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Abstract—Software systems for automating safety-critical tasks
in application domains like, for example, avionics, railways,
automotive, industry 4.0 and healthcare, must be highly reliable.
In this paper, we focus on safety-critical software written in
Scade, a model-based programming language largely adopted
in industry, and we specifically draw on our own experience in
a joint industry-university project aimed at developing safety-
critical Scade programs for the railways domain. We investigate
automated test case generation for Scade programs. We leverage
on state-of-the-art test generators based on either symbolic
execution, bounded model checking or search-based testing, in
order to define an original toolchain for generating test cases for
Scade programs. We rely on the toolchain to explore the absolute
and relative effectiveness of those mainstream test generation
approaches on a benchmark of 37 Scade programs developed as
part of an on-board signaling unit for high-speed railway systems.

Index Terms—Safety-critical Scade programs, Automated
test generation, Symbolic execution, Bounded model checking,
Search-based testing.

I. INTRODUCTION

Safety-critical software must guarantee highly reliable au-
tomation in application domains like avionics, railways, auto-
motive, industry 4.0 and patient monitoring, where failures can
have catastrophic consequences. Because of these risks, the
development process of safety-critical software typically en-
compasses several quality-oriented requirements, driven by the
goal of satisfying the concerned certification authorities [1],
[2]. A common tenet is to rely on programming languages
that, by their design choices and controlled semantics, may
both decrease the chances of introducing subtle faults in
the programs, and mitigate the hard work for satisfying the
certification requirements [3].

We draw on a joint research and development effort of Rete
Ferroviaria Italiana (RFI, the public company that manages
the railway infrastructure in Italy) and University of Milano-
Bicocca, aimed at developing an on-board signaling unit for
high-speed railway systems, compliant with the ERTMS1 stan-
dard specification. With the aim of ensuring the highest degree
of software integrity, RFI is relying on the model-based Scade

1www.era.europa.eu/activities/european-rail-traffic-management-system-ertms

programming language for the development of this safety-
critical software. Scade is a synchronous language, like LUS-
TRE [4] and ESTEREL [5], designed for the development of
embedded safety-critical software systems. A Scade program
is structured as a collection of communicating components,
each designed as a state machine or as a pure dataflow
component. The computation of a Scade program proceeds
as a sequence of discrete steps referred to as execution cycles.
At each execution cycle the outputs and the next state of each
component are calculated based on the current inputs and the
current state, and at the end of a cycle all components perform
an instantaneous transition to the next state as they enter the
next cycle. Scade is largely adopted in industry: Ansys, the
company that commercializes Scade and the supporting Scade
Suite model-based design environment, reports2 uses of Scade
for many safety-critical, embedded applications, including
avionics, flight control, automotive, autonomous vehicles and
gas turbines [6]–[12].

In this paper we consider the problem of automatically
generating unit-level test cases for Scade programs, and we
investigate the absolute and relative effectiveness of the main-
stream test generation approaches when applied for this pur-
pose. Our work focuses on achieving high structural coverage,
as required for certification of safety critical programs [1],
[2], and thus differs from existing approaches that generate
test cases either at random (e.g., Lutess [13]) or by focusing
on invariants or safety properties described in Lustre (e.g.,
Lurette [14] and Gatel [15]). In particular we focused on the
observable modified-condition/decision-coverage (O-MC/DC),
the criterion that Scade advises for software that shall work
with high integrity level [16].

As the test generation approaches, we consider search-based
testing, symbolic execution and bounded model checking.
Search-based testing randomly samples the input space of the
target program, guided by heuristics based on the improvement
of a fitness function that represents the extent to which the
test cases fulfilled the test objectives [17]–[21]. Symbolic
execution and bounded model checking systematically explore

2www.ansys.com/products/embedded-software/ansys-scade-suite



the execution space of the program under test. Symbolic
execution computes the execution conditions of program paths
as sets of constraints over symbols that represent the possible
program inputs, and then solves these constraints to concrete
test data with off-the-shelf constraint [22]–[29]. Bounded
model checking encodes the semantics of all execution paths
(up to a bounded length) as a boolean formula, and addresses
a set of reachability properties of interest by solving the
formula in conjunction with the constraints that represent the
properties [30]. By encoding coverage objectives as a reacha-
bility properties bounded model checking can be exploited to
generate test cases.

Our interest in search-based testing, symbolic execution and
bounded model checking is motivated by contrasting reasons.
On one hand, the heuristics used in search-based testing are
mostly based on dynamic program analysis, which generally
results in more lightweight approaches than by using static
analysis as in symbolic execution and bounded model check-
ing. Nonetheless, the strategies based on random sampling
(characterizing search-based testing) notoriously have limited
effectiveness when pursuing test objectives that may depend
on singular or quasi-singular inputs. In general, these hard-to-
randomly-hit test objectives often exist in the target programs,
making developers of safety-critical software often hesitant to
accept the limitations of search-based testing tout court.

On the other hand, symbolic execution and bounded model
checking systematically address all test objectives, aiming
not to miss any relevant test objective. Our interest in these
techniques is further motivated based on the observations that
Scade bans some hard-to-statically-analyze linguistic features,
e.g., by forbidding programmers from allocating memory
dynamically, by statically bounding the maximum number
of iterations of loops, and by avoiding recursion. As we
already commented, embracing these types of restrictions is
common in programming languages and coding standards
used for developing safety-critical software [3], [31], based
on the (empirically motivated) ground that banning them
rules out entire classes of subtle failures or risky behaviors,
e.g., unbounded consumption of time or space resources at
runtime. As a result, we envision the opportunity that symbolic
execution and bounded model checking can be more effective
for statically analyzing the Scade programs than they are
for programs written in other, general purpose programming
languages.

