1 2	1 2 2	Heavy metal and trace element concentrations in the blood of scalloped hammerhead sharks (<i>Sphyrna lewini</i>) from La Paz Bay, México
3 4	3 4	Darren A. Whitehead ^{1,2} , Joel H. Gayford ^{3,4} , Jacopo Gobbato ^{5,6} , Giulia Boldrin ⁴ , Maria
5 6	5	Tringali ⁵ , James T. Ketchum ^{6,8,9} , Felipe Galvan Magaña ² , Davide Seveso ^{5,7} and Simone
7 8	6	Montano ^{5,7}
9 10 11	7 8	¹ Investigación tiburones Mexico A.C
12 13	9 10	² Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, 23096, La Paz
14	10	México.
15 16	12	³ Department of Life Sciences, Silwood Park Campus, Imperial College London, UK
17 18 19	13	⁴ Shark Measurements, London, United Kingdom
20 21 22	14	⁵ Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca,
22 23 24	15	Piazza Della Scienza 1, 20126 Milan, Italy
25 26	16	⁶ Pelagios Kakunjá A.C., 23060, La Paz, México.
27 28	17	⁷ MaRHE Center (Marine Research and High Education Center), Magoodhoo Island,
29 30 21	19	Faafu Atoll, 12030, Maldives
32 33	20	⁸ Centro de Investigaciones Biológicas Noroeste (CIBNOR), La Paz, B.C.S., México
34 35 26	21	⁹ MigraMar, Bodega Bay, California, United States of America
37 38	22	
39 40	23	
41	24	
42 43	25 26	
44	20	
45	28	
46 47	29	
48	30	
49	31	
50 51	32	
52	33	
53	34	
54 55	35	
56	30 37	
57	38	
58 59	39	
60	40	
61		
₀∠ 63		
64		
65		

Abstract:

Sharks are particularly susceptible to bioaccumulation due to their life history characteristics and trophic position within marine ecosystems. Despite this, studies of bioaccumulation cover only a small proportion of extant species. In this study we report concentrations of trace elements and heavy metals in blood samples of S. lewini for the first time. We report high concentrations of several trace elements and heavy metals, with concentrations of some elements exceeding the limit determined safe for human consumption. High elemental concentrations may reflect biochemical differences between blood plasma and other tissues; however, they may also be symptomatic of high levels of exposure triggered by anthropogenic activities. We also provide evidence of elemental accumulation through ontogeny, the nature of which differs from that previously reported. Ultimately, this baseline study increases our understanding of interspecific and intraspecific variation in bioaccumulation and ecotoxicology in elasmobranchs which may prove important in ensuring adequate management.

Key words: Elasmobranchii, bioaccumulation, turnover rate, blood plasma, conservation

67 Introduction:

Pollution and bioaccumulation are two of the most significant anthropogenic factors affecting marine communities (Todd et al., 2010; Ley-Quiñónez et al., 2013; Boldrocchi et al., 2020). Whilst lethal affects have been reported in a number of taxa (Martin and Holdich, 1986) sublethal bioaccumulation of both elemental and organic contaminants is arguably an issue of even greater importance, given both the potential for trophic magnification (Gelsleichter et al., 2006; Gelsleichter & Walker, 2010; Storelli & Marcotrigiano, 2001) and difficulties in determining the true extent of bioaccumulation within any given species (Burkhard et al., 2012; Caurant et al., 1999; Rodríguez-Romero et al., 2021). Chronic, or intermittent exposure to these contaminants can significantly affect physiology, cellular biology, and behavior of living organisms (Gelsleichter et al., 2006; Jepson et al., 2005; Thophon et al., 2004; Ylitalo et al., 2005;), with these effects varying between and within species (Boldrocchi et al., 2019). Crucially, these effects can have pervasive and unpredictable long-term consequences for ecological communities as a result of interactions between taxa and the biogeochemical components of their environment (Moiseenko, 2017). Moreover, the chemical behavior of trace elements is likely to change in the face of anthropogenic climate change (Alves et al., 2023; Cabral et al., 2019; Cao et al., 2015; Eagles-Smith et al., 2014; Rodríguez-Romero et al., 2021;) and thus there is no guarantee that previous investigations of trace element bioaccumulation are representative of contemporaneous trends, or those that may be observed in the future. It should also be noted that marine bioaccumulation represents a potential health hazard for human populations (Akhbarizadeh et al., 2018; Cara et al., 2022), particularly in coastal communities relying on artisanal fisheries for a substantial proportion of their diet (Cartamil et al., 2011; Galvan-Magaña et al., 2013; Storelli et al., 2003; Vàzquez-Hurtado et al., 2010;). For these reasons, establishing the extent to which bioaccumulation is affecting marine organisms (at all trophic positions and in all ecosystems) is of critical importance.

Elasmobranchs (sharks, rays, and skates) are particularly susceptible to bioaccumulation as a result of their *k-selected* life-history parameters (Castro, 1993; Mull et al., 2012). Many elasmobranch taxa also occupy higher trophic levels (Maz-Courrau et al., 2011; Wosnick et al., 2021), a factor which has been shown to influence the bioaccumulation of many marine pollutants (Gelsleichter and Walker, 2010; Maz-Courrau et al., 2011; Pancaldi et al., 2019; Storelli et al., 1998, 2003). Bioaccumulation, its potential biological consequences, and putative adaptations to counteract them have been studied in several elasmobranch taxa (Escobar-Sánchez et al., 2010; Pancaldi et al., 2021; Wosnick et al., 2021), however such studies only account for a relatively small proportion of total elasmobranch diversity (Lee et al., 2015; Mull et al., 2012). Assessing the nature and potential consequences of trace element bioaccumulation in elasmobranch taxa at the population level is important given their intrinsic vulnerability to anthropogenic stressors such as overfishing (Dulvy et al., 2017; Walker, 1998), and the potential ecosystem-wide consequences of predator declines (Palkovacs et al., 2011; Parsons, 1992; Polis et al., 2000).

The Scalloped Hammerhead shark (Sphyrna lewini) is a large-bodied, migratory carcharhiniform shark, distributed worldwide in tropical and temperate oceans, where they inhabit both coastal and pelagic zones at depths of up to 275 meters (Compagno, 2011; Gulak et al., 2015; Moore & Gates, 2015). S. lewini is known to be in decline globally (Hayes et al., 2009), and has been listed as critically endangered by the International Union for the Conservation of Nature (IUCN) since 2018, predominantly due to overexploitation in longline fisheries (Aldana-Moreno et al., 2020) and low rebound potential (Pancoureau et al., 2018, 2021). Heavy metal and trace element concentrations have been studied previously in the liver and muscle tissues of S. lewini, however these tissues are thought to have a slow turnover rate relative to blood plasma, such that heavy metal and trace element concentrations do not

necessarily reflect the current biogeochemical environment at the location in question (Kim et al., 2012; Whitehead et al., 2020). Such studies generally report heavy metal and trace element concentrations lower than those which would present risk to human consumers (Bergés-Tiznado et al., 2015, 2021; Ruelas-Inzunza et al., 2020). Some biological consequences marine pollution for S. lewini have also been considered (Boswell, 2015), although the extent to which these results are indicative of S. lewini populations globally remains poorly constrained. In this study we report concentrations of trace elements and heavy metals in blood samples of S. lewini for the first time. We consider the concentration of various trace elements and heavy metals in isolation (including implications for human health and ecology), as well as potential relationships between elemental concentrations and key life history parameters (size and sex). Finally, we consider the extent to which S. lewini may have evolved detoxification mechanisms to avoid deleterious consequences of bioaccumulation. This study will increase our understanding of interspecific and intraspecific variation in bioaccumulation and ecotoxicology in elasmobranchs. We consider potential ecological and biological consequences of marine pollution in this system and suggest reasonable directions for future work and conservation action.

MATERIALS AND METHODS

Ethics statement:

Data collection and analysis procedures in this study complied with national animal welfare laws; guidelines and policies and was authorised by Mexican wildlife authorities under the permit PPF/DGOPA-024/20 provided by the Comisión Nacional de Acuacultura y Pesca (CONAPESCA). Participants of this study neither promoted nor encouraged the harvesting of sharks and all samples were collected with the consent of the artisanal fishing communities.

Blood samples were obtained from a total of 126 S. lewini individuals between December 1st 2020 and February 8th 2021 at the El Saladito fish camp on the west coast of La Paz Bay, Baja California Sur, Mexico (Figure 1). The highest number of individuals were registered in the month of December (n=103) accounting for a total of 81.7% of the sampled individuals, followed by February (n=13) with 10.3% and January (n=10) with 7.9%. Approximately 5 ml of whole blood was collected directly from the heart of each shark immediately after landing and stored in sterilized tubes at -40° C for further analyses. In addition, the following biological information was collected from each individual: total body length, measured from the tip of the snout to the apex of the upper lobe of the caudal fin (TL), and sex, determined by the presence or absence of the male intromittent organs (claspers). All sharks examined within this study were juvenile, as they were smaller than the estimated size at maturity for the species (Compagno, 2005). Size distribution ranged from 81 cm to a maximum size of 166 cm in TL, with a mean size of 108.9 cm \pm 17.3 cm. Two size classes were defined based on TL with sharks < 100 cm considered 'immature', whereas individuals with TL ranging between 100 and 180 cm were considered 'subadult'.

159 Sample analysis:

To remove excess moisture, blood samples were lyophilized using a LABCONCO freeze dry system at a constant temperature of -50°C for a total of 48 hrs at the Centro Interdisciplinario de Ciencias Marinas (CICIMAR) in La Paz, Mexico. Upon completion of the drying process, all blood samples were ground into a homogeneous powder using agate mortar and pestle, following the approach of Escobar-Sanchez et al. (2010). Subsequent analyses were performed in the university of Milano-Bicocca, Milan, Italy. Samples were hot concentrated by acid digestion in closed containers in specifically designed mineralizer Anton Paar Multiwave 5000

microwave ovens. Approximately 0.3 g of each sample was then digested in Teflon vials with 5 mL of Nitric Acid - HNO₃ (65%) and 1 mL of Hydrogen Peroxide - H₂O₂ (40%). Following acid digestion, each sample was transferred to a 50 mL plastic tube and brought to 20 mL by adding 14 mL of Milli Q water, in order to lower the acid concentration and avoid compromise of the instrumental reading. Trace elements analyses of Chromium (Cr), Cadmium (Cd), Copper (Cu), Iron (Fe), Nickel (Ni), Selenium (Se), and Zinc (Zn) were performed using an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES Optima 7000 DV PerkinElmer) with the Software control WinLab32, following the protocol of Pancaldi et al. (2019). Lead (Pb) and Arsenic (As) were analyzed with the Atomic Absorption Spectrophotometry with Graphite Furnace (GFAAS) PerkinElmer Analyst 600, while Mercury (Hg) was analyzed using AMA254 (Advanced Mercury Analyzer), using approximately 50 mg of each sample inside the furnace. The concentration of the analyte in the sample solution is expressed in ppb (μ g/L) using the formula

where:

C is the concentration of the analyte in the sample, expressed in $\mu g/L$ (ppb); A is the analyte concentration in the sample solution expressed in $\mu g/L$ (ppb) obtained from the calibration curve by instrumental reading; b is the reference blank samples for control; V is the total extracting volume (20 mL); d is the dilution factor; and m the mass of the sample. All concentrations obtained from the analyses were expressed as $\mu g/g$ (= ppm; = mg/kg) unless stated otherwise.

