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Abstract: Individual subjects’ ratings neither are metric nor have homogeneous meanings, con-
sequently digital- labeled collections of subjects’ ratings are intrinsically ordinal and categorical.
However, in these situations, the literature privileges the use of measures conceived for numerical
data. In this paper, we discuss the exploratory theme of employing conditional entropy to measure
degrees of uncertainty in responding to self-rating questions and that of displaying the computed
entropies along the ordinal axis for visible pattern recognition. We apply this theme to the study
of an online dataset, which contains responses to the Rosenberg Self-Esteem Scale. We report three
major findings. First, at the fine scale level, the resultant multiple ordinal-display of response-vs-
covariate entropy measures reveals that the subjects on both extreme labels (high self-esteem and low
self-esteem) show distinct degrees of uncertainty. Secondly, at the global scale level, in responding to
positively posed questions, the degree of uncertainty decreases for increasing levels of self-esteem,
while, in responding to negative questions, the degree of uncertainty increases. Thirdly, such entropy-
based computed patterns are preserved across age groups. We provide a set of tools developed in R
that are ready to implement for the analysis of rating data and for exploring pattern-based knowledge
in related research.

Keywords: ordinal categorical data; conditional Shannon entropy; mutual conditional entropy (MCE);
network

1. Introduction

Questionnaire items often require a single subject to make their choice of rating
on a scale, for instance, of 1 to 4, with reference to a list of statements often aimed at
studying individuals’ behaviors, attitudes and opinions. This type of data is ordinal, but
methodologies introduced for treating numerical data are often used to analyze them [1–3].
However, while a single natural ordering exists in self-rating data, the distance between 1
and 2 is likely very different from the distance between 2 and 3, and so is for 3 and 4. The
nature of self-rating scales is then far from being metric, which refers to measures based
on a universal unit, such as the one given by the use of a ruler, that is valid at 1 as well as
at 100.

From the perspective of two distinct subjects, say A and B, who answer the same
self-rating question, it is known that A’s 1 is distinct from B’s 1. That is, A’s 1 could be
B’s 2 or even 3. Therefore, there are two essential aspects that need to be considered when
analyzing self-rating data. First, the comparability between different subjects’ rating scale
is not certain. Secondly, A’s increasing scale: {1, 2, 3, 4}, can be transformed by an unknown
order-preserving transformation to B’s increasing scale: {1, 2, 3, 4}. Since such an order
preserving transformation is unknown, it is coherent and also conservative to treat A’s and
B’s 1s as the same category. That is, we want to avoid resting our analysis on the fact that
B’s 2 is larger than A’s 1. To extract meaningful information out of rating data, we only
need to make our data analysis rest on the fact that ratings in category 1 are “collectively”
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smaller than ratings in category 2, and so on. It is worth emphasizing here that self-rating
data are far from numerical. It is digital-coded for convenience. In other words, ‘1’, ‘2’, ‘3’
and ‘4’ are just labels, rather than numbers, and it would make no difference if the rating
was alphabet-coded and ordered, such as {a, b, c, d}, or if it was another ordered set of
numbers, such as {−100, −10, 1, 300}, as long as the respondent is informed that they are
labels for ‘strongly disagree’, ‘disagree’, ‘agree’, ‘strongly agree’.

From the perspective of many distinct subjects, all person-specific self-rating scales,
which do not contain metric information and possibly involve many unknown order-
preserving transformations, are just too heterogeneous to allow sensible meaningful arith-
metic operations, such as the calculation of mean, variance, correlation and the use of metric
models. These operations could indeed become meaningless and may yield misleading
conclusions [3]. Since ordinal data are common in many domains including psychology,
medicine, economics, etc., it is relevant to expand the literature on the use of measures that
respect data’s categorical nature and simultaneously provide simple and intuitive tools to
explore patterns along the data’s ordinal axis.

The most robust approach for accommodating self-rating data is to make use of its
most fundamental nature: being necessarily treated as categorical but displayed in an
ordinal fashion. This is the intrinsic theme underlying the self-rating data. In fact, being
categorical only allows for a grouping operation, and displaying in an ordinal fashion
also accommodates the grouping operation. Grouping the same ratings from all subjects
together is indeed the least unnatural and non-artificial operation, and displaying such
groups in order is the least intrusive summary of self-rating data.