Our research method consists in leveraging state-of-the-art
test generators that already realize the above test generation
approaches for C programs, after transforming the target Scade
programs into semantically equivalent C programs. To this
end, we rely on the KCG compiler, a cross-compilation facility
that is part of the Scade Suite development environment, which
indeed allows for rendering a Scade program under test as a
semantically equivalent C program. In detail, we designed a
toolchain called TECS (Test Engine for Critical software in
Scade) that (i) uses KCG to render a Scade program as a C
program, (ii) exploits a given test generator to obtain suitable
sets of test inputs for the C program, and (iii) recasts the test

inputs as test scripts for the original Scade program under test.
TECS is specifically engineered with APIs that allow its

integration with several distinct test generators for C programs,
by simply providing an adapter for each new test generator.
We integrated TECS with the test generators AFL [18], which
implements fuzz testing in search-based fashion, KLEE [24],
which is based on symbolic execution, and CBMC [30], which
is based on bounded model checking. We presented an initial
version of TECS integrated with KLEE in [32], focusing on
the usefulness of symbolic execution for testing safety-critical
software developed in Scade. This paper extends our previous
work by integrating TECS with CBMC and AFL, and reporting
on experiments investigating the mutual strengths of search-
based and systematic test generation techniques.

Our experiments encompassed a benchmark of 37 Scade
programs belonging to the on-board signaling unit for high-
speed railway systems mentioned above. For each program, we
generated a test suite with each of the three versions of the
TECS toolchain, that is, by setting the back-end test generator
to AFL, KLEE and CBMC, respectively. We then executed
each test suite with Scade Test, the test execution environment
which is part of Scade Suite, and measured the amount of
observable modified-condition/decision-coverage (O-MC/DC)
that each test suite achieves for the corresponding Scade
program. We further analyzed to what extent the test suites
generated with each approach exercise either the same or
distinct O-MC/DC test objectives with respect to the test suites
generated with the competing approaches, to unveil possible
synergies.

In detail, this paper makes the following contributions:
• We introduce an original toolchain that leverages state-

of-the-art test generation tools, in order to generate test
suites for Scade programs. The toolchain is designed to
facilitate the integration of multiple test generation tools.

• We present three instances of our toolchain, integrated
with the state-of-the-art test generators AFL, KLEE and
CBMC, respectively. We refer to these instances of the
tool chain to investigate the effectiveness of search-based
testing (AFL), symbolic execution (KLEE) and bounded
model checking (CBMC) in the case of Scade programs.

• We discuss the results of a set of experiments with
37 Scade programs, providing empirical evidence of the
mutual strengths of the three considered test generation
approaches.

This paper is organized as follows. Section II describes the
design of TECS, and its instances based on AFL, KLEE and
CBMC. Section III reports the results of our experiments with
automatically generating test cases for 37 Scade programs.
Section IV surveys the related work. Section V frames our
conclusions and research directions.

II. THE TECS TOOLCHAIN

This section describes our toolchain TECS aimed at gen-
erating test cases for Scade programs. Figure 1 illustrates
the components and the workflow of TECS: the input is a
Scade program developed with the Scade Suite development



Fig. 1. Components and workflow of TECS

environment (top left part of the figure), and the output is a test
suite that can be executed with Scade Test, the test execution
environment of Scade Suite (bottom left part of the figure).
Below we describe the other components that comprise TECS
and its workflow. Since we target unit-level testing, here on in
this paper we use the term Scade program to generally refer
to the Scade component under test, which can be itself part
of a larger Scade program.

A. KCG

TECS relies on the KCG compiler, a cross-compilation
utility that is part of Scade Suite, to convert the Scade program
under test into a semantically equivalent program in the C
programming language (Figure 1, C program). The C program
encodes the execution cycle semantics of the corresponding
Scade program: Given current values for the inputs, the outputs
and the state, it computes the new values of the outputs and
the next state at the end of the execution cycle.

The C programs generated by KCG are provably equivalent
to the Scade programs of which they are a translation. In
particular, to comply with the semantics of Scade, KCG
produces C programs that are deterministic, deadlock-free, and
run in bounded space and time3. To this end, KCG generates
C code that dismisses some constructs out of the expressive
power of the C language, specifically such that:

• has unambiguous and precise semantics (i.e., no unde-
fined behaviors);

• conforms to the MISRA C 2012 coding standard rules;
• there is no use of heap memory or of variable-length

arrays, all the memory is allocated either globally or
automatically on the stack;

• there are no recursive function calls;
• all loops are statically bounded, i.e., their number of

iterations is determined by constant values known at code
generation time;

• no expression on the right-hand side of assignments or on
the guard position of conditional and iterative statements

3This also ensures compliance with the most demanding safety levels of
certification standards (as, e.g., DO-178C [1], IEC 61508 [33], EN 50128 [2],
and ISO 26262 [34]), which require that the program always runs in bounded
space and time.

has side effects, e.g., pre- and post-increment operators
are not used;

• there is no dynamic address calculation (pointer arith-
metic expressions), no variable aliasing (including the fact
that arrays are always accessed by their declaration names
via the array subscript operator), no pathological use of
the array subscript operator;

• all array accesses are bounded within the respective array
index ranges: the values of the access indices depend only
on values known at code generation time.

B. Test Driver Synthesis

The C programs generated with KCG cannot be exploited
as-they-are for the sake of generating proper test cases for
the corresponding Scade programs. In fact, a KCG-generated
C program implements a single execution cycle of the Scade
program from which it was obtained. To exercise the relevant
behaviors of a Scade component, we aim at generating test
cases that run suitable sequences of execution cycles of the
component. A proper Scade test case shall start from an initial
state in which all outputs and the state of the Scade component
under test are set to default values, and then progress by
running multiple execution cycles of the component, setting
suitable inputs at each cycle.

To steer the execution of test cases against the C programs
generated with KCG, TECS enriches each target C program
with a test driver. The test driver represents the execution of a
test case that, as we described above, first initializes all output
and state variables to valid default values, and then executes
a sequence of calls of the target C program, by allowing test
generators to pass suitable input values at each call.

With reference to Figure 1, the task of generating the code
of the test driver is carried out in the Test driver synthesis step
of the tool chain. This step results in a C program inclusive
of the test driver, which can be exploited with test generators
to explore the possible sequences of execution cycles of the
program under test.