C = (A - b) * V * (d/m)

Raw data obtained from the analyses were visualized cleaned before all analyses. Results have been reported as mean ± standard deviation, unless stated otherwise. Elemental concentrations were compared to those permitted for human consumption by the Food and Drug Administration and the World Health Organization (FAO Legal Notice No 66/2003). The assumption of normality was violated when performing Kolmogorov-Smirnov tests upon the resulting dataset; therefore, nonparametric statistical tests (Mann Whitney and Spearman's rho) were used to compare the heavy metal and trace elements concentrations between size classes and sexes. The ratio of Selenium (Se) to Mercury (Hg) was evaluated to investigate potential detoxification mechanisms operating in S. lewini (Ralston et al., 2007; Ralston & Raymond, 2010). All statistical analyses were performed using IBM SPSS 28 Software (IBM SPSS 28, New York, US). Whilst trace element concentrations were established for all 126 individuals, heavy metal concentrations were only investigated in 55 individuals due to an insufficient volume of blood being collected from sampled sharks.

RESULTS

Elemental concentrations:

Besides Iron (Fe), Arsenic (As) was clearly the element with the highest concentration (16.82 ug/g), followed by Nickel (Ni) and Zinc (Zn) with concentration of 5.7 and 4.63 ug/g respectively (Figure 2). Iron (Fe) was expected to be the element present in greatest abundance due to its fundamental biological role in blood. Lead (Pb) was excluded from statistical analyses as it was present in concentrations below the detection limit of the Atomic Absorption Spectrophotometer and Graphite Furnace (GFAAS; $dl = 0.05 \mu g/L$).

Cadmium (Cd) concentration was higher than the edible limit set by the FAO in 40 of the 55
individuals tested, while Selenium (Se) in 18 of the 55 individuals tested (Table 1). Moreover,
a single individual was found with Mercury (Hg) concentration over the edible limit set by the
FAO (Table 1). No other elements were found to occur with concentrations above those
considered to be edible by the FAO.

223 Elemental concentrations and size/sex:

Analysis of mean elemental concentrations utilizing both Mann-Whitney and Spearman's Rho tests revealed a statistically significant difference between immature and subadult individuals for the elements Iron (Fe; Mann-Whitney test p = 0.017; Spearman's rho Test, Fe: $\rho = 0.330$, p = 0.016; Figure 3a) and Chromium (Cr; Mann-Whitney test, p = 0.016; Spearman's rho Test, Cr: $\rho = 0.327$, p = 0.015; Figure 3a, Table 2). Whilst the concentration of all elements other than Nickel (Ni) appeared to be higher in premature than immature individuals, no additional significant differences between life stages were found (p > 0.05). The Spearman's Rho test was also used to test for a relationship between elemental concentration and TL. Significant positive correlations with TL were found for Zinc (Zn) (p=0.012), Iron (Fe) (p=0.013), Chromium (Cr) (p<0.001) and Copper (Cu) (p=0.02), whereas no significant relationship was recovered between TL and the concentration of any other element (Table 3). Whilst the concentrations of all elements appeared to be higher in males than females, neither Mann-Whitney nor Spearman's rho tests recovered evidence of significant relationships between sex and elemental concentration (p > 0.05, Figure.3b).

239 Se: Hg ratio:

The molar ratio between Se and Hg could be calculated for only 34 individuals as in the remaining individuals selenium (Se) concentration was below the detection limit of the apparatus used. Se:Hg ratio was found to be greater than 1 in all but one individual, as the concentration of selenium (Se) exceeded that of mercury (Hg). The lowest ratio recorded was 0.55:1, whereas the greatest was 91.98:1 (Figure 4). No relationship between Se:Hg ratio and TL was found (Mann-Whitney test, p > 0.05).

DISCUSSION

Elemental concentrations in S. lewini: implications for ecology and human health

This study is the first assessment of heavy metals and trace elements concentrations from S. lewini blood plasma. Iron (Fe) was found to be the trace element in greatest abundance (Table 1), with a mean concentration comparable to that found in other elasmobranch taxa (Boldrocchi et al., 2019; Merly et al., 2019). This result was entirely expected given the vital role of Fe in blood plasma as a component of hemoglobin (Wells, 1999).

Besides iron, arsenic (As) was the element found in greatest abundance (Table 1), mirroring studies in other elasmobranchs (Merly et al., 2019). Intriguingly, arsenic levels were substantially higher in the blood plasma than those found in muscle tissues of S. lewini (Bergés-Tiznado et al., 2021; Boldrocchi et al., 2019), where arsenic would be expected to concentrate. Hypothetically such a difference could result purely from differential local arsenic abundance and consequently differential exposure, however similar relationships between blood and muscle tissue concentrations of arsenic have also been reported in Carcharodon carcharias (Merly et al., 2019). Exposure to arsenic in aquatic environments can have a range of damaging physiological consequences even if only a relatively small proportion of arsenic is found in a toxic form (Dringen et al., 2016; Greani et al., 2017), and for this reason we suggest that both

S. lewini and C. carcharias may possess arsenic detoxification mechanisms In the event that no such detoxification mechanism exists, the reported blood plasma arsenic (As) concentrations in both taxa would be extremely concerning and suggest that urgent modifications to local management plans are required. Selenium and zinc have both been shown to provide protection against arsenic toxicity in fishes (Roy and Battacharya, 2006; Zeng et al., 2005), however neither of these elements were present in particularly high concentrations (Table 1). Nickel (Ni) exhibited a similar trend, present at a concentration similar to that found in C. carcharias (Table 1; Merly et al., 2019) and significantly higher than that found in S. lewini muscle tissue (Boldrocchi et al., 2019). Whilst considered a potentially toxic element in many taxa (Blewett and Leonard, 2017), there is mounting evidence that Ni may be essential for fishes (Chowdhury et al., 2008; Pyle and Coutoure, 2011), and thus it remains to be seen whether arsenic and nickel blood plasma concentrations are driven by common underlying processes or not.

Whilst some elements were found in far higher concentrations than expected based on studies utilizing muscle and liver tissues, others did not differ noticeably: copper and cadmium concentrations (Table 1) were found to be comparable to those reported by in S. lewini muscle tissue (Powell and Powell, 2001; Ruelas-Inzunza et al., 2020). Selenium (Se) is an intrinsic component of the central nervous system (Steinbrenner and Sies, 2013); however it can be toxic when present at high levels (Berges-Tiznado et al., 2015; Peterson et al., 2009; Ruelas-Inzunza et al., 2020). The Se levels in *S. lewini* blood plasma were found to be low (Table 1) in comparison with both other S. lewini tissues (Boldrocchi et al., 2019) and C. carcharius blood plasma (Merly et al., 2019). Mercury (Hg) concentration was also far lower than expected on the basis of existing studies (Berges-Tiznado et al., 2015; Merly et al., 2019). Given the toxic effects of both mercury and selenium at high concentrations (Escobar-Sánchez et al., 2010, 2011; Lemly, 2002) one could suggest that these results have positive implications for S. lewini population-level health. However, this study utilized exclusively juvenile individuals, and thus the trophic position of said individuals (and consequently the extent to which biomagnification has occurred) is likely to be lower than in adult individuals utilized in other studies (Cerutti-Pereyra et al., 2022; Estupiñán-Montaño et al., 2021).

Whilst the absolute concentration of selenium was lower than expected in S. lewini blood plasma, the Se:Hg ratio was found to be relatively high in most sampled individuals (Figure 4). This result is consistent with previous studies addressing mercury accumulation in S. lewini (Berges-Tiznado et al., 2015; Pancaldi et al., 2019; Ruelas-Inzunza et al., 2020), and suggests that Se is indeed performing a role in detoxification of Hg. This protective effect is thought to be multifaceted, with competitive inhibition, formation of Hg-Se complexes and increase in glutathione peroxidase activity (which inhibits oxidative damage by Hg) all thought to contribute to the redistribution, detoxification, and excretion of mercury (Ralston et al., 2007; Pancaldi et al., 2019; Raymond and Ralston, 2020).

Several correlations between the concentrations of different elements were detected: namely, iron concentration was positively correlated to zinc and selenium concentrations, a trend which has also been reported in C. carcharias (Merly et al., 2019) and other taxa (Schmitt et al., 2007). Such correlations are thought to occur due to significant interplay between the regulatory mechanisms governing the usage of these metals (Ehrensburger and Bird, 2011). It has been reported that high levels of iron and zinc could potentially offset the toxic effects of arsenic by replacement (Merly et al., 2019; Wang et al., 2020), however we are unable to verify or refute such claims based on our results.

Generally, our results demonstrate that trace element and heavy metal concentrations are higher in the blood plasma of S. lewini individuals than from muscle and liver tissues of S. lewini individuals reported in other studies (Table 1; Berges-Tiznado et al., 2015; Pancaldi et al., 2019; Ruelas-Inzunza et al., 2020). We suggest two potential explanations for this trend. Firstly, apparent high concentrations may result from the differences in biochemistry and turnover rate between blood plasma and muscle/liver tissues in this species, as observed in other taxa (Kim et al., 2012; Whitehead et al., 2020). Alternatively, the population sampled in this study may be exposed to higher levels of trace elements and heavy metals through their local environment. There is known to be significant variation in the chemical composition of sediments and water column subdivisions in this region, due to wastewater discharge from the city of La Paz, and nearby phosphate mining activity (González-Yajimovich et al., 2010; Páez-Osuna et al., 2017). If the latter is responsible, this raises urgent questions regarding the health and stability of *S. lewini* populations in this area. Whilst relatively high levels of heavy metals have been found to be of minimal physiological influence in other taxa (Merly et al., 2019) and we found evidence for detoxification mechanisms operating in S. lewini, no haematic information regarding condition of health of sampled individuals was available. Thus, high heavy metal concentrations could instead be symptomatic of population declines which have been occurring in the region for years (Gallagher and Klimley, 2018; Pérez-Jiménez, 2014). Further studies are urgently required to determine the extent to which S. lewini populations are affected by the elemental concentrations reported in this study, and any indirect consequences this might have for the wider ecosystem. Importantly, these hypotheses are not mutually exclusive and both anatomical and local biogeochemical differences may contribute to observed elemental concentrations.

A comparison of the concentration levels of element with maximum limits permitted for the human consumption of a food products provided by the Food and Drug Administration and the World Health Organization (FAO Legal Notice No 66/2003) produced some concerning results. A total of 18 sampled individuals recorded Se concentration, higher than the limit established by the FAO at 1.0 μ g/g, as well as one individual with mercury concentration (0.52 $\mu g/g$) in excess of the limit established by the FAO for human consumption (0.50 $\mu g/g$). Additionally, Cd concentrations were also found to exceed the limit established in 2003 by the FAO and by the official Mexican regulation (NOM 242-SSA1, 2009) (0.05 ppm) in 40 out of 55 sampled individuals. Whilst this would be concerning regardless of the population from which individuals were sampled, shark consumption in this region is high at 17.34 g per capita per day, which represents over 20 times the national average (Ruelas-Inzuna et al., 2020). Whilst many species of sharks are consumed in the region, S. lewini represents one of those most frequently available. In the absence of proportionate and effective conservation measures to protect S. lewini from overfishing in Mexican waters, measures limiting shark consumption or enforcing existing limits for heavy metal and trace element consumption are urgently required in the interests of public health.