Drawing on the above points, in this paper, we show how the concept of conditional
entropy, which is commonly used in Information Theory, is a suitable one when dealing
with self-rating data. We also provide tools, developed in the R Statistical Software [4],
which easily allow us to graphically explore patterns in self-rating data. In this paper, we
use them to discuss “Self-esteem across gender and age” as a topic of human complex
system within a research area where behavioral science, psychology and sociology intersect.

Prof. Morris Rosenberg studied dynamic changes of late adolescents’ self-image in
his well-known 1965 book [5]. Boys and girls of 15 to 18 years of age are so-called late
adolescents. This age group is marked by the urgent necessity of making drastic self-
image changes in response to drastic physiological and psychological developments. Such
developments are driven by changes in their own bodies as well as to the different societal
potentials. The scientific question to Rosenberg was to define high self-esteem and lower
self-esteem late adolescents. However, there are no precise definitions of high or low
self-esteem on one hand, and there exists no universal criterion to classify who belongs to
this category against other categories on the other hand. It is well recognized that a person’s
self-esteem has a spectrum in the sense that even subjects belonging to the same category
could still have heterogeneous behaviors in responding to the same situation under the
same circumstances. In order to address his scientific question, Rosenberg designed his
famous Self-Esteem Scale with 10 questions. Each one of 10 questions simulates a positive
or negative situation-circumstance. The four self-rating categories allow the expression of
heterogeneous degrees. Each question simultaneously plays two roles: (1) self-rating to a
defined situation-circumstance; (2) self-declaring a person’s ordinal locality of self-esteem
within the self-esteem spectrum.

For the second part, in the context of nowadays on-line surveys, a large proportion of
subjects, who take part in such Rosenberg Self-Esteem Scale, are far beyond Rosenberg’s
original domain of late adolescents. In fact, many subjects of such an on-line survey are
far older. Whether the designed questionnaires fit all age groups is certainly a legitimate
scientific question, which is beyond the scope of this paper. In this paper, we assume that
all ten questions remain to play the double roles within a specific age group, and we also
partition each age group into two subgroups with respect to gender. By doing so, we hope
to compute the validity of Rosenberg’s original design within each gender-specific age
group, to which we try to address the original scientific question, respectively, and then
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to reveal the effect of age and gender by comparing computed patterns across age and
gender subgroups.

2. Nature of Conditional Shannon Entropy

For each question Qi, a subject is asked to report a rating, for example, on a scale
of 1 to 4. Therefore, there are four groups of individuals with respect to four possible
outcomes: 1, 2, 3 and 4. Each group merely reflects the collection of subjects who gave
the same rating to the same question. Hence, it is necessary to recognize that the digital
group-ID is not numerical in any realistic sense. The group size collectively conveys the
proportions of response-categories in all subjects. This proportion reveals one aspect of
subject-composition from strongly disagreeing to strongly agreeing with the question
concerned. The evenness-vs-unevenness pertaining to such a proportion-vector can be
evaluated by Shannon entropy [6,7].

Any pairwise linkage between two questions, for instance Qi and Qj, indicates their
existential association. Such a relation implies that results of Qi can be used to predict
results of Qj to some extent and vice versa. Such a predictive implication is also applied
for a triplet of linked questions, say Qi being linked to Qj and Qs, or Qi linked to Qj and
Qj linked to Qs in a serial fashion. It may also be of interest to know whether results of
Qj could be better predicted by bivariate results of (Qi, Qs). In this paper, we explore
such predictive relations by having Qj as a response variable, while Qi or (Qi, Qs) are
covariate features.

For two questions Qi vs Qj (row-vs-column) with, for instance, the usual 1, 2, 3 and
4 levels, the corresponding 4× 4 group-partitions become a contingency table (Table 1).
If we fix Qj as the response/dependent variable and Qi as the covariate variable, we can
study the entropy of Qj conveyed by Qi. The lower the entropy, the more information Qi
conveys on Qj.

