(x, Ďy) = −ǧ(Ďx, Jy)− ǧ(x, JĎy) = −ǧ(x, (JĎ + Ď∗J)y)

= −ǧ(x, (Ď + Ď∗)Jy),
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and hence viewing Ďω as a (1, 1) tensor (Ďω)♯ = −(Ď+D∗)J . Similarly, one has ω♯ = J .
Then

g(ω, ω) =
1

2
g(J, J) = n− 1,

g(ω, Ďω) =
1

2
g(J,−(Ď + Ď∗)J) =

1

2
tr((Ď + Ď∗)J2) = − tr Ďs = − tr Ď,

g(Ďω, Ďω) =
1

2
g((Ď + Ď∗)J, (Ď + Ď∗)J) =

1

2
tr((Ď + Ď∗)2) = 2 tr(Ďs)2.

Finally, observe that ω and Ďω are d∗-closed, so (since ǧ is unimodular),

g(dv♭, ω) = g(v♭, d∗ω) = 0, g(dv♭, Ďω) = g(v♭, d∗Ďω) = 0.

Summing up,

ric(v, w) = −2τg(Ďs(v), Ďs(w))− 2g(v, w), ric(v, b) = 0,

ric(v, ξ) = 0, ric(b, b) = tr((Ďs)2),

ric(b, ξ) = − tr Ď, ric(ξ, ξ) = (2n− 2).

Lemma 2.4.5. With the hypothesis of Theorem 2.4.1, the metric g̃ = g + τe0 ⊗ e0 on
g̃ = g⋊D Span {e0} is Einstein if and only if

τ = −1, Ďs = ± Id, h = ±2.

Proof. By Proposition 2.2.1, g̃ is Einstein if and only if

Ric = τ
(
− tr((Ds)2) Id+[Ds, Da] + (trD)Ds

)
, tr(ad v ◦D∗) = 0, v ∈ g.

Than

D =

Ď 0 0
0 h 0
0 −2τ 0

 , D∗ =

Ď∗ 0 0
0 h −2
0 0 0

 ,

Ds =

Ďs 0 0
0 h −1
0 −τ 0

 , Da =

Ďa 0 0
0 0 1
0 −τ 0

 .

So

[Ds, Da] =

hĎs − 2(Ďs)2 0 0
0 2τ h
0 hτ −2τ

 .

Multiplying by τ each side of (2.12) and using Lemma 2.4.4, yields−2(Ďs)2 − 2τ Id 0 0

0 tr((Ďs)2) −(tr Ď)

0 −τ tr Ď τ(2n− 2)

 = −(tr((Ďs)2) + h2 + 2τ)

Id 0 0
0 1 0
0 0 1



+

hĎs − 2(Ďs)2 0 0
0 2τ h
0 hτ −2τ

+ (tr Ďs + h)

Ďs 0 0
0 h −1
0 −τ 0

 ,
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i.e.

(tr((Ďs)2) + h2) Id = (tr Ďs + 2h)Ďs,

2 tr((Ďs)2) = (tr Ďs)h,

τ(2n+ 2) = −(tr((Ďs)2) + h2).

If this system of equations holds, Ďs is a multiple of the identity; setting tr Ďs = λ, so
that tr((Ďs)2) = λ2

2n−2 , one obtains

τ = −1, h =
2λ

2n− 2
, λ = ±(2n− 2).

So the system holds if and only if Ďs = ± Id and h = ±2. This condition also implies
tr(ad v ◦ D∗) = 0 because g is unimodular and tr(ad v ◦ D) = 0 by [15, Chapter 1,
Section 5.5], proving the equivalence in the statement.

Remark 2.4.4. As observed in Remark 2.4.1, changing the sign of h, Ď, e0 and b yields
an isometric metric. Therefore, in the following I will only consider the case h = 2 and
Ďs = I for the Einstein setting.

The construction of Theorem 2.4.1 can be now specialized to the Sasaki-Einstein case
as follows:

Proposition 2.4.6. Let (ǧ, J, ω) be a pseudo-Kähler nilpotent Lie algebra and let Ď be
a derivation such that Ďs = Id and commuting with J . If g = ǧ ⊕ Span {b, ξ} is the
central extension of g characterized by dξ∗ = 2ω = db∗, where {b∗, ξ∗} is the basis dual
to Span {b, ξ}, with the metric g = ǧ − b∗ ⊗ b∗ + ξ∗ ⊗ ξ∗, then the semidirect product
g̃ = g⋉ Span {e0}, where

[e0, x] = Ďx, [e0, b] = 2b+ 2ξ, [e0, ξ] = 0

has a Sasaki-Einstein structure (φ, η, ξ, g̃) given by

g̃ = g − e0 ⊗ e0, φ(w) = J(w)− g(b, w)e0, φ(e0) = −b, w ∈ g.

Proof. Since Ďω = Ďsω = −2ω, applying Theorem 2.4.1 with h = 2 and τ = −1 yields
a Sasaki extension as in the statement, which is Einstein by Lemma 2.4.5.

Example 2.4.7. Let ǧ = R2n−2, with

Je1 = e2, . . . , Je2n−3 = e2n−2, ω = ε1e
12 + · · ·+ εn−1e

2n−3,2n−2, εi = ±1,

and set D = Id. Furthermore, set

dξ∗ = db∗ = 2ω, ad e0 = 2b∗ ⊗ (b+ ξ) +
∑

ei ⊗ ei.
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The extension g̃ has a basis {e0, e1, . . . , e2n} such that

de0 = 0,

dei = ei,0, i = 1, . . . , 2n− 2,

de2n = de2n−1 = 2ε1e
12 + · · ·+ 2εn−1e

2n−3,2n−2 + 2e2n−1,0,

and the Einstein-Sasaki metric is

g =

n−1∑
i=1

εi(e
2i−1 ⊗ e2i−1 + e2i ⊗ e2i)− e2n−1 ⊗ e2n−1 + e2n ⊗ e2n − e0 ⊗ e0.

The quotient by ξ = e2n yields the Kähler Lie algebra

de0 = 0,

dei = ei,0, i = 1, . . . , 2n− 2,

de2n−1 = 2ε1e
12 + · · ·+ 2εn−1e

2n−3,2n−2 + 2e2n−1,0,

with the pseudo-Kähler-Einstein metric

g =
n−1∑
i=1

εi(e
2i−1 ⊗ e2i−1 + e2i ⊗ e2i)− e2n−1 ⊗ e2n−1 − e0 ⊗ e0.

When the εi are equal to −1, this is the negative definite symmetric metric on the
Iwasawa subgroup of SU(1, n+ 2).

Proposition 2.4.6 has a Kähler analogue:

Corollary 2.4.8. Let (ǧ, J, ω) be a pseudo-Kähler nilpotent Lie algebra with nonzero
metric Nikolayevsky derivation, and let Ď be a derivation such that Ďs = Id. If g =
ǧ ⊕ Span {b} is the central extension of g characterized by db∗ = 2ω, where {b∗} is the
basis dual to Span {b}, with the metric g = ǧ − b∗ ⊗ b∗, then the semidirect product
ḡ = g⋉ Span {e0}, where

[e0, x] = Ďx, [e0, b] = 2b

has a pseudo-Kähler-Einstein structure (ḡ, J̄ , ω̄) given by

ḡ = g − e0 ⊗ e0, J̄(w) = J(w)− g(b, w)e0, J̄(e0) = −b, w ∈ g,

with ric = (2n+ 2)ḡ, with 2n the dimension of ḡ.

Proof. Take the Lie algebra constructed in Proposition 2.4.6 and take the quotient by ξ.
Then by Proposition 1.4.3 it is Kähler-Einstein with ric = (2n+ 2)ḡ.

Remark 2.4.5. If the Lie algebra ǧ is not abelian, then Corollary 2.4.8 produces pseudo-
Kähler-Einstein rank-one extension which are not pseudo-Iwasawa, unlike the method
presented in [69], where one constructs pseudo-Kähler-Einstein rank-one extensions of
pseudo-Iwasawa-type.

Indeed, the derivation Ď = ad e0 of Corollary 2.4.8 is self-adjoint with respect to the
metric if and only if Ďs = 1

2(D +D∗) is a derivation, but since Ďs = Id, this happens
only if the identity is a derivation, i.e. if ǧ is an abelian Lie algebra.
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g̃

ḡ

⊕ξ
99

g

⋊e0
ff

ĝ

⋊e0
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g⟳
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OO

ǧ

⊕b
ee

⊕ξ
88

Figure 2.2: Diagram of extensions of a pseudo-Kähler Lie algebra ǧ. The arrows labeled
“⊕b” or “⊕ξ” denote central extensions by Span {b} and Span {ξ} respectively, and g⟳

denotes the S1-bundle defined by ξ together with the appropriate Sasaki structure.

Remark 2.4.6. The pseudo-Kähler-Einstein quotient constructed in Example 2.4.7 is pre-
cisely the family of [69, Example 7.6], and since ǧ is abelian, this is consistent with the
previous Remark 2.4.5.

In light of the preceding results, the arrows in the diagram of Figure 2.1 can be
reversed as in figure 2.2.

The main theorem in the Einstein setting is the following

Theorem 2.4.9. If g̃ = g ⋊ Span {e0} is a z-standard Sasaki-Einstein Lie algebra, the
cu(p, q)-Nikolayevsky derivation of its Kähler reduction is nonzero.

Conversely, if ǧ is a pseudo-Kähler Lie algebra with nonzero cu(p, q)-Nikolayevsky
derivation, it extends to a z-standard Sasaki-Einstein Lie algebra g̃ = g ⋊ Span {e0},
uniquely determined up to equivalence.

Proof. If g̃ = g ⋊ Span {e0} is a z-standard Sasaki-Einstein Lie algebra, Theorem 2.4.1
asserts that g̃ can be realized as an extension of its Kähler reduction ǧ. By Proposi-
tion 2.4.6, Ď is a derivation commuting with J such that Ďs = Id. This implies that Ď
is an element of

co(2p, 2q) ∩ gl(p+ q,C) = cu(p, q)

with nonzero trace; if such a Ď exists, the cu(p, q)-Nikolayevsky derivation is nonzero.
Now assume ǧ is pseudo-Kähler and cu(p, q)-Nikolayevsky derivation is nonzero. By

rescaling, one obtains a derivation Ď whose symmetric part is the identity; this yields a
Sasaki-Einstein extension by Proposition 2.4.6.

To prove uniqueness, fix two derivations Ď, Ď′ commuting with J , Ďs = Id = (Ď′)s.
The Lie algebras ǧ ⋊Ď Span {e0} and ǧ ⋊Ď′ Span {e0} have a natural U(p, q)-structure.
By Lemma 2.2.6, they are equivalent.