358 Differences between sex and size:

We did not recover evidence of any statistically significant relationship between elemental concentrations and sex (Figure 3). This result is not unexpected and matches findings in other taxa of similar trophic position (Adel et al., 2017; Escobar-Sánchez et al., 2011; Merly et al., 2019). This suggests that elemental uptake and processing in *S. lewini* does not differ significantly between the sexes. Whilst sex-based and size-based differences in habitat usage and trophic ecology are known in this species (Estupiñán-Montaño et al., 2021; Hoyos-Padilla et al. 2014; Klimley, 1987;), the inclusion of only of juveniles in this study likely nullified these potential confounding factors. On the basis of these results, we suggest that sex-based differences in elemental concentrations reported in other studies of S. lewini that include mature individuals result from differential exposure, rather than differential uptake and/or processing of said elements.

Whilst no relationship between sex and elemental concentrations was recovered, we did find evidence of significant relationships between size and the concentration of several elements. Iron and chromium concentrations were both higher in subadult individuals than immature individuals (Table 2), and iron, chromium, copper, and zinc concentrations all showed significant positive relationships with total length (Table 3). These results differ somewhat from existing literature concerning ontogenetic trends in elemental accumulation in elasmobranchs, where Zn and Cr typically demonstrate negative relationships with body length (Boldrocchi et al., 2019; Endo et al., 2008). Comparatively low concentrations of zinc in smaller individuals are concerning given that physiological demand for zinc is thought to be greatest during early ontogeny (Endo et al., 2008), however it is important to recognize that the relatively high turnover rate of blood plasma compared to muscle and hepatic tissues (Kim et al., 2012; Whitehead et al., 2020) means that observed elemental concentrations are likely less related to growth and more transient in nature (Merly et al., 2019). Neither sex nor total length was found to correlate significantly with Se:Hg ratio, in agreement with studies concerning other tissues and organs of S. lewini (Berges-Tiznado et al., 2015). This suggests that the protective effects of selenium against mercury toxicity remain consistent between the sexes and throughout ontogeny.

391 Conclusion:

This study is the first to report the concentration of heavy metals and trace elements in the blood plasma of the scalloped hammerhead shark (S. lewini), and amongst the first to analyze elemental concentrations in the blood plasma of any elasmobranch. Individuals of S. lewini appear to possess higher concentrations of several trace elements and heavy metals than populations from other regions, with concentrations of some elements such as Cadmium exceeding the limit determined safe for human consumption by national and international food standards agencies. High elemental concentrations may reflect biochemical differences between blood plasma and other tissues; however, they may also be symptomatic of high levels of exposure triggered by anthropogenic activities such as mining. Whilst S. lewini appears to possess detoxification mechanisms against some pollutants such as mercury, it remains to be seen whether marine pollution has significant physiological implications in this population. We also provide evidence of elemental accumulation through ontogeny, the nature of which differs from that reported in previous studies. There is much uncertainty underlying the relationship between different trace elements and heavy metals, and future studies are urgently required to assess the implications of these results not only for human health, but for the conservation prospective of S. lewini populations and the wider ecological community.

Acknowledgements:

410 Authors would like to thank volunteers and interns of Pelagios Kakunja A.C for assisting in 411 fieldwork and data collection procedures as well as the local artisanal fishing communities for 412 allowing the sampling protocols of their catch to support the research and conservation of 413 sharks in this region. Also, to the laboratory technicians from the University of Milano-Bicocca 414 and the Centro Interdisciplinario de Ciencias Marinas for support during the analysis process. 415 FGM thanks to Instituto Politecncio Nacional for the fellowships granted (COFAA and EDI).

CRediT authorship contribution statement

Darren A. Whitehead: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Writing - Original draft and editing, Visualization, Joel H. Gayford: Formal analysis, Investigation, Resources, Writing – Original draft and editing, Jacopo Gobbato: Formal analysis, Writing - editing, Giulia Boldrin: Methodology, Formal analysis, Investigation, Writing - original draft, Maria Tringali: Formal analysis, Methadology, Visualization, James T. Ketchum: Supervision, Project administration, Supervision, Funding acquisition, Felipe Galvan Magaña: Writing – editing, supervision, Davide Seveso: Writing - editing, supervision and Simone Montano: Conceptualization, Writing - editing, supervision. References Adel, M., Mohammadmoradi, K., & Ley-Quiñonez, C. P. (2017). Trace element concentrations in muscle tissue of milk shark, (Rhizoprionodon acutus) from the Persian Gulf. Environmental Science and Pollution Research, 24(6), 5933-5937. https://doi.org/10.1007/s11356-016-8358-6

Akhbarizadeh, R., Moore, F., & Keshavarzi, B. (2018). Investigating a probable relationship
between microplastics and potentially toxic elements in fish muscles from northeast of
Persian Gulf. *Environmental Pollution*, 232, 154–163.
<u>https://doi.org/10.1016/j.envpol.2017.09.028</u>

Aldana- Moreno, A., Hoyos- Padilla, E. M., González- Armas, R., Galván- Magaña, F., Hearn, A., Klimley, A. P., Winram, W., Becerril- García, E. E., & Ketchum, J. T. (2020). Residency and diel movement patterns of the endangered scalloped hammerhead Sphyrna lewini in the Revillagigedo National Park. Journal of Fish Biology, 96(2), 543-548. https://doi.org/10.1111/jfb.14239 12 446 Alves, L. M. F., Moutinho, A. B., Gómez, L. J., Oropesa, A. L., Muñoz-Arnanz, J., Jiménez, B., Lemos, M. F. L., Fonseca, V. F., Cabral, H., & Novais, S. C. (2023). Evidence of 17 448 contamination-associated damage in blue sharks (*Prionace glauca*) from the Northeast Atlantic. Science ofthe Total Environment, 872, 162095. https://doi.org/10.1016/j.scitotenv.2023.162095 Bergés-Tiznado, M. E., Márquez-Farías, F., Lara-Mendoza, R. E., Torres-Rojas, Y. E., Galván-Magaña, F., Bojórquez-Leyva, H., & Páez-Osuna, F. (2015). Mercury and Selenium in Muscle and Target Organs of Scalloped Hammerhead Sharks Sphyrna lewini of the SE Gulf of California: Dietary Intake, Molar Ratios, Loads, and Human Health 34 455 Risks. Archives of Environmental Contamination and Toxicology, 69(4), 440–452. https://doi.org/10.1007/s00244-015-0226-8 Bergés-Tiznado, M. E., Vélez, D., Devesa, V., Márquez-Farías, J. F., & Páez-Osuna, F. (2021). Arsenic in Tissues and Prey Species of the Scalloped Hammerhead (Sphyrna lewini) from the SE Gulf of California. Archives of Environmental Contamination and Toxicology, 80(3), 624–633. https://doi.org/10.1007/s00244-021-00830-6 Bergés-Tiznado, M. E., Véliz-Hernández, I. J., Bojórquez-Sánchez, C., Zamora-García, O. G., 51 462 Márquez-Farías, J. F., & Páez-Osuna, F. (2021). The spotted ratfish Hydrolagus colliei as a potential biomonitor of mercury and selenium from deep-waters of the northern 56 464 Gulf of California. Marine **Pollution** Bulletin, 164, 112102. https://doi.org/10.1016/j.marpolbul.2021.112102

Blewett, T. A., & Leonard, E. M. (2017). Mechanisms of nickel toxicity to fish and
invertebrates in marine and estuarine waters. *Environmental Pollution*, 223, 311–322.
https://doi.org/10.1016/j.envpol.2017.01.028

Boldrocchi, G., Monticelli, D., Butti, L., Omar, M., & Bettinetti, R. (2020). First concurrent
assessment of elemental- and organic-contaminant loads in skin biopsies of whale
sharks from Djibouti. *Science of the Total Environment*, 722, 137841.
https://doi.org/10.1016/j.scitotenv.2020.137841

Boldrocchi, G., Monticelli, D., Omar, Y. M., & Bettinetti, R. (2019). Trace elements and POPs
in two commercial shark species from Djibouti: Implications for human
exposure. *Science of the Total Environment*, 669, 637–648.
https://doi.org/10.1016/j.scitotenv.2019.03.122

- 477 Burkhard, B., Kroll, F., Nedkov, S., & Müller, F. (2012). Mapping ecosystem service supply,
 478 demand and budgets. *Ecological Indicators*, 21, 17–29.
 479 https://doi.org/10.1016/j.ecolind.2011.06.019
- 480 Cabral, Fonseca, Sousa, & Costa Leal. (2019). Synergistic Effects of Climate Change and
 481 Marine Pollution: An Overlooked Interaction in Coastal and Estuarine
 482 Areas. *International Journal of Environmental Research and Public Health*, *16*(15),
 483 2737. <u>https://doi.org/10.3390/ijerph16152737</u>

Cao, M., Li, S., Wang, Q., Wei, P., Liu, Y., Zhu, G., & Wang, M. (2015). Track of fate and primary metabolism of trifloxystrobin in rice paddy ecosystem. *Science of the Total Environment*, 518-519, 417–423. https://doi.org/10.1016/j.scitotenv.2015.03.028

487 Cara, B., Lies, T., Thimo, G., Robin, L., & Lieven, B. (2022). Bioaccumulation and trophic
488 transfer of perfluorinated alkyl substances (PFAS) in marine biota from the Belgian
489 North Sea: Distribution and human health risk implications. *Environmental*490 *Pollution*, *311*, 119907. <u>https://doi.org/10.1016/j.envpol.2022.119907</u>