Table 1. Illustrative example from a subset of the Rosenberg dataset, late adolescents boys. Qj = ‘I
feel that I am a person of worth, at least on an equal plane with others‘, Qi = ‘At times I think I am no
good at all.’ 1 = strongly disagree, 2 = disagree, 3 = agree and 4 = strongly agree.

Qj

Qi 1 2 3 4

1 11 13 110 337
2 2 22 220 153
3 20 135 328 122
4 117 186 157 44

The k-th row of the contingency table refers to the observations where Qi = k, with
k = 1, . . . , 4. It reveals the proportion vector of group-ID of Qj conditioning on all subjects
who gave k as their rating for Qi. The conditional entropy thus evaluates the evenness-
vs-unevenness on the Qj’s four categories, given that Qi = k. With reference to Table 1,
when Qi = 1, Qj is extremely more likely to be in category 4 rather than in 1, 2 and 3, since
the proportion of units in 4 is much higher than that in 1, 2 and 3. If we, instead, look at
Qi = 4, respondents seem more evenly spread across the first 3 categories, suggesting more
uncertainty around the value of Qj. Therefore, we can say that the uncertainty around Qj
is reduced when Qi = 1 as compared to Qi = 4. The meaning of this conditional entropy
would be more proper when it is rescaled with respect to the marginal entropy of Qj. Notice
that working with the four conditional entropies of Qj given Qi = 1, 2, 3 and 4 convey
more information than their weighted version because of the ordinal nature of the values
of Qi = 1, 2, 3 and 4.

It is worth noting that the predictive relation can be established with (Qj, Qs) as a bi-
variate response variable and Qi as a covariate variable since we can fuse two variables into
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one through their contingency table. Seemingly, we can consider two covariate variables
(Qi, Qs) and use them to predict Qj.

Computing Conditional Entropy and Its Representation

In this section, we present the computational aspects of conditional entropy. In order
to study patterns of entropy of a response item Qj, from now on Y to follow the common
notation for a response variable, by levels of a covariate Qi, from now on X to follow the
common notation for a covariate, we compute the row-wise conditional entropy as follows:

H(Y|X = x) = − ∑
y∈SY

p(x, y)
p(x)

log
(

p(x, y)
p(x)

)
, (1)

where SY is the set of possible values of Y, p(x) is the rows proportion, i.e., the estimate
of the marginal probability of X, and p(x, y) is joint proportion, i.e., the joint probability
of X, Y.

The conditional entropy of Y given X is then defined as the weighted sum of H(Y|X = x)
for each possible value of X, using p(x) as the weights:

H(Y|X) = − ∑
x∈SX

p(x)H(Y|X = x), (2)

where SX is the set of possible values of X, and p(x) is the rows proportion, i.e., the vector
of the estimated marginal probabilities of X.

Last, the Shannon’s entropy of Y is calculated as

H(Y) = − ∑
y∈SY

p(y)log(p(y)) (3)

where p(y) is the column proportion, i.e., the vector of the estimated marginal probabilities
of Y.

We then compare the amount of entropy conveyed by the covariate with the entropy
of Y by re-scaling the conditional entropy by the unconditional entropy H(Y|X)

H(Y) .
A general measure of the strength of the association between two variables X and Y is

provided by the mutual conditional entropy (MCE). This is defined as the average between
H(Y|X)

H(Y) and H(X|Y)
H(X)

, and it can be seen as an alternative to traditional measures, which
include mainly measures based on the chi-square statistic [8–10]. Using the Rosenberg
Self-Esteem dataset, we will show how consistently using conditional entropy measures
throughout our study provides useful insights that would not be revieled otherwise.

In order to evaluate whether the observed values of entropy are different between two
groups, one may want to calculate confidence intervals. We consider building confidence
intervals as follows. We fix the row totals and we consider the row-wise conditional
proportions as an estimate of the conditional probabilities. The row total and the vector
of estimated conditional probabilities will constitute the parameters of a multinomial
distribution. We then generate M samples from a multinomial with those parameters, thus
creating M matrices. Based on the M matrices, we can calculate M values of any measure of
entropy described above. The M values of, for instance, row-wise conditional entropy will
constitute a sample from its empirical distribution, and we use the empirical distribution to
calculate confidence intervals.

