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Abstract. The zero phonon line (ZPL) and its phonon-roton wing have been studied both 

experimentally and theoretically in the optical spectrum of the inner shell transition in the Dy atom 

in superfluid helium. It is shown that the linear vibronic interaction of impurity atom with long-

wave acoustic phonons in the liquid phase is singularly enhanced. As a result, the ZPL of both the 

superfluid and normal components of liquid helium has a finite width. The temperature 

dependence of the spectrum is a consequence of the redistribution of the superfluid and normal 

components of the liquid helium and the temperature dependence of the spectrum of its normal 

component. Our calculations of the ZPL and its phonon-rotor wing are consistent with the 

experiment. 

 

1. Introduction 

To date, a significant number of experimental and theoretical studies have been conducted on the optical 

spectra of small molecules in superfluid 4He and 3He droplets (see, for example, book [1], review article 

[2] and publications [3-7]). In recent years, several experimental studies have been also carried out on the 

optical spectra of impurity atoms in volume of superfluid 4He [8-15] (see also review article [16]). 

Therefore, it seems appropriate to consider what differences arise in the optical spectra in the superfluid 

and in the liquid phase as a whole in comparison with such spectra in crystals and in small droplets. In [17] 

we recently presented the theory of the zero-phonon line (ZPL) in the optical spectrum of an atom placed 

in a volume of the superfluid 4He. We have shown that in liquids, due to isochoric conditions (in the 

macroscopic limit they correspond to the Archimedes Principle), the electronic transition in an atom leads 

to a finite (albeit microscopic) change in the volume of the entire liquid. There are no such changes in the 

solid phase. This change in the volume of the liquid is the result of vibronic interaction with long-wave 

acoustic modes of low, including zero frequency. In solids, such a volume change does not occur, and, 

consequently, there is no vibronic interaction with acoustic phonons, the frequency of which is close to 

zero. The same is true for nano-droplets, in which long-wave phonon modes are simply absent. As a result, 

in liquids, in comparison with solids and nano-droplets, there is a significant increase in the linear 

vibronic interaction of impurity atoms with low-frequency (long-wave) phonons: in liquids, this 

interaction became very large with decreasing frequency  , while in solids and nano-droplets it 

disappears at low frequencies.  

In this communication, we consider the effect of the amplification of the vibronic interaction with 

long-wave acoustic phonons on the optical spectra of impurity atoms in the superfluid 4He, taking into 

account the presence of superfluid and normal components in it. We show that this amplification is 

especially significant for zero-phonon transitions. Indeed, in the solid phase, the probability of these 

transitions in the case of linear vibronic interaction is finite. However, in the liquid phase, due to the 

amplification of the vibronic interaction with low-frequency phonons, this probability tends to zero. As a 
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result, only transitions involving phonons occur in liquids. The latter are more probable the lower the 

frequency of phonons. As a result, instead of a ZPL of natural width, a broadened ZPL appears in the 

spectrum [17].  

We also show that with increasing temperature, the ZPL in the spectrum of superfluid helium 

broadens due to an increase in the weight of the normal component, and increase of the width of this 

component with temperature. Our calculations of the temperature changes of the ZPL of the superfluid 
4He are in good agreement with the results of ZPL measurements [15]. We also demonstrate that the 

enhanced vibronic interaction with long-wave phonons explains the redistribution of peaks in the single-

phonon-rotonic wing of the ZPL, observed in [14], in favour of low-frequency ones. 

2. Optical spectrum of impurity center in a liquid 

To describe the optical spectrum of an atom in a superfluid He, we use the Lax theory [18] of electronic 

transitions in optical centres in the case of the linear vibronic interaction 
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H x x= +  are the vibrational Hamiltonians of the centre in 

initial (1) and final (2) electronic states in harmonic approximation, respectively, 0  is the frequency of 

the electronic transition, 
2

0k k kx a = is the change of the equilibrium position of the phonon coordinate 

kx  of the mode k  during the transition, k  is its frequency, 1= . In Condon approximation, the 

Fourier transform of the optical spectrum equals to 
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where 0 0 S = −  is the frequency of the zero-phonon transition, 
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x =  is the Stokes 

losses, 0  is the width of the excited electronic level,  
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up to a constant S− , is the Fourier transform of the spectrum of the single-phonon transitions [18], 

0
(2 1)

m

S d n


 = +  is the Huang-Rhys factor,  

 
2

0, ( ) 2x    =   (4) 

is the vibronic interaction for phonon-roton excitation with the frequency  , 0 0kx x
  , ( )   is the 

density of states (DOS), 
1( 1)Bk T

n e




−= −  is the Planck occupancy factor, 0.55m =  THz is maximum 

frequency of phonons in liquid 4He.  