491	Cartamil, D., Santana-Morales, O., Escobedo-Olvera, M., Kacev, D., Castillo-Geniz, L.,
$\frac{2}{3}$ 492	Graham, J. B., Rubin, R. D., & Sosa-Nishizaki, O. (2011). The artisanal elasmobranch
4 5 493	fishery of the Pacific coast of Baja California, Mexico. Fisheries Research, 108(2-3),
7 494 8	393-403. https://doi.org/10.1016/j.fishres.2011.01.020
9 10 11	Castro, J. I. (1993). The shark nursery of Bulls Bay, South Carolina, with a review of the shark
12 496 13	nurseries of the southeastern coast of the United States. Environmental Biology of
$^{14}_{15}$ 497	Fishes, 38(1-3), 37–48. https://doi.org/10.1007/bf00842902
16 17 498 18	Caurant, F., Bustamante, P., Bordes, M., & Miramand, P. (1999). Bioaccumulation of
$^{19}_{20}$ 499	Cadmium, Copper and Zinc in some Tissues of Three Species of Marine Turtles
21 22 500	Stranded Along the French Atlantic Coasts. Marine Pollution Bulletin, 38(12), 1085-
$23 \\ 24 \\ 25 \\ 501$	1091. https://doi.org/10.1016/s0025-326x(99)00109-5
$^{26}_{27}$ 502	Cerutti-Pereyra, F., Salinas-De-León, P., Arnés-Urgellés, C., Suarez-Moncada, J., Espinoza,
28 29 503 30	E., Vaca, L., & Páez-Rosas, D. (2022). Using stable isotopes analysis to understand
³¹ 32 504	ontogenetic trophic variations of the scalloped hammerhead shark at the Galapagos
33 34 505 35	Marine Reserve. PLOS ONE, 17(6), e0268736.
$\frac{36}{37}$ 506	https://doi.org/10.1371/journal.pone.0268736
38	
39 507	Chowdhury, M. J., Bucking, C., & Wood, C. M. (2008). Is Nickel an Essential Metal for
39 507 40 41 508	Chowdhury, M. J., Bucking, C., & Wood, C. M. (2008). Is Nickel an Essential Metal for Aquatic Animals. Integrated Environmental Assessment and Management 4(2), 266-
 39 507 40 41 508 42 43 44 509 	Chowdhury, M. J., Bucking, C., & Wood, C. M. (2008). Is Nickel an Essential Metal for Aquatic Animals. <i>Integrated Environmental Assessment and Management</i> 4(2), 266- 267, (30 January 2008). <u>https://doi.org/10.1897/1551-</u>
$\begin{array}{c} 39 \\ 39 \\ 40 \\ 41 \\ 42 \\ 42 \\ 43 \\ 44 \\ 509 \\ 45 \\ 46 \\ 47 \\ 510 \\ 47 \end{array}$	Chowdhury, M. J., Bucking, C., & Wood, C. M. (2008). Is Nickel an Essential Metal for Aquatic Animals. Integrated Environmental Assessment and Management 4(2), 266- 267, (30 January 2008). https://doi.org/10.1897/1551- 3793(2008)4[266:INAEMF]2.0.CO;2
 39 507 40 41 508 42 508 43 44 509 45 46 510 47 48 49 511 	Chowdhury, M. J., Bucking, C., & Wood, C. M. (2008). Is Nickel an Essential Metal for Aquatic Animals. Integrated Environmental Assessment and Management 4(2), 266- 267, (30 January 2008). https://doi.org/10.1897/1551- 3793(2008)4[266:INAEMF]2.0.CO;2 Compagno, L., Dando, M., & Fowler, S. (2005). A field guide to the sharks of the world.
39 507 40 41 41 508 42 509 43 409 44 509 45 46 46 510 47 48 49 511 50 51 512 52 512	Chowdhury, M. J., Bucking, C., & Wood, C. M. (2008). Is Nickel an Essential Metal for Aquatic Animals. Integrated Environmental Assessment and Management 4(2), 266- 267, (30 January 2008). https://doi.org/10.1897/1551- 3793(2008)4[266:INAEMF]2.0.CO;2 Compagno, L., Dando, M., & Fowler, S. (2005). A field guide to the sharks of the world. Compagno, L., Dando, M., & Fowler, S. (2011). Sharks of the world. Princeton, N.J.: Princeton
$\begin{array}{c} 39 \\ 40 \\ 41 \\ 508 \\ 42 \\ 43 \\ 44 \\ 509 \\ 45 \\ 46 \\ 510 \\ 47 \\ 48 \\ 49 \\ 511 \\ 50 \\ 51 \\ 512 \\ 52 \\ 53 \\ 54 \\ 513 \end{array}$	Chowdhury, M. J., Bucking, C., & Wood, C. M. (2008). Is Nickel an Essential Metal for Aquatic Animals. Integrated Environmental Assessment and Management 4(2), 266- 267, (30 January 2008). <u>https://doi.org/10.1897/1551-</u> 3793(2008)4[266:INAEMF]2.0.CO;2 Compagno, L., Dando, M., & Fowler, S. (2005). A field guide to the sharks of the world. Compagno, L., Dando, M., & Fowler, S. (2011). Sharks of the world. Princeton, N.J.: Princeton University Press.
$\begin{array}{c} 39 & 507 \\ 40 \\ 41 & 508 \\ 42 & 509 \\ 45 \\ 44 & 509 \\ 45 \\ 46 & 510 \\ 47 \\ 48 & 511 \\ 50 \\ 51 & 512 \\ 52 \\ 51 & 512 \\ 52 \\ 53 \\ 54 & 513 \\ 55 \\ 56 \\ 57 \end{array}$	 Chowdhury, M. J., Bucking, C., & Wood, C. M. (2008). Is Nickel an Essential Metal for Aquatic Animals. Integrated Environmental Assessment and Management 4(2), 266- 267, (30 January 2008). https://doi.org/10.1897/1551- 3793(2008)4[266:INAEMF]2.0.CO;2 Compagno, L., Dando, M., & Fowler, S. (2005). A field guide to the sharks of the world. Compagno, L., Dando, M., & Fowler, S. (2011). Sharks of the world. Princeton, N.J.: Princeton University Press.
$\begin{array}{c} 39 & 507 \\ 40 \\ 41 & 508 \\ 42 & 509 \\ 45 \\ 44 & 509 \\ 45 \\ 46 & 510 \\ 47 \\ 48 \\ 49 & 511 \\ 50 \\ 51 & 512 \\ 52 \\ 53 \\ 54 & 513 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \end{array}$	Chowdhury, M. J., Bucking, C., & Wood, C. M. (2008). Is Nickel an Essential Metal for Aquatic Animals. <i>Integrated Environmental Assessment and Management</i> 4(2), 266- 267, (30 January 2008). <u>https://doi.org/10.1897/1551-</u> 3793(2008)4[266:INAEMF]2.0.CO;2 Compagno, L., Dando, M., & Fowler, S. (2005). A field guide to the sharks of the world. Compagno, L., Dando, M., & Fowler, S. (2011). <i>Sharks of the world</i> . Princeton, N.J.: Princeton University Press.
$\begin{array}{c} 39 & 507 \\ 40 \\ 41 & 508 \\ 42 & 509 \\ 45 \\ 46 & 510 \\ 47 \\ 48 & 511 \\ 50 \\ 51 & 512 \\ 52 \\ 53 \\ 54 & 513 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60 \\ 61 \end{array}$	 Chowdhury, M. J., Bucking, C., & Wood, C. M. (2008). Is Nickel an Essential Metal for Aquatic Animals. Integrated Environmental Assessment and Management 4(2), 266-267, (30 January 2008). https://doi.org/10.1897/1551-3793(2008)4[266:INAEMF]2.0.CO;2 Compagno, L., Dando, M., & Fowler, S. (2005). A field guide to the sharks of the world. Compagno, L., Dando, M., & Fowler, S. (2011). Sharks of the world. Princeton, N.J.: Princeton University Press.
$\begin{array}{c} 39 & 507 \\ 40 \\ 41 & 508 \\ 42 & 509 \\ 45 \\ 46 & 510 \\ 47 \\ 48 & 511 \\ 50 \\ 51 & 512 \\ 52 \\ 53 & 513 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60 \\ 61 \\ 62 \\ 61 \\ 62 \\ \end{array}$	Chowdhury, M. J., Bucking, C., & Wood, C. M. (2008). Is Nickel an Essential Metal for Aquatic Animals. Integrated Environmental Assessment and Management 4(2), 266- 267, (30 January 2008). https://doi.org/10.1897/1551- 3793(2008)4[266:INAEMF]2.0.CO;2 Compagno, L., Dando, M., & Fowler, S. (2005). A field guide to the sharks of the world. Compagno, L., Dando, M., & Fowler, S. (2005). A field guide to the sharks of the world. University Press.
$\begin{array}{c} 39 \\ 40 \\ 41 \\ 508 \\ 42 \\ 43 \\ 44 \\ 509 \\ 45 \\ 46 \\ 510 \\ 47 \\ 48 \\ 49 \\ 511 \\ 50 \\ 51 \\ 51 \\ 51 \\ 512 \\ 52 \\ 53 \\ 54 \\ 513 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60 \\ 61 \\ 62 \\ 63 \\ 64 \end{array}$	 Chowdhury, M. J., Bucking, C., & Wood, C. M. (2008). Is Nickel an Essential Metal for Aquatic Animals. Integrated Environmental Assessment and Management 4(2), 266- 267, (30 January 2008). https://doi.org/10.1897/1551- 3793(2008)4[266:INAEMF]2.0.CO;2 Compagno, L., Dando, M., & Fowler, S. (2005). A field guide to the sharks of the world. Compagno, L., Dando, M., & Fowler, S. (2011). Sharks of the world. Princeton, N.J.: Princeton University Press.

1	514	Dringen, R., Spiller, S., Neumann, S., & Koehler, Y. (2015). Uptake, Metabolic Effects and					
1 2 3	515	Toxicity of Arsenate and Arsenite in Astrocytes. Neurochemical Research, 41(3), 465-					
4 5	516	475. https://doi.org/10.1007/s11064-015-1570-9					
6 7 8	517	Dulvy, N. K., Simpfendorfer, C. A., Davidson, L. N. K., Fordham, S. V., Bräutigam, A., Sant,					
9 10	518	G., & Welch, D. J. (2017). Challenges and Priorities in Shark and Ray Conservation.					
11 12	519	Current Biology, 27(11), R565-R572. https://doi.org/10.1016/j.cub.2017.04.038					
14 15	520	Eagles-Smith, C. A., & Ackerman, J. T. (2014). Mercury bioaccumulation in estuarine wetland					
16 17	521	fishes: Evaluating habitats and risk to coastal wildlife. Environmental Pollution, 193,					
18 19 20	522	147-155. https://doi.org/10.1016/j.envpol.2014.06.015					
21 22	523	Ehrensberger, K. M., & Bird, A. J. (2011). Hammering out details: regulating metal levels in					
23 24 25	524	eukaryotes. Trends in Biochemical Sciences, 36(10), 524–531.					
26 27	525	https://doi.org/10.1016/j.tibs.2011.07.002					
28 29 20	526	Endo, T., Yohsuke Hisamichi, Haraguchi, K., Kato, Y., Ohta, C., & Koga, N. (2008). Hg, Zn					
31 32	527	and Cu levels in the muscle and liver of tiger sharks (Galeocerdo cuvier) from the coast					
33 34	528	of Ishigaki Island, Japan: Relationship between metal concentrations and body					
35 36 37	529	length. Marine Pollution Bulletin, 56(10), 1774–1780.					
38 39	530	https://doi.org/10.1016/j.marpolbul.2008.06.003					
40 41 42	531	Escobar-Sánchez, O., Galván-Magaña, F., & Rosíles-Martínez, R. (2010). Mercury and					
43 44	532	Selenium Bioaccumulation in the Smooth Hammerhead Shark, Sphyrna zygaena					
45 46	533	Linnaeus, from the Mexican Pacific Ocean. Bulletin of Environmental Contamination					
47 48 49	534	and Toxicology, 84(4), 488–491. https://doi.org/10.1007/s00128-010-9966-3					
50 51	535	Escobar-Sánchez, O., Galván-Magaña, F., & Rosíles-Martínez, R. (2011). Biomagnification of					
52 53 54	536	Mercury and Selenium in Blue Shark Prionace glauca from the Pacific Ocean off					
55 56	537	Mexico. Biological Trace Element Research, 144(1-3), 550–559.					
57 58	538	https://doi.org/10.1007/s12011-011-9040-y					
59 60 61							
62 63							
64 65							