Once an entropy measure has been calculated, a crucial step in summarizing the
results is displaying them in a simple and coherent manner. In order to display row-wise
conditional entropy, we use the ggplot2 library [11] in R, while in order to display mutual
associations, we use tools from the R library igraph [12].

To allow the reproducibility of this study and to expand the availability of tools to
discover patterns in categorical data, we have developed a set of R functions, available
on Github at https://github.com/emanuelaf/ceda-rosenberg (accessed on 23 July 2023).

https://github.com/emanuelaf/ceda-rosenberg
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The code includes the implementation of the above-mentioned formulas and confidence
intervals, and it includes the code to reproduce the graphical representations in this paper,
allowing researchers to use the same concepts and explore patterns of entropy in ordinal
data. In fact, while there exist R libraries that implement some measures of entropy and
information gain [13], to the best of our knowledge, there are no libraries in R that allow
for the use of entropy-based measures to graphically and explicitly investigate patterns of
entropy in categorical data.

The next section shows a real example application with the aim of illustrating how to
use these concepts based on entropy to gain useful insights on a categorical set of data.

3. Data and Results

Thanks to the wide-spread accessibility of the Internet, the Rosenberg Self-Esteem
Scale has become a popular on-line test. Persons, who are far outside the original domain
of application of this test, have taken this test, and the responses were made available on
Kaggle. The online platform has created a Self-Esteem Scale dataset, which can be found
via the following link: https://www.kaggle.com/datasets/lucasgreenwell/rosenberg-self-
esteem-scale-responses (accessed on 21 October 2021). This dataset contains the responses
to the Rosenberg Self-Esteem Scale of 47,974 subjects, along with information on age, sex
and country of residence.

Participants in the survey were asked to rate the following 10 items (from now on we
will interchangeably use the term item or question) on a scale where 1 = strongly disagree,
2 = disagree, 3 = agree and 4 = strongly agree (0 = no answer):

- Q1. I feel that I am a person of worth, at least on an equal plane with others.
- Q2. I feel that I have a number of good qualities.
- Q3. All in all, I am inclined to feel that I am a failure.
- Q4. I am able to do things as well as most other people.
- Q5. I feel I do not have much to be proud of.
- Q6. I take a positive attitude toward myself.
- Q7. On the whole, I am satisfied with myself.
- Q8. I wish I could have more respect for myself.
- Q9. I certainly feel useless at times.
- Q10. At times I think I am no good at all.

Notice that the set of questions is composed of items which are positively posed, in
the sense that answering 4 means high self-esteem (questions 1, 2, 4, 6, 7) and negatively
posed items (questions 3, 5, 8, 9 and 10).

Among the respondents, the group of females is larger than that of males, with
29,182 and 17,801, respectively. The range of the respondents’ age is very wide, with
respondents from age 10 to 70 years old. The first important question relates to the potential
heterogeneity across the span of the gender-axis. A second reasonable question is to ask
whether diverse systems are defined across the age-axis. These two are important issues
when analyzing this Kaggle dataset of the Rosenberg Self-Esteem Scale. In this paper, we are
guided more by the data analysis perspectives rather than by the perspectives of psychiatry,
psychology and sociology. We want to shed some light on these two issues by discovering
the data’s information content with emphasis on the data’s information heterogeneity.

Starting with the first question, we first focus on late adolescents, i.e., individuals
between 15 to 18 years old for a total of 12,045 individuals. This is the largest age group
and also an interesting one from a psychology perspective. In order to work on a more
homogenous group, we further filter the data to consider respondents from the US only, that
is, we consider 6435 individuals. The sample includes 4129 girls, 1977 boys, 135 adolescents
who identified as ‘other’ and 16 who identified as ‘none’. Given the very small sample
size of the categories ‘other’ and ‘none’, we remove those individuals, and thus work on a
sample of 4129 individuals who identify as girls and live in the US and 1977 who identify
as boys and live in the US.

https://www.kaggle.com/datasets/lucasgreenwell/rosenberg-self-esteem-scale-responses
https://www.kaggle.com/datasets/lucasgreenwell/rosenberg-self-esteem-scale-responses
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3.1. Mutual Conditional Entropy: Differences between Males and Females

If we consider mutual conditional entropy as a measure of the strength of the associa-
tion between items, we can obtain a general understanding of which items mutually convey
more information. Figure 1 shows the heat maps and networks of male late adolescents’
and females’ mutual conditional entropy. Networks are built with linkages with a thickness
proportional to 1- MCE, and, for the sake of readability, only values above 0.2 are displayed.
The strongest associations are observed between items of the same “sign” and which are
consecutive. This holds for both females and males; although, for the former, associations
are consistently lower.

Figure 1. Males’ mutual conditional entropy (left) and females’ mutual conditional entropy (right).
Numbers indicate the item and refer to the item number. Networks are built with linkages with a
thickness proportional to 1- MCE and subject to a threshold of 0.2.

The network that refers to the sample of boys has more linkages between the 10 items,
while the females’ network is more sparse. This is one important aspect of heterogeneity
with respect to the gender axis. The four linkages of the females’ network are among
clearly positive questions {1, 2, 6, 7} and strongly negative questions {9, 10}, respectively.
In contrast, beyond the aforementioned four linkages, the males’ network distinctively
contains 3 more linkages between clearly positive and clearly negative questions: {3, 6},
{3, 7} and {10, 6}. This network also reveals a linkage between two clearly, but not strongly,
negative questions {3, 5}.

Such evident gender differences point to one conclusion that females to some evident
degree are less certain (or more even) when facing non-strongly negative questions.

3.2. Row-Wise Conditional Entropy

Since calculating conditional entropy given a specific level of the covariate conveys
different levels of uncertainty around the response, we now work on the row-wise condi-
tional entropy. Row-wise conditional entropy means studying the uncertainty conveyed on
a response variable by a specific group. Since groups correspond to people with high or
low self-esteem (at least with respect to a specific question), studying row-wise conditional
entropy may provide useful insights on the response patterns of people with high/low
self-esteem.

For instance, let us consider Q1 (I feel that I am a person of worth, at least on an equal
plane with others) as the response and Q7 (On the whole, I am satisfied with myself) as the
covariate. The row-wise conditional entropy tells us whether those who answered ‘1’ to Q7
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(which are a group of people with low self-esteem) respond to answer Q1 in a homogenous
way and whether this is different from those who, for instance, answered ‘4’ to Q7 (which
correspond to a group of people with high self-esteem).

From Figure 2, we can see that for increasing levels of Q7, the entropy of Q1 decreases.
In other words, Q1 is more concentrated and less spread out for higher levels of Q7. Since
high levels of Q7 indicate a person with high self-esteem, it seems that these people convey
with more certainty Q1. This trend is consistent between gender and age groups, although
the estimates are less precise as age increases due to the smaller sample size. Moreover,
as age increases, the differences between the amount of information conveyed by high
self-esteem people and low self-esteem people increases.

Age 15 to 18 Age 19 to 22 Age 23 to 30 Age 31 to 40 Age 41 to 50 Age 51 to 60

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0.5

1.0

Q7: Category

H
(Q

1|
Q

i=
q) Sex

F

M

Age 15 to 18 Age 19 to 22 Age 23 to 30 Age 31 to 40 Age 41 to 50 Age 51 to 60

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0.4

0.6

0.8

1.0

1.2

1.4

Q5: Category

H
(Q

1|
Q

i=
q) Sex

F

M

Figure 2. Row-wise conditional entropy of Q1 given levels of Q7 (top panel) and of Q5 (bottom panel)
by age group and sex.

We now consider Q5 as an explanatory variable. Q5 is a negatively posed question;
therefore, low levels of Q5 indicate a person with high self-esteem. For increasing levels
of Q5, the entropy of Q1 increases. In other words, Q1 has a higher degree of uncertainty
for higher levels of Q5, i.e., for lower levels of self-esteem. These results confirm that self
confident people answer with more certainty to Q1.

A seemingly reverse but indeed “nonparallel” reasoning can be applied if we consider
Q9, which is a negatively posed question, as the response variable. From Figure 3, we can
see that the entropy of Q9 increases for increasing levels of a positively posed question and
decreases for increasing levels of a negatively posed question. These results confirm that
low self-esteem people answer with more certainty to Q9.

We now consider only the largest age group, i.e., late adolescents. We fix the response
variable as a positively posed question (for instance Q1), and we let the covariate change.
Looking at Figure 4, we can see that every time the covariate is a negatively posed question,
a trend of decreasing entropy can be observed, while whenever we condition on levels of
a negative item, then we observe a trend of increasing entropy. Note that the same trend,
though not as clear, can be found in individuals of older ages, as previously described by
Figures 2 and 3.
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Age 15 to 18 Age 19 to 22 Age 23 to 30 Age 31 to 40 Age 41 to 50 Age 51 to 60

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0.3

0.6

0.9

Q1: Category

H
(Q

9|
Q

i=
q) Sex

F

M

Age 15 to 18 Age 19 to 22 Age 23 to 30 Age 31 to 40 Age 41 to 50 Age 51 to 60

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0.4

0.6

0.8

1.0

Q3: Category

H
(Q

9|
Q

i=
q) Sex

F

M

Figure 3. Row-wise conditional entropy of Q9 given levels of Q1 (top panel) and of Q3 (bottom panel)
by age group and sex.

Figure 4. H(Q1|Qi = k) and associated 95% confidence intervals by gender. Red plots refer to
negatively posed questions, blue plots refer to positively posed questions.

The above observations are confirmed if we choose a negatively posed question as the
response variable. Let us focus on the negatively posed covariates (red plots) of Figure 4
and on those who answered 1 in those questions. These represent groups of people with
high self-esteem with regard to those items. There is a notable gender difference, with high
self-esteem girls conveying more uncertainty than high-self esteem boys, which is fairly
surprising and suggests some inconsistency. If we look at Figure 5, we again note that high
self-esteem girls convey more uncertainty than high self-esteem boys.

Regarding the general trend, the results in Figure 4 are somewhat mirrored in Figure 5.
In fact, the response variable is a negatively posed item, and there is increasing entropy if
we condition on positive items and decreasing if we condition on a negative item.



Entropy 2023, 25, 1311 9 of 13

Figure 5. H(Q9|Qi = k) and associated 95% confidence intervals by gender. Red plots refer to
negatively posed questions, blue plots refer to positively posed questions.

3.3. Row-Wise Conditional Entropy by Gender: Two Covariates

Following the same idea, we now consider two variables as covariates. The condition-
ing variable is therefore now an item composed of 16 levels, 1-1, 1-2, 2-1, . . . , 4-3, 4-4.

If the response variable is a positive item and we condition on two positive items,
the trend we observe is exactly as before, i.e., decreasing uncertainty with increased levels
of self-esteem. If we condition on two negative items, again, the observed trend is the
same as before, i.e., increasing uncertainty for decreasing levels of self-esteem. It is noted
that the ordinal orders of the 16 levels on both positive or both negative questions can be
clearly defined. However, it is not so in the case of one positive and one negative question.
It is basically because the set of codes {1, 2, 3, 4} is categorical, not numerical. That is,
negative questions {1, 2, 3, 4} are not necessarily equal to positive questions {4, 3, 2, 1}. If
we condition on a combination of negative and positive items, a phenomenon similar to
that of interactions can be observed. Looking at Figure 6, if we fix one of the levels of the
positive item (i.e., the first one), we can see that entropy increases for increasing levels of
the second item, which is a negative one. Of course, if we reversed the levels of one of the
two items so that they would both go in the same direction, a reinforcing phenomenon,
such as the one observed for items of the same sign, would be observed. Please note that
while Figures 6 and 7 refer to the sample of males, females exhibited a similar trend, and
figures are available from the authors upon request.
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Figure 6. Row-wise conditional entropies for male adolescents. Bivariate conditioning variable and
Q1 as the response variable. Values of row-wise conditional entropy equal to zero correspond to
those rows containing no observations.
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Figure 7. Row-wise conditional entropies for male adolescents. Bivariate conditioning variable and
Q9 as the response variable. Values of row-wise conditional entropy equal to zero correspond to
those rows containing no observations.

4. Conclusions

The theme of this paper is to display a rating dataset’s information content in a way
that is coherent with the data’s categorical and ordinal nature. Such a nature implies
that metric-based statistical methodologies, such as correlation or principal component
analysis (PCA) and several others, are not necessarily valid since arithmetical operations
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of mean and variance lose their meanings with respect to data’s categorical and ordinal
nature. In sharp contrast, by summarizing rating data into contingency tables, the concept
of conditional Shannon entropy naturally fits data’s categorical nature rather well, and the
ordinal display of conditional entropy through a matrix lattice clearly provides a visible
platform for pattern recognition and discoveries.

It is worth mentioning that the contingency table format importantly serves as the
foundation for evaluating the reliability of any recognized patterns. Such reliability eval-
uations play a critical and fundamental role in interpreting data’s intrinsic information
content, which is completely free of man-made structures and assumptions.

Our findings on the Rosenberg Self-Esteem Scale dataset are surprisingly clear. Pat-
terns of conditional entropy with respect to the subject’s self-esteem axis ranging from
strongly negative to strongly positive are rather reliably steady. In comparison, both age
and gender factors have rather mild effects along the self-esteem axis. Nonetheless, the
males’ associative network among the 10-question-nodes is more connected than females’
associative network. This global piece of information is saying that males’ ratings on the
10 questions tend to be less ambiguous than those of females.

Originally, this popularly used Rosenberg Self-Esteem Scale was conceptualized by its
author as a single-factor scale, with scores ranging along a continuum of low self-esteem
to high self-esteem [5]. This original intention seemingly is incoherent with our findings:
people who, according to positively posed questions, have high self-esteem are more certain
toward positive questions but more uncertain toward negative questions, while people who
seem to have self-esteem when answering negatively posed questions, are more certain
on negatively posed questions and more uncertain on positive ones. These two trends are
neither exactly orthogonal, nor exactly parallel, but they do suggest that our findings are
incoherent with Rosenberg’ original single-factor intent.

Further, there were three versions of rewording on the Rosenberg Self-Esteem Scale
devised in [14]. With a much smaller dataset being collected and analyzed via Factor Anal-
ysis, [15], indeed, indicated that the original version fits a two-factor model, while positive-
and negative-reworded versions fit single-factor models. It is noted that these results based
on Factor Analysis might be fundamentally distinct with our patterns discovered under
this study here.

The results found are easily reproducible, and researchers in the field of behavioral
and social statistics who work with ordinal data can use a similar structure to explore
patterns of conditional entropy with respect to the subject’s characteristics.

From an information content point of view, it is important to note that the most
fundamental and essential information content of self-rating data is the collective patterns
derived from all possible bivariate-questions, for instance, (Qi, Qj): if question Qi is taken
as a response variable to be used for collecting subjects’ self-rating, then the question Qj is
taken as a covariate to be used for collecting subjects’ self-declared status within the self-
esteem spectrum. In other words, computing patterns pertaining to this bivariate-question
(Qi, Qj) would be directional because of the inconsistency of subjects’ self-rating across
the ten questions. For instance, a subject might give two different ratings to two relatively
similar positive or negative questions.

From the collective perspective of the data’s information content, some bivariate-
questions might contribute more than others since the ten questions are heterogeneous in
their degrees of being positive and negative. Some computed patterns are clear for some
bivariate-questions, but some are ambiguous. Thus, the true task facing a data analyst here
is how to present and summarize potentially heterogeneous pattern information. In view
of such computational and expositional tasks, we are confident that no model-based data
analytics could work well in the sense of extracting authentic information content.

Beyond the bivariate-question, we considered a triplet-question (Qi, Qj, Qk), with Qi
being the response variable and (Qj, Qk)-pair being a 2D covariate variable. Theoretically
speaking, such a triplet-question format will bring distinct information content from that
derived from the bivariate-question. However, practical questions reside on how to make
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sensible ordinals among the 16 pairwise ratings. For this difficulty, we refrain from taking
(Qi, Qj) as a bivariate response variable.

Last, it is worth noting that using entropy-based measures does not rely on assump-
tions of linear relation between items. Other measures are widely used in the literature
to compute correlation of ordinal variables such as Spearman Rho, Kendall Tau or Poly-
choric [16–19]. In our dataset, these measures do provide similar results in cases where there
is a linear relation between items (for instance, Q9 with Q10, Q1 with Q2, etc.). However,
we would like to emphasize that the entropy approach we use is free from assumptions on
the shape of the relationship.

Author Contributions: E.F. and F.H. wrote the main manuscript text. E.F. prepared the figures. All
authors reviewed the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goodman, L.A. Analyzing qualitative/categorical data. In Log-linear Models and Latent Structure Analysis; Wheeler Hall: Amherst,

MA, USA, 1978.
2. Agresti, A. Categorical Data Analysis; John Wiley & Sons: New York, NY, USA, 2003.
3. Liddell, T.M.; Kruschke, J.K. Analyzing ordinal data with metric models: What could possibly go wrong? J. Exp. Soc. Psychol.

2018, 79, 328–348. [CrossRef]
4. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2021. Available online: https://www.R-project.org/ (accessed on 23 July 2023).
5. Rosenberg, M. Society and the Adolescent Self-Image; Princeton University Press: Princeton, NJ, USA, 1965.
6. Shannon, C.E. Prediction and Entropy of Printed English. Bell Syst. Tech. J. 1951, 30, 50–64. [CrossRef]
7. Cover, T.M.; Thomas, J.A. Information theory and statistics. Elem. Inf. Theory 1991, 1, 279–335.
8. Kendall, M.G. The Advanced Theory of Statistics; Charles Griffin and Co., Ltd.: London, UK, 1948.
9. Yule, G.U.; Kendall, M.G. An Introduction to the Theory of Statistics; Charles Griffin and Co., Ltd.: London, UK, 1950.
10. Goodman, L.A.; Kruskal, W.H. Measures of association for cross classifications. In Measures of Association for Cross Classifications;

Springer: New York, NY, USA, 1979; pp. 2–34.
11. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016.
12. Csardi, G.; Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 2006, 1695, 1–9.
13. Hausser, J.; Strimmerr, K. Entropy: Estimation of Entropy, Mutual Information and Related Quantities. R Package Version 1.3.1.

2021. Available online: https://cran.r-project.org/web/packages/entropy/ (accessed on 23 July 2023).
14. Greenberger, E.; Chen, C.-S.; Dmitrieva, J.; Susan, P.; Farruggia, S.P. Item-wording and the dimensionality of the Rosenberg

Self-Esteem Scale: Do they matter? Personal. Individ. Differ. 2003, 35, 1241–1254. [CrossRef]
15. Child, D. The Essentials of Factor Analysis, 3rd ed.; Bloomsbury Academic Press: London, UK, 2006.
16. Myers, L.; Sirois, M.J. Spearman correlation coefficients, differences between. In Encyclopedia of Statistical Sciences; Wiley Online

Library: Hoboken, NJ, USA, 2004; p. 12.
17. Ghalibaf, M.B. Relationship between Kendall’s tau Correlation and Mutual Information. Rev. Colomb. EstadíStica 2020, 43, 3–20.

[CrossRef]
18. Kiwanuka, F.; Kopra, J.; Sak-Dankosky, N.; Nanyonga, R.C.; Kvist, T. Polychoric correlation with ordinal data in nursing research.

Nurs. Res. 2022, 71, 469. [CrossRef] [PubMed]
19. Yu, H.; Hutson, A.D. A robust Spearman correlation coefficient permutation test. Commun. Stat. Theory Methods 2022, 1–13.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jesp.2018.08.009
https://www.R-project.org/
http://dx.doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://cran.r-project.org/web/packages/entropy/
http://dx.doi.org/10.1016/S0191-8869(02)00331-8
http://dx.doi.org/10.15446/rce.v43n1.78054
http://dx.doi.org/10.1097/NNR.0000000000000614
http://www.ncbi.nlm.nih.gov/pubmed/35997708
http://dx.doi.org/10.1080/03610926.2022.2121144

	Introduction
	Nature of Conditional Shannon Entropy
	Data and Results
	Mutual Conditional Entropy: Differences between Males and Females
	Row-Wise Conditional Entropy
	Row-Wise Conditional Entropy by Gender: Two Covariates

	Conclusions
	References