TECS generates the test driver for a given program under test
by customizing the template code showed in Figure 2. Specif-
ically, it will customize the lines marked with the comment
”Adapt wrt KCG code” in the figure, by replacing the type and



function names showed as italic text with corresponding type
and function names defined in the C program generated with
KCG, as follows. Lines 2 and 3 declare program variables that
instantiate the inputs and the outputs of the program under test,
respectively, where the type names InputType and OutputType
shall be replaced with the specific types of the input and output
data structures defined in the C program. Line 4 calls the
function init that sets the initial values of the outputs: init shall
be replaced with the specific init function that KCG defined as
part of the C program. Yet, line 10 calls the function program
that represents the execution cycle semantics of the component
under test: program shall be replaced with the specific name
of the component, as defined in the C program generated with
KCG.

When executed, the test driver proceeds as follows. It relies
on the init function generated by KCG (Figure 2, line 4) to
initialize the values in the output data structure. This structure
includes a field for each program output as well the field
out.state that represents the current program state. Then, the
test driver iterates through the loop at lines 7– 12, where
it executes the function program multiple times (line 10).
Each execution of program, that is, each execution cycle
of the Scade program under test, receives dedicated input
values that the test driver sets by calling function takeInputs
(line 9). The loop iterates as long as the value of field out.state
corresponds to a program state not yet visited at a previous
iteration. This allows for exercising sequences of execution
cycles in the scope of the single-state-path-coverage (SSPC)
testing criterion, i.e., execution sequences that traverse at most
once the states of the state machine that comprises the Scade
program under test.

The call to function takeInputs (Figure 2, line 9) encapsu-
lates the logic for the test driver to receive new input values at
each execution cycle. As explained in the next section, it also
allows for generators to exploit the test driver for controlling
the test generation process. Figure 2 further specifies the logic
of function takeInputs at lines 14–17: It first enumerates all
fields at any nesting level of the input data structure (function
enumerateFields, line 15), allocating fresh memory to all
pointer-typed fields and returning the references to all leaf,
non-pointer fields, and then assigns a new value to each leaf
field separately (function provideInputs, line 16).

To enumerate the fields of the input data structure, TECS
(via the test driver) exploits the knowledge that, based on the
semantics of Scade and the guarantees from KCG, all data
structures are statically allocated and not recursive, the size of
all arrays is statically specified, and there is no pointer aliasing.
This implies that the input data structures are always made
of a finite set of statically identifiable fields, including the
elements of the array-typed fields. In this way, TECS induces
a specialized, efficient input-provision mechanism, which is
specific for testing Scade programs, and has the advantage of
not having to cope with null pointers or pointer aliasing.

Technically, the TECS generates the code of function enu-
merateFields (Figure 2, line 15) by relying on ANTLR4 [35]
to parse the type definitions of all fields of the input data

1: function TESTDRIVER
2: InputType in; ▷ Adapt wrt KCG code
3: OutputType out; ▷ Adapt wrt KCG code
4: init(&out); ▷ Adapt wrt KCG code
5: int cycle = 1;
6: Set visited = empty set();
7: while (!contains(visited, out.state)) do
8: add(visited, out.state);
9: takeInputs(&in, cycle);

10: program(&in, &out); ▷ Adapt wrt KCG code
11: cycle = cycle + 1;
12: end while
13: end function

14: function TAKEINPUTS(InputType *in, int cycle)
15: LeafField[] leafFields = enumerateFields(in, cycle);
16: provideInputs(leafFields); ▷ Input provider API
17: end function

Fig. 2. Algorithm of the analysis driver

structure, as given in the C program generated by KCG.
Each leaf field is then represented as a structure (denoted as
LeafField at line 15) that includes an identifier label for the
field, and a pointer to the memory allocated for containing
the value of the field. By naming convention, the identifier
label of the leaf fields includes i) the name of the field, ii) the
primitive type of the field and iii) the number of the execution
cycle in which they will be used. For example, the identifier
in::a::b_int_1 would represent the int-typed field b of
the sub-structure a within the input structure in, as assigned
at the first execution cycle.

Function provideInputs takes the responsibility to fill input
values into the fields of the input data structure. This function
represents the API that we must implement for integrating any
given test generator in the tool chain, in order to delegate the
test generator to control the program inputs while accomplish-
ing the test generation tasks.

C. Test Input Generation

Our tool chain TECS leverages state-of-the-art test genera-
tors for C programs (Figure 1, step Test input generation), in
order to produce test inputs for exercising the Scade programs
under test. This step consists in executing the given test
generator on the C program that contains the test driver, as
follows:

(i) we provide a test-generator-specific implementation of
the API provideInputs called by the test driver (Figure 2,
line 16),

(ii) we compile the C program along with the test driver,
the provided implementation of provideInputs and a main
function that calls the test driver,

(iii) we execute the test generator on the program, and let the
test generator generate test data for the program.



(iv) we post-process the test data (that each given test genera-
tor produces in its specific output format) to render them
in a common format (Figure 1, formatter).

Below we explain the implementations of provideInputs that
allow TECS to work with the test generators KLEE, CBMC
and AFL, respectively.

1) Integrating TECS with KLEE: KLEE generates test cases
based on symbolic execution. Working as a symbolic executor,
it models the input values as unconstrained symbols, interprets
the statements in the program in function of the input symbols,
and computes the execution conditions of the program paths as
logic constraints over the input symbols. Finally, KLEE solves
the execution conditions of the analyzed program paths with
a SMT solver (e.g., STP [36] or Z3 [37]) to obtain concrete
inputs that make those program paths execute.

In our setting, KLEE executes the intermediate binary code
of the program compiled with LLVM.4

To make TECS work with KLEE, we link the program to
an implementation of the API provideInputs that assigns the
relevant inputs with symbolic values by using the primitive
klee make symbolic provided from KLEE. Specifically, the
implementation of provideInputs calls klee make symbolic for
all primitive inputs enumerated in test driver at each execution
cycle (Figure 2, line 15) as follows:

klee make symbolic(fields[i].r, sizeof(*fields[i].r), fields[i].l)

where fields[i] represents the ith input field received as input
of provideInputs, and fields[i].r and fields[i].l represent the
memory address and the identifier label of that field, respec-
tively.

In this way, running KLEE at step Test input generation,
we obtain test inputs for the program paths that traverse the
program under test through the test driver, i.e., the program
paths visited when calling program (Figure 2, line 10) multiple
times in the while loop of the test driver.

2) Integrating TECS with CBMC: CBMC generates test
cases according to bounded models checking. It encodes the
semantics of the statement in target C program as a boolean
formula, expresses a reachability problem for each branch in
the program as a constraint to be evaluated in conjunction with
the program formula, and then computes test inputs for each
branch by solving the reachability problems with a constraint
solver.

In our setting, CBMC works directly on the source code of
the program, targeting the main function that in turn calls the
test driver.

Bounded model checking is a radically different type of
static analysis with respect to symbolic execution, however
CBMC and KLEE are similar in the requirement of having
to mark the inputs to be handled in their constraint solving
problems. In CBMC the relevant inputs must be marked as non-
deterministic values by means of a group of API functions that
begin with the prefix nondet . Thus, for CBMC, we provide

4https://llvm.org

an implementation of the API provideInputs that suitably calls
the nondet functions for each primitive field of the input data
structure of the program under test, at each execution cycle.

CBMC requires some special care in the way we can asso-
ciate the non-deterministic inputs with corresponding identifier
labels, which is needed for being able to interpret the results
from the test generator. As we already explained, this task
is carried out in the test driver in the code of function
enumerateFields (Figure 2, line 15) by producing a string that
concatenates the data about the field name, its type, and the
number of the current execution cycle. However, since CBMC
does not interpret the string operators in its formulas, to work
with CBMC, we cannot use string concatenation in the code of
the test driver. Conversely, we must produce the code of func-
tion enumerateFields such that it looks up the identifier labels
from a statically unfolded list. This result in the additional
requirement of statically specifying the maximum number of
execution cycles to be handled. This is arguably a limitation
that we incur with CBMC, but not with the other approaches
considered in this paper.

3) Integrating TECS with AFL: AFL works according to
search-based testing, and is very popular for security vulnera-
bility testing. It starts by performing random mutations on a set
of possible inputs provided by developers, and then progresses
in search-based fashion, by considering the newly generated
inputs that increase code coverage as candidates for additional
mutation attempts.

In our setting, AFL executes the compiled executable of
the program, passing input values to its main via the standard
input. To make AFL work with TECS, we link the program
to an implementation of the API provideInputs that simply
maps the inputs that AFL passes to the program, to the
inputs assigned at each execution cycle of the program under
test. This allows AFL to explore the execution space of the
program under test, by incrementally executing the program
with randomly mutated inputs.

D. Test Synthesis

The last step of the tool chain (Figure 1, Test synthesis)
renders each generated test input as a test script for Scade
Test. This step exploits the identifier labels that the test driver
associated with the test inputs, in order to map each input value
with specific input fields, correct types and proper execution
cycles in the test scripts.

We illustrate this process by considering the example in
Figure 3. In the top part of the figure, the first two columns
report a set of test data (column value) and the associated
identifier labels (column label) that TECS could produce for a
possible program under test at step Test input generation. The
next three columns show how, at step Test synthesis, TECS
decomposes each label as the name of an input field (column
field), its type (column type) and the execution cycle (column
cycle) in which that field must be set to the given value. Being
all generated test data related to leaf fields with primitive type,
the type of a value can be either a standard data type (e.g,



value label name type cycle
true in::a bool 1 a boolean 1
10 in::b::x int 1 b.x integer 1
2 in::b::y ESome 1 b.y enum ESome 1

false in::a bool 2 a boolean 2
11 in::b::x int 2 b.x integer 2
0 in::b::y ESome 2 b.y enum ESome 2

(a) Test data generated at step Test input generation

# T e s t c y c l e 1
SSM : : s e t a t rue
SSM : : s e t b . x 10
SSM : : s e t b . y VAL2

SSM : : c y c l e

# T e s t c y c l e 2
SSM : : s e t a f a l s e
SSM : : s e t b . x 11
SSM : : s e t b . y VAL0

SSM : : c y c l e

(b) Test script synthesized at step Test synthesis

Fig. 3. Synthesis of a test script

boolean, integer, . . . ) or an enumerative data type defined in
the program under test. For example, the last row indicates that
the test generator provided the value 0 to be set, at the second
execution cycle, for the input named b.y (that is, the field y
of the data structure b that is part of the program inputs). The
type of the field is the enumerative ESome, meaning that the
value 0 must be reconciled with first label that the program
under test defines for that enumerative type.

The bottom part of Figure 3 shows the final format of the
test script, in compliance with the syntax required in Scade
Test. Each input is assigned with a SSM::set test statement,
by specifying the name of the input in the Scade program and
the corresponding value. Each SSM::cycle statement issues the
Scade Test executor to run an execution cycle. For example
the last row of the above table maps to the last line of the test
script, which prepares the inputs before running the Scade
program at the second execution cycle. It sets the input b.y
to the value VAL0 (for this example we are assuming that the
enumerative type ESome defined in the program specifies the
sequence of values VAL0, VAL1 and VAL2). Note that using
the labels (not the values) defined in the enumerative types is
mandatory in Scade Test.

III. EXPERIMENTAL ASSESSMENT

We used the toolchain TECS to empirically assess the
absolute and relative effectiveness of search-based testing (via
AFL), symbolic execution (via KLEE) and bounded model
checking (via CBMC) when applied to generate test cases for
Scade programs. This section reports on the subject programs
that we considered in our experiment, outlines the main

research questions that drove the experiments, describes the
experimental settings, and presents and discusses the results
that we obtained.

A. Subject programs

We performed our experimental assessment on a benchmark
of 37 Scade programs, belonging to the on-board signaling unit
for high-speed railway systems developed at RFI that we al-
ready mentioned in the introduction. This system must comply
with the ERTMS/ETCS standard, the European standard aimed
at harmonizing the management, control and safety of the
European high-speed railway traffic, prescribing how trains,
track-side devices (e.g., transponders and radio units) and
control stations must interoperate to ensure safety objectives
like train separation, speed control and automatic protection
upon adverse events. The standard defines functional safety
in terms of a set of procedures that suitable ensembles of
ERTMS/ETCS subsystems must perform in reaction to specific
events and conditions that can be signaled to them during
railway operations.

The Scade programs in our benchmark describe how the
onboard train computer must perform a set of the necessary
procedures. The programs are comprised of combinations of
dataflow and state machine models, with a number of states
ranging from 1 to 5, a number of transitions ranging from 1
to 10, a number of inputs ranging from 1 to 14, and a number
of outputs ranging from 1 to 19. These programs were defined
by using the Scade Suite environment version 2020 R2. The
corresponding C programs, translated to ISO C18 with the
KCG compiler that is part of the scadetools Suite, have a size
ranging between about 30 and about 1000 LOCs, excluding
the data types declarations that have a size of about 8000 LOC
in each program.

B. Research Questions and Metrics

Our experimental assessment aimed at answering the fol-
lowing research questions:

• RQ1: How do the different configurations of TECS,
based on search-based testing (AFL), symbolic execution
(KLEE) and bounded model checking (CBMC), respec-
tively, compare with each other?

• RQ2: To what extent is the approach proposed in this
paper effective for generating test cases for safety-critical
Scade programs?

RQ1 aims at quantifying the relative efficiency and effec-
tiveness of using TECS with each backend test generator,
to assess the mutual strengths of the three considered test
generation approaches. RQ2 addresses whether the TECS
approach is generally effective for the testing goals of the
considered class of safety-critical programs.

To answer these RQs, we considered two performance mea-
sures, i.e., the O-MC/DC model coverage that the generated
test suites achieve for the Scade programs, as measured with
Scade Test, and the execution time of the corresponding TECS
runs. The former metric is directly related to the certification
objectives required at the highest integrity level of the safety



standards. The latter metric quantifies the efficiency of TECS
to obtain the corresponding degree of coverage.

We recall that O-MC/DC is the criterion that Scade advises
for software that shall work with high integrity level. Scade
Test measures O-MC/DC by considering (i) a test objective
for each dataflow connection and block in the program, and
(ii) two test objectives for each boolean variable and condition,
being that boolean variable/condition true and false in either
test objective, respectively, with the requirement that the test
execution shall result in a different value of some observable
datum in either case, independently from any other inputs [16].

C. Experimental Setting

We ran TECS on a virtual Ubuntu machine with 48 VCPUs
and 150 GB of memory. We integrated TECS with version afl-
fuzz++4.01a of AFL, version 2.3-pre of KLEE and version 5.6
of CBMC: Hereon in this section, we refer to the configurations
of TECS integrated with the backend test generators AFL,
KLEE or CBMC as TECSA, TECSK and TECSC, respectively.

We executed all generated test suites and measured the O-
MC/DC model coverage with Scade Test version 2020 R2.

We configured all backend test generators to address the
code coverage of the C programs according to the criterion
that, among the ones that they support, can work best to
address the O-MC/DC model coverage of the Scade programs
under test. TECSA exploits the feature of AFL that, upon iden-
tifying test inputs that execute yet-uncovered branches, saves
those test inputs in the output folder. TECSK runs KLEE with
the option --only-output-states-covering-new
that makes KLEE output only the test inputs covering new
statements. TECSC runs CBMC with the option --cover
mcdc that makes CBMC address MC/DC coverage on the tar-
get C programs. We purposely aimed at the strongest coverage
criterion addressable with each tool, though acknowledging
that the three backend generators may rely on criteria of
different strengths.5

We established a maximum time budget of 5 hours for
all runs of TECS, although we remark that TECSA handles
this budget differently from TECSK and TECSC. This be-
cause TECSK and TECSC perform a path-based state space
exploration, which can terminate earlier than the maximum
time budget, if the test generator completes the analysis of
all program paths in the scope of the SSPC testing criterion
addressed in the TECS’s test driver. On converse, TECSA
performs a random exploration of the possible inputs, which
always continues until exhausting the maximum time budget
in the attempt to further improve code coverage. For this
reason, in the experiments, we recorded the actual execution
time of TECSK and TECSC, but not of TECSA for which we
considered a uniform execution time of 5 hours. Furthermore,
we repeated the execution of every TECSA experiment three

5KLEE and AFL could be naively used to generate test cases for all
symbolically analyzed program paths (KLEE) and all randomly attempted
test inputs (AFL). Arguably this would result in test suites of size both
unmanageable for Scade Test and questionable from the standpoint of practical
use.

TABLE I
TECS: EXECUTION TIME AND NUMBER OF GENERATED TEST CASES

Subject Time(s) # Test cases
TECSK TECSC TECSK TECSC TECSA

shunting 18000 11400 21 56 6
dc 1 2 23 8 13 16
dc 2 <1 12 2 1 1
dc 3 <1 15 6 4 5
dc 4 1 14 2 4 2
dc 5 <1 13 2 3 1
dc 6 <1 16 2 5 3
dc 7 <1 11 2 2 1
dc 8 <1 12 3 2 1
dc 9 2 16 9 4 6
dc 10 1 15 9 5 6
dc 11 <1 11 2 2 1
dc 12 <1 23 3 12 3
dc 13 <1 16 4 4 4
dc 14 <1 14 2 4 1
radiohole 117 358 6 21 4
crossnonlx 647 1618 13 54 6
baliseinfo 1 51 2 10 2
emergency 1 15 146 14 25 2
emergency 2 29 747 6 32 6
mema 23 101 7 24 5
trackside 1137 6960 3 10 5
vbc 164 2069 12 18 3
coordfromrbc 41 74 5 26 7
adfactordmi 1 1860 278 3 2 2
adfactordmi 2 1 34 2 25 3
driveridins 5 60 10 9 2
eirene 3 67 3 14 3
ertmslevel 2 48 3 9 4
natvalues 1230 908 4 7 1
networkidins 1 48 3 4 2
rbcidins 3 52 4 10 2
trainDataUpdate 47 68 1 27 4
trainDataInsertion 28 78 3 39 6
message129 99 774 10 7 8
runnumber 1 2 54 3 9 2
runnumber 2 3 73 3 1 7

times to account for the randomness of the AFL algorithm.
In the paper, we report the results for the best test suite that
TECSA computed out of the three runs, that is, the one that
achieved the best O-MC/DC coverage score.

CBMC works by statically unrolling the loops in the pro-
grams up to a maximum number of iterations. Yet, it is
anyway possible to run CBMC without explicitly specifying
this maximum loop unrolling depth, letting it unroll the loops
up to the number of iterations defined in the code. We
indeed followed this approach on the basis that Scade enforces
statically known iteration bounds for the loops in the programs.
Nonetheless, on six of our subjects (i.e., with reference to the
first column of Table I, the subjects shunting, radiohole,
crossnonlx, trackside, vbc and natvalues) execut-
ing CBMC without specifying the maximum loop unrolling
depth resulted in exhausting the available memory, thus ter-
minating with an error. We therefore analyzed these subjects
by setting the maximum loop unrolling depth of CBMC to
1000, using the command line parameter --unwind.



Fig. 4. TECS: Boxplot summaries of the O-MC/DC coverage rates

D. Results

Results for RQ1: Table I reports the execution time
(columns Time) and the number of generated test cases
(columns Test cases) for each considered Scade program
(column Program). The table reports the execution time for
TECSK and TECSC, while we omit the execution time of
TECSA that is always equal to the maximum time budget
of 5 hours. We mark with shadowed background the time
data in which either TECSK exhausted the time budget be-
fore completing the symbolic analysis of all program paths,
or TECSC required us to set the maximum loop unrolling
depth of CBMC to 1000 for it to work within the time
budget. Without considering these shadowed cases, the data
indicate that TECSK is faster than TECSC on all subjects
but adfactordmi_1. TECSK completed the test generation
process in less than a minute for 29 programs, and took more
than 10 minutes for 5 programs including the only timeout
case. TECSC completed in less than a minute for 20 programs,
and in more than 10 minutes for 7 programs including 5 of
the 6 cases shadowed in the table. All TECS versions resulted
in test suites of manageable size: TECSK, TECSC and TECSA
generated test suites ranging between 1 and 21 test cases,
between 1 and 56 test cases, and between 1 and 16 test cases,
respectively.

Table II reports the O-MC/DC coverage obtained with
the test suites generated with TECSK, TECSC and TECSA,
respectively (second to fourth columns) and the coverage that
we obtained by merging the test suites from different TECS
versions (fifth to eighth columns). For example, the column
titled TECSK ∪ TECSC reports the coverage of the test suite
obtained by merging the test suites that either TECSK or
TECSC generated for a program. The rightmost column reports
the coverage obtained with the test suites from all three TECS
versions. We recall that, in the case of TECSA, the data refer
to the test suites with higher coverage out of three runs.

Figure 4 summarizes the main statistics of the coverage
data in the columns of Table II with boxplots, highlighting

the minimum, the median, the maximum, the (first and third)
quartiles, and the outliers of the respective distributions.

Table II (columns TECSK, TECSC and TECSA) highlights
in bold typeface the data of the tools that reached the highest
coverage for each program, and with underlining the cases
in which a single tool achieved strictly higher coverage than
all others. TECSK, TECSC and TECSA achieved the highest
coverage for 26, 24 and 8 programs (out of 37) respectively.
They achieved strictly higher than any other tool for 11, 10
and only 1 program(s), respectively. The first three boxplots
in Figure 4 further visualize that TECSK and TECSC achieved
comparable coverage performance, with TECSC exhibiting
a slightly worse dispersion than TECSK, while TECSA is
sensibly the worse.

We further discuss the experiments in which the tools
achieved notably low coverage (below 60%). TECSK scored
more than 60% for all subject programs. TECSC scored less
than 60% coverage for the programs crossnonlx and vbc,
mostly due the limit on the loop unwinding depth that was
needed in these cases, and for programs message129 dc_8,
for which the inspection of the data revealed that CBMC was
not able to provide suitable solutions for some reachability
formulas. TECSA scored less than 60% coverage for 12
programs: In these programs, most untested code is dominated
by program branches that can be hit only by singular, or low-
cardinality, set of inputs, hard to elicit by random mutations.

Despite the considerations on each specific approach, the
data in Table II overall indicate that none of the TECS ver-
sions achieved the highest or the worst coverage consistently.
Moreover, we remark that even when a given tool achieved
higher coverage than another tool, we cannot conclude that it
necessarily subsumed all test objectives covered with the latter
one. This motivated us to explore their complementary.

We further investigated the mutual strengths of the consid-
ered approaches by measuring the coverage achieved with the
merged test suites, as reported in the four rightmost columns of
Table II. In fact, given two tools (e.g., TECSK and TECSA) the
difference between the coverage scores of a tool (e.g., TECSK
or TECSA), and the corresponding scores of the merged test
suites (TECSK ∪ TECSA) reveals the coverage portions that
were uniquely contributed by the other tool (i.e., TECSA or
TECSK, respectively). Moreover, a merged test suite with
strictly greater coverage than any contained test suites reveals
that each of those test suites hit unique test objectives. In
the four rightmost columns of Table II, we highlighted these
cases in bold typeface, and further marked with shadowed
background the maximum coverage. In the rightmost column
we highlighted the cases in which we achieved the maximum
coverage only when merging the test suites from all three tools.

The experimental data indicate that the test suites TECSK
∪ TECSA, TECSK ∪ TECSC and TECSC ∪ TECSA improved
over both respective single tools for many programs, namely,
for 14, 15 and 13 programs, respectively. The test suite merged
from all three tools was the strongest only for 2 programs. The
four rightmost boxplots in Figure 4 confirm that the merged
test suites, and in particular the three-tool one, achieved high



TABLE II
TECS: O-MC/DC COVERAGE RATES

Program TECSK TECSC TECSA TECSK ∪ TECSA TECSK ∪ TECSC TECSC ∪ TECSA TECSK ∪ TECSC ∪ TECSA
shunting 86.6% 86.3% 45.3% 86.6% 92.1% 86.3% 92.1%
dc 1 90.6% 93.8% 89.4% 96.9% 95.0% 99.4% 99.4%
dc 2 100.0% 80.0% 100.0% 100.0% 100.0% 100.0% 100.0%
dc 3 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
dc 4 92.4% 95.5% 86.4% 95.5% 95.5% 98.5% 98.5%
dc 5 89.3% 96.4% 89.3% 89.3% 96.4% 96.4% 96.4%
dc 6 89.7% 88.2% 83.8% 91.2% 95.6% 88.2% 95.6%
dc 7 80.0% 85.0% 50.0% 85.0% 90.0% 85.0% 90.0%
dc 8 83.3% 50.0% 41.7% 91.7% 83.3% 83.3% 91.7%
dc 9 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
dc 10 93.0% 93.0% 93.0% 93.0% 93.0% 93.0% 93.0%
dc 11 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
dc 12 72.1% 73.5% 60.3% 77.9% 73.5% 79.4% 79.4%
dc 13 98.2% 85.7% 82.1% 98.2% 100.0% 96.4% 100.0%
dc 14 81.8% 90.9% 63.6% 81.8% 90.9% 90.9% 90.9%
radiohole 94.9% 88.4% 68.2% 95.5% 97.5% 88.4% 97.5%
crossnonlx 84.5% 46.3% 19.1% 86.2% 86.8% 53.0% 87.0%
baliseinfo 95.8% 95.8% 44.8% 95.8% 95.8% 95.8% 95.8%
emergency 1 93.4% 87.4% 6.2% 93.6% 94.5% 87.9% 94.5%
emergency 2 82.1% 92.3% 54.5% 82.9% 92.7% 92.5% 92.9%
mema 88.1% 82.6% 42.8% 91.1% 93.2% 82.6% 93.2%
trackside 98.6% 98.6% 19.6% 98.6% 98.6% 98.6% 98.6%
vbc 93.7% 56.3% 36.9% 94.0% 94.8% 57.6% 94.8%
coordfromrbc 82.6% 80.1% 56.5% 82.6% 86.2% 80.8% 86.2%
adfactordmi 1 84.6% 84.6% 71.2% 84.6% 84.6% 84.6% 84.6%
adfactordmi 2 96.2% 96.2% 96.2% 96.2% 96.2% 96.2% 96.2%
driveridins 89.2% 89.2% 65.1% 89.2% 89.2% 89.2% 89.2%
eirene 93.7% 95.8% 66.3% 93.7% 95.8% 95.8% 95.8%
ertmslevel 94.4% 94.4% 87.5% 94.4% 94.4% 94.4% 94.4%
natvalues 90.0% 90.0% 90.0% 90.0% 90.0% 90.0% 90.0%
networkidins 94.4% 94.4% 75.0% 94.4% 94.4% 94.4% 94.4%
rbcidins 94.5% 94.5% 49.1% 94.5% 94.5% 94.5% 94.5%
trainDataUpdate 89.0% 94.0% 60.0% 89.0% 95.0% 94.0% 95.0%
trainDataInsertion 88.0% 90.9% 88.5% 90.9% 90.9% 91.4% 91.4%
message129 83.5% 57.9% 77.4% 84.2% 84.2% 79.3% 84.2%
runnumber 1 93.8% 93.8% 70.4% 93.8% 93.8% 93.8% 93.8%
runnumber 2 84.2% 83.2% 92.1% 92.1% 86.1% 93.1% 93.1%

coverage significantly more consistently than the single-tool
counterparts.

In summary, related to the research question RQ1, our ex-
periments highlight that the test suites that TECS generated by
using KLEE and CBMC, and in particular the combinations of
those test suites, achieved the highest coverage for much more
subject programs than when using AFL. This confirms that
systematic test generation approaches can effectively address
automated test generation for Scade programs, while a search-
based approach does not appear per-se to offer comparable
advantages. At the same time, the data acknowledge that AFL
allowed for further improving the coverage rates for more than
one fifth of the subject programs, advising the combination of
all three approaches as the best choice overall. The paired
Student’s t-test supports the hypothesis that the distribution
of the coverage data in the rightmost column of Table II has
significantly greater mean than the distributions in the other
columns of the table (p < 0.02 in all cases).

Results for RQ2: The research question RQ2 concerned
the effectiveness our approach for generating unit-level test
cases for safety-critical Scade programs. We assume that
testers shall aim at 100% O-MC/DC coverage since, for safety-

critical software that must work at the highest integrity levels,
many certification standards (i) indicate MC/DC testing as
reference criterion, (ii) require thorough code coverage, (iii) re-
quire documented justifications for the uncovered code [1], [2].

According to the highest coverage data that we achieved for
each subject program (Table II, rightmost column), TECS as
a whole resulted in 90% or more O-MC/DC coverage for 31
programs, including 5 programs in which the coverage rate
was exactly 100% and other 10 programs in which it was
at least 95%. We observe that coverage rates in the range
90%–100% crucially mitigate the manual effort that can be
required from testers,6 and thus we regard to the results of
these 31 experiments as evidences of the effectiveness of our
approach.

Nonetheless, on 6 subject programs TECS scored less than
90% coverage. We inspected the uncovered items in these
programs, to better understand the reasons why TECS missed
these items. We could spot a few infeasible items, typically
due to functions called with parameters that specialized their
behavior, but we mapped most missed items to the testing

6Notice that testers can straightforwardly figure out the uncovered O-
MC/DC items while executing the generated test suite in Scade Test, thanks
to the information provided by it after the tests execution.



criterion that characterizes the TECS test driver: We do not
generate test cases that traverse the same states more than
once, whereas those missed items would require more itera-
tions through the execution cycles.

In summary, related to the research question RQ2, in
our empirical evaluation TECS demonstrated its potential to
effectively address unit-level testing of safety-critical Scade
programs in 31 out of 37 experiments.