Estupiñán-Montaño, C., Galván-Magaña, F., Elorriaga-Verplancken, F., Zetina-Rejón, M., Sánchez-González, A., Polo-Silva, C., Villalobos-Ramírez, D., Rojas-Cundumí, J., & 5 Delgado-Huertas, A. (2021). Ontogenetic feeding ecology of the scalloped hammerhead shark Sphyrna lewini in the Colombian Eastern Tropical Pacific. Marine Ecology Progress Series, 663, 127–143. https://doi.org/10.3354/meps13639 12 544 Estupiñán-Montaño, C., Tamburin, E., & Delgado-Huertas, A. (2021). New insights into the trophic ecology of the scalloped hammerhead shark, Sphyrna lewini, in the eastern tropical Pacific Ocean. Environmental **Biology** Fishes. of https://doi.org/10.1007/s10641-021-01187-4 FAO. (2003). Heavy Metals Regulations (L.N. No. 66 of 2003). Retrieved August 18, 2022, from www.ecolex.org website: https://www.ecolex.org/details/legislation/heavy-metals-regulations-ln-no-66-of-2003-lex-faoc042405/ Gallagher, A. J., & Klimley, A. P. (2018). The biology and conservation status of the large hammerhead shark complex: the great, scalloped, and smooth hammerheads. *Reviews* 34 553 in Fish Biology and Fisheries, 28(4), 777–794. https://doi.org/10.1007/s11160-018-9530-5 Galvan-Magaña, F., Ramirez-Amaro, S. R., Cartamil, D., Gonzalez-Barba, G., Graham, J. B., 39 555 Carrera-Fernandez, M., Escobar-Sanchez, O., Sosa-Nishizaki, O., & Rochin-Alamillo, A. (2013). The artisanal elasmobranch fishery of the Pacific coast of Baja California Sur, Mexico, management implications. Scientia Marina, 77(3), 473-487. https://doi.org/10.3989/scimar.03817.05 Gelsleichter, J., Walsh, C. J., Szabo, N. J., & Rasmussen, L. E. L. (2006). Organochlorine 51 560 concentrations, reproductive physiology, and immune function in unique populations of freshwater Atlantic stingrays (Dasyatis sabina) from Florida's St. Johns River. 56 562 Chemosphere, 63(9), 1506–1522. https://doi.org/10.1016/j.chemosphere.2005.09.011

Gelsleichter, J., & Walker, C. J. (2010). Pollutant exposure and effects in sharks and their relatives. In Sharks and their relatives II (pp. 507-554). CRC Press. 6 González-Yajimovich, O., Perez-Soto, J. L., Avila-Serrano, G. E., & Meldahl, K. (2010). 9 Sediment transport trends in Bahía Concepción, Baja California Sur, Mexico, based on textural parameters and heavy mineral concentrations. Boletín de La Sociedad 11 568 Geológica Mexicana, 62(2), 281–304. https://www.jstor.org/stable/24921181 Greani, S., Lourkisti, R., Berti, L., Marchand, B., Giannettini, J., Santini, J., & Quilichini, Y. 17 570 (2017). Effect of chronic arsenic exposure under environmental conditions on 22 572 bioaccumulation, oxidative stress, and antioxidant enzymatic defenses in wild trout Teleostei). Ecotoxicology, 26(7), Salmo trutta (Pisces, 930-941. https://doi.org/10.1007/s10646-017-1822-3 Gulak, S., de Ron Santiago, A., & Carlson, J. (2015). Hooking mortality of scalloped hammerhead Sphyrna lewini and great hammerhead Sphyrna mokarran sharks caught bottom longlines. African Journal of Marine Science, 37(2), 34 577 267-273. on https://doi.org/10.2989/1814232x.2015.1026842 Hayes, C. G., Jiao, Y., & Cortés, E. (2009). Stock Assessment of Scalloped Hammerheads in 39 579 the Western North Atlantic Ocean and Gulf of Mexico. North American Journal of 44 581 Fisheries Management, 29(5), 1406–1417. https://doi.org/10.1577/m08-026.1 Jepson, P. D., Bennett, P. M., Deaville, R., Allchin, C. R., Baker, J. R., & Law, R. J. (2005). Relationships between polychlorinated biphenyls and health status in harbor porpoises 51 584 (Phocoena phocoena) stranded in the united kingdom. Environmental Toxicology and Chemistry, 24(1), 238. https://doi.org/10.1897/03-663.1 Kim, S. W., Han, S. J., Kim, Y., Jun, J. W., Giri, S. S., Chi, C., Yun, S., Kim, H. J., Kim, S. 56 586 G., Kang, J. W., Kwon, J., Oh, W. T., Cha, J., Han, S., Lee, B. C., Park, T., Kim, B. Y.,

1	588	& Park, S. C. (2019). Heavy metal accumulation in and food safety of shark meat from
2 3	589	Jeju island, Republic of Korea. PLoS ONE, 14(3).
4 5 6	590	https://doi.org/10.1371/journal.pone.0212410
7 8	591	Klimley, A. P. (1987). The determinants of sexual segregation in the scalloped hammerhead
9 10 11	592	shark, Sphyrna lewini. Environmental Biology of Fishes, 18(1), 27–40.
12 13	593	https://doi.org/10.1007/bf00002325
14 15 16	594	Lee, HK., Jeong, Y., Lee, S., Jeong, W., Choy, EJ., Kang, CK., Lee, WC., Kim, SJ., &
17 18	595	Moon, HB. (2015). Persistent organochlorines in 13 shark species from offshore and
19 20 21	596	coastal waters of Korea: Species-specific accumulation and contributing
21 22 23	597	factors. <i>Ecotoxicology and Environmental Safety</i> , 115, 195–202.
24 25	598	https://doi.org/10.1016/j.ecoenv.2015.02.021
26 27 28	599	Lemly, A. Dennis. (2002). Symptoms and implications of selenium toxicity in fish: the Belews
29 30	600	Lakecaseexample. AquaticToxicology, 57(1-2),39–49.
31 32 22	601	https://doi.org/10.1016/s0166-445x(01)00264-8
33 34 35	602	Ley-Quiñónez, C. P., Zavala-Norzagaray, A. A., Réndon-Maldonado, J. G., Espinosa-Carreón,
36 37	603	T. L., Canizales-Román, A., Escobedo-Urías, D. C., Leal-Acosta, M. L., Hart, C. E., &
38 39 40	604	Aguirre, A. A. (2013). Selected Heavy Metals and Selenium in the Blood of Black Sea
41 42	605	Turtle (Chelonia mydas agasiizzi) from Sonora, Mexico. Bulletin of Environmental
43 44 45	606	Contamination and Toxicology, 91(6), 645-651. https://doi.org/10.1007/s00128-013-
46 47	607	<u>1114-4</u>
48 49	609	Martin T. P. Holdish D.M. (1086). The south lather to visity of heavy motels to personnid
50 51 52	608	Martin, T.K., Holdich, D.M. (1986). The acute fethal toxicity of heavy metals to peracand
53 54	609	crustaceans (with particular reference to fresh-water asellids and gammarids), water
55 56	610	Research, Volume 20, Issue 9, 1986, 1137-1147, <u>https://doi.org/10.1016/0043-</u>
57 58 59	611	<u>1354(86)90060-6</u>
60 61		
62 63		
64 65		

Maz-Courrau, A., López-Vera, C., Galván-Magaña, F., Escobar-Sánchez, O., Rosíles-Martínez, R., & Sanjuán-Muñoz, A. (2011). Bioaccumulation and Biomagnification of Total Mercury in Four Exploited Shark Species in the Baja California Peninsula, Mexico. Bulletin of Environmental Contamination and Toxicology, 88(2), 129–134. https://doi.org/10.1007/s00128-011-0499-1

- Merly, L., Lange, L., Meÿer, M., Hewitt, A. M., Koen, P., Fischer, C., Muller, J., Schilack, V., Wentzel, M., & Hammerschlag, N. (2019). Blood plasma levels of heavy metals and trace elements in white sharks (Carcharodon carcharias) and potential health Pollution Bulletin, 142, consequences. Marine 85-92. https://doi.org/10.1016/j.marpolbul.2019.03.018
- Moiseenko, T. I. (2017). Evolution of biogeochemical cycles under anthropogenic loads: Limits impacts. *Geochemistry* International, 55(10), 841-860. https://doi.org/10.1134/s0016702917100081
- Moore, A. B. M., & Gates, A. R. (2015). Deep-water observation of scalloped hammerhead Sphyrna lewini in the western Indian Ocean off Tanzania. Marine Biodiversity *Records*, 8. https://doi.org/10.1017/s1755267215000627
- Mull, C.G., Blasius, M.E., O'Sullivan, J.B. & Lowe, C.G. (2012) Chapter 5: Heavy Metals, Trace Elements, and Organochlorine Contaminants in Muscle and Liver Tissue of Juvenile White Sharks, Carcharodon carcharias, from the Southern California Bight. In M.L. Domeier (Ed.), Global Perspectives on the Biology and Life History of the White Shark (pp. 59–76). CRC Press.
- Pacoureau, N., Sherley, R., Liu, K.-M. & Sul, R. B. (Shark A. (2018, November 8). IUCN Red 55 634 List of Threatened Species: Scalloped Hammerhead. Retrieved from IUCN Red List of Threatened Species website: https://www.iucnredlist.org/species/39385/2918526

1	636	Pacoureau, N., Rigby, C. L., Kyne, P. M., Sherley, R. B., Winker, H., Carlson, J. K., Fordham,
1 2 3	637	S. V., Barreto, R., Fernando, D., Francis, M. P., Jabado, R. W., Herman, K. B., Liu, K
4 5 6	638	M., Marshall, A. D., Pollom, R. A., Romanov, E. V., Simpfendorfer, C. A., Yin, J. S.,
7 8	639	Kindsvater, H. K., & Dulvy, N. K. (2021). Half a century of global decline in oceanic
9 10 11	640	sharks and rays. Nature, 589(7843), 567-571. https://doi.org/10.1038/s41586-020-
11 12 13	641	<u>03173-9</u>
14 15	642	Páez-Osuna, F., Álvarez-Borrego, S., Ruiz-Fernández, A. C., García-Hernández, J., Jara-
16 17 18	643	Marini, M. E., Bergés-Tiznado, M. E., Piñón-Gimate, A., Alonso-Rodríguez, R., Soto-
19 20	644	Jiménez, M. F., Frías-Espericueta, M. G., Ruelas-Inzunza, J. R., Green-Ruiz, C. R.,
21 22 23	645	Osuna-Martínez, C. C., & Sanchez-Cabeza, JA. (2017). Environmental status of the
24 25	646	Gulf of California: A pollution review. Earth-Science Reviews, 166, 181-205.
26 27 28	647	https://doi.org/10.1016/j.earscirev.2017.01.014
28 29 30	648	Palkovacs, E. P., Wasserman, B. A., & Kinnison, M. T. (2011). Eco-Evolutionary Trophic
31 32	649	Dynamics: Loss of Top Predators Drives Trophic Evolution and Ecology of Prey. PLoS
33 34 35	650	ONE, 6(4), e18879. https://doi.org/10.1371/journal.pone.0018879
36 37	651	Pancaldi, F., Galván-Magaña, F., González-Armas, R., Soto-Jimenez, M. F., Whitehead, D. A.,
38 39 40	652	O'Hara, T., Marmolejo-Rodríguez, A. J., Vázquez-Haikin, A., & Páez-Osuna, F.
41 42	653	(2019). Mercury and selenium in the filter-feeding whale shark (Rhincodon typus) from
43 44 45	654	two areas of the Gulf of California, Mexico. Marine Pollution Bulletin, 146, 955–961.
46 47	655	https://doi.org/10.1016/j.marpolbul.2019.07.017
48 49	656	Pancaldi, F., Páez-Osuna, F., Soto-Jiménez, M. F., Whitehead, D. A., González-Armas, R.,
50 51 52	657	Vázquez-Haikin, A., Becerril-García, E. E., & Galván-Magaña, F. (2021).
53 54	658	Concentrations of Silver, Chrome, Manganese and Nickel in Two Stranded Whale
55 56 57	659	Sharks (Rhincodon typus) from the Gulf of California. Bulletin of Environmental
58 59		
60 61		
62 63		

