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Abstract. We consider the shift transformation on the space of infinite se-

quences over a finite alphabet endowed with the invariant product measure,

and examine the presence of a hole on the space. The holes we study are
specified by the sequences that do not contain a given finite word as initial

sub-string. The measure of the set of sequences that do not fall into the hole

in the first n iterates of the shift is known to decay exponentially with n, and
its exponential rate is called escape rate. In this paper we provide a complete

characterization of the holes with maximal escape rate. In particular we show

that, contrary to the case of equiprobable symbols, ordering the holes by their
escape rate corresponds to neither the order by their measure nor by the length

of the shortest periodic orbit they contain. Finally, we adapt our technique to

the case of shifts endowed with Markov measures, where preliminary results
show that a more intricate situation is to be expected.

1. Introduction. Given a measure-preserving transformation T of a probability
space (X,µ), a hole of the associated dynamical system (X,µ, T ) is a measurable
set H ⊂ X with µ(H) > 0 such that when T k(x) ∈ H the orbit of x escapes from
X. The presence of a hole is often realized by modifying T so that it is not defined
on H (another option is to define the maps as the identity inside the hole). The
investigation of properties of open systems is more than forty years old; the first
attempts can be traced back to the late ’70s. See [20, 12] and references therein
for the first approaches to the problem. This kind of system has often been used
to model different situations of interest for the physics community. A recent review
dealing with such applications can be found in [1].

Let us introduce the basic properties of the open systems we consider. When the
probability measure µ is ergodic, almost every orbit enters H at some finite time,
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hence almost every orbit escapes. Let

Sn :=
{
x ∈ X : T i(x) 6∈ H , ∀ i = 0, . . . , n

}
be the set of points which do not escape up to time n, and define the survival
probability at time n as pn := µ(Sn). The sequence pn is decreasing and vanishing
as n→∞, and we consider its exponential rate of convergence.

Definition 1.1. The escape rates γ±H of the set H are the exponential rates of
convergence to 0 of the survival probability, namely

γ−H := lim inf
n→∞

− log pn
n

and γ+
H := lim sup

n→∞

− log pn
n

.

We consider only γH := γ−H , since it can be studied by the classical method of
generating functions, and we refer to it as the escape rate of H.

When T has exponential decay of correlations, a finite non-zero escape rate is
to be expected for generic holes (see [11, 10] for precise conditions on T and a
more extensive discussion on this topic). A variety of systems satisfy this property:
paradigmatic examples are expanding maps, Anosov diffeomorphisms, and dispers-
ing billiards [5, 21, 18, 9] (but many more cases are studied in the literature). Other
aspects that have been investigated are the relations with other statistical proper-
ties of dynamical systems and thermodynamic methods (see [7, 3]). Finally, there
has been some recent interest also in open systems exhibiting sub-exponential rates
of escape [14, 19, 2, 8].

Among the different properties of open systems, much effort has been devoted
to the study of the escape rate as a function of certain parameters, such as the size
and the position of the hole. In this context, a recurrent question in the literature
concerns the identification of the hole with maximal escape rate among holes in a
given family (e.g., in the set of holes with the same measure). It turns out that a
peculiar role is played by the structure of the periodic orbits of the system: as an
example, it has been shown that in certain systems the different escape rates for
holes with the same measure can be ordered according to the shortest period of the
periodic points contained in the hole [4]. Moreover, using a perturbative approach,
it has been shown in [17] that the escape rate for holes shrinking to a periodic
point has a non-trivial dependence on the stability of the limiting orbit. While
these results provide an answer to the question of where to place a hole to achieve
maximal escape for some specific situations, such as the small-hole limit, a complete
understanding of the generic case is not yet available, to our knowledge. This work
provides a complete answer to this question for full shifts on infinite sequences over
a finite number of symbols. It is well known that such a symbolic dynamical system
is isomorphic to an appropriate piecewise linear map on the interval [0, 1] with full
branches. There are many other examples of systems isomorphic to a full shift,
e.g., the logistic map T (x) = 4x(1 − x) on [0, 1]. Thus our results apply to these
isomorphic systems as well.

More in detail, in Theorem 3.4, we show that in order to find the maximal
escape rate for a fixed length of the forbidden word, it is enough to consider two
specific holes. This characterization is more precise in the case of full shifts over
two symbols, where, based on the probability of the most probable symbol, we are
able to determine which of the two holes achieves maximal escape rate (Theorem
3.5) and to estimate this rate from below and from above (Corollary 3.9).
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2. The setting. Consider the symbolic dynamical system (AN, µ, σ) defined by the
left shift transformation σ acting on the space AN of semi-infinite words with sym-
bols from a finite alphabet A = {a1, a2, . . . , aA}, endowed with a product probabil-
ity measure µ. The measure µ is determined by a probability vector {pa1

, . . . , paA}
such that paj > 0 for all j.

Since σ preserves µ and is ergodic, we can study the escape rates for holes in
AN. In this context, cylinders are the natural and often studied choice for holes.
This corresponds to fixing a finite word w = (w0 w1 . . . wr−1) ∈ Ar and letting the
hole H be the set of all infinite words in AN containing w as the initial sub-word.
Throughout, we denote a hole of this kind by the finite word specifying it. Also,
the length of a hole denotes the length of the corresponding word.

By the previous construction we are led to use combinatorial arguments in our
approach to the escape rate. We first recall some basic notions from [13], starting
with the definition of weighted autocorrelation polynomial of a word.

Definition 2.1. Let w ∈ A∗ := ∪∞n=1An be a finite word and denote by |w| its
length. For any letter a in the alphabet A we define the number of occurrences of
a in a sub-word of w as

Nw(a, k, n) :=

{
# {i ∈ [k, n− 1] : wi = a} , for 0 ≤ k < n ≤ |w| ;

0 , for k = n .

For simplicity we use the notation Nw(a) := Nw(a, 0, |w|).

Definition 2.2. Let A = {a1, . . . , aA} and w ∈ An. The autocorrelation vector
c = (c0, . . . , cn−1) of w is defined by setting

ci =

{
1 , if (wi wi+1 . . . wn−1) = (w0 w1 . . . wn−1−i) ;

0 , otherwise.

The weighted autocorrelation polynomial of w is a polynomial in A + 1 variables,
xa1

, xa2
, . . . , xaA and z, given by

cw(xa1
, xa2

, . . . , xaA , z) :=
n−1∑
j=0

cj

( ∏
ai∈A

(xai)
Nw(ai,n−j,n)

)
zj .

By definition, the weighted autocorrelation polynomial has non-negative coeffi-
cients and in particular c0 = 1.

Definition 2.3. A hole w of finite length is called prime if its autocorrelation vector
is c = (1, 0, . . . , 0), whence cw(xa1 , xa2 , . . . , xaA , z) = 1.

We now show that the escape rate of a hole w is the logarithm of a root of a
polynomial depending on the measure of the set µ(w) and on the weighted auto-
correlation polynomial of w. A similar result can be found in [15, 16]. The proof
of the proposition is in Appendix A and is based on the notion of the generating
function of the survival probability of the hole.

Proposition 2.4. The escape rate γw of a hole w of length r is given by

γw = log z0,

where z0 is the smallest positive root of the polynomial

τw(z) := µ(w) zr + (1− z) cw(pa1
, pa2

, . . . , paA , z), (1)
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µ(w) =
∏
aj∈A (paj )Nw(aj) is the measure of the hole w, and cw(xa1 , xa2 , . . . , xaA , z)

is the weighted autocorrelation polynomial of w.