E. Threats to Validity

Internal validity concerns whether our conclusions may be
wrong due to methodological errors. A possible issue is that
we assessed the strengths of search-based testing, symbolic
execution and bounded model checking by integrating TECS
with one single test generator for each approach. We mitigated
this issue by selecting state-of-the-art test generators that have
acknowledged reputation in the scientific communities of each
reference approach. We aim to integrate TECS with additional
test generators in the future. Furthermore, our findings can
be affected by the arbitrary choices of limiting the maximum
time budged of each experiment to 5 hours and, in the case
of CBMC, of setting the loop unrolling depth to 1000 in the
experiments in which CBMC ran out of memory otherwise.

TECS generates test cases without oracles, which may limit
the practical usefulness of the test suites. In the experiments
reported in the paper we assessed the effectiveness of the gen-
erated test suites based on O-MC/DC code coverage, because
it is relevant for satisfying certification standards. Besides, in
our project we found beneficial to augment those test suites
with manually derived oracles, which costed acceptable effort
as TECS produced test suites of manageable size (as shown in
Table I).

External validity concerns the extent to which our results
can generalize to Scade programs other than the ones that we
considered in the experiments. In this respect, the main issue
is that all our subject programs belong to the same project. We
could not mitigate this threat in the current experiments, and
we aim to collect further experimental data as future work.

IV. RELATED WORK

Our work contributes to the body of knowledge on automat-
ically generating test cases with symbolic execution, bounded
model checking and search-based testing. We leveraged on
existing techniques to provide empirical evidence of the rela-
tive strengths of these approaches to generate test cases for an
industrially relevant class of safety-critical programs. Several
surveys provide comprehensive reports on the many applica-
tions of these baseline approaches for testing tasks [38]–[41].

Scade derives from the synchronous, dataflow program-
ming languages LUSTRE [4] and ESTEREL [5], with further
constructs from the graphical, state-machine-based language
SyncCharts [42]. Thus our work has relations either with
other research that addresses testing automation for these
languages [13]–[15], [43], [44], or more in general with
model-based testing [45], [46].

Lakehal and Parissis investigated a set of coverage criteria
for LUSTRE, in the spirit of data-flow-based testing criteria,
and they presented a tool for measuring code coverage accord-
ingly [43]. Other authors defined a set of mutation operators
and a corresponding mutation analysis tool for the LUSTRE
programming language [44]. Lutess [13] generates test cases at
random based on a description of the environment. Lurette [14]
and Gatel [15] focused on generating test cases for invariants
or safety properties described in Lustre. These approaches
could be extended for programs in Scade, but none of them
deals with automatically generating test cases for achieving
high structural coverage as our approach.

Model-based testing consists in deriving test data by an-
alyzing either program specifications or program behaviors
expressed as models, e.g., with class diagrams, state machines
or sequence diagrams [47], [48]. Indeed Scade is a model-
based programming language that exploits state-machines and
data flow models for defining software behaviors [11], [12].

Our approach TECS is particularly related with the work on
Polyglot and SAUML, which rely on symbolic execution to
generate test cases for state machine models, either statecharts
or UML-RT state machines, respectively [49]–[51]. Polyglot
is similar to TECS in that it leverages an existing symbolic
executor (SPF [52]) after translating the statecharts to Java
programs. Indeed the work on Polyglot mostly focuses on how
to translate the target statecharts to semantically equivalent
Java programs. SAUML defines an ad-hoc symbolic executor
that directly analyzes the UML-RT models. Compared to
these approaches, TECS distinctively investigates multiple test
generation approaches, whereas Polyglot and SAUML focus
only on symbolic execution.

A related tool is RT-Tester, which is used for verification
and validation activities for automotive, railway and avionic
systems, and more recently has been extended with a test
generation technique [53]–[55]. It works similarly to bounded
model checking, representing the execution semantics with
propositional logic, and solving propositional formulas that
capture test cases built according to a given testing strategy.
We found very limited experimental data on the effectiveness
of this approach in the available papers. Since RT-Tester does
not directly support Scade, we were not able to compare
it with TECS in our experiments. Nonetheless, the results
that we achieved with CBMC can be representative to some
extent. Duy et al. also exploited model checking in the context
of selection of test cases for regression testing of Scade
programs [56]. However their approach, based on the model
checker LESAR [57], is limited in that they abstract away any
numeric computation in the programs.

Model-based testing has been successfully applied to derive
test cases and complement verification for functional specifi-
cations expressed in formal languages as B, Z or VDM [58].
The structural testing approach of TECS is naturally com-
plementary and could be profitably integrated with test cases
generated by exploiting functional model-based testing.



V. CONCLUSIONS

This paper presented an approach to automated test gen-
eration for Scade programs, embodied by the prototype tool
TECS, which can be configured to generate test cases based on
either a search-based strategy, symbolic execution or bounded
model checking. We provided empirical evidence of the suit-
ability of TECS on a benchmark of 37 Scade programs that
belong to an industrial on-board train signaling system, and
discussed both the relative effectiveness of the considered test
generation strategies and the overall effectiveness of the ap-
proach as a whole. In particular, we showed that the systematic
test generation strategies of TECS, either based on symbolic
execution or on model checking, yielded higher structural
coverage than the search-based version of TECS in most cases.
Moreover, by considering also the test cases generated with
the search-based strategy, we could successfully improve the
thoroughness of the test suites in a statistically significant
amount of cases. Our research activity is currently focusing
on extending TECS to be applied for integration testing.
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[52] C. S. Păsăreanu and N. Rungta, “Symbolic PathFinder: Symbolic execu-
tion of Java bytecode,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE ’10, (New York,
NY, USA), pp. 179–180, Association for Computing Machinery, 2010.

[53] J. Peleska, “Industrial-strength model-based testing-state of the art and
current challenges,” arXiv preprint arXiv:1303.1006, 2013.

[54] C. Braunstein, A. E. Haxthausen, W.-l. Huang, F. Hübner, J. Peleska,
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