Contamination and Toxicology, 107(5), 827-832. https://doi.org/10.1007/s00128-021-03244-1

- Parsons, T. R. (1992). The removal of marine predators by fisheries and the impact of trophic structure. Marine Pollution Bulletin, 25(1-4), 51–53. https://doi.org/10.1016/0025-326x(92)90185-9
- Pérez-Jiménez, J. C. (2014). Historical records reveal potential extirpation of four hammerhead sharks (Sphyrna spp.) in Mexican Pacific waters. Reviews in Fish Biology and Fisheries, 24(2), 671–683. https://doi.org/10.1007/s11160-014-9353-y
- Peterson, S. A., Ralston, N. V. C., Peck, D. V., Sickle, J. V., Robertson, J. D., Spate, V. L., & Morris, J. S. (2009). How Might Selenium Moderate the Toxic Effects of Mercury in Stream Fish of the Western U.S.? Environmental Science & Technology, 43(10), 3919-3925. https://doi.org/10.1021/es803203g
- Polis, G. A., Sears, A. L. W., Huxel, G. R., Strong, D. R., & Maron, J. (2000). When is a trophic cascade a trophic cascade? Trends in Ecology & Evolution, 15(11), 473-475. https://doi.org/10.1016/s0169-5347(00)01971-6
- Powell, J. H., & Powell, R. E. (2001). Trace Elements in Fish Overlying Subaqueous Tailings in the Tropical West Pacific. Water, Air, and Soil Pollution, 125(1/4), 81-104. 39 676 https://doi.org/10.1023/a:1005211832691
 - Pyle, G. and Couture, P., 2011. Nickel. In Fish physiology (Vol. 31, pp. 253-289). Academic Press.
- Ralston, N. V. C., Blackwell, J. L., & Raymond, L. J. (2007). Importance of Molar Ratios in 51 681 Selenium-Dependent Protection Against Methylmercury Toxicity. Biological Trace Element Research, 119(3), 255-268. https://doi.org/10.1007/s12011-007-8005-7

1	683	Ralston, N. V. C., & Raymond, L. J. (2010). Dietary selenium's protective effects against				
1 2 3	684	methylmercury toxicity. <i>Toxicology</i> , 278(1), 112–123.				
4 5 6	685	https://doi.org/10.1016/j.tox.2010.06.004				
6 7 8	686	86 Raymond, L. J., & Ralston, N. V. C. (2020). Mercury: selenium interactions and health				
9 0	687	implications. NeuroToxicology, 81,294–299.				
1 2 3	688	https://doi.org/10.1016/j.neuro.2020.09.020				
4 5	689	Rodríguez-Romero, A., Viguri, J. R., & Calosi, P. (2021). Acquiring an evolutionary				
6 7 9	690	perspective in marine ecotoxicology to tackle emerging concerns in a rapidly changing				
9 0	691	ocean. Science of the Total Environment, 764, 142816.				
1 2 2	692	https://doi.org/10.1016/j.scitotenv.2020.142816				
3 4 5	693	Roy, S., & Bhattacharya, S. (2006). Arsenic-induced histopathology and synthesis of stress				
6 7	694	proteins in liver and kidney of Channa punctatus. Ecotoxicology and Environmental				
8 9 0	695	Safety, 65(2), 218–229. https://doi.org/10.1016/j.ecoenv.2005.07.005				
1 2	696	Ruelas-Inzunza, J., Amezcua, F., Coiraton, C., & Páez-Osuna, F. (2020). Cadmium, mercury,				
3 4 5	697	and selenium in muscle of the scalloped hammerhead Sphyrna lewini from the tropical				
6 7	698	Eastern Pacific: Variation with age, molar ratios and human health				
8 9 0	699	risk. Chemosphere, 242, 125180. https://doi.org/10.1016/j.chemosphere.2019.125180				
0 1 2	700	Schmitt, C. J., Whyte, J. J., Roberts, A. P., Annis, M. L., May, T. W., & Tillitt, D. E. (2007).				
3 4 5	701	Biomarkers of metals exposure in fish from lead-zinc mining areas of Southeastern				
5 6 7	702	Missouri, USA. Ecotoxicology and Environmental Safety, 67(1), 31–47.				
8 9	703	https://doi.org/10.1016/j.ecoenv.2006.12.011				
0 1 2	704	Steinbrenner, H., & Sies, H. (2013). Selenium homeostasis and antioxidant selenoproteins in				
- 3 4	705	brain: Implications for disorders in the central nervous system. Archives of				
5 6 7	706	Biochemistry and Biophysics, 536(2), 152–157.				
, 8 9	707	https://doi.org/10.1016/j.abb.2013.02.021				
0 1 2						
⊿ 3 4						
_						

1	708	Storelli, M. M., Ceci, E., Storelli, A., & Marcotrigiano, G. O. (2003). Polychlorinated biphenyl,
⊥ 2 3	709	heavy metal and methylmercury residues in hammerhead sharks: contaminant status
4 5 6	710	and assessment. <i>Marine Pollution Bulletin</i> , 46(8), 1035–1039.
7 8	711	https://doi.org/10.1016/s0025-326x(03)00119-x
9 10 11	712	Storelli, M. M., & Marcotrigiano, G. O. (2001). Persistent organochlorine residues and toxic
12 13	713	evaluation of polychlorinated biphenyls in sharks from the Mediterranean Sea
14 15	714	(Italy). Marine Pollution Bulletin, 42(12), 1323–1329. <u>https://doi.org/10.1016/s0025-</u>
16 17 18	715	<u>326x(01)00142-4</u>
19 20	716	Storelli, M. M., Stuffler, R. G., & Marcotrigiano, G. O. (1998). Total mercury in muscle of
∠⊥ 22 23	717	benthic and pelagic fish from the South Adriatic Sea (Italy). Food Additives and
24 25	718	Contaminants, 15(8), 876-883. https://doi.org/10.1080/02652039809374724
26 27 28	719	Thophon, S., Pokethitiyook, P., Chalermwat, K., Upatham, E. S., & Sahaphong, S. (2004).
29 30	720	Ultrastructural alterations in the liver and kidney of white sea bass, Lates calcarifer, in
31 32 33	721	acute and subchronic cadmium exposure. Environmental Toxicology, 19(1), 11-19.
34 35	722	https://doi.org/10.1002/tox.10146
36 37	723	Todd, P. A., Ong, X., & Chou, L. M. (2010). Impacts of pollution on marine life in Southeast
38 39 40	724	Asia. Biodiversity and Conservation, 19(4), 1063–1082.
41 42	725	https://doi.org/10.1007/s10531-010-9778-0
43 44 45	726	Vázquez-Hurtado, M., Maldonado-García, M., Lechuga-Devéze, C. H., Acosta-Salmón, H., &
46 47	727	Ortega-Rubio, A. (2010). Artisanal fisheries in La Paz Bay and adjacent oceanic area
48 49 50	728	(Gulf of California, Mexico). <i>Ciencias Marinas</i> , 36(4), 433–444.
50 51 52	729	https://doi.org/10.7773/cm.v36i4.1669
53 54	730	Walker, T.L. (1998). Can shark resources be harvested sustainably? A question revisited with
55 56 57 58 59	731	a review of shark fisheries, Marine and Freshwater Research, 49(7), 553-572.
60 61		
62 63		
64 65		