One can view g̃ as a central extension (ǧ⋊Ď Span {e0})⊕ Span {b, ξ}, where db∗ and
dξ∗ are determined by the U(p, q)-invariant form ω. Therefore, g̃ and its counterpart
obtained using Ď′ are equivalent.
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2.5 Classification results and examples

In this final section, I will present classification results for z-standard Sasaki Lie algebras
whose Kähler reduction is abelian and Sasaki-Einstein Lie algebras, both up to dimension
7 and give some examples in dimension 9. I begin by noting that Proposition 2.4.2 of the
previous section classifies z-standard Sasaki structures that reduce to an abelian Kähler
Lie algebra, as positive-definiteness of the metric implies that Ďs is automatically a
diagonalizable derivation in this case.

Theorem 2.5.1. Let g̃ be a Lie algebra of dimension 5 with a z-standard Sasaki structure.
Then, up to isometry and D-homothety, g̃ is one of

(0, 0, 0,−2e12 − 2τe35, 0),

(0, 0, 2e35,−2e12 − 2τe35, 0),

(e15, e25, 2τe12 + 2e35,−2e12 − 2τe35, 0),

and the Sasaki structure is given by

g̃ = ±(e1⊗ e1+ e2⊗ e2)+ τe3⊗ e3+ e4⊗ e4+ τe5⊗ e5, ξ = e4, Φ = −e12− τe35.

Proof. The Kähler reduction ǧ is a nilpotent Lie algebra of dimension two, hence abelian.
Assume first that ǧ has positive-definite signature. In some basis {e1, e2}, one can write

ǧ = e1 ⊗ e1 + e2 ⊗ e2, ω = −e12, J = e1 ⊗ e2 − e2 ⊗ e1.

Derivations that commute with J lie in Span {I, J}. In particular, Ďs commutes with
Ďa, so Proposition 2.4.2 implies that up to isometry one can assume Ď = 0 or Ď = h

2 I.
Up to D-homothety, it is possible to assume that either h = 0 or h = 2.
For h = 0, (2.18) gives

g̃ = (0, 0, 0,−2e12 − 2τe35, 0);

for h = 2, either Ď = 0 and

g̃ = (0, 0, 2e35,−2e12 − 2τe35, 0),

or Ď = I and
g̃ = (e15, e25, 2τe12 + 2e35,−2e12 − 2τe35, 0).

In either case, the metric is

g̃ = e1 ⊗ e1 + e2 ⊗ e2 + τe3 ⊗ e3 + e4 ⊗ e4 + τe5 ⊗ e5.

Taking into consideration the negative-definite metric on ǧ has the effect of adding the
± signs, as in Remark 2.4.3.
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Notice that the third Lie algebra appearing in Theorem 2.5.1 is Example 1.1.7.
I proceed to give a list of the 7-dimensional Lie algebras with a z-standard Sasaki

structure that reduces to an abelian pseudo-Kähler Lie algebra ǧ up to isometry and
D-homothety. This list is given in Table 2.1, where I write the diagonal metric g̃ as a line
vector with respect to the basis {e1, . . . , e7}, using the convention that [1]n is a vector of
n elements, each equal to 1. For example [1]4 = (1, 1, 1, 1) and (±[1]4, τ,+1, τ) represents
the metric

g̃ = ±(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e4) + τe5 ⊗ e5 + e6 ⊗ e6 + τe7 ⊗ e7.

Table 2.1: 7-dimensional Lie algebras with a z-standard Sasaki structure that reduces to
an abelian pseudo-Kähler Lie algebra ǧ up to isometry and D-homothety

n. g̃ Metric g̃

1. 0, 0, 0, 0, 0,−2e12 − 2e34 − 2τe57, 0 (±[1]4, τ,+1, τ)

2. 0, 0, 0, 0, 2e57,−2e12 − 2e34 − 2τe57, 0 (±[1]4, τ,+1, τ)

3. 0, 0, e37, e47, 2τe34 + 2e57,−2e12 − 2e34 − 2τe57, 0 (±[1]4, τ,+1, τ)

4. e17, e27, e37, e47, 2τe12 + 2τe34 + 2e57,−2e12 − 2e34 − 2τe57, 0 (±[1]4, τ,+1, τ)

5. 0, 0, 0, 0, 0,−2e12 + 2e34 − 2τe57, 0 (±[1]2,∓[1]2, τ,+1, τ)

6. 0, 0, 0, 0, 2e57,−2e12 + 2e34 − 2τe57, 0 (±[1]2,∓[1]2, τ,+1, τ)

7. 0, 0, e37, e47,−2τe34 + 2e57,−2e12 + 2e34 − 2τe57, 0 (±[1]2,∓[1]2, τ,+1, τ)

8. e17, e27, e37, e47, 2τe12 − 2τe34 + 2e57,−2e12 + 2e34 − 2τe57, 0 (±[1]2,∓[1]2, τ,+1, τ)

9.

1
2e

17 + 2λe27 − 1
2e

37 − λe47,−2λe17 + 1
2e

27 + λe37 − 1
2e

47,
(±[1]2,∓[1]2, τ,+1, τ)1

2e
17 + λe27 − 1

2e
37,−λe17 + 1

2e
27 − 1

2e
47,

τe12 − τe14 + τe23 + τe34,−2e12 + 2e34 − 2τe57, 0

10.

1
2e

17 + 2λe27 − 3
2e

37 − λe47,−2λe17 + 1
2e

27 + λe37 − 3
2e

47,
(±[1]2,∓[1]2, τ,+1, τ)−1

2e
17 + λe27 − 1

2e
37,−λe17 − 1

2e
27 − 1

2e
47,

τe12 − τe14 + τe23 + τe34 + 2e57,−2e12 + 2e34 − 2τe57, 0

11.

3
2e

17 + 2λe27 + 1
2e

37 − λe47,−2λe17 + 3
2e

27 + λe37 + 1
2e

47,
(±[1]2,∓[1]2, τ,+1, τ)3

2e
17 + λe27 + 1

2e
37,−λe17 + 3

2e
27 + 1

2e
47,

3τe12 − τe14 + τe23 − τe34 + 2e57,−2e12 + 2e34 − 2τe57, 0

Theorem 2.5.2. Let g̃ be a Lie algebra of dimension 7 with a z-standard Sasaki structure
that reduces to an abelian pseudo-Kähler Lie algebra ǧ. Then, up to isometry and D-
homothety, the metric Lie algebra (g̃, g̃) is one of the Lie algebras appearing in Table 2.1
and the Sasaki structure is given by

ξ = (e6)♭ = e6, η = e6, 2Φ = dη = de6
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with respect to the basis {e1, . . . , e7} of Table 2.1.

Proof. I will first consider the case where ǧ is positive definite, applying Corollary 2.4.3
and proceeding as in the proof of Theorem 2.5.1.

If h = 0, one gets
(0, 0, 0, 0, 0,−2e12 − 2e34 − 2τe57, 0);

for h = 2, there are the three possibilities Ď = 0, Ď = e3 ⊗ e3 + e4 ⊗ e4, Ď = I,
corresponding to

(0, 0, 0, 0, 2e57,−2e12 − 2e34 − 2τe57, 0),

(0, 0, e37, e47, 2τe34 + 2e57,−2e12 − 2e34 − 2τe57, 0),

(e17, e27, e37, e47, 2τe12 + 2τe34 + 2e57,−2e12 − 2e34 − 2τe57, 0).

The negative definite case gives rise to the same Lie algebras, with the restriction of the
metric to ǧ of opposite sign.

In the neutral case, one can assume

ǧ = e1⊗e1+e2⊗e2−e3⊗e3−e4⊗e4, ω = −e12+e34, J = e1⊗e2−e2⊗e1+e3⊗e4−e4⊗e3.

If Ďs is diagonalizable, Corollary 2.4.3 applies and computations as above yield

(0, 0, 0, 0, 0,−2e12 + 2e34 − 2τe57, 0),

(0, 0, 0, 0, 2e57,−2e12 + 2e34 − 2τe57, 0),

(0, 0, e37, e47,−2τe34 + 2e57,−2e12 + 2e34 − 2τe57, 0),

(e17, e27, e37, e47, 2τe12 − 2τe34 + 2e57,−2e12 + 2e34 − 2τe57, 0).

If Ďs is not diagonalizable, one can exploit the U(1, 1) symmetry preserving the pseudo-
Kähler structure of ǧ. Indeed, a symmetric derivation commuting with J is effectively an
element of iu(1, 1), with U(1, 1) acting on it by the adjoint action. Write Ďs = tI + Ďs

0,
where Ďs

0 is traceless. Then Ďs
0 can be viewed as an element of isu(1, 1). Now SU(1, 1)

is isomorphic to SL(2,R) via the Cayley isomorphism

SL(2,R) ∋ g 7→ CgC−1 ∈ SU(1, 1), (2.20)

where C =

(
1 −i
1 i

)
. The action of SL(2,R) on its Lie algebra is conjugation, so any

nondiagonalizable element of sl(2,R) is in the SL(2,R)-orbit of
(
0 1
0 0

)
. Reading this in

su(1, 1) via (2.20) and multiplying by −i, one sees that Ďs
0 corresponds to the complex

matrix
(
1/2 −1/2
1/2 −1/2

)
; writing it as a real matrix, it reads

Ďs =

(
(t+ 1

2)I −1
2I

1
2I (t− 1

2)I

)
.
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A derivation Ď that satisfies [D,J ] = 0 and is not diagonalizable takes the form

Ď =


x λ2 λ5 − 1 −λ6
−λ2 x λ6 λ5 − 1
λ5 λ6 x− 1 λ8
−λ6 λ5 −λ8 x− 1

 .

Now, thanks to Proposition 1.1.5, one can consider any

Ď′ =


y µ2 µ5 − 1 −µ6
−µ2 y µ6 µ5 − 1
µ5 µ6 y − 1 µ8
−µ6 µ5 −µ8 y − 1

 .

such that [Ď′, Ď] = 0 and Ď′s = Ďs. This yields y = x, µ5 = λ5, µ6 = λ6 and
µ2 − µ8 = λ2 − λ8, hence one can consider Ď to be

Ď =


x λ2 λ5 − 1 −λ6
−λ2 x λ6 λ5 − 1
λ5 λ6 x− 1 0
−λ6 λ5 0 x− 1

 .

Again I distinguish two cases depending on h.
If h = 0 then equation [Ďs, Ďa] = hĎs − 2(Ďs)2 yields

Ď =


1
2 2λ −1

2 −λ
−2λ 1

2 λ −1
2

1
2 λ −1

2 0
−λ 1

2 0 −1
2

 .

Hence dξ♭ = −2e12 + 2e34, db♭ = τe12 − τe14 + τe23 + τe34, and the central Lie algebra
extension is

g = (0, 0, 0, 0, τe12 − τe14 + τe23 + τe34,−2e12 + 2e34),

with metric

g = e1 ⊗ e1 + e2 ⊗ e2 − e3 ⊗ e3 − e4 ⊗ e4 + τb♭ ⊗ b♭ + ξ♭ ⊗ ξ♭. (2.21)

The Sasaki extension g̃ = g⋊ Span {e0} is than determined by

dξ♭ = −2e12 + 2e34, db♭ = τe12 − τe14 + τe23 + τe34

[e0, x] = Ďx, [e0, ξ] = 0, [e0, b] = −2τξ;

and the Lie algebra is

g̃ = (
1

2
e17 + 2λe27 − 1

2
e37 − λe47,−2λe17 + 1

2
e27 + λe37 − 1

2
e47,

1

2
e17 + λe27 − 1

2
e37,

−λe17 + 1

2
e27 − 1

2
e47, τe12 − τe14 + τe23 + τe34,−2e12 + 2e34 − 2τe57, 0).
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If h = 2 then equation [Ďs, Ďa] = hĎs − 2(Ďs)2 yields two distinct solutions for Ď:

Ď1 =


1
2 2λ −3

2 −λ
−2λ 1

2 λ −3
2

−1
2 λ −1

2 0
−λ −1

2 0 −1
2

 or Ď2 =


3
2 2λ 1

2 −λ
−2λ 3

2 λ 1
2

3
2 λ 1

2 0
−λ 3

2 0 1
2

 .

Ď1 yields db♭ = τe12 − τe14 + τe23 + τe34, hence

g = (0, 0, 0, 0, τe12 − τe14 + τe23 + τe34,−2e12 + 2e34);

while for Ď2 one gets db♭ = 3τe12 − τe14 + τe23 − τe34 and

g = (0, 0, 0, 0, 3τe12 − τe14 + τe23 − τe34,−2e12 + 2e34).

In both cases, the metric is given by (2.21). The resulting Lie algebras g̃ correspond to
n. 10 and n. 11 in Table 2.1.

I begin the classification in the Einstein case with a simple corollary of Theorem 2.4.9.
In the case that ǧ is abelian, one obtains:

Corollary 2.5.3. Every z-standard Sasaki-Einstein Lie algebra such that the Kähler
reduction is an abelian Lie algebra is equivalent to one of those constructed in Exam-
ple 2.4.7.

Proof. If ǧ is an abelian Lie algebra, one can assume ǧ = R2n−2, with

Je1 = e2, . . . , Je2n−3 = e2n−2, ω = ε1e
12 + · · ·+ εn−1e

2n−3,2n−2, εi = ±1;

the cu(p, q)-Nikolayevsky derivation is Id, so by Theorem 2.4.9 the extension is equivalent
to one of those constructed in Example 2.4.7.

In dimension 3, z-standard Sasaki-Einstein Lie algebras take the form R2⋊Span {e3},
with ad e3 acting on R2 as the identity. In dimension 5, z-standard Sasaki-Einstein Lie
algebras determine a reduction of dimension 2, which is abelian. Therefore, these metrics
have the form given in Example 2.4.7, thus proving:

Proposition 2.5.4. Let g̃ be a z-standard Sasaki-Einstein Lie algebra of dimension ≤ 5.
Then g̃ is equivalent to one of

(2e13, 2e13, 0), g̃ = −e1 ⊗ e1 + e2 ⊗ e2 − e3 ⊗ e3,
(e15, e25, 2e12 + 2e35, 2e12 + 2e35, 0), g̃ = e1 ⊗ e1 + e2 ⊗ e2 − e3 ⊗ e3 + e4 ⊗ e4 − e5 ⊗ e5,
(e15, e25,−2e12 + 2e35,−2e12 + 2e35, 0), g̃ = −e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3 + e4 ⊗ e4 − e5 ⊗ e5.

Note that the 5-dimensional solvable Lie algebras appearing in Proposition 2.5.4 are
isomorphic; up to a sign, the metric of signature (1, 4) is isometric to Example 1.1.7,
which will appear again in the next chapter (Example 3.4.6).

In dimension 7, one can classify z-standard Sasaki-Einstein Lie algebras by using the
classification of four-dimensional Lie algebras with a pseudo-Kähler metric in [68]:
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Theorem 2.5.5. Let g̃ be a z-standard Sasaki-Einstein Lie algebra of dimension 7. Then
g̃ is equivalent to one of the following:

1. g̃ is the solvable Lie algebra

(e17, e27, e37, e47, 2ε1e
12 + 2ε2e

34 + 2e57, 2ε1e
12 + 2ε2e

34 + 2e57, 0)

with metric

g̃ = ε1(e
1 ⊗ e1 + e2 ⊗ e2) + ε2(e

3 ⊗ e3 + e4 ⊗ e4) + γ, ε1, ε2 ∈ {+1,−1};

2. g̃ is the solvable Lie algebra(2
3
e17,

2

3
e27,

a

3
e27 +

4

3
e37 + e12,−a

3
e17 +

4

3
e47,

2(e13 + e24 + ae12 + e57), 2(e13 + e24 + ae12 + e57), 0
)

with metric

g̃ = −a(e1 ⊗ e1 + e2 ⊗ e2) + e1 ⊙ e4 − e2 ⊙ e3 + γ, a ∈ R;

3. g̃ is the solvable Lie algebra(2
3
e17,

2

3
e27,

b

3
e17 +

4

3
e37 + e12,

b

3
e27 +

4

3
e47,

2a(e13+e24)+2(e14−e23+be12+e57), 2a(e13+e24)+2(e14−e23+be12+e57), 0
)

with metric

g̃ = −b(e1 ⊗ e1 + e2 ⊗ e2) + a(e1 ⊙ e4 − e2 ⊙ e3)− e1 ⊙ e3 − e2 ⊙ e4 + γ, a, b ∈ R;

where I have set γ = −e5 ⊗ e5 + e6 ⊗ e6 − e7 ⊗ e7.

Proof. By Theorem 2.4.1, every z-standard Sasaki Lie algebra can be obtained by ex-
tending a four-dimensional pseudo-Kähler Lie algebra ǧ. By the classification of [68],
there are the following possibilities:

1. ǧ is abelian; one can assume that the metric is either positive-definite or neutral.
Then one obtains the Lie algebras of Example 2.4.7, i.e.

g̃ = (e17, e27, e37, e47, 2ε1e
12 + 2ε2e

34 + 2e57, 2ε1e
12 + 2ε2e

34 + 2e57, 0)

with metric

g̃ = ε1(e
1 ⊗ e1 + e2 ⊗ e2) + ε2(e

3 ⊗ e3 + e4 ⊗ e4)− e5 ⊗ e5 + e6 ⊗ e6 − e7 ⊗ e7,

where ε1, ε2 = ±1.
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2. ǧ = (0, 0, e12, 0), with Je1 = e2, Je3 = e4, and ω = e13 + e24 + ae12 for a ∈ R.
Then

ǧ = −a(e1 ⊗ e1 + e2 ⊗ e2) + e1 ⊙ e4 − e2 ⊙ e3.

The generic Ď satisfying the hypothesis of Proposition 2.4.6 is

Ď =


2
3 0 0 0
0 2

3 0 0
λ a

3
4
3 0

−a
3 λ 0 4

3

 .

By Theorem 2.4.9, one can assume λ = 0. Therefore, the extension is

g̃ =
(2
3
e17,

2

3
e27,

a

3
e27 +

4

3
e37 + e12,−a

3
e17 +

4

3
e47,

2e13 + 2e24 + 2ae12 + 2e57, 2e13 + 2e24 + 2ae12 + 2e57, 0
)

with the metric
g̃ = ǧ − e5 ⊗ e5 + e6 ⊗ e6 − e7 ⊗ e7.

3. ǧ = (0, 0, e12, 0) with Je1 = e2, Je3 = e4, and ω = a(e13 + e24) + e14 − e23 + be12 for
a, b ∈ R. Then

ǧ = −b(e1 ⊗ e1 + e2 ⊗ e2) + a(e1 ⊙ e4 − e2 ⊙ e3)− e1 ⊙ e3 − e2 ⊙ e4.

The generic Ď satisfying the hypothesis of Proposition 2.4.6 is

Ď =


2
3 0 0 0
0 2

3 0 0

aλ+ b
3 −λ 4

3 0

λ aλ+ b
3 0 4

3

 .

Again, one may assume λ = 0 and obtain

g̃ =
(2
3
e17,

2

3
e27,

b

3
e17 +

4

3
e37 + e12,

b

3
e27 +

4

3
e47,

2a(e13 + e24) + 2e14− 2e23 +2be12 +2e57, 2a(e13 + e24) + 2e14− 2e23 +2be12 +2e57, 0
)

with the metric
g̃ = ǧ − e5 ⊗ e5 + e6 ⊗ e6 − e7 ⊗ e7.

I conclude the chapter by presenting some examples of pseudo-Kähler Lie algebras
in dimension 6, which are candidates to extend to a 9-dimensional z-standard Sasaki
Einstein Lie algebra.
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Example 2.5.6. Consider the 6-dimensional Lie algebra g = (0, 0, 0, e12, e13, e14 − e23),
denoted by h11 in [34]; by [70, 21], it admits a one-parameter family of complex structures.
By the work of [34], it is known that it has a four-dimensional space of compatible pseudo-
Kähler metrics.

Instead of fixing the complex structure, I use the explicit form of the two families of
pseudo-Kähler structures given in [73].

The first one is ω1 = e16 − λe25 − (λ − 1)e34, which has as compatible canonical
complex structure

J1(e2) = (1 + b)ae1, J1(e4) = ae3, J1(e6) =
(1 + b)a

b
e5

and metric g1 = ω1J1; while the second one is ω2 = e16 + e24− 1
2(e

25− e34) which has as
canonical complex structure compatible

J2(e2) = −ae1, J2(e3) =
3

2a
e4 +

3

a
e5, J2(e4) = −

2

3
ae3 −

1

a
e6, J2(e6) = −2ae5

and metric g2 = ω2J2.
In the first case, imposing [D,J1] = 0 gives

D =



µ1
3 0 0 0 0 0
0 µ1

3 0 0 0 0
µ2
b −a2 µ3b (b+ 1) 2µ1

3 0 0 0
µ3
b µ2 +

µ2
b 0 2µ1

3 0 0
µ4
b −a2 µ5b (b+ 1)2 µ2 +

µ2
b −a2 µ3b (b+ 1) µ1 0

µ5 µ4 µ3 µ2 0 µ1


and imposing Ds = Id gives µ1 = 3

2 and µi = 0 for i = 2, . . . , 5, that is

D =



1
2 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 3

2 0
0 0 0 0 0 3

2

 .

On the other hand, [D,J2] = 0 gives

D =



µ1
3 0 0 0 0 0
0 µ1

3 0 0 0 0

2µ2 −2
3(2a

2µ3 + µ1)
2µ1
3 0 0 0

2µ3 +
µ1
a2

3µ2 0 2µ1
3 0 0

2(µ4 + 2µ3 +
µ1
a2
) −2(a2µ5 + 3µ2) 3µ2 −2

3(2a
2µ3 + µ1) µ1 0

µ5 µ4 µ3 µ2 0 µ1


but imposing Ds = Id does not yield any solution for the µi.
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Example 2.5.7. The following example shows a z-standard Sasaki-Einstein g̃ obtained
by extending a 6-dimensional pseudo-Kähler Lie algebra with a derivation Ď which is
not a multiple of the cu(p, q)-Nikolayevsky derivation. Consider the Lie algebra ǧ =
(0, 0, e12, 0, 0, 0) with symplectic form ω = e13+ e24+ e56 and complex structure J(e1) =
e2, J(e3) = e4 and J(e5) = e6. Then

Ď =



2
3 0 0 0 0 0
0 2

3 0 0 0 0
µ 0 4

3 0 λ −ν
0 µ 0 4

3 ν λ
ν −λ 0 0 1 −ρ
λ ν 0 0 ρ 1


satisfies the hypothesis of Proposition 2.4.6, and therefore determines a z-standard Sasaki-
Einstein g̃ Lie algebra of dimension 9. The derivation Ď is not diagonalizable over R, but
has eigenvalues (23 ,

2
3 , 1 − iρ, 1 + iρ, 43 ,

4
3); therefore, Ď is only a multiple of the cu(p, q)-

Nikolayevsky derivation when ρ is zero. Note, however, that all the resulting extensions
are isometric by Theorem 2.4.9.



Chapter 3

Embeddings with Killing spinors

In this chapter, I will prove an embedding result in the more general, non-invariant
setting of pseudo-Riemannian spin manifolds admitting a Killing spinor. This result
generalizes the known cases obtained in [1] and [6] as the one presented here holds in
general signature and for λ ̸= 0, although I require the extended metric to be Einstein.

The proof will be approached as follows: first, assuming (M, g) is a hypersurface
of signature (r, s), with r + s = n, embedded in a pseudo-Riemannian manifold (Z, h)
endowed with a Killing spinor, I will give a characterization of the geometry of (M, g),
which will depend on the signature of (Z, h). The structure that arises will be called
weakly harmful. Next, I will prove that a weakly harmful real analytic hypersurface
that satisfies another technical condition embeds isometrically in an Einstein pseudo-
Riemannian manifold one dimension higher and endowed with a Killing spinor. In the
first section, I will recall and adapt to the indefinite setting some classical results obtained
by Koiso in [56]. Subsequently, I will show how the hypersurface is characterized, giving
the precise definition of the structure. In the remaining two sections, the embedding
process will play out, first proving the isometric embedding, then extending the weakly
harmful structure to a Killing spinor. I will conclude the chapter with a concrete example
of a Lie algebra admitting a harmful structure. This result appears in a joint work with
my supervisor in [33].

3.1 Hypersurfaces in Einstein manifolds

In this section, I recall Koiso’s characterization of real analytic pseudo-Riemannian man-
ifolds (M, g) which can be immersed as hypersurfaces in an Einstein manifold (see [56]).
Whilst Koiso works in Riemannian signature, the proof works in the same way for arbi-
trary signature, though statements need to be adapted slightly.

The Einstein manifold will take the form of a generalized cylinder in the sense of [6],
i.e. a product Z = M × (a, b) endowed with a metric of the form gt + dt2, with {gt} a
one-parameter family of metrics on M . In the calculations, I will often drop the subscript
t for simplicity.

The isometric embedding of (M, g) in the generalized cylinder will be obtained by

69
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imposing the initial condition g0 = g. The Einstein condition is a PDE which can be
expressed purely in terms of {gt}; however, it will be convenient to write it in terms of
both {gt} and the Weingarten operators {At}. Notice that the second fundamental form
of the hypersurface M × {t} can be identified with −1

2 ġt, so

ġt(X,Y ) = −2gt(At(X), Y ). (3.1)

I will need to consider the operator δ acting on tensors of type (k, h) as{
(δT )(v1, . . . , vk, α

1, . . . , αh−1) = −
∑n

i=1(∇eiT )(v1, . . . , vk, ei, α1, . . . , αh−1), h > 0

(δT )(v1, . . . , vk−1) = −
∑n

i=1(∇eiT )((ei)♯, v1, . . . , vk−1), h = 0

For the remainder of the chapter, {ei} denotes any frame, and {ei} its dual frame. In
general, {ei} will be an orthonormal frame, so that the metric takes the form

ε1e
1 ⊗ e1 + · · ·+ εne

n ⊗ en,

where εi = ±1.
Notice that for vector fields, δX = −DivX, and for 1-forms δα = d∗α; in particular,

∆f = δ(df) for any function f .

Theorem 3.1.1 (Koiso [56]). Let {gt} and {At} be real analytic one-parameter families
of metrics (resp. symmetric (1,1) tensors) on M defined on the interval (a, b), satisfying{

ġt(X,Y ) = −2gt(A(X), Y )

Ȧ = −Ric(gt) + (trA)A+K Id

Assume further that

s = (n− 1)K − trA2
0 + (trA0)

2, d trA0 + δA0 = 0. (3.2)

Then gt + dt2 is an Einstein metric on M × (a, b) with Einstein constant K.

As an immediate consequence, one obtains:

Corollary 3.1.2. A real analytic pseudo-Riemannian manifold (M, g) of signature (r, s)
embeds isometrically as a hypersurface in an Einstein manifold of signature (r+1, s) with
RicZ = K Id if and only if it admits a symmetric (1, 1) tensor A such that

s = (n− 1)K − trA2 + (trA)2, d trA+ δA = 0. (3.3)

Proof. Apply the Cauchy-Kovaleskaya theorem.

Corollary 3.1.3. A real analytic pseudo-Riemannian manifold (M, g) of signature (r, s)
embeds isometrically as a hypersurface in an Einstein manifold of signature (r, s+1) with
RicZ = K Id if and only if it admits a symmetric (1, 1) tensor A such that

s = (n− 1)K + trA2 − (trA)2, d trA+ δA = 0. (3.4)
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Proof. Let g̃ = −g be the opposite metric, with signature (s, r). Then R̃ic = −Ric,
s̃ = −s, and δ̃A = δA. Write also Ã = −A. Then

s̃ = (n− 1)(−K)− tr Ã2 + (tr Ã)2, d tr Ã+ δÃ = 0.

Therefore, one obtains a generalized cylinder g̃t + dt2 with RicZ = −K Id. By reversing
the sign of the metric, one finds that gt − dt2 satisfies RicZ = K Id.

3.2 Characterization of hypersurfaces

In this section, I study the geometry of a hypersurface embedded in a pseudo-Riemannian
manifold with a (nonzero) Killing spinor. One can show that the hypersurface inherits
two spinors which satisfy a coupled differential system involving a symmetric tensor A,
which corresponds to the second fundamental form.

Recall from the first chapter that, if Clr,s is the Clifford algebra of signature (r, s)
and Σr,s the spinor representation, by definition, Σr,s is a representation of Clr,s; if r+ s
is even and positive, Σr,s splits into the sum of two representations of Spinr,s, denoted
by Σ+

r,s and Σ−
r,s, which can be identified as the ±1-eigenspaces of Clifford multiplication

by the volume form when r − s is a multiple of 4, or the ±i-eigenspaces if r − s is not a
multiple of 4.

Let N be a spin manifold of dimension n endowed with a pseudo-Riemannian metric
of signature (r, s), and let ΣN denote the bundle of complex spinors; recall that ΣN
splits as Σ+N ⊕ Σ−N when n is even. Clifford multiplication gives a bundle map

TN ⊗ ΣN → ΣN, v ⊗ ψ 7→ v · ψ.

Let e1, . . . , en be a positively-oriented orthonormal basis of TN . Recall from Proposi-
tion 1.2.10 that the volume element ω = e1 · · · er+s in Clr,s, r + s = n satisfies

ω2 = (−1)
n(n+1)

2
+s, eiω = (−1)n−1ωei.

In other words,

ω2 =

{
1 r − s = 0, 3 mod 4

−1 r − s = 1, 2 mod 4
.

Now suppose (Z, h) is a pseudo-Riemannian spin manifold with a Killing spinor Ψ,
i.e. ∇XΨ = λX ·Ψ for any vector field X of Z, where λ is a complex constant. Since I
am interested in hypersurfaces of Z, I will denote by n + 1 the dimension of Z. As the
volume element is parallel, one has

∇X(ω ·Ψ) = ω · ∇XΨ = λω ·X ·Ψ = (−1)nλX · (ω ·Ψ).

Thus, ω ·Ψ is also Killing. Assume n is even. Then if λ ̸= 0, Ψ and ω ·Ψ are necessarily
independent, since they have opposite Killing numbers. In general, one can decompose
Ψ as Ψ+ +Ψ− and hence obtain

∇XΨ+ = λX ·Ψ−,∇XΨ− = λX ·Ψ+.
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Let (M, g) be an oriented hypersurface, call ι : M → Z the embedding, and let ν be
a normal vector field, normalized so that h(ν, ν) = 1 or h(ν, ν) = −1. Then M is also
spin and one can define a bundle morphism from the complex Clifford bundle ClM to
ι∗ClZ,

v 7→ ν · v (resp. v 7→ iν · v). (3.5)

Recall that the Clifford algebra is graded over Z2 (see e.g. [60]); accordingly there
is a splitting ClZ = Cl0 Z ⊕ Cl1 Z. The bundle map (3.5) is an isomorphism onto
ι∗Cl0 Z; indeed, it restricts to an algebra isomorphism on each fiber, realizing Clifford
multiplication on M as

v ⊙ w = ν · v · w (resp. v ⊙ w 7→ iν · v · w).

Recalling that n denotes the dimension of M , one obtains the identifications

Σ+M ⊕ Σ−M = ι∗ΣZ, n even,
ΣM = ι∗Σ+Z, n odd.

(3.6)

It was shown in [62] that a hypersurface inside a Riemannian manifold of dimension 3
with a Killing spinor inherits a spinor ψ satisfying

∇Xψ =
1

2
A(X)⊙ ψ + λX ⊙ ω ⊙ ψ;

this generalizes in a straightforward way to arbitrary hypersurfaces of signature (r, s) in
manifolds with signature (r + 1, s), with r + s even, as

∇Xψ =
1

2
A(X)⊙ ψ + λi

s−r+2
2 X ⊙ ω ⊙ ψ. (3.7)

For r + s odd, the following holds:

Theorem 3.2.1. Let Z be a pseudo-Riemannian spin manifold of dimension n+ 1 and
signature (r + 1, s), with n odd, endowed with a Killing spinor Ψ such that

∇ΣZ
X Ψ = λX ·Ψ, λ ∈ C,

and let M be an oriented hypersurface of signature (r, s), with Weingarten operator
A(X) = −∇ΣZ

X ν. Write Ψ = Ψ+ + Ψ−, and define spinors ψ and φ on M by re-
stricting Ψ+ and ν · Ψ− and applying the isomorphism (3.6). Then φ and ψ satisfy the
coupled differential system{

∇ΣM
X ψ = 1

2A(X)⊙ ψ + λX ⊙ φ
∇ΣM
X φ = λX ⊙ ψ − 1

2A(X)⊙ φ.
(3.8)

and the restriction of Ψ to M is given by ψ − νφ.



3.2. CHARACTERIZATION OF HYPERSURFACES 73

Proof. From equation (3.5) of [6] it is known that

∇ΣZ
X Ψ+ = ∇ΣM

X ψ − 1

2
ν ·A(X) · ψ, X ∈ TM.

Using (3.5), ν · ν = −1 and the fact that Clifford multiplication by a vector interchanges
Σ+ and Σ−, one obtains

∇ΣM
X ψ = λν ·X · (ν ·Ψ−) +

1

2
A(X)⊙ ψ = λX ⊙ φ+

1

2
A(X)⊙ ψ,

and similarly,

∇ΣM
X φ− 1

2
ν ·A(X) · φ = ∇ΣZ

X (ν ·Ψ−) = ν · λX ·Ψ+ −A(X) ·Ψ−.

Thus

∇ΣM
X φ =

1

2
ν ·A(X) · φ+ λX ⊙ ψ +A(X) · ν · φ = λX ⊙ ψ − 1

2
A(X)⊙ φ.

In the same way one proves a similar result in the case that the normal is timelike.

Theorem 3.2.2. Let Z be a pseudo-Riemannian spin manifold of dimension n+ 1 and
signature (r, s+ 1), with n odd, endowed with a Killing spinor Ψ, so that

∇ΣZ
X Ψ = λX ·Ψ, λ ∈ C,

and let M be an oriented hypersurface of signature (r, s) with A(X) = ∇ΣZ
X ν the Wein-

garten operator.
Write Ψ = Ψ++Ψ−, and define spinors ψ and φ on M by restricting Ψ+ and iν ·Ψ−

and applying the isomorphism (3.6). Then φ and ψ satisfy the coupled differential system{
∇ΣM
X φ = i

2A(X)⊙ φ+ λX ⊙ ψ
∇ΣM
X ψ = λX ⊙ φ− i

2A(X)⊙ ψ,
(3.9)

and the restriction of Ψ to M is given by ψ − iνφ.

Remark 3.2.1. In the even case, (3.8) and (3.9) still hold if one sets φ = i
s−r+2

2 ω ⊙ ψ,
where ω is the volume form in M . In this case, φ is the restriction of ν · Ψ under
the isomorphism (3.6). Notice that this is simply a different way of writing (3.7) or its
timelike analogue.

Recall that the constant λ appearing in the Killing spinor equation, and hence equa-
tions (3.8) and (3.9), is either real or purely imaginary.

These equations characterize a geometry that gives rise to a Killing spinor in one
dimension higher, but only potentially; to indicate this, the structure will be called
harmful. More precisely, given a pseudo-Riemannian spin manifold (M, g) of signature
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(r, s), I will say that a weakly harmful structure on (M, g) is a pair of nowhere vanishing
spinors (φ,ψ) satisfying either (3.8) or (3.9) for some symmetric tensor A and some
constant λ, either real or purely imaginary; if r + s is even, I further require that φ =

i
s−r+2

2 ω · ψ where ω is the volume form. The weakly harmful structure will be called
real if (3.8) holds and imaginary if (3.9) holds. If the symmetric tensor A additionally
satisfies

d trA+ δA = 0,

(φ,ψ) will be called a harmful structure.

Remark 3.2.2. In Corollary 3.3.4 I will show that, on a Riemannian manifold, a real
weakly harmful structure is necessarily harmful.

Theorem 3.2.1 and its timelike counterpart, Theorem 3.2.2, show that any nondegen-
erate hypersurface inside an Einstein pseudo-Riemannian manifold (Z, h) endowed with
a Killing spinor inherits a harmful structure. If (Z, h) is not assumed to be Einstein, one
obtains a weakly harmful structure (see Corollary 3.1.2 and Corollary 3.1.3).

Notice that for λ = 0, ψ satisfies an equation analogous to the generalized Killing
spinor equation of [6], with a factor of −i if one takes the normal to be timelike, rather
than spacelike.

3.3 Isometric embedding in an Einstein spin manifold

In this section I prove that a real analytic pseudo-Riemannian spin manifold of signature
(r, s) with a harmful structure can be embedded isometrically in a pseudo-Riemannian
Einstein manifold, of signature (r+1, s) or (r, s+1) accordingly to whether the harmful
structure is real or imaginary. I will present the detailed proofs only for real harmful
structures, as the imaginary case is entirely similar.

Since in this section all spinors are on the same manifold M , I will omit the symbol
⊙ and indicate Clifford multiplication by juxtaposition.

Given a harmful structure satisfying (3.8) or (3.9), it will be convenient to introduce
the tensor

F (X,Y ) = (∇XA)(Y )− (∇YA)(X).

I begin with the following Lemma regarding the spinorial Riemann tensor of (M, g):

Lemma 3.3.1. Let (M, g) be a pseudo-Riemannian spin manifold with a real (weakly)
harmful structure (φ,ψ), and let X,Y ∈ TM be two vector fields. Then the curvature of
M satisfies

RMXY ψ =
1

2

(
F (X,Y ) +A(Y )A(X) + g

(
A(Y ), A(X)

))
ψ

+ 2λ2
(
Y X + g(X,Y )

)
ψ.

(3.10)



3.3. ISOMETRIC EMBEDDING IN AN EINSTEIN SPIN MANIFOLD 75

Proof. By applying twice (3.8), the curvature tensor RXYΨ becomes

RMXY ψ =∇X∇Y ψ −∇Y∇Xψ −∇[X,Y ]ψ =

=
1

2
(∇X(A(Y ))ψ +A(Y )∇Xψ) + λ(∇XY φ+ Y∇Xφ)

− 1

2
(∇Y (A(X))ψ +A(X)∇Y ψ)− λ(∇YXφ+X∇Y φ)

− 1

2
A([X,Y ])ψ − λ[X,Y ]φ

=λT∇(X,Y )φ+
1

2

(
(∇XA)(Y )− (∇YA)(X) +A

(
T∇(X,Y )

))
ψ

+
1

2

[
A(Y )

(
1

2
A(X)ψ + λXφ

)
+ λY

(
λXψ − 1

2
A(X)φ

)]
− 1

2

[
A(X)

(
1

2
A(Y )ψ + λY φ

)
+ λX

(
λY ψ − 1

2
A(Y )φ

)]
where T∇ = 0 is the torsion of the Levi Civita connection. One gets

RMXY ψ =− λ

2

(
A(Y )X − Y A(X)−A(X)Y +XA(Y )

)
φ

+
(1
2
F (X,Y ) +

1

4

(
A(Y )A(X)−A(X)A(Y )

)
+ λ2

(
Y X −XY

))
ψ

Since for the Clifford product vw +wv = −2g(v, w) and A is self-adjoint, the coefficient
of φ equals zero and the statement follows.

The following Lemma gives an expression for the Ricci tensor on a manifold for which
the curvature satisfies (3.10).

Lemma 3.3.2. Assume that (M, g) is an n-dimensional pseudo-Riemannian spin man-
ifold with a real (weakly) harmful structure and fix an orthonormal frame (e1, . . . , en) for
TM . Then the Ricci operator of M satisfies

Ric(X)ψ =
(
4(n− 1)λ2X + (trA)A(X)−A2(X)

)
ψ

+

(
∇X(trA) +

n∑
k=1

εkek(∇ekA)(X)

)
ψ.

Proof. It is known, for example from equation (1.13) of [20], that

Ric(X) · ψ = −2
n∑
k=1

εksk · RXskψ, (3.11)

which holds for any orthonormal basis (s1, . . . , sn), where ⟨si, sj⟩ = εiδij . Fix now an
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orthonormal frame (e1, . . . , en) for TM , so that ⟨ei, ej⟩ = gij = εiδij .

Ric(X)ψ =− 2
n∑
k=1

εkek

(
2λ2(ekX + g(X, ek)) +

1

2
F (X, ek)

+
1

2

(
A(ek)A(X) + g

(
A(ek), A(X)

)))
ψ

=

(
4λ2(n− 1)X −

n∑
k=1

εkek

(
(∇XA)(ek)− (∇ekA)(X)

)
−

n∑
k=1

εkek

(
A(ek)A(X) + g

(
A(ek), A(X)

)))
ψ.

Recall that for any symmetric tensor W the following formula holds

n∑
i=1

εiei ·W (ei) = − tr(W ). (3.12)

Then one gets

Ric(X)ψ =

(
4(n− 1)λ2X −

n∑
k=1

εkek

(
A(ek)A(X) + g

(
ek, A

2(X)
))

+
(
tr(∇XA) +

n∑
k=1

εkek(∇ekA)(X)
))

ψ

=

(
4(n− 1)λ2X + (trA)A(X)−A2(X)

+
(
∇X(trA) +

n∑
k=1

εkek(∇ekA)(X)
))
ψ.

The next lemma relates the scalar curvature of M to the tensor A.

Lemma 3.3.3. Let (M, g) be pseudo-Riemannian spin manifold endowed with a real
(weakly) harmful structure (φ,ψ). Then

scalg ψ = (4n(n− 1)λ2 − tr(A2) + (trA)2)ψ − 2(d trA+ δgA) · ψ. (3.13)

Proof. By (3.12), one can write

− scalg ψ =
n∑
j=1

εjej Ric(ej)ψ =
n∑
j=1

εjej

[
4(n− 1)λ2ej + (trA)A(ej)−A2(ej)

+
(
∇ej (trA) +

n∑
k=1

εkek (∇ekA)(ej)
)]
ψ.
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All terms are straightforward to compute, except the last one that yields
n∑
j=1

εjej

n∑
k=1

εkek (∇ekA)(ej) =
n∑

j,k=1

εjεk(−ek ej − 2⟨ej , ek⟩) (∇ekA)(ej)

=−
n∑

j,k=1

εk

(
ek
(
εjej (∇ekA)(ej)

)
+ 2ε2jδjk (∇ekA)(ej)

)
=

n∑
k=1

εkek tr
(
∇ekA

)
− 2

n∑
k=1

εk(∇ekA)(ek)

=d trA+ 2δgA.

Putting everything together it follows that

scalg ψ =
(
4n(n− 1)λ2 + (trA)2 − tr(A2)

)
ψ − 2

(
d trA+ δgA

)
· ψ.

As an immediate consequence

Corollary 3.3.4. On a Riemannian spin manifold, any real weakly harmful structure is
harmful.

Proof. Write (3.13) as(
scalg −4n(n− 1)λ2 − (trA)2 + tr(A2)

)
ψ = −2(d trA+ δgA) · ψ;

this equation has the form fψ = X · ψ, which implies that f = X = 0 since

f2ψ = fX · ψ = XfΨ = X ·Xψ = −|X|2ψ,

and ψ is nowhere zero. Thus

scalg = 4n(n− 1)λ2 − tr(A2) + (trA)2, d trA+ δgA = 0.

Remark 3.3.1. Notice that positive definiteness of g is essential in the proof of Corol-
lary 3.3.4, as otherwise the vanishing of |X|2 would not imply the vanishing of X. Notice
also that considering an imaginary weakly harmful structure rather than a real one would
make an imaginary unit appear, invalidating the argument.

Analogous results to Lemma 3.3.1, Lemma 3.3.2 and Lemma 3.3.3 can be proved for
imaginary harmful structures; the proofs are completely analogous. I summarize these
results in the following:

Lemma 3.3.5. Assume that (M, g) is an n-dimensional pseudo-Riemannian spin man-
ifold with an imaginary harmful structure. Then:

• the curvature satisfies

RMXY ψ =
1

2

(
A(X)A(Y ) + g

(
A(Y ), A(X)

)
− iF (X,Y )

)
ψ

+ 2λ2(Y X + g(X,Y ))ψ;
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• the Ricci operator satisfies

Ric(X)ψ =
(
4(n− 1)λ2X − (trA)A(X) +A2(X)

)
ψ

− i

(
∇X(trA) +

n∑
k=1

εkek(∇ekA)(X)

)
ψ;

• the scalar curvature satisfies

scalg ψ = (4n(n− 1)λ2 + tr(A2)− (trA)2)ψ + 2i(d trA+ δgA) · ψ.

I can now prove the main result of this section. It can be viewed as a generalization of
a result of [1] for generalized Killing spinors in Riemannian manifolds; this results differs
in that it allows nonzero λ, though the proof is similar.

Proposition 3.3.6. Let (M, g) be a real analytic pseudo-Riemannian spin manifold of
dimension n and signature (r, s) with a real (resp. imaginary) harmful structure (φ,ψ).
Then (M, g) can be embedded isometrically in a pseudo-Riemannian Einstein manifold
(Z, h) of signature (r+1, s) (resp. (r, s+1)), with constant scalar curvature 4n(n+1)λ2.

Proof. It is sufficient to apply Corollaries 3.1.2 or 3.1.3 appropriately; d trA+δgA is zero
by assumption, and the scalar curvature satisfies (3.3) or (3.4) thanks to Lemma 3.3.3
and Lemma 3.3.5.

3.4 Spinor extension

In this section, I improve the results of the previous section, showing that the spinors
defining the harmful structure actually extend to Killing spinors on (Z, h).

As the arguments for the real and imaginary case are quite similar, I will give the
complete proof of only the first one, hence h(ν, ν) = 1. Throughout this section, let
(M, g) be a real analytic pseudo-Riemannian manifold with a real harmful structure
(ψ,φ), and consider M to be embedded into an Einstein manifold (Z, h). Following [1],
I will exploit the fact that a spinor on Z is Killing if and only if it is parallel relative to
the modified connection

∇̃XΦ = ∇XΦ− λX · Φ.

Now define a spinor Ψ on Z by parallel transport of ψ (n even) or ψ−νφ (n odd) relative
to ∇̃ along the geodesics tangent to ν. Clearly, since ∇̃νΨ = 0, one gets that

∇νΨ = λν ·Ψ. (3.14)

Hence Ψ extends ψ and it satisfies the Killing equation for ν at least. The next part is
not as trivial. One starts by computing ∇̃ZXΨ|(M,0), i.e. the restriction of ∇̃ZXΨ to M
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seen as a hypersurface embedded in Z. One needs to consider the even and odd case
separately: the former gives

∇̃ZXΨ|(M,0) = ∇ZXΨ|(M,0) − λX ·Ψ = ∇MX ψ −
1

2
ν ·A(X) ·Ψ− λX ·Ψ

= λX ⊙ φ+
1

2
A(X)⊙ ψ − 1

2
A(X)⊙ ψ − λX ·Ψ

= λν ·X · (ν · ψ)− λX ·Ψ|(M,0) = λX · ψ − λX · ψ = 0,

while the latter is

∇̃ZXΨ|(M,0) =∇ZXΨ|(M,0) − λX ·Ψ = ∇MX (ψ − νφ)− 1

2
ν ·A(X) ·Ψ− λX ·Ψ

=
1

2
A(X)⊙ ψ + λX ⊙ φ−∇MX ν ⊙ φ− ν

(
λX ⊙ ψ − 1

2
A(X)⊙ φ

)
− 1

2
A(X)⊙ (ψ − νφ)− λν ⊙X ⊙ (ψ − νφ) = 0.

Thus, the restriction of Ψ to M is parallel with respect to this connection both in the
even and in the odd case. Following [6], I prove that Ψ is Killing by showing that ∇̃XΨ
is zero for all vector fields X on Z obtained by extending a vector field on M by parallel
transport along ν, meaning that ∇νX = 0; this condition implies

[X, ν] = ∇Xν = −A(X).

Throughout this section, the vector fields denoted by X or Y will be assumed to be of
this type.

In order to show that ∇̃XΨ vanishes on Z, it will be sufficient to prove

∇ν∇̃XΨ = 0, (3.15)

as ∇̃XΨ is identically zero on M .

Lemma 3.4.1. Fix a spinor ψ on M and consider its extension Ψ to Z via ∇̃-parallel
transport along ν. Then

∇ν∇̃XΨ = RνXΨ+ 2λ2νXΨ+ λν∇̃XΨ+ ∇̃A(X)Ψ.

Proof. One has

∇ν∇̃XΨ = ∇ν∇XΨ− λ
(
∇νXΨ+X∇νΨ

)
= ∇ν∇XΨ− λ2XνΨ

0 = ∇X∇̃νΨ = ∇X∇νΨ− λ
(
∇XνΨ+ ν∇XΨ

)
= ∇X∇νΨ+ λ

(
A(X)Ψ− ν∇XΨ

)
.

Thus, subtracting the second one from the first one obtains

∇ν∇̃XΨ = RZνXΨ+∇A(X)Ψ− λ2XνΨ− λ
(
A(X)Ψ− ν∇XΨ

)
= RZνXΨ+ λ

(
λνXΨ+ ν∇XΨ

)
+ ∇̃A(X)Ψ

= RνXΨ+ 2λ2νXΨ+ λν∇̃XΨ+ ∇̃A(X)Ψ



80 CHAPTER 3. EMBEDDINGS WITH KILLING SPINORS

Recall that (Z, h) is an Einstein manifold, that is RicZ = ch, where c = 4nλ2.
Following [1], I define the sections L,P of (ν⊥)∗⊗ΣZ and a section Q of

∧2(ν⊥)∗⊗ΣZ
as

P (X) =RZνXΨ+ 2λ2νXΨ, L(X) =∇̃XΨ,
Q(X,Y ) =RZXYΨ+ 2λ2

(
XY + ⟨X,Y ⟩

)
Ψ,

and note that by Lemma 3.4.1

(∇νL)(X) = ∇ν∇̃XΨ = P (X) + λνL(X) + L(A(X)). (3.16)

The strategy is to show that L,P,Q satisfy a linear, homogeneous PDE; zero is a solution,
so by uniqueness one deduces that L vanishes identically. It will simplify a bit the
argument to observe that P can be obtained from Q by means of a contraction, so that
the PDE can be expressed in terms of L and Q alone.

Lemma 3.4.2. The sections P and Q are related by

P (X) = νεjejQ(ej , X).

Proof. Writing (3.11) as 1
2 Ric(Y )ψ =

∑n
k=1 εkek · RekY ψ + νRνY ψ, one has

νRνY ψ =
1

2
Ric(Y )ψ − εjejRejY ψ

= 2λ2nY ψ − εjejQ(ej , Y ) + 2λ2εjejejY ψ + 2λ2εjej⟨ej , Y ⟩ψ
= 2λ2Y ψ − εjejQ(ej , Y ),

and by multiplying by ν one gets P (X) = νεjejQ(ej , X).

The previous lemma shows that P is obtained from Q by a contraction, so the right-
hand side of (3.16) can be expressed in terms of L and Q. The derivative of Q along ν
is given by the following:

Proposition 3.4.3. The section Q satisfies

∇νQ(X,Y ) = νεjej
(
(∇XQ)(ej , Y )− (∇YQ)(ej , X)

)
+ L2(X,Y ). (3.17)

where L2 depends linearly on L and Q.

Proof. By Lemma 3.4.2 one has

∇X(RνYΨ) =∇X(νεjejQ(ej , Y )− 2λ2νYΨ)

=νεjej
(
(∇XQ)(ej , Y ) +Q(∇Xej , Y ) +Q(ej ,∇XY )

)
−A(X)εjejQ(ej , Y ) + νεj(∇Xej)Q(ej , Y )

+ 2λ2
(
A(X)YΨ− ν∇XYΨ− νY∇XΨ

)
=νεjej(∇XQ)(ej , Y ) + 2λ2

(
A(X)YΨ− ν(∇XY )Ψ− λνY XΨ

)
+ U(X,Y ),
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where

U(X,Y ) =νεj

(
ej
(
Q(∇Xej , Y ) +Q(ej ,∇XY )

)
+ (∇Xej)Q(ej , Y )

)
−A(X)εjejQ(ej , Y )− 2λ2νY L(X)

depends linearly on L and Q; notice that U also depends on the connection form.
On the other hand,

∇X(RνYΨ) =(∇XR)νYΨ−RA(X)YΨ+Rν∇XYΨ+RνY (L(X) + λXΨ)

=(∇XR)νYΨ−Q(A(X), Y ) + 2λ2
(
A(X)Y + ⟨A(X), Y ⟩

)
Ψ

+ νεjejQ(ej ,∇XY )− 2λ2ν(∇XY )Ψ +RνY L(X)

+ λRνYX ·Ψ+ λX
(
νεjejQ(ej , Y )− 2λ2νYΨ)

=(∇XR)νYΨ+ 2λ2
(
A(X)Y + ⟨A(X), Y ⟩

)
Ψ− 2λ2ν(∇XY )Ψ

+ λRνYX ·Ψ− 2λ3XνYΨ+ V (X,Y ),

where

V (X,Y ) = −Q(A(X), Y ) + νεjejQ(ej ,∇XY ) +RνY L(X) + λXνεjejQ(ej , Y )

depends linearly on L and Q; notice that V also depends on the connection form and
the curvature.

Equating the terms and isolating (∇XR)νYΨ one obtains

(∇XR)νYΨ =νεjej(∇XQ)(ej , Y ) + 2λ2
(
A(X)YΨ− ν(∇XY )Ψ− λνY XΨ

)
− 2λ2

(
A(X)Y + ⟨A(X), Y ⟩

)
Ψ+ 2λ2ν(∇XY )Ψ− λRνYX ·Ψ

+ 2λ3XνYΨ+ U(X,Y )− V (X,Y )

=νεjej(∇XQ)(ej , Y )− 2λ2⟨A(X), Y ⟩Ψ+ 4λ3ν⟨X,Y ⟩Ψ
− λRνYX ·Ψ+ S(X,Y ),

where S(X,Y ) = U(X,Y )− V (X,Y ) depends linearly on L and Q.
Finally, one computes

∇νQ(X,Y ) =(∇νR)XYΨ+ λRXY ν ·Ψ+ λνRXYΨ+ 2λ3ν
(
XY + ⟨X,Y ⟩

)
Ψ

=(∇XR)νYΨ− (∇YR)νXΨ+ λRXY ν ·Ψ+ λνRXYΨ
+ 2λ3ν

(
XY + ⟨X,Y ⟩

)
Ψ

=νεjej(∇XQ)(ej , Y )− 2λ2⟨A(X), Y ⟩Ψ+ 4λ3ν⟨X,Y ⟩Ψ− λRνYX ·Ψ
−νεjej(∇YQ)(ej , X) + 2λ2⟨A(Y ), X⟩Ψ− 4λ3ν⟨Y,X⟩Ψ+ λRνXY ·Ψ
+λRXY ν ·Ψ+ λνRXYΨ+ 2λ3ν

(
XY + ⟨X,Y ⟩

)
Ψ+ S(X,Y )− S(Y,X)

=νεjej
(
(∇XQ)(ej , Y )− (∇YQ)(ej , X)

)
+ L2(X,Y ),

where L2(X,Y ) = λνQ(X,Y ) + S(X,Y )− S(Y,X).
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One is now able to prove the main theorem, which improves Proposition 3.3.6.

Theorem 3.4.4. Assume (M, g) is a real analytic pseudo-Riemannian spin manifold of
signature (r, s) with a harmful structure (ψ,φ). Then:

• if (ψ,φ) is real, (M, g) embeds isometrically in a pseudo-Riemannian Einstein spin
manifold (Z, h) with signature (r + 1, s) and Weingarten operator A;

• if (ψ,φ) is imaginary, (M, g) embeds isometrically in a pseudo-Riemannian Ein-
stein spin manifold (Z, h) with signature (r, s+ 1) and Weingarten operator A.

In both cases ψ extends to a Killing spinor Ψ on Z satisfying ∇ZXΨ = λXΨ for any
X ∈ TZ.

Proof. The isometric embedding follows from Proposition 3.3.6; as explained at the be-
ginning of this section, one can extend ψ to a spinor Ψ in such a way that (3.14) holds.
One only needs to prove that Ψ satisfies the Killing equation; this is equivalent to show-
ing that L(X) ≡ 0 on Z. It was shown above that L(X) is zero on M ×{0}. To see that
Q vanishes on M × {0}, let X,Y be vector fields on M , and write

Q(X,Y ) = ∇X∇YΨ−∇Y∇XΨ−∇[X,Y ]Ψ+ 2λ2(XY + ⟨X,Y )Ψ

= ∇X(λYΨ)−∇Y (λ∇XΨ)− λ[X,Y ]Ψ + 2λ2(XY + ⟨X,Y )Ψ

= λ(∇XY + λY X −∇YX − λXY − [X,Y ] + 2λXY + 2λ⟨X,Y ⟩)Ψ = 0.

Using (3.16) and Proposition 3.4.3 one sees that L and Q satisfy the linear PDE system{
(∇νL)(X) = λνL(X) + νεjejQ(ej , X) + L(A(X)) = L1(L,Q)

(∇νQ)(X,Y ) = νεjej
(
(∇XQ)(ej , Y )− (∇YQ)(ej , X)

)
= L2(L,Q).

By the Cauchy-Kowalewskaya Theorem it is known that the solution to the PDE system
is unique and, since L = 0 = Q is a solution, it is the only one. In particular L = 0 on
Z and Ψ is a Killing spinor.

Theorem 3.4.4 is not quite a generalization of the results of [1] for parallel spinors,
in that it entails the extra hypothesis d trA + δA = 0. However, if one restricts to the
Riemannian case, Corollary 3.3.4 can be applied to remove this extra hypothesis:

Corollary 3.4.5. Assume (M, g) is a real analytic Riemannian spin manifold with a
real weakly harmful structure (ψ,φ). Then (M, g) embeds isometrically in a Riemannian
spin manifold (Z, h) with Weingarten operator A, and ψ extends to a Killing spinor Ψ
on Z satisfying ∇ZXΨ = λXΨ for any X ∈ TZ.

Example 3.4.6. Consider the Lie algebra introduced in Example 1.3.13

g = (−2e23, 3e13 − 3e34,−3e12 + 3e24, 2e23)
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and consider on a Lie group G with Lie algebra g the metric associated to the scalar
product

g = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 − e4 ⊗ e4.

Recall from Example 1.3.11 that Cl3,1 = M(2,H), with an orthonormal basis of R3,1

given by

Ẽ1 =

(
i 0
0 −i

)
, Ẽ2 =

(
j 0
0 −j

)
, Ẽ3 =

(
0 1
−1 0

)
, Ẽ4 =

(
0 1
1 0

)
,

and notice that in this case

ω3,1 =

(
k 0
0 −k

)
.

Furthermore, recall from Example 1.3.13 that on the metric Lie algebra (g, g), the spin
covariant derivative assumes the form

∇ΣG =
1

2

[
2e1 ⊗ E2E3 − e2 ⊗ (E1E3 + E3E4) + e3 ⊗ (E1E2 + E2E4) + 2e4 ⊗ E2E3

]
.

Consider the spinors ψ = (i, 1, i, 1) and φ = (−i, 1, i,−1) and the endomorphism

A = e1 ⊗ (2e1 − e4) + e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e1.

Then (ψ,φ) is a harmful structure, that is, they satisfy the system (3.8) with λ = i/2 and
d trA+ δA = 0, and show that g extends to a 5-dimensional Einstein manifold endowed
with a Killing spinor.

Indeed, it suffices to show that

∇ΣG
X ψ =

1

2
A(X)ψ + λX · φ

for any X ∈ TG. Notice that

(E1 − E2E3)ψ = (E2 − E3E1)ψ = (E3 − E1E2)ψ = 0,

hence, the harmful condition is equivalent to the system

E4ψ − iE1φ = iE2φ− E3E4ψ = E2E4ψ − iE3φ = iE4φ− E2E3ψ = 0.

It is easy to see that these are satisfied, hence ∇Xψ = 1
2

(
A(X)ψ + iXφ

)
for any X ∈ g.

A similar computation shows that ∇Xφ = 1
2

(
iXψ −A(X)φ

)
.

Now consider the derivation

D = 2e1 ⊗ (e1 − e5) + e2 ⊗ e2 + e3 ⊗ e3.

Its symmetric part coincides with A; it follows that the semidirect product g̃ = g ⋊D

Span {e5} satisfies the equations of Theorem 3.1.1. Explicitly, one can write

g̃ = (2e15 − 2e23, e25 + 3e13 − 3e34, e35 − 3e12 + 3e24,−2e15 + 2e23, 0),
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and verify that the metric

g̃ = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 − e4 ⊗ e4 + e5 ⊗ e5

is Einstein with Ric = −4 Id and the spinor Ψ = (i, 1, i, 1) is Killing with Killing number
i/2. In fact, this is a Lorentz-Einstein-Sasaki metric; if one reverses the sign of the metric
along the Reeb vector field e4, one obtains the known η-Einstein-Sasaki metric on the
Lie algebra D22 in the classification of [38] (see also [9, 2]).

The Lie algebra in this example is isometric (but not isomorphic) via Proposition 1.1.5
to one of the Lie algebras appearing in the list of 5-dimensional z-standard Einstein-Sasaki
Lie algebras of Proposition 2.5.4.



Chapter 4

Diagonalization of the metric of a
Lorentzian 3-manifold

In this last chapter, I will present a result concerning the diagonalization problem for
Lorentzian metrics of 3-manifolds. Recall from the introduction that, in general, the
diagonalization problem amounts to determine if a n-dimensional (pseudo)-Riemannian
manifold (M, g) admits an atlas such that, in each chart, the metric assumes diagonal
form, i.e. if (x1, . . . , xn) is a set of coordinates of a chart around a point p ∈ M , the
metric can be written in the form

g =
n∑
i=1

fi(x1, . . . , xn)dx
i ⊗ dxi.

In the first section, I recall some classical notions and results regarding PDE’s systems,
in particular existence results concerning symmetric and diagonal hyperbolic systems.
Next, similarly to [37], I recast the problem in terms of moving frames by applying
Frobenius’ Theorem in order to circumvent the appearance of a gauge invariance and fix
a reference frame. The unknowns will take the form of functions bij ∈ C∞(M,SO(2, 1))
which will determine the appropriate coframe with respect to the reference one. There
are two key aspects to the remainder of the proof. On the one hand, one needs to prove
that the linearization of PDE system involving the {bij} is diagonal hyperbolic. On the
other hand, it must be proved that it is possible to construct non-characteristic initial
data for the associated Cauchy problem. The contents of the chapter appear in [72].

4.1 Diagonal hyperbolic systems

I will now recall some useful notions about symmetric hyperbolic and diagonal systems
of PDE’s, as they are crucial in the proof of the main theorem of the chapter. For
the remainder of the section, M will be a compact manifold of dimension n − 1 with
coordinates (x1, . . . , xn−1), while X =M× [0, 1] will have coordinates (x1, . . . , xn−1, t) =

85



86 CHAPTER 4. DIAGONALIZATION OF LORENTZIAN METRICS

(x′, t). A first order differential operator

P : C∞(X,Rm)→ C∞(X,Rm)

is called symmetric hyperbolic if it can be written in the form

P =
∂

∂t
+

n−1∑
i=1

Ai
∂

∂xi
+B, Ai, B ∈ C∞(X,End(X,Rm))

for some coordinates (x′, t) on X, where each Ai is symmetric. These type of operators
are useful as the following holds

Proposition 4.1.1 ([48, Section 6]). Let P be a symmetric hyperbolic operator and
consider a function f ∈ C∞(X,Rm). Then the system{

Pu = f

u(x′, 0) = u0

admits a solution for any u0 ∈ C∞(M,Rm), and such solution is unique.

Interestingly, something similar can be said about non-linear operators. These oper-
ators are usually of the form

∂u

∂t
= F

(
x′, t, u,

∂u

∂x1
, . . . ,

∂u

∂xn−1

)
,

where F ∈ C∞(V,Rm) and V ⊂ X × Rm × R(n−1)m is open. Considering the natural
splitting

T ∗
xX = T ∗

x′(M × {t})⊕ Rdt

the set V can be rewritten as V =
⋃
x Vx, where Vx is open and not empty in the space

Rm×T ∗
x′(M ×{t})×Rm, and, if ∂u

∂xα = uα, in V each point is described by (x, u, uαdx
α),

with u, uα ∈ Rm. Then a first order differential operator ∂u
∂t = F (x, u, uαdx

α) is said to
be symmetric hyperbolic if its linearization

∂u

∂t
−
∑
α

∂F

∂uα

∂

∂xα

is symmetric hyperbolic. In this case, the matrices
[
∂F i

∂ujα

]
ij

correspond to the Aα of

the first definition. An existence result for symmetric hyperbolic systems, which can be
found for example in [37], is the following

Theorem 4.1.2. Let F : V → Rm define a symmetric hyperbolic system. If u0 : M → Rm
satisfies (

x′, 0, u0(x
′),
∂u0
∂xα

(x′)dxα
)
∈ V ∀x′ ∈M,
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then there exists ε > 0 and a unique smooth function u : M × [0, ε] → Rm such that for
all x ∈M × [0, ε] the equality

∂u

∂t
= F

(
x, u(x),

∂u

∂xα
(x)dxα

)
holds and u(x′, 0) = u0(x

′) on M .

If one deforms the differential operator F in a suitable way, it is possible to obtain a
solution that agrees with the solution of F on M . More precisely

Theorem 4.1.3. Let F be a differential operator as in the previous theorem and let
u ∈ C∞(X,Rm) solve

∂u

∂t
= F

(
x, u,

∂u

∂xα
dxα

)
on all X. Then, if G is in a neighborhood of F in the C∞(V,Rm)-topology, there exists
a unique solution v : X → Rm of

∂v

∂t
= G

(
x, v(x),

∂v

∂xα
(x)dxα

)
such that v(x′, 0) = u(x′, 0) for all x′ ∈M .

The proof of both theorems can be found for example in Hamilton’s paper [50]. A
particular case of symmetric hyperbolic systems is given by the following. LetD1, . . . , Dm

be vector fields on X such that for any 1 ≤ α ≤ m and (x′, t) ∈ X the vector Dα(x
′, t)

is not tangent to M × {t}. Furthermore, let B ∈ C∞(X,End(Rm)), then the differential
operator

P =

D1 0
. . .

0 Dm

+B

is called diagonal hyperbolic.

Proposition 4.1.4. A diagonal hyperbolic operator as above is equivalent to a symmetric
hyperbolic operator.

Proof. In the coordinates (x1, . . . , xn−1, t) one can write

Dα = Dn
α

∂

∂t
+
n−1∑
i=1

Di
α

∂

∂xi

for 1 ≤ α ≤ m. As by hypothesis the Dα’s are not tangent to M × {t} and are globally
defined, Dn

α never vanish. Hence,D
n
1 0

. . .
0 Dn

m


−1

P

is symmetric hyperbolic.
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Clearly the previous result means that Theorems 4.1.2 and 4.1.3 hold for diagonal
hyperbolic systems too. Now, recall that the symbol of a linear operator

P =
n∑
i=1

Ai(x)
∂

∂xi
+B(x)

is the linear map defined for ξ = (ξ1, . . . , ξn) ∈ T ∗
xX as

σP (ξ) =

n∑
i=1

Ai(x)ξi, σP : (x, ξ)→ End(Rm).

The map σP is well defined on TX and does not depend on the coordinates. The
characteristic variety of the operator P is the set of (x, ξ) ∈ T ∗X such that σP (ξ) is not
invertible.

Example 4.1.5. Let P be a diagonal hyperbolic operator as before. Then the fibers of
the characteristic variety of P are m hyperplanes counted with multiplicity.

4.2 Orthogonal coordinates on Lorentzian manifolds

The theorem that I will have proved by the end of the chapter is the following

Theorem 4.2.1. Let (M, g) be a smooth Lorentzian 3-manifold. Then M admits an
orthogonal atlas.

Let (ē1, ē2, ē3) be an orthonormal frame for (M, g) and (ω̄1, ω̄2, ω̄3) be the correspond-
ing coframe. These will be the (co)frames with respect to which the orthogonal atlas
will be described. The goal is to find a triplet of coordinated functions (x1, x2, x3) such
that, if ei = ∂i is the coordinated frame of (x1, x2, x3), then g(ei, ej) = 0 every time
i ̸= j. There are two main difficulties that one faces both in the Riemannian and in
the Lorentzian setting. Assume (y1, y2, y3) are fixed coordinates and g(y) is the metric
tensor with respect to this chart; then the coordinated frame {ei} can be written as

ei =
∂yα

∂xi
∂

∂yα

and hence the PDE system to be solved is

0 = g(∂i, ∂j) =
3∑

α,β=1

∂yα

∂xi
∂yβ

∂xj
gαβ(y) for i ̸= j. (4.1)

This system is nonlinear, and its linearization is not symmetric hyperbolic, which means
that the standard results of existence of the solution do not apply. Furthermore, there
is an invariance in the solution if the unknowns are the coordinates: assume (x̃1, x̃2, x̃3)
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are other coordinates, such that x̃i = f i(xi) and each f i is a strictly monotone function.
Then

0 = g

(
∂

∂xi
,
∂

∂xj

)
=
∂f i

∂xi
∂f j

∂xj
g

(
∂

∂x̃i
,
∂

∂x̃j

)
and hence also (x̃1, x̃2, x̃3) are orthogonal coordinates.

For this reason it works best if one does not set the unknowns to be the coordinated
functions (x1, x2, x3), but the normalized coframe (ω1, ω2, ω3), where ωi = f idxi, no
sum intended, and f i = 1/|dxi|. Applying Frobenius Integration Theorem (see [44,
Section 7.3]) it is easy to get an equivalent condition to the existence of the coordinated
charts given the coframe, that is there exist 1-forms ϑij such that

dωi =
∑
j

ωj ∧ ϑij ;

condition satisfied by the connection 1-forms ϑij = ωij . Furthermore, if indeed the coframe
exists, then it holds that ωi = f idxi, hence

ωi ∧ dωi = ωi ∧ df i ∧ dxi = 1

f i
ωi ∧ df i ∧ ωi = 0 (4.2)

must hold, when i = 1, 2, 3. Due to the signature of the metric, in the Riemannian case
the connection is skew-symmetric, hence ωji = −ωij for any i, j, while in the Lorentzian
case the symmetry is so(2, 1), hence

ω2
1 = −ω1

2, ω3
1 = ω1

3, ω3
2 = ω2

3. (4.3)

Thus (4.2) becomes

ω1 ∧ ω2 ∧ ω1
2 + ω1 ∧ ω3 ∧ ω1

3 = 0

ω1 ∧ ω2 ∧ ω1
2 + ω2 ∧ ω3 ∧ ω2

3 = 0

ω1 ∧ ω3 ∧ ω1
3 + ω2 ∧ ω3 ∧ ω2

3 = 0,

and, by alternatively subtracting one and adding the other, the system becomes

ω1 ∧ ω2 ∧ ω1
2 = 0, ω2 ∧ ω3 ∧ ω2

3 = 0, ω1 ∧ ω3 ∧ ω1
3 = 0. (4.4)

The next step is to write ωi with respect to ω̄j and vice-versa as

ωi = bijω̄
j , ω̄j = b̄ijω

i

and solve for the bji in (4.4). I first note that

ωl ∧ ωil = dωi = d
∑
j

bijω̄
j =

∑
j

(∑
k

ēk(b
i
j)ω̄

k ∧ ω̄j + bijω̄
k ∧ ω̄ik

)
=
∑
j,k

ω̄k ∧
(
ēk(b

i
j)ω̄

j + bijω̄
i
k

)
=
∑
j,k,l

ωl ∧
(
blkēk(b

i
j)ω̄

j + blkb
i
jω̄

i
k

)
.
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As a consequence of (4.3), the previous equality becomes

ω1
2 =

∑
j,k

1

2

{
b2kēk(b

1
j )− b1kēk(b2j )

}
ω̄j + b2kb

1
j ω̄

1
k,

ω1
3 =

∑
j,k

1

2

{
b3kēk(b

1
j ) + b1kēk(b

3
j )
}
ω̄j + b3kb

1
j ω̄

1
k

and
ω2
3 =

∑
j,k

1

2

{
b3kēk(b

2
j ) + b2kēk(b

3
j )
}
ω̄j + b3kb

2
j ω̄

2
k.

Notice that in the paper by DeTurck and Yang, all the terms in the braces had a minus
sign, again by the so(3) symmetry. Making the substitution in (4.4), the equations
become

0 =
∑
i,l,j,k

b1i b
2
l ω̄

i ∧ ω̄l ∧
[
1

2

{
b2kēk(b

1
j )− b1kēk(b2j )

}
ω̄j + b2kb

1
j ω̄

1
k

]

0 =
∑
i,l,j,k

b1i b
3
l ω̄

i ∧ ω̄l ∧
[
1

2

{
b3kēk(b

1
j ) + b1kēk(b

3
j )
}
ω̄j + b3kb

1
j ω̄

1
k

]

0 =
∑
i,l,j,k

b2i b
3
l ω̄

i ∧ ω̄l ∧
[
1

2

{
b3kēk(b

2
j ) + b2kēk(b

3
j )
}
ω̄j + b3kb

2
j ω̄

2
k

]

where the unknowns of the system are (bji ) ∈ C∞(M, SO(2, 1)).
The second to last step is to prove that the linearization of this system is diagonal

hyperbolic. Consider the linearization βij = (δb)ij and notice that one can assume that
{ω̄i} = {ωi} when linearizing around {ωi}, thus having bij(x) = δij . Hence, the linearized
system is

0 = δ1i δ
2
l

1

2

(
δ2kēk(β

1
j )− δ1kēk(β2j )

)
ω̄i ∧ ω̄l ∧ ω̄j + lower order terms in β

0 = δ1i δ
3
l

1

2

(
δ3kēk(β

1
j ) + δ1kēk(β

3
j )
)
ω̄i ∧ ω̄l ∧ ω̄j + lower order terms in β

0 = δ2i δ
3
l

1

2

(
δ3kēk(β

2
j ) + δ2kēk(β

3
j )
)
ω̄i ∧ ω̄l ∧ ω̄j + lower order terms in β

in which the only non-zero elements are

1

2

(
ē2(β

1
3)− ē1(β23)

)
= terms of order 0 in β,

1

2

(
ē3(β

1
2) + ē1(β

3
2)
)
= terms of order 0 in β,

1

2

(
ē3(β

2
1) + ē2(β

3
1)
)
= terms of order 0 in β.
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As (bij(x)) ∈ SO(2, 1) their linearization satisfy (βij) ∈ so(2, 1), hence the system takes
the form ē1 ē2

ē3

β23β13
β12

 =

 terms of order 0 in β
terms of order 0 in β
terms of order 0 in β

 .

Hence, the linearized differential operator for the system (4.4) is

A = ē1 + ē2 + ē3

that is diagonal hyperbolic as {ēi} is a frame, and its symbol, for ēi = aji (x)∂j , is

σA(ξ) =

a
j
1(x)ξ

j 0 0

0 aj2(x)ξ
j 0

0 0 aj3(x)ξ
j

 ∈ End(R3).

To finally prove that the metric is diagonalizable it remains to find a solution to the
Cauchy problem given by the differential operator A and a set of initial data to be
chosen. To do so, the data needs to be not characteristic for the operator. It is easy to
see that the symbol σA is not invertible at a point x ∈M for a covector ξ ∈ T ∗

xM if and
only if ξ(ēi) = 0 for some i = 1, 2, 3. Thus, the fiber of the characteristic variety of A at
a point x is composed of three planes π1, π2, π3 ⊂ T ∗

xM through 0 in general position.
Hence, the initial data for the Cauchy problem associated to the system can be given as
the coframe {ω̄i} on a surface ı : Σ ↪→M such that for each x ∈ Σ it holds

dim(ı∗T
∗
xΣ ∩ πk) = 1 for each k = 1, 2, 3.

This is equivalent to requiring that no element of the frame {ēi} is tangent to Σ. Since
the linearization of (4.4) is diagonal hyperbolic and one can construct non-characteristic
initial data, Theorem 4.1.2 applies and Theorem 4.2.1 is proven.
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