Let us consider the vibronic interaction   for the long wave phonons. Taking into account that  

for small k  0v k = , where 0 250v =  m/s is the velocity of  the first sound, we get that in the liquid 

4He in the long-wave limit 2( ) 0.144  
3GHz−
. That is, 

2( )   , as it should be for three-

dimensional systems. To find   for low frequency phonons, we also need to know the dependence 0x   
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of low frequency modes on   in a liquid. For this purpose, the isochoric assumption in liquids can be 

used. According to this assumption, the change in the volume of the liquid due to the electronic transition 

in the atom should be finite and approximately equal to the change in the volume of the surrounding 

atoms. In the macroscopic limit, this corresponds to the Archimedes Principle - the total increase in the 

volume of the liquid and the body immersed in it is equal to the volume of the body. 

Assuming that the atom is placed in the centre of a spherical liquid with a radius R , the volume 

change at the electronic transition in the atom equals 
24V R R =  , where R  is the change of the 

radius of the liquid, ...  is the averaging over the R  (we take into account that R  can vary at different 

points on the surface of the sphere at several atomic lengths). In liquids, by virtue of the isochoric 

assumption, V  is finite and for large R  do not depend on R . This is the case if 
2R R−   (see Fig.1). 

 

 
Figure 1. (a) A spherical liquid helium of radius R  (grey circle) encapsulating within a cage of radius 

0
R  an 

impurity atom (black circle). An increase 
0

R  of the radius 
0

R  caused by an electronic transition of the impurity 

atom which increases its size (red area), is accompanied by an increase R of the external radius, given according 

to the isochoric conditions (Archimedes Principle in macroscopic limit) by 
2

0 0
( )R R R R =  , and a 

corresponding increase in the surface area of 
2

0 0
8 ( )R R R  . (b) The potential energy curves of the He droplet 

with respect to the above radial deformation in the ground state (lower parabola) and excited state (upper parabola) 

of the impurity atom with the respective vibrational states (phonon numbers 0,1 .0,1, 2..n = ). According to the 

Franck-Condon description, the electronic transition (vertical arrow) occurs on a much faster time scale than that of 

vibrations and, although starting from a zero-phonon ground state, reaches an excited state with some phonon 

population, i.e., with non-zero probabilities of 
1

0n   states. 

 

The dependence of 0x   on   for low frequency modes can now be found if we take into account 

that for nondegenerate electronic states of the atom, only 
1 sin( )r kr−  modes contribute to the long-

wave vibronic interaction ( r  is the distance to the origin; another real totally-symmetric solution of the 

wave equation for the long-wave acoustic modes, 
1 cos( )r kr−

, is not suitable while it diverges at 0r → ). 

Therefore, the change in the radius of the liquid due to the electronic transition in the atom can be taken 

as 

 
1 2

0
0

sin( )
mk

kR R dkk x kR−    (5)  
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(
13.6mk A−=  is the maxim wave number [19]). Given that 

0
cos( ) 0mk R , we find that 

2R R−   

and V  is finite for R →  if 
2

0 , 0kx k k− → . Given also that k   for small  , we obtain 

2

0x  − . Consequently, in liquids, in the low frequency limit 

 
1

 −
,  (6) 

where   is a dimensionless parameter of the magnitude of the linear vibronic interaction. In contrast, in 

solids in the low frequency limit ~   [18,20,21]. Consequently, in liquids, the linear vibronic 

interaction with low-frequency phonons is amplified by a factor of 
2 2

m  compared to this interaction 

in solids. As a result, this interaction in liquids at 0 →  diverges as 
1 −
. Note that because of this 

divergency, the Huang-Rhys factor S , which describes the logarithm of the inverse probability of the 

zero-phonon transitions, also diverges in liquids. This means that in the case of linear vibronic interaction 

in liquids, there are no zero-phonon transitions, but only transitions involving phonons occur. The latter 

are more probable the lower the frequency of phonons. As a result, instead of a narrow ZPL, a broadened 

ZPL appears in the spectrum [17]. In a sense, ZPL in a liquid in the case of linear vibrionic interaction is 

similar to ZPL in crystals in the case of quadratic vibrionic interaction at 0T  : there is also no zero-

phonon transition; instead of a ZPL of natural width, a narrow band appears, broadened due to vibronic 

transitions with the creation and simultaneous destruction of phonons of close frequency (the Raman 

mechanism of the ZPL broadening) [20].  

The dimensionless interaction magnitude parameter   can be estimated using found in [14] 

increase in the bubble radius at the electronic transition in the impurity 0 0.15R  Å. Presenting the 

Stokes losses in the form 
2 2

4 2S M R   , where   is the mean frequency of vibrations of 

surrounding helium atoms 
2

0( )R  is the mean value of 
2

0 4x M , 4M  is the mass of the helium atom, 

we get ( )
2

0 0R A    where 
0 4A M =  is the mean amplitude of the zero-point vibrations of the 

helium atoms. Taking for  = 0.25 THz, we get 0 0.75A  Å, which gives 0.04  . 

Note that the enhancement law (6) can also be applied for droplets of large radius R , assuming that 

the surface tension of the droplet can be neglected. The latter is the case if the contribution 

8ST R R =   of the surface tension   to the energy of electronic transition is small as compared to 

the ZPL width (see Fig. 1). Taking 15   GHz Å-2 for superfluid 4He [22], 
2

0 0( )R R R R =  , 

0 5R = Å and 0 0.15R  Å, we obtain that the surface tension makes a contribution 1  GHz to the 

energy of the electronic transition for droplets of radius 
32 10R    Å. For large droplets, the surface 

tension does not matter. 

 

3. Temperature dependence of the zero-phonon line in superfluid helium 

In [15], the temperature dependence of the ZPL in the absorption spectrum of Dy atoms in superfluid 

helium in the range from 1.4 K to 2.1 K was investigated. The results of measurements are given in Fig. 2 

(points). The superfluid liquid 4He has two components: superfluid and normal. The temperature 
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dependence of the density of normal components can be approximated as 
6.8( / )N CT T   [23-25] (see 

Fig. 2 (left); 2.17CT =  K is the critical temperature); the density of superfluid component equals 

1S N = − . According to this relation, at 1.4 K 0.93S =  and liquid He is almost entirely superfluid. 

This component has zero entropy (and zero temperature). Hence, ZPL at 1.4 K basically corresponds to 

this line for 0T =  described by ( )0 0
0

( ) ( ) 1
m i t

Tg t g t d e




 =  = − . Note that Huang-Rhys factor 

S  also diverges at 0T = . Consequently, the ZPL in the spectrum of superfluid component has a finite 

width, and its shape is determined by the vibronic interaction.  

To find the ZPL shape, we take into account that the width of the excited level 0 5GHz  [15] is 

small as compared to the width 0.55  THz of the phonon-roton spectrum. Therefore, for the actual values 

of 
1

0t  −
 the exponential in the   integral for 0 ( )g t  is large. Taking for large t  

( )1 sgn( ) ( )i te i t    −  , we obtain the following simple equation 0 ( ) sgn( )g t i t= .  

In the temperature range1.4K 2.1KT   the temperature dependence of the ZPL is essentially 

determined by the redistribution between the superfluid and normal components. Taking this 

circumstance into account, the optical spectrum of the centre can be represented in the form 

0( ) ( ) ( ) ( )S N TI I T I  =  +  , where the spectrum 0 ( )I   of the superfluid component while ( )TI   

is the spectrum of normal component. The Fourier transform of this component is given by equation (2), 

where ( )g t  is given by the equation (3). For narrow ZPL as compared to Bk T , the main contribution to 

( )g t  comes from small Bk T  and large ( )
1

Bt k T
−

. Taking for small   Bn k T  , for large 

t  ( ) 2cos( ) 1 ( )t t    −  −  and sin( ) sgn( ) ( )t t     , we obtain 

( ) sgn( )Tg t t i t = − − , where T Bk T = . This gives the ZPL spectrum as the following sum of two 

lines: 

 0

2 2 2 2

0

cos sin cos sin
( ) N

S N

N

I
     

 
 

+ +
  +

 +  +
, (7) 

where 0N Bk T  = +  describes the temperature broadening of the ZPL of a normal liquid,  =  is 

the asymmetry of ZPL. In the case under consideration 0.1  and the spectrum consists of two lines of 

almost Lorentzian shape. The first line S  decreases to zero as the temperature rises to CT . The 

intensity and width of the second line increase with temperature, and the increase in width is linear.  

In [15], to find the widths of the ZPL, a single-Lorentzian fit of the spectral shape was used. To 

calculate the width of the ZPL, we also use a single-Lorentzian fitting procedure with the width of the 

superfluid and normal components 5.15 GHz and 5.15 2.5 GHzN T = +  , respectively (T  in K). The 

obtained temperature dependence of the ZPL width agrees well with the experiment at 2 KT  , but at 

2T  K it gives about 10 percent less value than in the experiment. A possible reason for the discrepancy 

is the inhomogeneous broadening of the ZPL of normal component stemming from small almost static 

fluctuations of the bubbles surrounding impurity atoms [26, 27]. Taking the inhomogeneous broadening 
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in the form N  with =2.5 GHz, wee obtain the temperature dependence of the ZPL width in good 

agreement with the experiment (see Fig. 2, right).  

            

Fig. 2. Temperature dependence of the superfluid (blue) and normal (brown) components of the superfluid helium 

(left) and width of the ZPL of Dy atoms in superfluid helium (right): theoretical (line) and experiment [15] (points). 

The kinks at 2.17T = K are the result of the abrupt disappearance of the superfluid component at this temperature. 

 

4. Phonon-roton wing of ZPL 

In Ref. [14] the phonon-roton wing of ZPL was measured. This wing is weak as compared to ZPL, and 

corresponds to single phonon transitions. The spectrum of this transition equals 

 ( )1 ( ) 1PhI n  = + . (8)  

To find this spectrum, one needs to know the DOS ( )  . If we neglect the change in the local dynamic 

of phonons by the impurity atom and consider the wave numbers k  as quantum numbers, then the DOS 

of the phonon-roton excitations can be represented as 

 ( )3 2

0

( ) (3 ) ( )
mk

mk dkk k    = − , 

where ( )k  is the dispersion of phonon-roton excitations of superfluid He. To take into account that k  

are not exact quantum number sin a liquid, we can replacing the  -function with a function with a peak 

of finite width at ( )k = . Taking for this function a Gaussian with a width linear with respect to k , 

we obtain  

 ( ) ( )
2 2( ) ( )3

0

DOS ( ) 3
mk

k k

mk dkke
  

   
− −

 =  , (9) 

  is the characteristic velocity of the deceleration of density waves. The excitation dispersion is shown in 

Fig. 3 left. We made the DOS calculations for the deceleration velocities 50v =  m/s, 100 =  m/s and 

250 =  m/s. The results of calculations are given in Fig. 3, right.  

As it was shown above, in liquid in the long-wave limit, the factor 
2

0x   increases in comparison 

with solids by a factor 
2 2

m  . At short distances of the order of the interatomic interval, the atomic 

structure of the liquid and solid phases is similar. Therefore, for large wave vectors and frequencies, the 

mentioned increase should be less than in the case of low frequencies. The actual structure of the He 

atoms surrounded the impurity atom including the bubble structure of the surrounded atoms is important 
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in this limit (for bubbles surrounding an impurity atom in liquid helium, see, e.g. [13]). This circumstance 

can be  

     
Fig.3. Dispersion (left) of phonon-roton excitations ( )k  [19] and the DOS   of the elementary excitations in the 

superfluid He (right) for the deceleration velocities 50 =  m/s (green line), 100 =  m/s (blue line) and 200 =  
m/s (brown line) calculated in accordance with the equation (9). Minimum(left) and maximum (right) at 0.19 =  

THz correspond to rotons, maxima at 0.3 =  THz correspond to maxons, the tail above 0.3  THz in dispersion 

(left) and the maximum at 0.4 THz in DOS (right) correspond to short-range vibrations of He atoms. 
 

approximately taken into account if we add to the term 
2 4

0x  −  an additional small term 
2 2

0 − −  

taking ( )2 4 2 2

0 01x    − − + , where the cut-off frequency 0 is large as compared to frequencies of 

roton and phonon. In this approximation 

 ( )1 2 2

1 0( ) 1 ( 1) ( )PhI n     −= + + . (10) 

The spectra of the ZPL and its wing, experimentally observed in [14] at T=2.1 and T=1.35 are shown in 

Fig. 4 (left), together with the calculated single-phonon spectra for 50v =  m/s, 100v =  m/s and 

250v =  m/s. 

           
Fig.4 ZPL and its wing in the optical spectrum of Dy atom observed in [14] at T=2.1 (red line) and T=1.35 (blue line) 

(left) and calculated in accordance with the equation (10) at T=2.1 K (right) single-phonon wing of the ZPL in 

superfluid He. The velocities 50 =  m/s (green line), 100 =  m/s (blue line) and 200 =  m/s (brown line) are 

used for calculations. As in Fig. 3, the peak at 0.2 THz corresponds to a roton, the peak at 0.3 THz corresponds to a 

maxon, and the peak at 0.4 THz is due to a high-energy (large wave number k) tail in the dispersion (Fig. 3, left).  

 

The value of deceleration velocity 200v =  m/s and the cut-off frequency 0 1.3 =  THz used in 

calculations of brown  curve in Fig. 4 allow us to explain the experimentally observed shape of the 
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single-phonon spectrum with an almost twofold difference in peak intensities of the roton peak at 0.2 THz 

and the high frequency phonon peak at 0.35 THz. Relatively higher intensities at 0.1   THz in the 

experiment are due to the multiphonon contributions, which are significant for low frequencies. The 

contribution made by the additional term 
2 2

0   in brackets of equation (10) for all frequencies is less 

than 0.1. Note that the ratio of the contributions of the roton and the high phonon frequency peaks in the 

DOS (see Fig. 3, right) is the opposite: the high phonon frequency peak is many time stronger than the 

roton peak. This large difference in peak intensities in the DOS and in the single-phonon spectrum is 

mainly due to the amplification factor 
2 2

m  . This allows us to conclude that the shape of the phonon 

wing in the spectrum of the Dy atom, observed in [14], directly indicates a strong amplification of the 

vibronic interaction with low-frequency acoustic phonons in liquids. At the same time, the amplification 

law works for all phonons with a wave number k  less than one or two Å-1. Consequently, the main 

distinguishing property of the liquid phase - the ability to isochorically change its shape (the Archimedes 

Principle in the macroscopic limit) is already approximately valid for lengths starting from nm. 

 

5. Summary 

The zero phonon line and its phonon-roton wing have been experimentally and theoretically investigated 

in the optical spectrum of inner shell transition in Dy atom in superfluid helium. It is shown that the 

temperature dependences of the observed spectrum is a consequence of the redistribution of the superfluid 

and normal components of the liquid and the temperature dependence of the spectrum of the normal 

component. It is also shown that the main distinguishing property of the liquid phase is the ability to 

change its shape isochorically (the Archimedes Principle in the macroscopic limit) - leads to a strong 

increase in the linear vibronic interaction of impurity atoms with low-frequency phonons and to its 

divergence as 
1 −
 with a decrease in the frequency  . As a result, the ZPL of both the superfluid and 

normal component acquires a finite broadening, and the width of the ZPL of the normal component 

increases linearly with increasing temperature. The amplification of the vibronic interaction with low-

frequency phonons also leads to a strong redistribution of peaks in the phonon-roton wing of the ZPL in 

favour of the low-frequency ones. Our calculations of temperature changes in the width of the ZPL and 

the shape of its phonon-rotor wing in the spectrum of the Dy atom are consistent with the experiment. 

 In conventional liquids, the vibronic interaction is strongly enhanced only for totally-symmetric 

long-wave acoustic phonons. Therefore, when considering the optical spectrum of Dy atoms in the 

superfluid 4He, the Jahn-Teller effect was not taken into account. However, our study shows that in liquid 

crystals, both in nematic (where elongated molecules move freely along the axes of the molecule) and in 

smectic (where layers can move relative to each other), the vibronic interaction with non-totally 

symmetrical long-wave acoustic phonons is also enhanced. Therefore, we expect that the Jahn-Teller 

effect for molecules in liquid crystals is also enhanced compared to the same molecules in ordinary 

liquids. 
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