 733 on arsenic-exposed common carp: A signaling network comprising Nrf2, NF-KB and 734 MAPK pathways. <i>Fish & Shellfish Immunology</i>, <i>104</i>, 383–390. 735 https://doi.org/10.1016/j.fsi.2020.06.031 736 Wells, R. M. (1999). EVOLUTION OF HAEMOGLOBIN FUNCTION: MOLECULAR 737 ADAPTATIONS TO ENVIRONMENT. <i>Clinical and Experimental Pharmacology</i> 738 <i>and Physiology</i>, <i>26</i>(8), 591–595. https://doi.org/10.1046/j.1440-1681.1999.03091.x 739 Whitehead, D. A., Murillo-Cisneros, D., Elorriaga-Verplancken, F. R., Hacohen-Domené, A., 740 De La Parra, R., Gonzalez-Armas, R., & Galvan-Magaña, F. (2020). Stable isotope 741 assessment of whale sharks across two ocean basins: Gulf of California and the 742 Mexican Caribbean. <i>Journal of Experimental Marine Biology and Ecology</i>, <i>527</i>, 743 151359. https://doi.org/10.1016/j.jembe.2020.151359 744 Wosnick, N., Niella, Y., Hammerschlag, N., Chaves, A. P., Hauser-Davis, R. A., da Rocha, R. 745 C. C., Jorge, M. B., de Oliveira, R. W. S., & Nunes, J. L. S. (2021). Negative metal 746 bioaccumulation impacts on systemic shark health and homeostatic balance. <i>Marine</i> <i>Pollution Bulletin</i>, <i>168</i>, 112398. https://doi.org/10.1016/j.marpolbul.2021.112398 748 Y1italo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., 749 Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines 750 in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). <i>Marine</i> 751 <i>Pollution Bulletin</i>, <i>50</i>(1), 30–39. https://doi.org/10.1016/j.marpolbul.2004.08.005 752 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction 753 between selenium and arsenic <i>#. Journal of Inorganic Biochemistry</i>, <i>99</i>(6), 1269– 754 1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006 	1	732	Wang, Y., Zhao, H., Liu, Y., Nie, X., & Xing, M. (2020). Zinc exerts its renal protection effect
 MAPK pathways. <i>Fish & Shellfish Immanology</i>, <i>104</i>, 383–390. https://doi.org/10.1016/j.fsi.2020.06.031 Wells, R. M. (1999). EVOLUTION OF HAEMOGLOBIN FUNCTION: MOLECULAR ADAPTATIONS TO ENVIRONMENT. <i>Clinical and Experimental Pharmacology</i> <i>and Physiology</i>, <i>26</i>(8), 591–595. https://doi.org/10.1046/j.1440-1681.1999.03091.x Whitehead, D. A., Murillo-Cisneros, D., Elorriaga-Verplancken, F. R., Hacohen-Domené, A., De La Parra, R., Gonzalez-Armas, R., & Galvan-Magaña, F. (2020). Stable isotope assessment of whale sharks across two ocean basins: Gulf of California and the Mexican Caribbean. <i>Journal of Experimental Marine Biology and Ecology</i>, <i>527</i>, 151359. https://doi.org/10.1016/j.jembe.2020.151359 Wosnick, N., Niella, Y., Hammerschlag, N., Chaves, A. P., Hauser-Davis, R. A., da Rocha, R. C. C., Jorge, M. B., de Oliveira, R. W. S., & Nunes, J. L. S. (2021). Negative metal bioaccumulation impacts on systemic shark health and homeostatic balance. <i>Marine Pollution Bulletin</i>, <i>168</i>, 112398. https://doi.org/10.1016/j.marpolbul.2021.112398 Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). <i>Marine Pollution Bulletin</i>, <i>50</i>(1), 30–39. https://doi.org/10.1016/j.marpolbul.2004.08.005 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction between selenium and arsenic×. <i>Journal of Inorganic Biochemistry</i>, <i>99</i>(6), 1269– 1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006 	1 2 3	733	on arsenic-exposed common carp: A signaling network comprising Nrf2, NF- κ B and
 https://doi.org/10.1016/j.fsi.2020.06.031 Wells, R. M. (1999). EVOLUTION OF HAEMOGLOBIN FUNCTION: MOLECULAR ADAPTATIONS TO ENVIRONMENT. <i>Clinical and Experimental Pharmacology</i> <i>and Physiology</i>, 26(8), 591–595. https://doi.org/10.1046/j.1440-1681.1999.03091_x Whitehead, D. A., Murillo-Cisneros, D., Elorriaga-Verplancken, F. R., Hacohen-Domené, A., De La Parra, R., Gonzalez-Armas, R., & Galvan-Magaña, F. (2020). Stable isotope assessment of whale sharks across two ocean basins: Gulf of California and the Mexican Caribbean. <i>Journal of Experimental Marine Biology and Ecology</i>, 527, 151359. https://doi.org/10.1016/j.jembe.2020.151359 Wosnick, N., Niella, Y., Hammerschlag, N., Chaves, A. P., Hauser-Davis, R. A., da Rocha, R. C. C., Jorge, M. B., de Oliveira, R. W. S., & Nunes, J. L. S. (2021). Negative metal bioaccumulation impacts on systemic shark health and homeostatic balance. <i>Marine Pollution Bulletin</i>, <i>168</i>, 112398. https://doi.org/10.1016/j.marpolbul.2021.112398 Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). <i>Marine Pollution Bulletin</i>, <i>50</i>(1), 30–39. https://doi.org/10.1016/j.marpolbul.2004.08.005 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction between selenium and arsenic <i>x. Journal of Inorganic Biochemistry</i>, <i>99</i>(6), 1269– 1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006 	4 5	734	MAPK pathways. Fish & Shellfish Immunology, 104, 383–390.
 ⁹736 Wells, R. M. (1999). EVOLUTION OF HAEMOGLOBIN FUNCTION: MOLECULAR ADAPTATIONS TO ENVIRONMENT. <i>Clinical and Experimental Pharmacology</i> <i>and Physiology</i>, <i>26</i>(8), 591–595. https://doi.org/10.1046/j.1440-1681.1999.03091.x ⁷³⁸738 <i>and Physiology</i>, <i>26</i>(8), 591–595. https://doi.org/10.1046/j.1440-1681.1999.03091.x ⁷⁴⁷739 Whitehead, D. A., Murillo-Cisneros, D., Elorriaga-Verplancken, F. R., Hacohen-Domené, A., De La Parra, R., Gonzalez-Armas, R., & Galvan-Magaña, F. (2020). Stable isotope assessment of whale sharks across two ocean basins: Gulf of California and the Mexican Caribbean. <i>Journal of Experimental Marine Biology and Ecology</i>, <i>527</i>, 743 151359. https://doi.org/10.1016/j.jembe.2020.151359 ⁷⁴⁴Wosnick, N., Niella, Y., Hammerschlag, N., Chaves, A. P., Hauser-Davis, R. A., da Rocha, R. C. C., Jorge, M. B., de Oliveira, R. W. S., & Nunes, J. L. S. (2021). Negative metal bioaccumulation impacts on systemic shark health and homeostatic balance. <i>Marine Pollution Bulletin</i>, <i>168</i>, 112398. https://doi.org/10.1016/j.marpolbul.2021.112398 ⁷⁴⁵748 Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). <i>Marine Pollution Bulletin</i>, <i>50</i>(1), 30–39. https://doi.org/10.1016/j.marpolbul.2004.08.005 ⁷⁵⁵756 ⁷⁵⁶756 ⁷⁵⁶757 ⁷⁵⁷758 	6 7 8	735	https://doi.org/10.1016/j.fsi.2020.06.031
 ADAPTATIONS TO ENVIRONMENT. <i>Clinical and Experimental Pharmacology</i> <i>and Physiology</i>, 26(8), 591–595. https://doi.org/10.1046/j.1440-1681.1999.03091.x Whitehead, D. A., Murillo-Cisneros, D., Elorriaga-Verplancken, F. R., Hacohen-Domené, A., De La Parra, R., Gonzalez-Armas, R., & Galvan-Magaña, F. (2020). Stable isotope assessment of whale sharks across two ocean basins: Gulf of California and the Mexican Caribbean. <i>Journal of Experimental Marine Biology and Ecology</i>, 527, 151359. https://doi.org/10.1016/j.jembe.2020.151359 Wosnick, N., Niella, Y., Hammerschlag, N., Chaves, A. P., Hauser-Davis, R. A., da Rocha, R. C. C., Jorge, M. B., de Oliveira, R. W. S., & Nunes, J. L. S. (2021). Negative metal bioaccumulation impacts on systemic shark health and homeostatic balance. <i>Marine</i> <i>Pollution Bulletin, 168</i>, 112398. https://doi.org/10.1016/j.marpolbul.2021.112398 Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). <i>Marine</i> <i>Pollution Bulletin, 50</i>(1), 30–39. https://doi.org/10.1016/j.marpolbul.2004.08.005 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction between selenium and arsenic <i>x. Journal of Inorganic Biochemistry</i>, <i>99</i>(6), 1269– 1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006 	9 10	736	Wells, R. M. (1999). EVOLUTION OF HAEMOGLOBIN FUNCTION: MOLECULAR
 and Physiology, 26(8), 591–595. https://doi.org/10.1046/j.1440-1681.1999.03091.x Whitehead, D. A., Murillo-Cisneros, D., Elorriaga-Verplancken, F. R., Hacohen-Domené, A., De La Parra, R., Gonzalez-Armas, R., & Galvan-Magaña, F. (2020). Stable isotope assessment of whale sharks across two ocean basins: Gulf of California and the Mexican Caribbean. Journal of Experimental Marine Biology and Ecology, 527, 151359. https://doi.org/10.1016/j.jembe.2020.151359 Wosnick, N., Niella, Y., Hammerschlag, N., Chaves, A. P., Hauser-Davis, R. A., da Rocha, R. C. C., Jorge, M. B., de Oliveira, R. W. S., & Nunes, J. L. S. (2021). Negative metal bioaccumulation impacts on systemic shark health and homeostatic balance. Marine Pollution Bulletin, 168, 112398. https://doi.org/10.1016/j.marpolbul.2021.112398 Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines in cancer-associated mortality in California sea lions (Zalophus californianus). Marine Pollution Bulletin, 50(1), 30–39. https://doi.org/10.1016/j.marpolbul.2004.08.005 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction between selenium and arsenic^A. Journal of Inorganic Biochemistry, 99(6), 1269– 1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006 	11 12 13	737	ADAPTATIONS TO ENVIRONMENT. Clinical and Experimental Pharmacology
 Whitehead, D. A., Murillo-Cisneros, D., Elorriaga-Verplancken, F. R., Hacohen-Domené, A., De La Parra, R., Gonzalez-Armas, R., & Galvan-Magaña, F. (2020). Stable isotope assessment of whale sharks across two ocean basins: Gulf of California and the Mexican Caribbean. <i>Journal of Experimental Marine Biology and Ecology</i>, <i>527</i>, 151359. https://doi.org/10.1016/j.jembe.2020.151359 Wosnick, N., Niella, Y., Hammerschlag, N., Chaves, A. P., Hauser-Davis, R. A., da Rocha, R. C. C., Jorge, M. B., de Oliveira, R. W. S., & Nunes, J. L. S. (2021). Negative metal bioaccumulation impacts on systemic shark health and homeostatic balance. <i>Marine Pollution Bulletin</i>, <i>168</i>, 112398. https://doi.org/10.1016/j.marpolbul.2021.112398 Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). <i>Marine Pollution Bulletin</i>, <i>50</i>(1), 30–39. https://doi.org/10.1016/j.marpolbul.2024.08.005 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction between selenium and arsenic <i>A. Journal of Inorganic Biochemistry</i>, <i>99</i>(6), 1269–1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006 	14 15	738	and Physiology, 26(8), 591–595. <u>https://doi.org/10.1046/j.1440-1681.1999.03091.x</u>
 740 De La Parra, R., Gonzalez-Armas, R., & Galvan-Magaña, F. (2020). Stable isotope assessment of whale sharks across two ocean basins: Gulf of California and the Mexican Caribbean. <i>Journal of Experimental Marine Biology and Ecology</i>, 527, 151359. https://doi.org/10.1016/j.jembe.2020.151359 744 Wosnick, N., Niella, Y., Hammerschlag, N., Chaves, A. P., Hauser-Davis, R. A., da Rocha, R. C. C., Jorge, M. B., de Oliveira, R. W. S., & Nunes, J. L. S. (2021). Negative metal bioaccumulation impacts on systemic shark health and homeostatic balance. <i>Marine</i> <i>Pollution Bulletin</i>, <i>168</i>, 112398. https://doi.org/10.1016/j.marpolbul.2021.112398 748 Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). <i>Marine</i> <i>Pollution Bulletin</i>, <i>50</i>(1), 30–39. https://doi.org/10.1016/j.marpolbul.2004.08.005 751 <i>Pollution Bulletin</i>, <i>50</i>(1), 10–39. https://doi.org/10.1016/j.marpolbul.2004.08.005 752 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction between selenium and arsenic <i>x. Journal of Inorganic Biochemistry</i>, <i>99</i>(6), 1269– 1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006 	16 17 18	739	Whitehead, D. A., Murillo-Cisneros, D., Elorriaga-Verplancken, F. R., Hacohen-Domené, A.,
 741 assessment of whale sharks across two ocean basins: Gulf of California and the 742 Mexican Caribbean. <i>Journal of Experimental Marine Biology and Ecology</i>, 527, 743 151359. https://doi.org/10.1016/j.jembe.2020.151359 744 Wosnick, N., Niella, Y., Hammerschlag, N., Chaves, A. P., Hauser-Davis, R. A., da Rocha, R. 745 C. C., Jorge, M. B., de Oliveira, R. W. S., & Nunes, J. L. S. (2021). Negative metal 746 bioaccumulation impacts on systemic shark health and homeostatic balance. <i>Marine</i> 747 <i>Pollution Bulletin</i>, <i>168</i>, 112398. https://doi.org/10.1016/j.marpolbul.2021.112398 748 Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., 750 Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines rin cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). <i>Marine</i> <i>Pollution Bulletin</i>, <i>50</i>(1), 30–39. https://doi.org/10.1016/j.marpolbul.2004.08.005 751 Pollution Bulletin, <i>50</i>(1), 30–39. https://doi.org/10.1016/j.marpolbul.2004.08.005 752 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction 753 between selenium and arsenic <i>A. Journal of Inorganic Biochemistry</i>, <i>99</i>(6), 1269– 754 1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006 	19 20	740	De La Parra, R., Gonzalez-Armas, R., & Galvan-Magaña, F. (2020). Stable isotope
 Mexican Caribbean. Journal of Experimental Marine Biology and Ecology, 527, 151359. https://doi.org/10.1016/j.jembe.2020.151359 Wosnick, N., Niella, Y., Hammerschlag, N., Chaves, A. P., Hauser-Davis, R. A., da Rocha, R. C. C., Jorge, M. B., de Oliveira, R. W. S., & Nunes, J. L. S. (2021). Negative metal bioaccumulation impacts on systemic shark health and homeostatic balance. Marine <i>Pollution Bulletin, 168</i>, 112398. https://doi.org/10.1016/j.marpolbul.2021.112398 Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). Marine <i>Pollution Bulletin, 50</i>(1), 30–39. https://doi.org/10.1016/j.marpolbul.2004.08.005 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction between selenium and arsenic <i>A. Journal of Inorganic Biochemistry</i>, 99(6), 1269–1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006 	21 22 22	741	assessment of whale sharks across two ocean basins: Gulf of California and the
 743 151359. <u>https://doi.org/10.1016/j.jembe.2020.151359</u> 744 Wosnick, N., Niella, Y., Hammerschlag, N., Chaves, A. P., Hauser-Davis, R. A., da Rocha, R. 745 C. C., Jorge, M. B., de Oliveira, R. W. S., & Nunes, J. L. S. (2021). Negative metal 746 bioaccumulation impacts on systemic shark health and homeostatic balance. <i>Marine</i> 747 <i>Pollution Bulletin, 168,</i> 112398. <u>https://doi.org/10.1016/j.marpolbul.2021.112398</u> 748 Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., 749 Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines rin cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). <i>Marine</i> 751 <i>Pollution Bulletin, 50</i>(1), 30–39. <u>https://doi.org/10.1016/j.marpolbul.2004.08.005</u> 752 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction r55 r56 r57 r57 r56 r57 r57 	23 24 25	742	Mexican Caribbean. Journal of Experimental Marine Biology and Ecology, 527,
 ²⁸744 Wosnick, N., Niella, Y., Hammerschlag, N., Chaves, A. P., Hauser-Davis, R. A., da Rocha, R. ⁷⁴⁵C. C., Jorge, M. B., de Oliveira, R. W. S., & Nunes, J. L. S. (2021). Negative metal ⁷⁴⁶bioaccumulation impacts on systemic shark health and homeostatic balance. <i>Marine</i> ⁷⁴⁷<i>Pollution Bulletin</i>, <i>168</i>, 112398. https://doi.org/10.1016/j.marpolbul.2021.112398 ⁷⁴⁸Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., ⁷⁴⁹Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines ⁷⁵⁰in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). <i>Marine</i> ⁷⁵¹<i>Pollution Bulletin</i>, <i>50</i>(1), 30–39. https://doi.org/10.1016/j.marpolbul.2004.08.005 ⁷⁵²Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction ⁷⁵³between selenium and arsenic ★. <i>Journal of Inorganic Biochemistry</i>, <i>99</i>(6), 1269– ⁷⁵⁴1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006 	26 27	743	151359. https://doi.org/10.1016/j.jembe.2020.151359
 745 C. C., Jorge, M. B., de Oliveira, R. W. S., & Nunes, J. L. S. (2021). Negative metal bioaccumulation impacts on systemic shark health and homeostatic balance. <i>Marine</i> 747 <i>Pollution Bulletin, 168</i>, 112398. <u>https://doi.org/10.1016/j.marpolbul.2021.112398</u> 748 Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., 749 Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). <i>Marine</i> 750 <i>Pollution Bulletin, 50</i>(1), 30–39. <u>https://doi.org/10.1016/j.marpolbul.2004.08.005</u> 751 <i>Pollution Bulletin, 50</i>(1), 30–39. <u>https://doi.org/10.1016/j.marpolbul.2004.08.005</u> 752 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction 753 between selenium and arsenic <i>A. Journal of Inorganic Biochemistry</i>, <i>99</i>(6), 1269– 754 1274. <u>https://doi.org/10.1016/j.jinorgbio.2005.03.006</u> 	28 29 30	744	Wosnick, N., Niella, Y., Hammerschlag, N., Chaves, A. P., Hauser-Davis, R. A., da Rocha, R.
 bioaccumulation impacts on systemic shark health and homeostatic balance. <i>Marine</i> <i>Pollution Bulletin</i>, <i>168</i>, 112398. <u>https://doi.org/10.1016/j.marpolbul.2021.112398</u> Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). <i>Marine</i> <i>Pollution Bulletin</i>, <i>50</i>(1), 30–39. <u>https://doi.org/10.1016/j.marpolbul.2004.08.005</u> Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction between selenium and arsenic★. <i>Journal of Inorganic Biochemistry</i>, <i>99</i>(6), 1269– 1274. <u>https://doi.org/10.1016/j.jinorgbio.2005.03.006</u> 758 	31 32	745	C. C., Jorge, M. B., de Oliveira, R. W. S., & Nunes, J. L. S. (2021). Negative metal
 Pollution Bulletin, 168, 112398. https://doi.org/10.1016/j.marpolbul.2021.112398 Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). Marine <i>Pollution Bulletin</i>, 50(1), 30–39. https://doi.org/10.1016/j.marpolbul.2004.08.005 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction between selenium and arsenic ★. Journal of Inorganic Biochemistry, 99(6), 1269– 1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006 	33 34 35	746	bioaccumulation impacts on systemic shark health and homeostatic balance. Marine
 Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T., Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). <i>Marine</i> <i>Pollution Bulletin</i>, 50(1), 30–39. https://doi.org/10.1016/j.marpolbul.2004.08.005 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction between selenium and arsenic ★. <i>Journal of Inorganic Biochemistry</i>, 99(6), 1269– 1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006 	36 37	747	Pollution Bulletin, 168, 112398. https://doi.org/10.1016/j.marpolbul.2021.112398
 749 Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). <i>Marine</i> <i>Pollution Bulletin</i>, 50(1), 30–39. <u>https://doi.org/10.1016/j.marpolbul.2004.08.005</u> 751 <i>Pollution Bulletin</i>, 50(1), 30–39. <u>https://doi.org/10.1016/j.marpolbul.2004.08.005</u> 752 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction between selenium and arsenic ★. <i>Journal of Inorganic Biochemistry</i>, 99(6), 1269– 1274. <u>https://doi.org/10.1016/j.jinorgbio.2005.03.006</u> 755 756 757 756 757 758 	38 39 40	748	Ylitalo, G. M., Stein, J. E., Hom, T., Johnson, L. L., Tilbury, K. L., Hall, A. J., Rowles, T.,
 in cancer-associated mortality in California sea lions (<i>Zalophus californianus</i>). Marine <i>Pollution Bulletin</i>, 50(1), 30–39. <u>https://doi.org/10.1016/j.marpolbul.2004.08.005</u> 752 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction between selenium and arsenic A. Journal of Inorganic Biochemistry, 99(6), 1269– 1274. <u>https://doi.org/10.1016/j.jinorgbio.2005.03.006</u> 755 756 757 758 61 	41 42	749	Greig, D., Lowenstine, L. J., & Gulland, F. M. D. (2005). The role of organochlorines
 Pollution Bulletin, 50(1), 30–39. <u>https://doi.org/10.1016/j.marpolbul.2004.08.005</u> 752 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction 51 753 between selenium and arsenic☆. Journal of Inorganic Biochemistry, 99(6), 1269– 754 1274. <u>https://doi.org/10.1016/j.jinorgbio.2005.03.006</u> 755 756 757 758 61 	43 44 45	750	in cancer-associated mortality in California sea lions (Zalophus californianus). Marine
 ⁴⁸/₄₉ 752 Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction ⁵⁰/₅₂ 753 between selenium and arsenic☆. <i>Journal of Inorganic Biochemistry</i>, 99(6), 1269– ⁵³/₅₄ 754 1274. <u>https://doi.org/10.1016/j.jinorgbio.2005.03.006</u> ⁵⁶/₅₅ 755 ⁵⁷/₅₆ 756 ⁵⁹/₅₇ 756 ⁵⁹/₅₈ 757 ⁶⁰/₅₈ 758 ⁶¹/₆₂ 	46 47	751	Pollution Bulletin, 50(1), 30–39. <u>https://doi.org/10.1016/j.marpolbul.2004.08.005</u>
 between selenium and arsenic*. Journal of Inorganic Biochemistry, 99(6), 1269– 53 54 754 1274. <u>https://doi.org/10.1016/j.jinorgbio.2005.03.006</u> 55 57 756 58 756 59 757 60 758 61 62 63 64 65 	48 49 50	752	Zeng, H., Uthus, E. O., & Combs Jr., G. F. (2005). Mechanistic aspects of the interaction
53 754 1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006 55 755 56 755 57 756 59 757 60 758 61 62 63 64	50 51 52	753	between selenium and arsenic A. Journal of Inorganic Biochemistry, 99(6), 1269-
55 57 57 58 59 757 60 758 61 62 63 64 65	53 54	754	1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006
63 64 65	55 56 57 58 59 60 61 62	755 756 757 758	
	63 64 65		