Note that, for all r ≥ 1 and all w ∈ Ar we have τw(z) > 0 for all z ∈ [0, 1], and
in particular z0 > 1, so that γw > 0.

Among the different polynomials τw for the different possible words w, two fam-
ilies stand out as particularly relevant for what follows: the polynomials for prime
words and the polynomials for words that are repetitions of a single symbol, as for
example w = (aaa . . . a).

For a prime hole w of length r and measure µ, it follows immediately from (1)
that

τw(z) = µzr − z + 1. (2)

For a hole of the form w = (aaa . . . a) of length r, we start computing explicitly
the weighted autocorrelation polynomial

cw(xa, xa2
, . . . , xaA , z) =

r−1∑
j=0

xja z
j =

xra z
r − 1

xa z − 1
,

where we are using the notation of Definition 2.2 with the convention a = a1 for
simplicity. Then

τw(z) = pra z
r + (1− z)

pra z
r − 1

pa z − 1

=
pra(1− pa) zr+1 − z + 1

1− paz
. (3)

Note that the numerator in (3) is a polynomial belonging to the previous family
(2); more precisely, it is the polynomial of a prime hole of length r+ 1 (this connec-
tion was already found in [6]). Moreover, both the numerator and the denominator
of (3) vanish at 1

pa
(this will be useful below).

In the next lemma, we show some elementary properties of the family of polyno-
mials in (2) that will be useful in the derivation of our main results in next section.

Lemma 2.5. Let us consider the family of polynomials

fm(z) = mzr − z + 1

for a fixed r ≥ 2 and m ∈ R+. Then:

(i) fm(z) is convex for all m ∈ R+ in the set (0,+∞).

(ii) Letting m∗r := 1
r (1− 1

r )r−1 and z∗r (m) := (rm)−
1

r−1 , one has

fm(z∗r (m))


< 0 , if m < m∗r ;

= 0 , if m = m∗r ;

> 0 , if m > m∗r ;

and z∗r (m∗r) = r
r−1 .

(iii) The polynomial fm(z) has two positive roots for m ∈ (0,m∗r), one positive root
for m = m∗r, no positive roots for m > m∗r.

Proof. (i). Obvious.
(ii) and (iii). Notice that f ′m(z) = 0 if and only if z = z∗r (m), hence z∗r (m) is a point
of local minimum. The sign of fm(z∗r (m)) is a computation.
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3. The hole with maximal escape rate. In this section we show how to deter-
mine the hole with maximal escape rate. That is, we study how the escape rate
varies among the holes of length r and we determine which one has the maximal
escape rate. We start this section by discussing one of the simplest examples in our
setting, that is, the full shift over two symbols only: this example suffices to show
the difficulties that arise when trying to order all holes of fixed length r by their
escape rate. Indeed, the first discussion of this problem in the context of dynamical
systems can be found in [4]: Bunimovich and Yurchenko showed that if the symbols
of A are equiprobable, that is, paj = 1

A for all j = 1, . . . , A, all the holes can be
ordered according to their escape rate just by looking at the length of the shortest
periodic pattern they contain. In the following example we show that, contrary to
the above simpler case, if the symbols have different probabilities, looking only at
the periodic patterns in a hole is not enough to determine the hole with maximal
escape rate. Our main result proves that the measure of a hole, its weighted au-
tocorrelation polynomial and the probability of the most probable symbol are the
essential ingredients to identify the maximal escape rate for all possible shifts.

Example 3.1. Let A = {a, b} and p = pa, q = pb, with p + q = 1. We restrict to
p ≥ q (that is p ∈ [ 1

2 , 1]) as the other cases can be recovered by interchanging the
symbols of the alphabet. We use Proposition 2.4 to compute explicitly the escape
rates of all holes with length r ≤ 4: for these short lengths, the maximal escape
rate can be identified by an explicit computation.

Figure 1. The escape rates γw for p ∈ [ 1
2 , 1], for all holes of length

r = 4.

• (r = 1) It is an elementary computation to show that the word w = (a) has the
maximal escape rate as γa = − log(1− p) = − log q, and γb = − log p.

• (r = 2) We have two families:
(i) w ∈ {(aa), (bb)}. Let us start from the case w = (aa). The autocorrelation

vector is c = (1, 1), and Naa(a, 1, 2) = 1, Naa(b, 1, 2) = 0, hence the
weighted autocorrelation polynomial is

caa(x, y, z) = 1 + xz.
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Moreover Naa(a) = 2 and Naa(b) = 0, hence

τaa(z) = p2z2 + (1− z) caa(p, q, z) = 1− qz − pqz2,

from which z0 =
−q+
√
q2+4pq

2pq and γaa = log(
−q+
√
q2+4pq

2pq ).

The case w = (bb) works as the previous one, we simply need to inter-

change the roles of p and q. Hence γbb = log(
−p+
√
p2+4pq

2pq ).

(ii) w ∈ {(ab), (ba)} Let us start from the case w = (ab). The autocorrelation
vector is c = (1, 0), hence the weighted autocorrelation polynomial is

cab(x, y, z) = 1.

Moreover Nab(a) = 1 and Nab(b) = 1, hence

τab(z) = pqz2 + (1− z) cab(p, q, z) = (1− pz)(1− qz),

from which z0 = 1
p since p ≥ q. Hence γab = − log p.

For w = (ba) it turns out that τba(z) = τab(z), hence γba = γab.

Note that for 1
2 ≤ p < 2

3 , the holes with maximal escape rate are (ab) and

(ba), whereas for p > 2
3 , the hole with maximal escape rate is (aa) . At the

same time, for all values of p ∈ ( 1
2 , 1], the hole (aa) has measure µ(aa) = p2,

greater than the measure µ(ab) = µ(ba) = pq.

• (r = 3) This case is similar to the case r = 4 discussed below. Some further details
can be found in [6].

• (r = 4) Instead of giving explicit formulas (no more difficulties arise in their
derivation than in the case r = 2, but the formulas are longer and not very in-
formative), it is more illustrative to plot the different escape rates (see Fig. 1)
and discuss some important features. Firstly, note that for p = 1

2 all holes
have the same measure and their escape rates can be ordered by looking at
the length of the shortest periodic pattern they contain, just as discussed in
[4]. On the other hand, it is apparent by Fig. 1 that this ordering is destroyed
as soon as the two symbols are not equiprobable. Nevertheless some new
patterns can be derived.

In the figure we have used the following notation: curves with the same
color correspond to holes with the same measure; solid curves correspond to
prime holes and dashed curves to non-prime ones (the dashed blue and purple
curves have different styles as they correspond to holes for which there is no
prime hole with the same measure). First, it is apparent that in the family
of holes with the same measure, prime holes (if they exist) are the leakiest
(see Lemma 3.2-(i)). For example, the red curves are the plot of the escape
rates of the holes of measure p3(1 − p). Among them, the two prime holes
(aaab) and (baaa) have (the same) maximal escape rate (look at the solid
red curve). On the other hand, the escape rates of prime holes with different
measures are ordered, for a fixed p, by their measure (see Lemma 3.2-(ii)).
One is then tempted to say that the maximal escape rate among all the holes
of fixed length should be achieved by the prime hole with maximal measure
(red solid curve). But this is not true for all values of p, as is apparent by
looking at Fig. 1: for p > 1− 1

r+1 = 4
5 (see Theorem 3.5) the maximal escape

rate is given by the hole (aaaa), i.e., the hole with the repetition of the most
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probable symbol. Finally, the escape rate of the hole (aaaa) is always greater
than that of the similar hole (bbbb) (see Lemma 3.2-(iii)).

The formal derivation of the hole with maximal escape rate is our most important
result. We give it in the next section.

3.1. Main results. Let the alphabet A with A ≥ 2 symbols be fixed and denote
by a the most probable symbol and by b the second most probable one. Hence we
rename by {a, b, a3, . . . , aA} the symbols in A, with p = pa, q = pb; q + p ≤ 1 and
pak ≤ q ≤ p for all k ≥ 3.

As anticipated, an important role is played by prime holes and by holes which
have maximal measure for a fixed length. Using the expression of the polynomial τw
in (1), we obtain a few basic inequalities which arise when comparing their escape
rates:

Lemma 3.2. Let us consider a fixed r ≥ 2. Then:

(i) Let w1 and w2 be holes of the same length and measure. If w1 is prime then
γw1 ≥ γw2 , and equality holds only if w2 is also prime.

(ii) Let w1 and w2 be prime holes of the same length. If µ(w1) > µ(w2) then
γw1

> γw2
.

(iii) Let w1 = (aiai . . . ai) and w2 = (ajaj . . . aj) be holes of the same length given
by repetitions of different symbols. If pai ≥ paj then γw1

≥ γw2
.

Proof. (i) If w1 is prime and w2 is not prime, then cw1
(pa, pb, . . . , paA , z) = 1 <

cw2
(pa, pb, . . . , paA , z) for all z > 0. Hence by (1), for z > 1 we have τw1

(z) > τw2
(z)

and therefore γw1
> γw2

. If both are prime then τw1
(z) = τw2

(z).
(ii) Note that for a prime hole w we have cw(pa, pb, . . . , paA , z) = 1 and, as shown
in (2), the polynomial τw(z) belongs to the family studied in Lemma 2.5. Hence, if
w1 and w2 are prime holes of the same length, it follows that τw1

(z) = fm1
(z) with

m1 = µ(w1), and τw2
(z) = fm2

(z) with m2 = µ(w2). Hence if µ(w1) > µ(w2) then
τw1

(z) > τw2
(z) for all z > 0 and γw1

> γw2
.

(iii) Let us assume for simplicity that ai = a1 = a and aj = a2 = b, so that p = pai
and q = paj , and note that the proof in no way depends on these being the most
probable symbols. Use (3) to write

τw1
(z) =

pr(1− p) zr+1 − z + 1

1− pz
, τw2(z) =

qr(1− q) zr+1 − z + 1

1− qz
.

As remarked before, both the numerator and the denominator of τw1(z) vanish at
z = p−1, and the same is true for τw2

(z) at z = q−1. In addition, by Lemma
2.5-(iii), the numerator of τw1

(z) has two distinct positive roots for p 6= 1 − 1
r+1 ,

and one double positive root for p = 1 − 1
r+1 . This follows by using the function

[0, 1] 3 x 7→ g(x) := xr(1− x), which has a strict maximum at 1 − 1
r+1 . Then

g(p) = pr(1− p) ≤ g
(

1− 1

r + 1

)
=

1

r + 1

(
1− 1

r + 1

)r
= m∗r+1 , ∀ p ∈ [0, 1],

and pr(1 − p) = m∗r+1 if and only if p = 1 − 1
r+1 . The analogous result holds for

the numerator of τw2(z). Hence τw1(z) and τw2(z) have at most one positive root
each, which we denote, respectively, z0(τw1) and z0(τw2).

We now claim that pr(1 − p) ≥ qr(1 − q). The function g(x) = xr(1 − x) is
increasing in [0, r

r+1 ] and decreasing in [ r
r+1 , 1]. Since p ≥ q and p + q ≤ 1, if

p ≤ r
r+1 then g(p) ≥ g(q) and the claim follows. If p ≥ r

r+1 then p > 1
2 , so
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that (1 − p) < p and q ≤ (1 − p) < 1
2 < r

r+1 . Then g(q) ≤ g(1 − p), hence

qr(1− q) ≤ (1− p)rp ≤ pr(1− p), since (1− p)r−1 ≤ pr−1. The claim is proved.
Finally, the claim implies that the numerator of τw1

(z) is greater or equal than
that of τw2(z) for all z ≥ 0, hence z0(τw1) ≥ z0(τw2), and thus γw1 ≥ γw2 .

We now use Lemma 3.2 to compare all the different holes with the same length
and conclude that the hole with maximal escape rate is either a prime hole or a hole
with maximal measure. To this end, it is helpful to define the following families of
holes:

P r := {w ∈ Ar : w is a prime hole, µ(w) ≥ µ(w̃) for all prime holes w̃ ∈ Ar} , (4)

Mr := {w ∈ Ar : µ(w) ≥ µ(w̃) for all w̃ ∈ Ar} . (5)

In words, P r is the set of words of length r for which the corresponding hole is prime
and has maximal measure among all the prime holes; Mr consists of the holes of
maximal measure. In what follows, with an oversimplification of notation, when we
write w

P
and w

M
we will implicitly intend that w

P
∈ P r and w

M
∈Mr.

Using the definition of the symbols a and b, one immediately verifies that

{(aaa . . . ab) , (ba . . . aaa)} ⊆ P r,
thus µ(w

P
) = pr−1q for all w

P
∈ P r. On the other hand, since a is the most

probable symbol, we have (aaa . . . a) ∈ Mr and µ(w
M

) = pr. Notice that the hole
(aaa . . . a) is not prime.

Remark 3.3. For what follows it is useful to know when the two sets P r and Mr

are disjoint or not.
Let q < p. In this case Mr = {(aaa . . . a)}, so that Mr∩P r = ∅. Moreover, for all

prime holes w, µ(w) < µ(aaa . . . a). On the contrary, for many w 6= (aaa . . . a) there
exists a prime hole w̃ such that µ(w) = µ(w̃). In fact, whenever a word contains at
least two different symbols, there exists a prime hole with its same measure: it is
indeed easy to produce a prime hole which contains any symbol of A any number
of times, for example

w = (a1 . . . a1a2 . . . a2 . . . aA . . . aA).

Observe however that this argument does not work for a word given by r repetitions
of a single symbol with probability different from those of all other symbols.

If q = p then P r ∩Mr 6= ∅ as the words (aaa . . . ab) and (ba . . . aaa) are in the
intersection of the two sets.

We can now state our first main result:

Theorem 3.4. Let r ≥ 2 be a fixed word length. The escape rate γw
P

is the same

for all w
P
∈ P r, cf. (4), and the escape rate γw

M
is the same for all w

M
∈Mr, cf.

(5). Moreover

γrmax := max {γw : w has length r} = max{γw
P
, γw

M
}.

Proof. The first assertion comes from Proposition 2.4 and (2)-(3). For a fixed length
r ≥ 2, we can first group the holes w according to their measures. Then by Lemma
3.2-(i), for fixed length and measure, the hole with maximal escape rate is prime,
whenever a prime hole with that given measure exists. By Remark 3.3, if q < p
there is no prime hole of measure pr since P r ∩Mr = ∅, and there is no prime hole
of measure prk, if pk is the probability of a symbol in A and no other symbol has
the same probability. If q = p instead, there is a prime hole of measure pr.
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From the above arguments, it remains only to consider the set of prime holes and
the set of holes which have measure different from that of all the prime holes. As
explained in Remark 3.3, these last cases correspond to holes of the form (aiai . . . ai),
words with one single symbol repeated r times. Applying now Lemma 3.2-(ii), the
hole with the maximal escape rate among the prime holes is w

P
, and applying

Lemma 3.2-(iii), the hole with the maximal escape rate among the holes with one
single symbol repeated is w

M
.

Finally, to obtain the maximal escape rate it is sufficient to compare γw
P

and
γw

M
.

3.1.1. Explicit expression for the maximal escape in the case of two symbols. We
now show that if A = 2 we can explicitly identify, for all r ≥ 2, a hole with maximal
escape rate.

Theorem 3.5. Let A = {a, b} with p = pa ≥ q = pb satisfying p+ q = 1. For holes
w of fixed length r ≥ 2,

γrmax =


γw

P
, if p ∈

[
1
2 , 1− 1

r+1

]
;

γw
M
, if p ∈

[
1− 1

r+1 , 1
)

;

where w
P

denotes a word in P r, cf. (4), and w
M

denotes a word in Mr, cf. (5). In
addition, for p ∈ [1 − 1

r , 1 − 1
r+1 ] we can explicitly compute that γw

P
= log 1

p and

thus obtain that in this range γrmax = log 1
p .

Proof. It is enough to show that it is possible to determine which of the escape
rates of the holes w

P
and w

M
is maximal, and apply Theorem 3.4.

The case r = 2 is studied in details in Example 3.1. Let us consider a fixed length
r ≥ 3 and start with the case p > q, hence p > 1

2 . We first deal with the hole w
P

,
which is a prime hole with maximal measure among the prime holes. An example
is the hole (aaa . . . ab). We have µ(w

P
) = pr−1q and τw

P
(z) is a polynomial of the

family studied in Lemma 2.5 given by

τw
P

(z) = pr−1q zr − z + 1.

Applying Lemma 2.5 to τw
P

(z) with m = pr−1q = pr−1(1 − p), it follows that

τw
P

(z) has two distinct positive roots for p 6= 1 − 1
r and one double positive root

for p = 1 − 1
r . To show this it is enough to repeat the argument in the proof of

Lemma 3.2-(iii), using now the function [0, 1] 3 x 7→ g(x) := xr−1(1 − x). Let
us denote by z0(w

P
) and by z1(w

P
) the smallest and the biggest positive roots of

τw
P

(z) respectively. Since z∗r (pr−1q) is the point of minimum for the polynomial
τw

P
we have

z0(w
P

) ≤ z∗r (pr−1q) =
1

p
(r q)−

1
r−1 ≤ z1(w

P
).

Since τw
P

( 1
p ) = 0 for all p, either z0(w

P
) or z1(w

P
) is 1

p . It is clear from the

previous estimate that if (r q)−
1

r−1 < 1 then z1(w
P

) = 1
p , and if (r q)−

1
r−1 ≥ 1 then

z0(w
P

) = 1
p . Thus, using q = 1− p, we have proved that

γw
P

{
= log 1

p , if p ∈
[
1− 1

r , 1
)

;

< log z∗r (pr−1q) , if p ∈
[

1
2 , 1− 1

r

)
.

(6)
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Let us now consider the hole w
M

, which is a hole with maximal measure among
all the holes of length r. An example is the hole w

M
= (aaa . . . a), and this is the

only example for p > q, that is, for p > 1
2 . Using (3), we have

τw
M

(z) =
pr(1− p) zr+1 − z + 1

1− pz
.

In particular we know that the numerator has two distinct positive roots for p 6=
1− 1

r+1 and one of the positive roots is always 1
p . Since 1

p is also the unique root of

the denominator, it follows that τw
M

(z) has only one positive root z0(w
M

), which

is the positive root of the numerator not equal to 1
p . Hence

γw
M

= log z0(w
M

).

From the previous argument on prime holes, we also know that z0(w
M

) > 1
p if and

only if p ≥ 1− 1
r+1 , hence using (6) we conclude that γrmax = γw

M
for p ≥ 1− 1

r+1 ,

and γrmax = γw
P

= log 1
p for p ∈ [1− 1

r , 1− 1
r+1 ].

To conclude the argument, we need to consider the case p ∈ ( 1
2 , 1−

1
r ], for which

both z0(w
P

) and z0(w
M

) are smaller than 1
p . To compare these two values, we

introduce the following notation. Let

τ̄r,p(z) := pr−1(1− p) zr − z + 1, (7)

then

τw
P

(z) = τ̄r,p(z) and τw
M

(z) =
τ̄r+1,p(z)

1− pz
.

By the previous arguments, the polynomial τ̄r,p(z) has two positive roots, one is 1
p

and let us denote the other by z̄r(p). Recall that z̄r(p) = 1
p if and only if p = 1− 1

r .

In addition, we have shown that for p ∈ ( 1
2 , 1 −

1
r ], one has z0(w

M
) = z̄r+1(p) < 1

p

and z0(w
P

) = z̄r(p) <
1
p . Since τ̄r,p(z) ≥ τ̄r+1,p(z) for z ∈ [1, 1

p ] and for all r, it

follows that z̄r(p) ≥ z̄r+1(p) for p ∈ ( 1
2 , 1 −

1
r ]. Hence γrmax = γw

P
= log z̄r(p) for

p ∈ ( 1
2 , 1− 1

r ].

Finally, if r ≥ 3 and p = q = 1
2 , we know that (aa . . . ab) is an example of a word

in P r ∩Mr, and by Theorem 3.4, it follows γrmax = γw
P

= γw
M

.
We have thus finished the proof of the theorem, and can collect all the information

on the maximal escape rate by saying that

γrmax =


γw

P
= log z̄r(p) , if p ∈

[
1
2 , 1− 1

r

]
;

γw
P

= log 1
p , if p ∈

[
1− 1

r , 1− 1
r+1

]
;

γw
M

= log z̄r+1(p) , if p ∈
[
1− 1

r+1 , 1
)
.

3.1.2. Maximal escape in the case of more than two symbols. The situation is more
intricate in the case with more than two symbols, that is A > 2, as elucidated by
the following:

Proposition 3.6. With the notation of Theorem 3.4, let the alphabet A have A > 2
elements, and let a and b be the two most probable symbols with probabilities given by
p and q respectively. Let r ≥ 2 be a fixed length, then γrmax = γw

M
for p ≥ 1− 1

r+1 .

In addition, if q < p(1 − p) then γrmax = γw
M

for p ∈ [ 1
2 , 1 −

1
r+1 ]. On the other
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hand, there exist values of q sufficiently close to 1− p and of p ∈ ( 1
2 , 1−

1
r+1 ), such

that γrmax = γw
P

.

Proof. Let us first consider the hole w
M

= (aaa . . . a). As in the proof of Theorem
3.5 we can write

τw
M

(z) =
τ̄r+1,p(z)

1− pz
where τ̄r+1,p(z) is as in (7), and γw

M
= log z̄r+1(p), whence γw

M
≥ log 1

p for p ≥
1− 1

r+1 .

On the other hand, a prime hole w
P

of length r has measure pr−1q and polynomial

τw
P

(z) = pr−1q zr − z + 1 ≤ τ̄r,p(z), ∀ z > 0 ,

because q ≤ 1 − p. Hence by the proof of Theorem 3.5, γw
P

is smaller than log 1
p

for p ≥ 1− 1
r .

We have thus proved, using Theorem 3.4, that γrmax = γw
M

for p ≥ 1− 1
r+1 .

Let us now assume that q < p(1− p). Then τw
P

(z) < τ̄r+1,p(z) for all z > 1, and

since z0(w
P

) > 1 it follows that z0(w
P

) < z̄r+1(p) for all p. Then γw
P
≤ γw

M
for

all p ∈ [ 1
2 , 1].

Note that the previous result is different from that for shifts on two symbols.
However, all the quantities that we are using have continuous dependence on the
probabilities of the symbols. Hence, if q is sufficiently close to 1−p, that is if we are
sufficiently close to the case of shifts on two symbols, we expect to find the same
kind of results obtained in Theorem 3.5. Therefore there exist values of p < 1− 1

r+1

for which the maximal escape rate is achieved by a prime hole w
P

.

Remark 3.7. In the case of two equiprobable symbols, A = 2 with p = 1− p = 1
2 ,

in [4] the authors prove that prime holes have the maximal escape rate among the
holes with the same measure and length, but also show that it is possible to order
same-measure holes according to their escape rate by using the minimal period of
periodic points in the hole. In this paper we have proved that prime holes have
maximal escape rate among the holes with the same measure and same length, also
in the case of non-equiprobable symbols, that is A = 2 and p 6= 1

2 . One may wonder
whether also the ordering found in [4] for non-prime holes is preserved when the
symbols are not equiprobable. We show that this is not the case. We find same-
length words w and w̃ such that the corresponding holes are not prime and have the
same measure, and such that there exists p∗ ∈ ( 1

2 , 1) with γw > γw̃, for p ∈ ( 1
2 , p
∗),

and γw < γw̃ for p ∈ (p∗, 1). Hence the ordering of the holes does not only depend
on the length of the periodic orbits in the hole. One can check that this phenomenon

occurs for example for w = (aabbaa) and w̃ = (baaaab), with p∗ ≈
√

2
2 : the hole

w contains a periodic orbit with period four, whereas the minimal period of the
periodic orbits contained in the hole w̃ is five. For holes shrinking to a periodic
point the escape rate behaves as the instability factor of the orbit. In this case we

remark that the two factors for w and w̃ are the same for p =
√

5−1
2 < p∗, hence

this does not seem to be the reason for the order switching found above.

3.1.3. Estimates. By Theorem 3.4, the maximal escape rate may be obtained sim-
ply by comparing the roots of the polynomials τwP

and τwM
. While for small r such

roots can be computed exactly, for large r one should rely on numerical approxi-
mations, that in principle provide a value with arbitrary precision. On the other
hand, if a numerical approximation is not at hand, it could be relevant to have
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rigorous estimates of the maximal escape rate, in particular for given p and large
length r. In this section we show that, with elementary arguments, one can obtain
explicit estimates of the maximal escape rate in the case of a two-symbol alphabet
(see Fig. 2 for examples).

We start by giving an estimate on the escape rate for prime holes which holds
for all finite alphabets, A ≥ 2.

Lemma 3.8. Let us consider a fixed r ≥ 2. If w is a prime hole of length r we
have

log

(
1 + r(r − 2)µ(w)−

√
1− rµ(w)(2 + (r − 2)µ(w))

r(r − 1)µ(w)

)
≤ γw ≤

1

r − 1
log

1

rµ(w)
.

Proof. For a prime hole w we have µ(w) ≤ µ(w
P

) = pr−1q ≤ pr−1(1 − p) where p
and q are the probabilities of the most probable and of the second most probable
symbols. As in the proof of Lemma 3.2-(iii), using the function g(x) := xr−1(1−x)
on [0, 1], one has

pr−1(1− p) ≤ m∗r =
1

r

(
1− 1

r

)r−1

, ∀ p ∈ [0, 1],

and pr−1(1−p) = m∗r if and only if p = 1− 1
r . Hence µ(w) ≤ m∗r for all prime holes

w, and µ(w) = m∗r if and only if µ(w) = pr−1(1 − p) for p = 1 − 1
r . Since we can

apply Lemma 2.5 to τw(z), we obtain that τw(z) has at least one root z0 > 1, and
if z0 is the smallest positive root then

z0 ≤ z∗r (µ(w)) =

(
1

r µ(w)

) 1
r−1

.

To prove the bound from below, recall that by Lemma 2.5 the polynomial τw(z) is

convex in (0,+∞), and for the derivatives we have τ
(j)
w (1) > 0 for all j ≥ 2. Hence

z0, the smallest positive root of τw(z), is greater than 1, and we can bound τw(z)
from below by its osculating parabola at z = 1, that is

τw(z) ≥ 1

2
τ ′′w(1)(z − 1)2 + τ ′w(1) (z − 1) + τw(1), ∀ z ≥ 1.

Since τw(1) = µ(w) > 0 and τ ′w(1) = rµ(w) − 1 < 0, the roots of the osculating
parabola are both greater than 1. It follows that the smallest positive root z0 of
τw(z) is greater than the smallest root of the osculating parabola.

When the alphabet has two symbols, by Theorem 3.5 we know which hole has
the maximal escape rate, and it is simpler to estimate the smallest positive root of
the associated polynomial also thanks to Lemma 3.8.

Corollary 3.9. Let A = {a, b} with a the symbol with largest probability p ∈ [ 1
2 , 1].

For holes w of fixed length r ≥ 2 the maximal escape rate satisfies:

(i) If p ∈
[

1
2 , 1−

1
r

)
then

γrmax ∈
[
log γ̄(p, r) ,

1

r − 1
log

1

rpr−1(1− p)

]
where

γ̄(p, r) =
1 + r(r − 2)µ(wP )−

√
1− rµ(wP )(2 + (r − 2)µ(wP ))

r(r − 1)µ(wP )
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with µ(wP ) = pr−1(1− p).

(ii) If p ∈
[
1− 1

r , 1−
1
r+1

]
then

γrmax = log
1

p
.

(iii) If p ∈
(

1− 1
r+1 , 1

)
then

γrmax ∈

[
log

1

p
+

1

r
log

1

(r + 1)(1− p)
, log

(
−1 + p+

√
(1− p)2 + 4p(1− p)
2p(1− p)

)]
.

Proof. For p ≤ 1 − 1
r+1 we apply Theorem 3.5 and Lemma 3.8 to the hole wP for

which µ(wP ) = pr−1(1− p).
For p > 1− 1

r+1 , we use that γrmax = γwM
and that

τw
M

(z) =
τ̄r+1,p(z)

1− pz
with τ̄r+1,p defined in (7). It follows that γwM

= log z0(wM ), where z0(wM ) > 1
p

is one of the two positive roots of the polynomial τ̄r+1,p defined in (7), the other
being 1

p . By Lemma 2.5, it follows that z0(wM ) is the largest root of τ̄r+1,p, and

then with q = 1− p,

z0(wM ) ≥ z∗r+1(prq) =
1

p

(
q(r + 1)

)− 1
r

.

This gives the lower bound for γrmax for p > 1− 1
r+1 . To obtain the upper bound,

we use (3) to write

τw
M

(z) = przr + (1− z)
r−1∑
j=0

pjzj = 1− (1− p)
r∑
j=1

pj−1 zj .

It follows that τw
M

(z) is less than any truncated sum of its terms for all z ≥ 0. In
particular, truncating the sum at k = 2 one gets

τw
M

(z) ≤ 1− (1− p)z − p(1− p)z2 = τaa(z)

for all z ≥ 0, where τaa(z) is the polynomial associated to the hole (aa) in Example
3.1. In particular the unique positive root of τw

M
(z) is less or equal than the unique

positive root of τaa(z).

Finally, we remark that the lower bounds turn out to be quite precise: the relative
error between the exact value and the estimates decays to zero exponentially fast
with the length r (see Fig. 2).

4. The case of Markov measures. In the previous sections we have considered
the dynamical system (AN, σ) endowed with a product probability measure. In
this section we discuss the extension of some of our results to the case of Markov
measures limiting ourselves to the alphabet A = {a, b} with two symbols. Given a
stochastic matrix

Π =

(
πaa πab
πba πbb

)
with πij ≥ 0 for all i, j ∈ A and πaa + πab = πba + πbb = 1, we consider the set

AN
Π

:=
{
ω ∈ AN : πωiωi+1 > 0 for all i ≥ 0

}
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Figure 2. The relative error between a very precise numerical
approximation of γrmax and the lower bound lb in Corollary 3.9,
defined by RE(r) := (γrmax − lb)/γrmax and displayed as a function
of the length r of the hole in log-linear scale. The decay towards
zero shows that the accuracy of the estimate improves exponentially
with the length of the hole. Different curves correspond to different
values of p (from bottom to top: p = 0.85, p = 0.9, p = 0.95).

and the action of the shift transformation σ on AN
Π

. One can define analogously the
set of allowed finite words A∗

Π
. It is well known that if the matrix Π is irreducible

and aperiodic, that is, there exists N > 0 such that all the entries of Πn are positive
for n ≥ N , then there is a unique vector p = (pa, pb) such that pa, pb > 0, pa+pb = 1
and pΠ = p. In this situation the shift σ preserves the probability measure mΠ ,
called the Markov measure, defined on finite words s = (s0s1 . . . sk−1) ∈ Ak to be

m
Π

(s) = ps0

k−2∏
j=0

πsj sj+1
.

In this section we are interested to the symbolic dynamical system (AN
Π
,m

Π
, σ),

which is well known to be ergodic. We can then study the escape rates for holes in
AN

Π
given by finite words.

The following parameter χ
Π
∈ (−1, 1) will play an important role:

χ
Π

:= πaa + πbb − 1. (8)

Note that for χ
Π

= 0 we have πaa = πba, hence the rows of Π are equal and the
Markov measure becomes a product measure. Thus the case χΠ = 0 corresponds
to those studied in the previous sections.

Special examples of the system (AN
Π
,m

Π
, σ) are subshifts of finite type, which

correspond to stochastic matrices Π with at least one vanishing entry. In addition,
shifts with a Markov measure are isomorphic to piecewise linear Markov maps of
the interval and to Markov chains, hence our results hold for these classes of systems
too. We also mention that, while interesting in their own right, Markov systems are
often used as first-order approximations of more general nonlinear systems.

We start by introducing the autocorrelation polynomial of a finite word adapted
to the Markov case:
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Definition 4.1. Let s ∈ {a, b}n, and let c = (c0, . . . , cn−1) denote its autocorre-
lation vector given in Definition 2.2. Then the Markovian weighted autocorrelation
polynomial of s is a polynomial in 5 variables given by

cs,M (yaa, yab, yba, ybb, z) :=
n−1∑
j=0

cj

( j∏
i=1

ysn−i−1 sn−i

)
zj

with the convention
∏0
i=1 ysn−i−1 sn−i

= 1.

In Appendix B we prove the following result.

Proposition 4.2. The escape rate γw of a hole w of length r is given by

γw = log z0 ,

where z0 is the smallest positive zero of the polynomial

τw,Π(z) := µΠ(w) zr
(
πwr−1w0 − χΠ z δw0wr−1

)
+ (1− z) (1− χ

Π
z) cw,M (πaa, πab, πba, πbb, z).

(9)

Here µ
Π

(w) :=
∏r−2
j=0 πwjwj+1

is the m
Π

-measure of the hole w divided by the prob-
ability pw0 of the first symbols of w, the symbol δ·,· denotes the classical Kronecker
delta, and cw,M (yaa, yab, yba, ybb, z) is the Markovian weighted autocorrelation poly-
nomial of w.

Note that the polynomial τw,Π(z) is of degree r. In fact the Markovian weighted
autocorrelation polynomial can be written as

cw,M (πaa, πab, πba, πbb, z) = δw0,wr−1
µ

Π
(w) zr−1 + c̃w,M (πaa, πab, πba, πbb, z) ,

where c̃w,M (πaa, πab, πba, πbb, z) :=
∑r−2
j=0 cj

(∏j
i=1 πwr−i−1 wr−i

)
zj . Hence the

terms of degree r + 1 in (9) cancel out. Moreover, we can write

τw,Π(z) = µ̃Π(w) zr + (1− z) (1− χΠ z) c̃w,M (πaa, πab, πba, πbb, z)

+ δw0wr−1
µ

Π
(w)(1− (1 + χ

Π
) z) zr−1,

(10)

where µ̃
Π

(w) := µ
Π

(w)πwr−1w0
=
∏r−1
j=0 πwjwj+1

with wr := w0.

Example 4.3. Consider the case of holes of length r = 2.

w ∈ {(aa), (bb)}. Let us start with the case w = (aa). The autocorrelation vector
is c = (1, 1), and the Markovian weighted autocorrelation polynomial is

c̃w,M (πaa, πab, πba, πbb, z) = 1 , δw0,wr−1
µ

Π
(w) zr−1 = πaa z.

Hence with µ̃
Π

(w) = π2
aa we obtain

τw,Π(z) = −(1− πaa)(1− πbb) z2 − πbb z + 1

and the smallest positive zero is given by

z0 =


−πbb+

√
π2
bb+4(1−πaa)(1−πbb)

2(1−πaa)(1−πbb) , if (1− πaa)(1− πbb) 6= 0;

1
πbb

, if (1− πaa)(1− πbb) = 0.
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The case w = (bb) works analogously, interchanging the role of πaa and πbb.
Hence the smallest positive zero of τw,Π is given by

z0 =


−πaa+

√
π2
aa+4(1−πaa)(1−πbb)

2(1−πaa)(1−πbb) , if (1− πaa)(1− πbb) 6= 0;

1
πaa

, if (1− πaa)(1− πbb) = 0.

w ∈ {(ab), (ba)}. For both holes, the autocorrelation vector is c = (1, 0), and the
Markovian weighted autocorrelation polynomial is

cw,M (πaa, πab, πba, πbb, z) = c̃w,M (πaa, πab, πba, πbb, z) = 1.

Hence with µ̃
Π

(w) = πabπba = (1− πaa)(1− πbb) we obtain

τw,Π(z) = πaaπbb z
2 − (πaa + πbb) z + 1

and the smallest positive zero is given by

z0 =
1

max{πaa, πbb}
.

The previous example shows that the identification of the hole with maximal
escape rate for shifts with a Markov measure is a much more difficult problem than
the system with a product measure. When trying to extend the results in Section
3 to this case, one immediately finds differences and subtleties; here we made a
first step in this direction. The investigation of the Markov case in its generality is
outside the scope of the present work and will be the subject of future study.

We start with the analogue of Lemma 3.2. As we will see, in this case it is useful
to compare holes with the same length and quantity µ̃

Π
introduced in (10), which

replaces the measure of a hole.

Proposition 4.4. Let w1 and w2 be two holes of the same length with µ̃
Π

(w1) =
µ̃

Π
(w2), and let w1 be prime. If w2 is prime then γw1

= γw2
. If w2 is not prime,

then:

(i) If χ
Π
> 0 we have γw1

> γw2
.

(ii) If χ
Π
< 0 and w2 is such that (w2)0 6= (w2)r−1, then γw1

> γw2
.

Proof. Let w1 be a prime hole of length r. We have cw1,M (z) = 1 and

τw1,Π(z) = µ̃
Π

(w1) zr + (1− z)(1− χ
Π
z).

It is clear that if w2 is prime and µ̃Π(w2) = µ̃Π(w1), then cw2,M (z) = 1 and τw2,Π =
τw1,Π. Let’s assume that w2 is not prime.

(i) Let χ
Π
> 0. Since 1

χ
Π
> 1, all the positive roots of τw1,Π(z) are contained

in the interval (1, 1
χ

Π
). Since w2 is not prime, at least one condition between

c̃w2,M (z) > 1 and δ(w2)0(w2)r−1
= 1 holds. Then using (10)

τw2,Π(z) < µ̃Π(w2) zr + (1− z)(1− χΠz) = τw1,Π(z), ∀ z ∈
(

1,
1

χ
Π

)
,

because (1− z)(1− χΠz) < 0 and (1− (1 + χΠ)z) < 0 in the interval (1, 1
χ

Π
). Since

τw1,Π(z) has a root in (1, 1
χ

Π
) it follows that the smallest positive root of τw2,Π is

smaller than that of τw1,Π, hence γw1 > γw2 .
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(ii) Let χΠ < 0. In this case the term (1−χΠz) is positive for z > 0, and we only
know that the positive roots of τw1,Π(z) are greater than 1. Since w2 is not prime,
if (w2)0 6= (w2)r−1 then c̃w2,M (z) > 1 and using (10)

τw2,Π(z) < µ̃Π(w2) zr + (1− z)(1− χΠz) = τw1,Π(z), ∀ z > 1.

Hence the smallest positive root of τw2,Π is smaller than that of τw1,Π, and γw1
>

γw2 .

When the parameter χ
Π

is negative, it is possible to find conditions for a sto-
chastic matrix to have non-prime holes with a larger escape rate than the prime
holes with the same µ̃Π .

If w1 = (aabb . . . b) and w2 = (abb . . . ba) are two words of length r ≥ 3 with two
symbols a and r − 2 symbols b, then

µ̃Π(w1) = µ̃Π(w2) = πaa πab πba π
r−3
bb .

The hole w1 is prime whereas w2 is not prime, and

τw1,Π(z) = µ̃Π(w1) zr + (1− z)(1− χΠz),

τw2,Π(z) = τw1,Π(z) + πab πba π
r−3
bb (1− (1 + χ

Π
)z) zr−1.

Therefore τw2,Π(z) > τw1,Π(z) for z ∈ (1, 1
1+χ

Π
), and τw2,Π(z) < τw1,Π(z) for z >

1
1+χ

Π
. Hence γw2

> γw1
if and only if the smallest positive root of τw1,Π is smaller

than 1
1+χ

Π
.

In Fig. 3 we show the behaviour of the escape rates for the holes of length r = 3
as functions of πaa and πbb. The figure clearly shows that for χ

Π
negative there are

values of πaa and πbb for which the maximal escape rate is realized by the holes
(aba) and (bab) (green surface), which are neither prime nor a repetition of a single
symbol.

Figure 3. The escape rates for the system of Section 4, as func-
tions of πaa, πbb ∈ (0, 1): the blue graph is for the holes w = (aaa)
and w = (bbb); the red graph is for the holes w = (aab), w = (bba),
w = (baa) and w = (abb); the green graph is for the holes w = (aba)
and w = (bab).

Remark 4.5. We briefly compare the results of this section with those of [16]. The
theorems of [16] hold for subshifts of finite type also with more than two symbols
(some of the results actually require the number of symbols in the alphabet to be
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larger than a certain bound) and with respect to the Parry measure, the Markov
measure of maximal entropy. In the cases covered by both papers, one can easily
check that the results obtained by our Proposition 4.2 coincide with those in [16,
Thm 2.1] (see also [15, Thm 3.1]) in the elementary case of holes of length r = 2,
by following the computations in Example 4.3 in the case πaa = 0 or πbb = 0 (these
are the only cases of a 2× 2 irreducible and aperiodic stochastic matrix Π with one
vanishing entry). For holes of length r ≥ 3 the escape rates have cumbersome or
implicit expressions, therefore the only convenient way to compare escape rate is
by numerical approximation.

Appendix A. Proof of Proposition 2.4. Given a hole w of length r, we have

Sn =
{
ω ∈ AN : ωn+r does not contain w as a sub-word

}
, ∀n ≥ 0

where ωk ∈ Ak denotes the finite sub-word of ω given by the first k symbols. Let
us introduce the sets

Σ` := Σ
(w)
` :=

{
s ∈ A` : s does not contain w as a sub-word

}
, (11)

then clearly Σ` = A` for ` < r, and we can write

Sn =
{
ω ∈ AN : ωn+r ∈ Σn+r

}
, ∀n ≥ 0. (12)

Let us recall that a word s ∈ A` defines a cylinder Cs ⊂ AN, the set of all words in
AN beginning with s, and that, by definition of the product probability measure µ,

µ(Cs) =

`−1∏
j=0

psj .

Hence for the survival probability pn we have

pn = µ(Sn) =
∑

s∈Σn+r

µ(Cs) =
∑

s∈Σn+r

n+r−1∏
j=0

psj ,

which becomes

pn = µ(Sn) =
∑

s∈Σn+r

∏
a∈A

(pa)Ns(a) (13)

if we use the counting function of Definition 2.1.
A classical method to study the exponential behaviour of a sequence is to use its

generating function. Let P (z) be the generating function of {pn}, that is

P (z) :=
∞∑
n=0

pn z
n,

and ρ be the radius of convergence of P (z). Then ρ = eγ
−
w ≤ eγ+

w , thus γw := γ−w is
given by the logarithm of the modulus of the smallest pole of P (z).

We now use (13) to find an explicit expression for the generating function P (z).
For the sets Σ` defined in (11), let

αk1,...,kA,` := # {s ∈ Σ` : Ns(ai) = ki , i = 1, . . . , A} . (14)

The power series

Σ(xa1
, xa2

, . . . , xaA , z) :=
∞∑
`=0

( ∑
k1+···+kA=`

αk1,...,kA,` (xa1
)k1 . . . (xaA)kA

)
z`, (15)
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where all ki are assumed to be non-negative integers, is called the generating func-
tion of the sets Σ`. We recall that∑

k1+···+kA=`

αk1,...,kA,` (xa1)k1 . . . (xaA)kA = (xa1 + xa2 + · · ·+ xaA)`

for all ` = 0, . . . , r − 1.
Following [13, Proposition I.4], we prove the following result.

Lemma A.1. Let cw = cw(xa1
, xa2

, . . . , xaA , z) be the weighted autocorrelation
polynomial of the word w of length r. Then

Σ(xa1
, xa2

, . . . , xaA , z)

=
cw(xa1

, xa2
, . . . , xaA , z)(∏A

i=1 (xai)
Nw(ai)

)
zr +

[
1−

(∑A
i=1 xai

)
z
]
cw(xa1 , xa2 , . . . , xaA , z)

.

Proof. For ` ≥ r, set

W` :=

{
s ∈ A` :

s`−r s`−r+1 . . . s`−1 = w and s does not
contain w in other positions

}
(16)

and denote by W (xa1
, xa2

, . . . , xaA , z) be the generating function of the sets W`,
defined as in (14)-(15) with W` in lieu of Σ`.

Let s ∈ Σ := ∪`≥0Σ`. By appending a letter to s, we obtain a non-empty word
either in Σ or in W := ∪`≥rW`. Hence the corresponding generating functions
satisfy the equation

1 +
( A∑
i=1

xai

)
zΣ(xa1

, xa2
, . . . , xaA , z)

= Σ(xa1
, xa2

, . . . , xaA , z) +W (xa1
, xa2

, . . . , xaA , z).

(17)

Next, appending the word w to a word s ∈ Σ, we obtain either a word in W or a
word with two appearances of w in the last 2r − 1 symbols. The latter case occurs
if one of the symbols c1, . . . , cr−1 of the autocorrelation vector of w is equal to 1. If
ci = 1 for some i ≥ 1 then (wi wi+1 . . . wr−1) = (w0 w1 . . . wr−i−1), thus, appending
w to a word in Σ whose last symbols are (w0 w1 . . . wi−1), we get a word which
can be written as a word in W with (wr−i wr−i+1 . . . wr−1) appended at the end.
Therefore we obtain a word with two appearances of w.

Hence we have the equation

( A∏
i=1

(xai)
Nw(ai)

)
zr Σ(xa1

, xa2
, . . . , xaA , z)

= W (xa1
, xa2

, . . . , xaA , z) cw(xa1
, xa2

, . . . , xaA , z).

(18)

The result follows by solving (17) and (18).

From (13) it follows that
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P (z) =
∞∑
n=0

( ∑
s∈Σn+r

A∏
i=1

(pai)
Ns(ai)

)
zn

=
∞∑
n=0

( ∑
k1+···+kA=n+r

αk1,...,kA,n+r (pa1)k1 . . . (paA)kA
)
zn

= z−r
∞∑
`=r

( ∑
k1+···+kA=`

αk1,...,kA,` (pa1
)k1 . . . (paA)kA

)
z`,

hence finally

P (z) = z−r
(

Σ(pa1 , pa2 , . . . , paA , z)−
r−1∑
`=0

z`
)
. (19)

Using Lemma A.1, it follows that P (z) is a rational function, with smallest positive
pole given by the smallest positive zero of the denominator of Σ(pa1

, pa2
, . . . , paA , z).

Hence the proof of Proposition 2.4 is finished.

Appendix B. Proof of Proposition 4.2. We argue as in Appendix A. Given a
hole w ∈ A∗

Π
of length r we have by (11) and (12)

pn = mΠ(Sn) = mΠ

({
ω ∈ AN

Π
: ωn+r ∈ Σn+r

})
for the survival probability. Since, for a given s = (s0 . . . s`−1) ∈ {a, b}`,

mΠ(Cs) = ps0

`−2∏
j=0

πsj sj+1

where p = (pa, pb) is the vector defined in Section 4, we find

pn =
∑

s∈Σn+r

m
Π

(Cs) =
∑

s∈Σn+r

ps0

n+r−2∏
j=0

πsj sj+1
.

Using the notation k = (k1, k2, k3, k4) and |k| := k1 + k2 + k3 + k4, we can then
write

pn =
∑

|k|=n+r−1

(
αak pa π

k1
aa π

k2

ab π
k3

ba π
k4

bb + αbk pb π
k1
aa π

k2

ab π
k3

ba π
k4

bb

)
(20)

where αak and αbk denote the number of words s ∈ Σn+r which begin with a and
b, respectively, and for which k is the vector of the number of appearances of
πaa, πab, πba, πbb, respectively, in the measure of the cylinder Cs.

In order to obtain a connection with the survival probabilities as expressed in
(20), we need to write the generating function of the sets Σ` taking into account
the number of transitions from a letter to another, and the first letter of a word.
We write

Σ(xa, xb, yaa, yab, yba, ybb, z)

:= 1 + Σa(xa, yaa, yab, yba, ybb, z) + Σb(xb, yaa, yab, yba, ybb, z)
(21)

where

Σa(xa, xb, yaa, yab, yba, ybb, z)

:=

∞∑
`=1

[ ∑
|k|=`−1

(
αa,ak xa y

k1
aa y

k2

ab y
k3

ba y
k4

bb + αb,ak xb y
k1
aa y

k2

ab y
k3

ba y
k4

bb

)]
z`
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is the generating function of words of length at least 2 and with last letter equal to

a. Here αa,ak and αb,ak denote the number of words of length |k|+ 1 not containing
w as a pattern, which begin with a and b, respectively, which end with a, and for
which k is the vector of the number of appearances of the patterns aa, ab, ba, bb.

A similar formulation holds for Σb(xa, xb, yaa, yab, yba, ybb, z), the generating func-
tion of words of length at least 2 and with last letter equal to b. With the above
notations we have

αa,ak + αa,bk = αak , αb,ak + αb,bk = αbk.

The analog of (19) then follows for the generating function of {pn}

P (z) =
∑
n≥0

pn z
n = z−r

(
Σ(pa, pb, πaa, πab, πba, πbb, z)− q(z)

)
(22)

where q(z) is a polynomial of degree r − 1 in z. As in Appendix A, the proof
of Proposition 4.2 ends by showing that Σ(xa, xb, yaa, yab, yba, ybb, z) is a rational
function and finding its denominator.

We repeat the proof of Lemma A.1 to prove

Lemma B.1. Let cw,M (yaa, yab, yba, ybb, z) be the Markovian weighted autocorrela-
tion polynomial of a word w of length r. Then the generating function (21) is a
rational function with denominator given by

yw0w1
. . . ywr−2wr−1

zr (ywr−1w0
− χ z δw0,wr−1

)

+
(

1− (yaa + ybb) z + χ z2
)
cw,M (yaa, yab, yba, ybb, z),

where χ := yaaybb − yabyba.

Proof. For ` ≥ r, let W` as in (16), and W := ∪`≥rW`. Also we use the notation
W (xa, xb, yaa, yab, yba, ybb, z) for the generating function of the sets W`.

Let s ∈ Σ = ∪`≥0 Σ`. By appending a letter to s, we obtain a non-empty word in
Σ or in W , but now we need to distinguish between the cases where we append the
letter a or b. We find the following equations for the generating functions defined in
(21) (we drop the dependence on most of the variables for reasons of readability).
If we append the letter a, we might find a word in W only if wr−1 = a, and we do
not find it ending with b, hence

xa z + Σa(z) yaa z + Σb(z) yba z = Σa(z) +W (z) δa,wr−1
. (23)

Analogously,

xb z + Σa(z) yab z + Σb(z) ybb z = Σb(z) +W (z) δb,wr−1
. (24)

Next, appending the word w to a word s ∈ Σ, we obtain either a word in W or
a word with two appearances of w in the last 2r − 1 symbols, and again this is
regulated by the Markovian weighted autocorrelation polynomial of w. We find the
equation

xw0
yw0w1

. . . ywr−2wr−1
+
(

Σa(z) zr yaw0
+ Σb(z) zr ybw0

)
yw0w1 . . . ywr−2wr−1

= W (z) cw,M (z).
(25)

Solving the system given by (23),(24),(25) for Σa, Σb and W in the four possi-
ble cases for w0 and wr−1, we find that the solution of the systems is such that
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Σ(xa, xb, yaa, yab, yba, ybb, z) is a rational function with denominator given by

yw0w1
. . . ywr−2wr−1

zr
(
ywr−1w0

− (yaaybb − yabyba) z δw0,wr−1

)
+
(

1− (yaa + ybb) z + (yaaybb − yabyba) z2
)
cw,M (z).

The proposition is proved.

Using now (22), with the relations πaa + πab = πba + πbb = 1, we find that the
denominator of P (z) is given by the polynomial τw,Π in (9).
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