Figure 2. Concentration of all heavy metals and trace elements analyzed: mercury (Hg), lead (Pb), chromium (Cr), cadmium (Cd), copper (Cu), selenium (Se) zinc (Zn), nickel (Ni) and arsenic (As). Iron (Fe) is excluded from the figure as it has significantly higher concentration as key component of hemoglobin (Wells, 1999). Elements in grey corresponds to the left concentration scale, whereas the elements in black to the right concentration scale.

Figure 3. Mean elemental concentration: mercury (Hg), lead (Pb), chromium (Cr), cadmium (Cd), copper (Cu), selenium (Se) zinc (Zn), nickel (Ni) and arsenic (As) for (a) immature and subadult and (b) male and female.

Figure 4. molar ratio between Se and Hg concentrations for sampled individuals.

Table 1. Overview of the concentration values of trace elements and heavy metals in the samples analysed. The limits for human consumption are displayed when assessed by FAO (Legal Notice No 66/2003).

Elements	Minimum (µg/g)	Maximum (µg/g)	Mean ($\mu g/g \pm SD$)	Limit for human consumption (FAO) (µg/g)
Mercury (Hg)	0.06	0.52	0.17 ± 0.11	0.50
Selenium (Se)	0	6.30	1.29 ± 1.32	1.00
Zinc (Zn)	0	9.98	4.65 ± 2.38	30.00
Lead (Pb)	nd	5.26	1.78 ± 2.37	0.2
Arsenic (As)	0	16.61	16.61 ± 13.87	*
Iron (Fe)	0.81	918.60	459.56 ± 232.54	*
Chromium (Cr)	0	1.80	0.22 ± 0.32	*
Cadium (Cd)	0	0.85	0.21 ± 0.17	0.05
Nickel (Ni)	0	144.13	5.77 ± 20.60	*
Copper (Cu)	0	1.61	0.75 ± 0.44	*

* no limit established yet by FAO

869 Table 2. Statistically significance difference and correlation between concentration of Fe and
 ¹ 870 Cr in Immature and Sub-adult individuals.

Elements	Spearman's Rho Test	P value	Mann-Whitney Test	P value	
Iron (Fe)	0.330	0.016	2.377	0.017	
Chromium (Cr)	0.327	0.015	2.400	0.016	

Table 3. Statistically significance correlation between elements concentrations and TL of the analyzed individuals.

Elements	Spearman's Rho Test	P value	
Iron (Fe)	0,339	0.013	
Chromium (Cr)	0,564	< 0.001	
Zinc (Zn)	0,335	0.012	
Copper (Cu)	0,322	0.020	

Declaration of interests

⊠The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: