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1 Introduction

One of the most remarkable results in the study of quantum field theory is the discovery
of dualities, which establish the equivalence of different-looking theories, at least in some
range of the parameters. Often the weak coupling limit of one theory corresponds to a strong
coupling limit of the dual and therefore by exploiting their equivalence we can learn about the
dynamics of both theories in the strong coupling regime, where standard perturbative methods
are not applicable. In this sense dualities represent a key tool to improve our understanding
of nonperturbative quantum field theory. This is exemplified by Seiberg duality [2] which
provides us with detailed information about the low-energy dynamics of supersymmetric
quantum chromodynamics (SQCD) in four dimensions.

By now many other examples of dualities have been found, especially in the context
of supersymmetric field theories for which dualities seem to be ubiquitous. At present the
challenge is to find an algorithm which allows us to establish systematically the existence of
dual descriptions of a given theory. It is also desirable to find a systematic way to connect
different dualities together, deriving all of them from a restricted set of fundamental dualities.
In this respect an important result is [3] (and its many follow up works) which shows how
dualities in different dimensions can be related via compactification. In particular, this implies
that dualities in lower dimension can be derived from those in higher dimension.

Mirror symmetry [4, 5], relating pairs of 3d N = 4 theories with the Higgs branch of one
theory mapped to the Coulomb branch of the other theory and vice-versa, is one of the most
interesting and studied examples of dualities (see e.g. [6–9]). For N = 4 theories admitting a
description in terms of a Hanany-Witten brane system [5], mirror symmetry can be regarded
as a consequence of Type IIB S-duality. Furthermore, mirror symmetry has played a crucial
role in the development of nonperturbative techniques which allow us to study the quantum
moduli space of theories with eight supercharges in three dimensions or higher, even in the
absence of a Lagrangian description of the theory (see e.g. [10–38]).

Recently, a new approach to study 3d mirror dualities, the mirror dualization algorithm,
has been developed [39–41], which generalizes the construction [8] of abelian mirror pairs
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by local dualization to the non-abelian case. The algorithm was originally formulated for
linear unitary quivers, namely the T σ

ρ [SU(N)] theories [42] (see also [43]) realized on linear
Hanany-Witten brane setups with D3-branes suspended between NS5 and D5-branes, and
implements field theoretically the local action of S-duality, which acts on each 5-brane by
creating a S-duality domain wall to its right and to its left

NS5→ S(D5)S−1 , D5→ S(NS5)S−1 . (1.1)

At the field theory level we associate to each 5-brane a QFT block: NS5-branes are
associated to a bifundamental matter block (1, 0), while D5-branes are associated to a
fundamental matter block (0, 1). S-duality acts locally on these blocks by swapping them,
creating on their sides the S-wall theory, which is realized by a variant of the T [SU(N)]
theory as proposed by [42]. The local dualizations of the QFT blocks correspond to genuine
IR dualities, the basic duality moves, which can in turn be derived from the Seiberg-like
Aharony duality [44].

The algorithm consists of various steps: we first chop the initial quiver into QFT blocks,
we then dualize them by means of the basic duality moves and finally glue them back together.
Such a procedure can produce in the end a theory where some VEVs are turned on, triggering
a non-trivial RG flow. In [41] it was shown that these VEVs can be extinguished using another
duality move that swaps (1, 0) and (0, 1)-blocks, which is the field theory counterpart of the
Hanany-Witten move [5]. For good linear quivers a finite sequence of these moves is enough
to reach the end of the RG flow and obtain the final mirror dual. In particular, starting from
the T σ

ρ [SU(N)] theory, the algorithm outputs the mirror dual theory with swapped partitions

T σ
ρ [SU(N)] mirror←→ T ρ

σ [SU(N)] . (1.2)

The algorithm then provides a purely field theoretic derivation of mirror symmetry by
assuming only more fundamental Seiberg-like dualities.

The mirror algorithm can also be extended to the case of dualities involving (p, q) 5-branes,
which will have a new associated (1, 1) QFT block, and to the full SL(2,Z) S-duality group [41].
It can also be applied to prove mirror dualities for theories with four superchagres [45].

A 4d version of the algorithm has also been developed and can be used to prove 4d mirror-
like dualities. Indeed, as shown in [46], the 3d T σ

ρ [SU(N)] family has an uplift to the family
of 4d N = 1 symplectic quivers named Eσ

ρ [USp(2N)] (defined in appendix C). This class of
4d theories (labelled by partitions ρ and σ of an integer N) enjoy the mirror-like duality

Eσ
ρ [USp(2N)] mirror←→ Eρ

σ[USp(2N)] . (1.3)

In 3d, after a circle reduction and real mass deformations, they reduce to the 3d N = 4
linear quivers of the T σ

ρ [SU(N)] family. The 4d version of the algorithm can then derive
these mirror-like dualities among members of the Eσ

ρ [USp(2N)] family by means of the 4d
counterpart of the 3d basic duality moves which locally implement the action of S-duality.
These 4d basic duality moves can all be derived from a Seiberg-like duality for simplectic
groups, namely the Intriligator-Pouliot (IP) duality [47]. In this case, the mirror algorithm
can be extended to the full PSL(2,Z) group [41].
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In [1] we initiated the study of 3d bad theories focusing on the case of SQCD, namely
a U(Nc) gauge theory with Nf flavors. This theory for Nf < 2Nc − 1 is known to be bad
(ugly for Nf = 2Nc− 1) [42], meaning that some monopoles operators fall below the unitarity
bound and decouple in the IR. Bad theories have a rather intricate IR dynamics and have
been studied in various works [48–56]. In particular [54] pointed out that the most singular
locus in the Coulomb branch of U(Nc) SQCD with Nf flavors is a submanifold of codimension
⌊Nf /2⌋ rather than an isolated point and is such that the UV gauge symmetry is broken to a
subgroup of lower rank: around it the Coulomb branch looks like that of SQCD with gauge
group U(⌊Nf /2⌋) and Nf flavors, times some flat directions (which for 3d N = 4 theories
are parametrized by free twisted hypermultiplets).

In [1] we applied the mirror dualization algorithm to the 4d/3d SQCD case. Interestingly,
we observed that also the 4d SQCD uplift for Nf < 2Nc has a moduli space with the same
feature as its 3d counterpart we just described. In this sense we will say that a 4d theory is bad.

The main result is that the 4d index/3d sphere partition function is a distribution rather
than a regular function.1 Indeed, the schematic structure of the index/partition function of
the 4d/3d bad SQCD is given by a sum of terms each involving a Dirac delta distribution,
enforcing a particular constraint on the fugacities/FI parameters, which multiplies the 4d
index/3d partition function of an interacting SCFT, the mirror of a good SQCD of lower
rank, plus various gauge singlets which are just free fields. In addition, there is an extra
frame with no delta distribution whose interacting part is the mirror of the good SQCD
U(Nf −Nc) with Nf hypers in 3d and USp(2Nf − 2Nc) with one antisymmetric and 2Nf +4
fundamental chirals in 4d.

In this paper we focus on 3d N = 4 linear quivers with bad gauge nodes and on their 4d
N = 1 uplifts. In order to dualize these theories we extend the mirror dualization algorithm.
Indeed we will see that the (1, 0)-(0, 1) blocks swap is not enough to take care of all the
VEVs, but we need a new non-trivial duality move, the (0, 1)-(0, 1) blocks swap, which in
3d we interpret as a non trivial property of the swap of D5-branes. Such a duality is just
a rewriting of the aforementioned result for SQCD, so when we apply it we get a sum of
frames weighted (all but one) by a delta function.

The mirror dual of a bad linear quiver is then a sum of multiple frames, each of them
having an interacting good linear quiver part (Eσ

ρ [USp(2N)] in 4d and T σ
ρ [SU(N)] in 3d)

and a free sector. Some of these frames will be also multiplied by one or more Dirac deltas,
enforcing various conditions on the electric FI parameters. Moreover, the result can be
presented by replacing in each frame the good interacting quiver theory with its mirror dual.
In this way we obtain the sum of electric duals of a bad quiver.

We also propose an electric dualization algorithm which directly outputs the electric
duals of a bad quiver. The idea is to use the result we found in [1] for the bad SQCD and
to apply it locally to each bad node. This procedure is defined both in 4d and in 3d, and
it can be described as follows. Given a bad theory, choose any ugly/bad node and carve it
out from the rest of the quiver, together with the attached matter and singlets, to isolate a
bad SQCD. Then replace the carved out SQCD theory with the appropriate sum of good

1The distributional nature of indices/partition functions was first observed in [57], in the case of theories
with quantum deformed moduli spaces and patterns of chiral symmetry breaking.
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Figure 1. A schematic representation of the electric dualization of the 4d theory with gauge ranks
Nc = (3, 3) and flavor ranks Nf = (1, 4). Its first node is bad and is highlighted in red. After one
iteration of the electric algorithm we get two frames: the first one is good, while the second one has
an ugly node, highlighted in orange, and thus needs one more iteration of the algorithm, resulting
in the two quivers in the second line as the final dual theories. The numbers above the colored
bifundamentals indicate their multiplicity. More details such as charges and omitted singlets can be
found in section 3.

theories plus free sectors, as dictated by the aforementioned result for the SQCD we found
in [1]. Finally, glue back the dualized parts to the rest of the quiver. At this point we have
a collection of quivers. If some of them still contain ugly/bad nodes, iterate the procedure
until all the generated frames contain only good gauge nodes. In the end we will get a sum
of good frames, multiplied by a free sector and possibly by one or more Dirac deltas: they
will constitute the correct electric dual of the starting bad theory.

This electric algorithm is illustrated in figure 1, where the dualization of the 4d theory
with gauge ranks Nc = (3, 3) and flavor ranks Nf = (1, 4) is schematically depicted. This
example will be discussed in detail in the main body of the paper.

The SQCD carving out operation, which is needed to perform the electric algorithm,
is more rigorously described by a (1, 0)-(1, 0) blocks swap, an IR duality coming from the
aforementioned result for SQCD; in 3d it can be interpreted as a non trivial property of
the swap of NS5-branes.

The mirror algorithm and the electric algorithm are equivalent. However, the electric
algorithm is perhaps faster and can be coded. Indeed this paper comes with a Mathematica
notebook which, given any 3d N = 4 linear quiver with any number of bad/ugly nodes,
outputs all its dual frames, specifying their FI parameters, their free sectors and the Dirac
deltas they are multiplied by.

We are also interested in the 3-sphere partition function of bad linear quivers containing
both unitary and special unitary gauge nodes. An SU(N) gauge node can be obtained from
a U(N) gauge node by gauging its U(1) topological symmetry, which at the level of the
partition function is implemented by integrating over the associated FI parameter. Under
mirror symmetry the topological symmetry is mapped to a flavor symmetry, so turning a
node from unitary to special unitary corresponds in the mirror dual theory to gauging some
U(1) flavor symmetry. One of the advantages of the dualization algorithm is that it provides
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the precise mapping between topological and flavor symmetries across the mirror duality so
that we know exactly which U(1) flavor symmetry should be gauged. This approach therefore
provides an alternative to the brane locking method developed in [27].

We first review how to do this for a good linear quiver theory with mixed unitary and
special unitary gauge nodes to get its mirror dual by starting from that of the theory with
unitary gauge nodes only (see also [27, 58–60] for related discussions). We then apply the
same logic to our result for the bad U(Nc) SQCD to get an expression for the partition
function of the bad SU(Nc) SQCD. Since we are integrating over all possible values of
the FI parameter, we find that this receives contribution from each of the frames that we
found in the unitary case, including those that correspond to very specific values of the FI.
More precisely, we find that the partition function of the bad SU(Nc) SQCD is the sum
of the partition functions of multiple good theories, not necessarily SQCD, none of which
is multiplied by a delta now since this can be traded for the integral over the FI that we
introduced. In some cases, as a result of the gauging, the free sector of the unitary theory
ends up being coupled to the interacting part.

The structure of the full moduli space of the SU(2) SQCD with two flavors was worked out
in [56], where it was shown that there are two distinct singular points of maximal codimension,
i.e. with no twisted hyper sector. The low energy effective description around each of these
singular points is the same, and is given by the good SQED with two flavors. Our result
for this case is compatible with [56] since we find that the partition function of SU(2) with
two flavors is the sum of two copies of the partition function of U(1) with two flavors. A
proposal for the full moduli space of the bad SU(Nc) SQCD with Nf flavors has been recently
made in [26], based on the conjecture that the quantum Coulomb branch can be obtained
by a procedure called inversion of the classical Higgs branch [61]. It would be interesting
to compare our results for the partition function of the bad SU(Nc) SQCD with Nf flavors
with the findings of [26] for the full moduli space.

The rest of the paper is organized as follows. In section 2 we introduce all the preliminary
4d/3d QFT ingredients needed in the following sections. We review the basic duality moves
realizing S-duality on the QFT blocks and we present the three blocks swap moves required
to implement the two algorithms. In section 3 we define the 4d mirror and electric algorithms
we need in the rest of the paper. We illustrate them using the theory with gauge ranks
Nc = (3, 3) and flavor ranks Nf = (1, 4) as an example. In section 4 we analyze in detail the
4d theory with Nc = (5, 3) and Nf = (3, 2) from various perspectives: we dualize the theory
using both the mirror and the electric algorithms and we also study the theory adopting the
Higgsing perspective, which reproduces the same answer obtained via the algorithms. In
section 5 we give a Type IIB brane interpretation of the 3d (1, 0)-(1, 0) and (0, 1)-(0, 1) blocks
swap moves. We also discuss the application of the 3d algorithms to study the fusion of two
S-walls into an Identity-wall. We find that, quite remarkably, the algorithm reproduces the
findings of [39]. This provides a strong consistency check of our construction. In section 6
we characterize the possible dual frames of a bad linear quiver theory, in particular we
provide the rules determining the maximal and minimal dual frames, namely those having
gauge groups with the largest and smallest possible rank respectively. The analysis is based
entirely on the combinatorics of partitions of an integer N which is specified by the linear
quiver data. Finally, in section 7 we focus on 3d N = 4 good/bad quiver theories including
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SU(N) gauge nodes, which we obtain from theories with U(N) gauge node only by gauging a
subset of the U(1) topological symmetries of the theory. The analysis is carried out at the
level of the 3d partition function. In particular, we propose a precise method to identify
unambiguously the U(1) symmetries to be gauged. The main text is supplemented by various
appendices reviewing conventions and previous results, and detailing some of the more
technical derivations of results used in the rest of the paper.

2 S-walls, QFT blocks, basic moves and swaps

In this section we introduce the class of theories we are interested in, we review the known
ingredients of the dualization algorithms and introduce the new ones.

We begin by introducing the class of 3d and 4d linear quivers which we will be focusing on.
Following the notation of [41], we will then introduce the S-duality wall and the Identity-wall,
the (1, 0) and (0, 1) QFT blocks corresponding to NS5 and D5-branes respectively, and the
basic moves corresponding to their S-dualization.

We will next present the block swaps: the (1, 0)-(0, 1) block swap, previously discussed
in [41] and which in the 3d case is the field the field theory counterpart of the Hanany-Witten
move, and the new (1, 0)-(1, 0) and (0, 1)-(0, 1) block swaps whose brane interpretation will
be discussed in section 5.

2.1 Linear quivers in 3d and 4d

In 3d we will consider N = 4 unitary linear quivers. In this paper we will always represent
them in an N = 2 notation: an N = 4 hypermultiplet contains two N = 2 chiral multiplets
in conjugate representations which we represent by double lines with opposite orientations,
while an N = 4 vector multiplet contains an N = 2 vector multiplet and an N = 2 adjoint
chiral multiplet and we represent the latter with an arc. As usual, round nodes denote gauge
symmetries while square nodes denote flavor symmetries, which in 3d will all be of unitary type.

These quivers admit a brane description in Type IIB string theory [5]. If the linear
quiver contains k gauge groups of rank Ni and the number of flavors at the i-th node is Fi

we engineer the theory by including k + 1 NS5-branes. Between the i-th and (i + 1)-th NS5’s
we suspend Ni D3-branes and we also include a set Fi D5-branes.

This class of theories is usually dubbed T σ
ρ [SU(N)] theories [42], since the quiver data

{Ni, Fi} can be encoded in the sequence of integers ρ and σ as follows:
• The number of flavors Fi is equal to σ̂i − σ̂i+1, where we denote by σ̂i the i-th element

of σT , the transpose to σ;

• The rank of the gauge groups Ni is given by the formula

Ni =
∑
j>i

ρj −
∑
j>i

σ̂j . (2.1)

Notice that positivity of the rank of the various gauge groups requires the constraint

ρ ≤ σT i.e.
∑
j≤i

ρj ≤
∑
j≤i

σ̂j ∀i (2.2)

and therefore we should always restrict to ρ and σ satisfying this constraint for the quiver
to make sense.

– 7 –
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F k

…

…

…
…

…

F1 F k

N 1 N k

Figure 2. The 3d N = 4 T σ
ρ [SU(N)] theory drawn in N = 2 language and the associated Hanany-

Witten brane setup. All nodes represent unitary symmetries, with round nodes being gauge symmetries
and square node flavor symmetries. Each line denotes a chiral field transforming under the symmetries
of the nodes that it connects, where a line between two nodes is a field in the bifundamental
or antibifundamental representation depending on the orientation while an arc is a field in the
adjoint representation.

We can bring all the D5-branes to the end of the quiver (say for definiteness to the left,
even though also the other choice is perfectly fine), keeping into account the Hanany-Witten
effect as the D5’s go across an NS5-brane. We end up with a set-up having ∑i Fi D5-branes,
followed on their right by the k + 1 NS5’s. In particular there will be a set of F1 D5-branes
with a single D3-brane ending on each of them, then there will be a set of F2 D5s with
two D3-branes ending on each of them, and so on. The total number of D3-branes ending
on D5’s is N defined by the relation

N =
∑

i

iFi . (2.3)

We then see that the sequence of integers σ is actually a partition of N and can be written as

σ = [kFk , (k − 1)Fk−1 , . . . , 2F2 , 1F1 ] . (2.4)

The sequence of integer ρ can then be determined via (2.1).
Before proceeding, a comment about the notation is in order. Usually the formalism

described above is applied to describe good theories (that is each node is good Fi + Ni−1 +
Ni+1 ≥ 2Ni). For good theories both ρ and σ are ordered partitions of N , with all the
elements of the partition being positive integers. For a bad theory however, the sequence ρ

we get by applying (2.1) is in general merely a sequence of integers whose sum is N . They
are not ordered and are not all positive.

In appendix C.2 we provide a more detailed definition of the T σ
ρ [SU(N)] theories by

giving an expression for their S3
b partition function, which includes a set of background CS

couplings for the global symmetries. These are important for various reasons, such as when
discussing the variants of the same quivers but with some special unitary gauge nodes or
to respect the global symmetry enhancements in the presence of a non-trivial background
monopole for the global symmetries.

A special case of this class of theories corresponds to having the trivial partitions
σ = ρ = [1N ], in which it is customary to omit both of them and only name the theory
T [SU(N)]. For a fixed N , this is the theory with the maximal global symmetry

SU(N)X × SU(N)Y ×U(1)mA , (2.5)

– 8 –
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2M 1

2

2N 2

2M 2
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2 22

2 N L−1

2M L−12M L−2

2N L−2

…

… …

… …

Figure 3. The 4d N = 1 Eσ
ρ [USp(2N)] theory. All nodes represent symplectic symmetries, with

round nodes being gauge symmetries and square node flavor symmetries as usual. Each line denotes a
chiral field transforming under the symmetries of the nodes that it connects, where a line between
two nodes is a field in the bifundamental representation while an arc is a field in the antisymmetric
representation. The orange crosses represent the singlets flipping the meson built from the chiral on
which they are placed (possibly dressed with some power of the antisymmetric). We use a black cross
to indicate a singlet whereas an orange cross for multiple singlets.

where SU(N)X is the manifest flavor symmetry of the quiver, SU(N)Y is enhanced from the
U(1)N−1 topological symmetry and U(1)mA is the commutant of the N = 2 R-symmetry
inside the N = 4 R-symmetry that manifests as a flavor symmetry in the N = 2 notation we
are using. In this case, in the brane set-up we have N D3-branes stretched between N D5
and N NS5-branes, where on each five-brane ends a single D3. This theory is special since we
can recover from it any other generic T σ

ρ [SU(N)] theory with an RG flow triggered by giving
nilpotent VEVs to the moment map operators for the SU(N)X and SU(N)Y symmetries
which are labelled by σ and ρ respectively (see e.g. [43, 46]).

The 3d N = 4 T σ
ρ [SU(N)] theories have a 4d N = 1 uplift called Eσ

ρ [USp(2N)] [46], where
by “uplift” we mean that the latter reduces to the former upon dimensional reduction and
various real mass deformations.2 The structure of these 4d theories, summarized in figure 3,
is similar to that of their 3d counterparts and the ranks Ni, Fi are still determined from σ

and ρ with the same rule. However, there are a few differences: the groups are all symplectic
rather than unitary, we have additional fundamental chiral fields forming the structure of a
saw, and we have additional gauge singlet fields. In particular, there are two types of singlets:

• Those denoted by a cross at the i-th position are in number Ni−1 −Ni (where N0 = 0)
and they flip the meson constructed with the corresponding saw chirals dressed with
the antisymmetric chiral up to the power Ni−1 −Ni − 1.

• Those denoted by lines connecting some of the flavor nodes. In particular, each upper
flavor box is connected to all the bottom saw boxes that sit to its right. These singlets
flip the minimal operator in the bifundamental representation of the two non-abelian
symmetries, that is made of a sequence of chirals corresponding to the shortest path
between the two boxes.

2Notice that this RG flow entails an enhancement of supersymmetry.
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These latter singlets are in particular crucial to have an enhancement of the SU(2) symmetries
of the saw (see [46] for more details). Finally, to fully specify the Eσ

ρ [USp(2N)] theory one
should also provide the superpotential. This consists of three main parts:

• A cubic interactions between the bifundamental and the antisymmetric chirals, which
is the uplift of the superpotential we have in 3d due to N = 4 supersymmetry.

• A cubic interaction between the chirals for each triangle of the saw.

• The superpotential for the flipping fields discussed above.

Similarly to the 3d case, also in 4d the theory with trivial σ = ρ = [1N ], which is denoted
by E[USp(2N)], is special as it has the maximal global symmetry

USp(2N)x ×USp(2N)y ×U(1)t ×U(1)c (2.6)

and a generic Eσ
ρ [USp(2N)] theory can be obtained from it by giving a VEV to two operators in

the antisymmetric representations of USp(2N)x and USp(2N)y whose form is fully determined
in terms of σ and ρ respectively (see [46] for more details).

There is a notion of good/ugly/bad also for this class of 4d theories, which was introduced
in [1] for the case of the SQCD. The condition is identical to the one we have in 3d: if all
nodes are such that Fi + Ni−1 + Ni+1 > 2Ni then the quiver is good, otherwise it is either
ugly or bad depending on whether we have a strict equality of the opposite inequality for
at least one node. Similarly to 3d, this implies that, while σ is always a partition of N ,
ρ is instead just a sequence of integers summing up to N , which for a bad theory is not
necessarily ordered nor positive and hence not a partition. As discussed in [1] for the SQCD
case and as we will see extensively in this paper, a 4d bad theory is characterized by the
fact that its index is not an ordinary function but rather a distribution expressed in terms
of combinations of delta functions. Physically, this is related to the fact that the moduli
space of the theory does not include the origin and hence there is no point where the full
gauge symmetry is preserved. Instead, one is forced to give a VEV associated with one of
the delta constraints, which Higgses the gauge group. This was discussed extensively in [1]
for the SQCD and we will see a quiver example in section 4.

The index of the Eσ
ρ [USp(2N)] theory in our conventions is given in appendix C.1.

2.2 S-wall and Identity-wall

We now discuss the ingredient of the dualization algorithms. First of all, we review the
notions of S-wall and Identity-wall first introduced in [39] (see [41] for our conventions).

4d case. The 4d S-wall theory is the FE[USp(2N)] theory introduced in [62], which is
defined as the E[USp(2N)] theory with an additional flipping field in the antisymmetric of
USp(2N)x (hence the name). This is the quiver theory depicted in figure 4.
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y2

2 2

y3

2

y1

2

t
1
2

4
t
1
2 …

yN

2

x⃑

yN−1

2

t
1
2

2N
t
1
2

2N−2

pq/ t

pqt
N−3
2 c−1

t
2−N
2 c

pqt
N−4
2 c−1

t
1−N
2 c

pqt−1/2c−1

ct
−
1
2 c

pq/ t pq/ t
pq/ t

Figure 4. The 4d FE[USp(2N)] theory. The combinations of the fugacities close to each line encode
the charges of the corresponding chiral fields under the abelian symmetries including the R-symmetry.
Close to each node we instead specify the label for the fugacities of the corresponding symmetry. For
circle nodes these are gauge fugacities over which we integrate in the index, while for square nodes
they are parameters on which the index depends.

2N
c

2Nx⃑ y⃑ 2N

2

x⃑ y⃑

v

c
2M

Figure 5. The 4d S-wall theory and its asymmetric version. Close to each wiggle line we specify its c

fugacity, which might be identified with various combinations of the abelian symmetries fugacities
when gluing the S-wall to other blocks.

We will represent it compactly as on the left of figure 5, where we exhibit its two USp(2N)
symmetries. At the level of the index, the S-wall is recursively defined as

I(N)
S (x⃗; y⃗; t; c) = Γe

(
pq c−2

)
Γe

(
pq t−1

)N
N∏

i<j

Γe

(
pq t−1x±1

i x±1
j

) N∏
i=1

Γe

(
c y±1

N x±1
i

)

×
∮

dz⃗N−1∆N−1(z⃗N−1)
N−1∏
a=1

N∏
i=1

Γe

(
t1/2z±1

a x±1
i

)
Γe

(
pq t−1/2c−1y±1

N z±1
a

)
× I(N−1)

S

(
z1, · · · , zN−1; y1, · · · , yN−1; t; t−1/2c

)
. (2.7)

It is important to remember that the S-duality group in 4d is PSL(2,Z), and therefore the
property S = S−1 holds.

It is possible to turn on a deformation breaking one of the two USp(2N) symmetries
down to USp(2M)×SU(2) for M < N (see [39, 46] for more details). This gives a new theory
that we call the 4d asymmetric S-wall and that we represent compactly as on the right of
figure 5 so to manifestly display all of its non-abelian symmetries. At the level of the index
this deformation corresponds to the specialization of some of the flavor fugacities

I(N)
S (x⃗; y⃗, t

N−M−1
2 v, · · · , t−

N−M−1
2 v; t; c) . (2.8)
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2Nx⃑
c

z⃑

y⃑
c−1

2N

t

2N = x⃑ Ι̂ y⃑ (t )

Figure 6. The 4d gluing of two S-walls to give an Identity-wall. The gluing consists of gauging a
diagonal combination of the USp(2N) symmetries of the two S-walls and adding an antisymmetric of
this USp(2N) symmetry that couples in the superpotential with the antisymmetric operators of the
two glued blocks.

If we glue two symmetric S-walls together we get what we call a 4d Identity-wall [39],
represented in figure 6. Here and in the rest of this paper, by “glue” we mean gauging a
diagonal combination of the USp(2N) symmetries of the two glued blocks. Moreover, if an
antisymmetric A of this USp(2N) symmetry is added as in this case, this couples in the
superpotential with the antisymmetric operators AL/R of the two glued blocks (see e.g. [41])

Wgluing = A(AL + AR) . (2.9)

At the level of the index we have∮
dz⃗N ∆N (z⃗; t)I(N)

S (x⃗; z⃗; t; c)I(N)
S (z⃗; y⃗; t; c−1) = x⃗Îy⃗(t) , (2.10)

where we defined the index of the 4d Identity-wall as

x⃗Îy⃗(t) =
∏N

j=1 2πixj

∆N (x⃗; t)
∑

σ∈SN

∑
±

N∏
j=1

δ
(
xj − y±σ(j)

)
. (2.11)

As explained in [39], this should be understood as a theory with a breaking of the
USp(2N)x and USp(2N)y global symmetries to their diagonal combination, due to a VEV
at the quantum level for an operator in their bifundamental representation. This is an
example of a 4d bad quiver theory. Consider indeed gluing the two S-walls by gauging their
manifest USp(2N) symmetry in figure 4. The antisymmetric operators AL/R would then
correspond to the antisymmetric chiral for the USp(2N) symmetry of each S-wall and the
gluing superpotential (2.9) would be a mass term for two out of the three antisymmetric chirals
A, AL and AR. After integrating the massive fields out one obtains an Eσ

ρ theory, but the
middle USp(2N) gauge node would only see 2N−2 < 2N flavors and would thus be bad. The
properties of this theory of its index behaving as a delta distribution and of the quantum VEV
are a manifestation of its badness. In subsection 5.4 we will come back to this observation.

If we instead glue one symmetric and one asymmetric S-wall together we get what we
call a 4d asymmetric Identity-wall, represented in figure 7.

At the level of the index we have∮
dz⃗N ∆N (z⃗; t)I(N)

S (x⃗; z⃗; t; c)I(N)
S (z⃗; y⃗, t

N−M−1
2 v, · · · , t−

N−M−1
2 v; t; c−1) = x⃗Îy⃗,v(t) ,

where we defined the index of the 4d asymmetric Identity-wall as

x⃗Îy⃗,v(t) =
∏N

j=1 2πixj

∆N (x⃗; t)
∑

σ∈SN ,±

N∏
j=1

δ
(
xj − y±1

σ(j)

)∣∣∣∣∣∣
yM+k=t

N−M+1−2k
2 v

. (2.12)
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2Nx⃑
c

2

z⃑

y⃑

v

c−1
2M

t

2N = x⃑ Ι̂ y⃑ , v (t )

Figure 7. The 4d gluing of a symmetric and an asymmetric S-walls to give an asymmetric Identity-
wall.

1 2 … N−1 N X⃑

Y 1−Y 2 Y 2−Y 3 Y N−1−Y N

i
Q
2
−mA

2m A 2m A

i
Q
2
−mA

2m A 2m A

Figure 8. The FT [U(N)] theory. We specify the R-charge qR and the U(1)mA
charge qA of each

chiral field via a combination iqR
Q
2 + qAmA of the squashing parameter Q = b + b−1 and of the axial

mass mA on which the S3
b partition function depends. Moreover, we write in green the FI parameters

on each gauge node.

3d case. In 3d we start by considering the FT [U(N)] theory, which is the T [U(N)] the-
ory3 [42] modified by adding a set of singlet chiral fields in the adjoint representation of the
manifest U(N)X flavor symmetry. This can also be obtained as the dimensional reduction of
the 4d FE[USp(2N)] theory [62]. The FT [U(N)] theory is shown in figure 8.

Its partition function is

ZF T [U(N)](X⃗; Y⃗ ;mA) =

e2πiYN

∑N

a=1 Xa

N∏
a,b=1

sb

(
i
Q

2 − 2mA ± (Xa −Xb)
)

×
∫

dZ⃗
(N−1)
N−1 ∆3d

N−1

(
Z⃗(N−1)

)
ϵ
−2πiYN

∑N−1
j=1 Z

(N−1)
j

N−1∏
j=1

N∏
a=1

sb

(
mA ± (Z(N−1)

j −Xa)
)

×ZF T [U(N−1)]
(
Z

(N−1)
1 , · · · , Z

(N−1)
N−1 ;Y1, · · · , YN−1;mA

)
. (2.13)

The 3d S-wall is then defined as

Z(N)
S (X⃗; Y⃗ ;mA) ≡ ZF T [U(N)](X⃗;−Y⃗ ;mA) = ZF T [U(N)](−X⃗; Y⃗ ;mA) . (2.14)

Since in 3d the S-duality group is SL(2,Z), the generators S and S−1 are distinct and
related as follows:

Z(N)
S−1(X⃗; Y⃗ ;mA) = Z(N)

S (X⃗;−Y⃗ ;mA) = Z(N)
S (−X⃗; Y⃗ ;mA) . (2.15)

3The T [U(N)] theory is the product of the T [SU(N)] theory and the T [U(1)] theory, where the latter is just
a U(1)×U(1) mixed background CS theory. Its contribution to the T [U(N)] partition function is given by the
exponential prefactor in (2.13). The T [U(N)] theory then has a U(N)X × U(N)Y × U(1)mA global symmetry.
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N NX⃑ Y⃑
(±)

N

1

X⃑ Y⃑

V

M
(±)

Figure 9. The 3d symmetric S±1-walls on the left and their asymmetric versions on the right. Close
to each node we specify the label for the mass parameters of the corresponding symmetry on which
the S3

b partition function depends.

We will represent compactly the S-wall displaying both of its U(N) global symmetries as on the
left of figure 9, where we distinguish between S and S−1 by a (+) and (−) label respectively.

Similarly to 4d, we can obtain an asymmetric S-wall by turning on a deformation that
breaks one of the U(N) symmetries down to U(M)×U(1) with M < N and we represent it
compactly as on the right of figure 9. At the level of the S3

b partition function, this deformation
forces the following specialization of the real mass parameters for the broken symmetry:

YM+j = N −M + 1− 2j

2 (iQ− 2mA) + V, j = 1, · · · , N −M . (2.16)

Also in 3d holds the property that if we glue two symmetric S-walls, these annihilate
each other giving an Identity-wall [39] (see figure 10). Again by “glue” we mean that we
gauge a diagonal combination of the U(N) symmetries and we add an adjoint chiral field Φ
for this new gauge node that couples in the superpotential with the moment map operators
ΦL/R of each glued block

Wgluing = Φ(ΦL +ΦR) . (2.17)

At the level of the partition function, we have∫
dZ⃗N ∆3d

N (Z⃗;mA)Z(N)
S (Z⃗; X⃗;mA)Z(N)

S (Z⃗;−Y⃗ ;mA) = X⃗ Î3d
Y⃗
(mA) (2.18)

where we defined the partition function of the 3d Identity-wall as

X⃗
Î3d
Y⃗
(mA) =

∑
σ∈SN

∏N
j=1 δ

(
Xj − Yσ(j)

)
∆3d

N (X⃗;mA)
(2.19)

This is again an example of a 3d bad theory, as it can be understood if we consider gauging
the manifest U(N) flavor symmetry of each S-wall, since this would give a U(N) gauge node
with 2N − 2 flavors. In subsection 5.4 we will recover the result (2.18) from this perspective.

If we instead glue one symmetric and one asymmetric S-wall together we get what is
shown in figure 11, where we defined the 3d asymmetric Identity-wall as

X⃗
Î3d
Y⃗ ,V

(mA)=
1

∆3d
N (X⃗;mA)

∑
σ∈SN

N∏
j=1

δ
(
Xj−Yσ(j)

)∣∣∣∣∣∣
YM+k=N−M+1−2k

2 (iQ−2mA)+V

. (2.20)
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NX⃑

Z⃑

Y⃑N

iQ−2mA

N = X⃑ Ι̂ Y⃑
3 d
(mA)(±) (∓)

Figure 10. The 3d gluing of an S and an S−1-walls to give an Identity-wall. The gluing consists of
gauging a diagonal combination of the U(N) symmetries of the two S-walls and adding an adjoint of
this U(N) symmetry that couples in the superpotential with the moment map operators of the two
glued blocks.

NX⃑

1

Z⃑

Y⃑

V

M

iQ−2mA

N = X⃑ Ι̂ Y⃑ ,V
3d

(mA)
(±) (∓)

Figure 11. The 3d asymmetric Identity-wall.

2N

2

2M

2M

2

x⃑ Ι̂ y⃑ , u(t )y⃑

u

( pq/ s)
N−M+1

2B10= B01=

y⃑x⃑

u

√ pq/ t

t
M−N+1

2 c √ pq t
N−M

2 c−1

Figure 12. The 4d B10 block on the left and the B01-block on the right.

2.3 QFT blocks

We now recall the definitions of the QFT blocks first introduced in [40] (see [41] for
our conventions).

4d case. The 4d B10 and B01-blocks are defined as the theories shown in figure 12. The
B10 block is a collection of chirals interacting with a cubic superpotential corresponding to
the product of the three edges of the triangle. The B01 is also a collection of chirals, but
notice that it is also multiplied by an Identity-wall.

At the level of the index we have

I(N,M)
(1,0) (x⃗; y⃗;u; t; c) =

N∏
i=1

M∏
j=1

Γe

(
(pq/t)

1
2 x±

i y±j

) N∏
i=1

Γe

(
t

M−N+1
2 cx±

j u±
)

×
M∏

j=1
Γe

(
(pq)

1
2 t

N−M
2 c−1y±j u±

)
(2.21)

and

I(N,M)
(0,1) (x⃗; y⃗;u; s) =

M∏
j=1

Γe

(
(pq/s)

N−M+1
2 y±j u±

)
x⃗Îy⃗,u(t) , (2.22)
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M

1

X⃑ Ι̂ Y⃑ ,U
3 d

(mA)Y⃑

U

h (N−M+1)N M Y⃑X⃑
mA

U −U

B10= B01=

Figure 13. The 3d B10-block on the left and the B01-block on the right.

where s can be either t or pq/t. On the l.h.s. we do not list the argument t of the 4d
Identity-wall, as throughout the paper it will always be t. Here we are assuming without loss
of generality that M ≤ N , since the case M ≥ N can be obtained just by a vertical reflection.

3d case. The 3d B10 and B01-blocks are similarly defined as the theories shown in figure 13.
The B10-block is just a U(N) × U(M) bifundamental hyper with some background CS
coupling between these symmetries and a U(1) global symmetry that will play the role of
the topological symmetry when the non-abelian symmetries are gauged in a quiver, in which
case the parameter U is the corresponding FI parameter. The B01-block is instead a single
U(N) fundamental hyper multiplied by an Identity-wall.

At the level of the partition function we have (again M ≤ N)

Z(N,M)
(1,0) (X⃗; Y⃗ ;U ;mA)= e2πiU

(∑N

a=1 Xa−
∑M

b=1 Yb

) N∏
a=1

M∏
b=1

sb

(
iQ

2 −mA±(Xa−Yb)
)

(2.23)

and

Z(N,M)
(0,1) (X⃗; Y⃗ ;U ;h) =

M∏
a=1

sb

(
iQ

2 − h(N −M + 1)± (Ya − U)
)

X⃗
Î3d
Y⃗ ,U

(mA) , (2.24)

where h can be either mA or iQ
2 −mA. On the l.h.s. we do not list the argument mA of the

3d Identity-wall, as throughout the paper it will always be mA.

2.4 Basic S-duality moves

Now we consider the S-dualization of the QFT blocks introduced in the previous subsection,
again following the conventions of [41]. As shown in [39], the 4d and 3d basic moves are IR
dualities which can be demonstrated by iterations of respectively Intriligator-Pouliot [47]
and Aharony [44] dualities.

4d case. The basic move dualizing the B10 block into the B01-block is represented in
figure 14. Again all blocks are glued by gauging a diagonal combination of their USp(2N)
symmetries while adding an antisymmetric chiral that couples in the superpotential with
the antisymmetric operators of the two glued blocks.
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t
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2
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j=1

N−M Γe(t
1− jc 2)

Γe(pqt
− j)2

2N 2M 2N 2N 2N 2M2M

2

t
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c c−1
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y⃑x⃑

u

√ pq/t
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M−N+1

2 c √ pq t
N−M

2 c−1

Figure 14. The B10 = SB01S−1 duality move. The gluing consists of gauging a diagonal combination
of the USp(2N) symmetries while adding an antisymmetric chiral that couples in the superpotential
with the antisymmetric operators of the two glued blocks.

x⃑ Ι̂ y⃑ (t )x⃑

u

√ pq/t =

c−1

y⃑x⃑ t
1
2

√ pq/ t c

t
−

1
2 c

2

2N

2N 2N

2

2N 2N

√pq c
−1

u

Figure 15. The B01 = SB10S−1 duality move. The gluing consists of gauging a diagonal combination
of the USp(2N) symmetries while adding a superpotential coupling the antisymmetric operators of
the two S-walls and the meson constructed from the bifundamental.

Its index expression is

I(N,M)
(1,0)

(
x⃗; y⃗;u; t;ct

M−N
2
)
=

N−M∏
i=1

Γe
(
t1−ic2

)
Γe (pq t−i)

∮
dz⃗

(1)
N dz⃗

(2)
M ∆N

(
z⃗ (1); t

)
∆M

(
z⃗ (2); t

)
×I(N)

S

(
x⃗; z⃗ (1); t;c

)
I(N,M)
(0,1)

(
z⃗ (1); z⃗ (2);u;pq/t

)
I(M)

S

(
z⃗ (2); y⃗; t; (pq/t)

1
2 c−1

)
. (2.25)

On the other hand, the basic move dualizing the B01-block into the B10 block is represented
in figure 15. In this case the gluing is again done by gauging a diagonal combination of the
USp(2N) symmetries of the glued blocks, but since we do not add any antisymmetric chiral
the superpotential consists of a coupling between the antisymmetric operators AL/R of the
two S-walls and the meson constructed from the bifundamental Q

Wgluing = Q2(AL + AR) . (2.26)
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N =M N

1

X⃑

U

Y⃑ M Y⃑
mA

M

U
iQ−2mA

N

iQ−2mA

N

(iQ /2−mA)(N−M +1)

iQ−2mA

×∏
j=1

N−M

sb(i
Q
2
− j (iQ−2mA))

(+) (−) (+) (−)

Figure 16. The B−10 = SB01S−1 duality move, where B−10 is the same as B10 but with the opposite
sign of the FI parameters. The gluing consists of gauging a diagonal combination of the U(N)
symmetries and adding an adjoint of this U(N) symmetry that couples in the superpotential with the
moment map operators of the two glued blocks.

Its index expression is

I(N,N)
(0,1) (x⃗; y⃗;u; t) =∮
dw⃗

(0)
N dw⃗

(1)
N ∆N (w⃗ (0))∆N (w⃗ (1))

× I(N)
S (x⃗; w⃗ (0); t; c−1)I(N,N)

(1,0)

(
w⃗ (0); w⃗ (1);u; pq/t; c

)
I(N)

S (w⃗ (1); y⃗; t; t−
1
2 c) . (2.27)

3d case. The basic move dualizing the B10-block into the B01-block is represented in figure 16.
As before, each pair of blocks is glued by gauging a diagonal combination of their U(N)
symmetries and adding an adjoint of this U(N) symmetry that couples in the superpotential
with the moment map operators of the two glued blocks.

Its partition function expression is

Z(N,M)
(−1,0) (X⃗; Y⃗ ;U ;mA)=

N−M∏
j=1

sb

(
i
Q

2 −j(iQ−2mA)
)∫ ( 2∏

k=1
dZ⃗

(k)
M ∆3d

M (Z⃗(k);mA)
)

×Z(N)
S

(
X⃗; Z⃗(1);mA

)
Z(N,M)
(0,1)

(
Z⃗(1); Z⃗(2);U ; iQ

2 −mA

)
Z(M)
S−1 (Z⃗(2); Y⃗ ;mA) , (2.28)

where we used Z(N,M)
(−1,0) (X⃗; Y⃗ ;U ;mA) = Z(N,M)

(1,0) (X⃗; Y⃗ ;−U ;mA).
On the other hand, the basic move dualizing the B01-block into the B10-block is represented

in figure 17. In this case the gluing is again done by gauging a diagonal combination of
the U(N) symmetries of the glued blocks, but since we do not add any adjoint chiral the
superpotential consists of a coupling between the moment map operators ΦL/R of the two
S-walls and the meson constructed from the bifundamentals Q and Q̃

Wgluing = QQ̃(ΦL +ΦR) . (2.29)

Its partition function expression is

Z(N)
(0,1)(X⃗; Y⃗ ;U ;mA)=

∫
dZ⃗

(1)
N dZ⃗

(2)
N ∆3d

N (Z⃗(1))∆3d
N (Z⃗(2))Z(N)

S (X⃗; Z⃗(1);mA)

×Z(N,N)
(1,0)

(
Z⃗(1); Z⃗(2);U ; iQ

2 −mA

)
Z(N)
S−1(Z⃗(2); Y⃗ ;mA) . (2.30)
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Figure 17. The B01 = SB10S−1 duality move. The gluing consists of gauging a diagonal combination
of the U(N) symmetries while adding a superpotential coupling the moment map operators of the two
S-walls and the meson constructed from the bifundamental.
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~
M +1)

)

t

(pq)
N−M

2 t
M−N−1

2 c

w⃑(1)

t
M−L+1

2

( pq)
M−N

2 t
N−M +1

2 c−1

v

y⃑

t

( pq /t )
N−M

2 c

w⃑(2)

t
N−

~M+1
2

( pq /t )
−
N−M

2 c−1

v

z⃑
x⃑

u

t
1
2

√pq / t c √pq c
−1

t

y⃑

pqt−1

√pq t
−
N−

~M
2 c−1

2

2 2

2

2N 2M 2M 2L 2N 2N 2~M 2 L

z⃑

x⃑

u

t
1
2

√pq / t c √pq c
−1

Figure 18. The swap of a B10-block and a B01-block with N ≥ M̃ ≥ 0. On the r.h.s. the rank of the
second gauge node is M̃ = N + L−M + 1.

2.5 (1, 0)-(0, 1) blocks swap

In this section we present the duality move corresponding to the swap of a (1, 0)-block and
a (0, 1)-block introduced in [41]. The 3d version of this identity, as we will see in section 5,
is the QFT counterpart of the Hanany-Witten (HW) move [5].

4d case. Let us focus on the 4d theory given by a B10 USp(2N) × USp(2M) block glued
to a B10 USp(2M) × USp(2L) block, with N ≥ M̃ ≥ 0 where M̃ = N + L −M + 1.4 As
shown in figure 18, we can swap the order of the two blocks with the effect of modifying
the rank of the intermediate nodes (plus some singlets).

The index identity associated to this swap is∮
dz⃗M ∆M (z⃗) I(N,M)

(1,0)

(
x⃗; z⃗;u; pqt−1; c(pqt−1)

N−M
2
)
I(M,L)
(0,1)

(
z⃗; y⃗; v; pq/t

)
= Γe

(
pqt−(N−M̃+1)

)
Γe

(
(pq)

1
2 t−

N−M̃
2 c−1u±v±

)
AN (x⃗; t)AL (y⃗; pq/t) (2.31)

×
∮

dz⃗
M̃

∆
M̃

(z⃗) I(N,M̃)
(0,1)

(
x⃗; z⃗;u; pq/t

)
I(M̃,L)
(1,0)

(
z⃗; y⃗;u; pqt−1; c(pqt−1)

M̃−L
2

)
.

3d case. Let us now focus on the 3d theory given by a B10 U(N)× U(M) block glued to
a B10 U(M) × U(L) block, with N ≥ M̃ ≥ 0 where M̃ = N + L −M + 1. As shown in
figure 19, we can swap the order of the two blocks with the effect of modifying the rank of
the intermediate nodes (plus some singlets), analogously to what we did in 4d.

4The case M̃ > N , that is L < M , can be obtained by just using the relation in figure 18 from right to left
after moving the singlets.
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(iQ /2−mA)(N−
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i
Q
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2mA
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× e−2i π UV
× sb(−i

Q
2
+(N−

~M+1)(iQ−2mA ))

Z⃑ Z⃑

w⃑(1) w⃑(2)(+) (−) (+) (−)

Figure 19. The swap of a B10-block and a B01-block with N ≥ M̃ ≥ 0. On the r.h.s. the rank of the
second gauge node is M̃ = N + L−M + 1.

z⃑(A)

y1

t
B−A+1

2 c−1

( pq)
1
2 t

A−B
2 c

( pq/ t)
1
2

z⃑(B)t

2 A2 A

2 2

y2

( pq)
−
1
2 t

C−B+2
2 c−1

pq t
B−C−1

2 c

( pq/ t )
1
2

z⃑(C )

2B 2C

tB−A+1− j c−2

( j=1 ,… , B)

Figure 20. Two 4d B10-blocks glued together. The superpotential consists of a coupling between the
USp(2B) antisymmetric and the mesons constructed from the left and right bifundamentals, as well
as cubic interactions for the two triangles. Notice also that we added for convenience some singlets
represented with an orange cross to the left B10-block, which flip the mesons constructed from the
corresponding chiral of the saw.

The partition function identity associated to this swap is∫
dZ⃗M ∆3d

M (Z⃗)Z(N,M)
(1,0)

(
X⃗; Z⃗;U ; iQ

2 −mA

)
Z(M,L)
(0,1)

(
Z⃗; Y⃗ ;V ; iQ

2 −mA

)
=e−2iπUV sb

(
−i

Q

2 +(N−M̃+1)(iQ−2mA)
)

A3d
N

(
X⃗; iQ−2mA

)
A3d

L

(
Y⃗ ;2mA

)
×
∫

dZ⃗
M̃
∆3d

M̃
(Z⃗)Z(N,M̃)

(0,1)

(
X⃗; Z⃗;V ; iQ

2 −mA

)
Z(M̃,L)
(1,0)

(
Z⃗; Y⃗ ;U ; iQ

2 −mA

)
. (2.32)

2.6 (1, 0)-(1, 0) blocks swap

In this section we introduce a new move corresponding to the swap of two (1, 0)-blocks.

4d case. Let us focus on the theory in figure 20, given by two B10-blocks, a USp(2A) ×
USp(2B) block and an USp(2B) × USp(2C) block, glued together.

The index of this theory, which we denote by I(A,B,C)
(1,0)(1,0), is

I(A,B,C)
(1,0)(1,0)

(
z⃗ (A); z⃗ (C); y1, y2; t, c

)
= (2.33)

=
B∏

j=1
Γe

(
tB−A+1−jc−2

)
×
∮

dz⃗ (B)∆N

(
z⃗ (B); t

)
I(A,B)
(1,0) (z⃗ (A); z⃗ (B); y1; t; c−1) I(B,C)

(1,0) (z⃗ (B); z⃗ (C); y2; t;
√

t/pq c−1) ,
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2 t
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z⃑(C )

2B 2C

tB−A+1− j c−2

( j=1 ,… , B)

=
~
δ ( y1 ,( y2 t
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)
α
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∏
j=1
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− j
)

∏
j=0

M +ϵ−n

Γe(t
j−2M−1

)

×

α=±1
∑∑

M+ϵ

n=0
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∓
1
2
β (M +1+ϵ−n )
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2
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Figure 21. The 4d B10-blocks swap.

Using our result for the bad SQCD (B.9) we can prove (see appendix D) the non-trivial
relation represented in figure 21, which holds for A + C < 2B. We interpret this relation as
the fact that swapping two B10-blocks (notice the change of fugacities y1 → w2 and y2 → w1)
is a non-trivial move. With respect to the previous (1, 0)-(0, 1) blocks swap, we not only
modify the intermediate rank, but also have to consider the sum over multiple frames. Each
frame comes with a delta function setting a constraint on the y1, y2 fugacities and there is an
extra frame with no delta and generic fugacities. At the level of the index we have

I(A,B,C)
(1,0)(1,0)

(
z⃗ (A); z⃗ (C);y1,y2; t,c

)
=

=
M+ϵ∑
n=0

∑
α=±1

∑
β=1 if n−ϵ=0,

β=±1 otherwise

δ̃
(
y1,
(
y2t

−(n−ϵ)β
)α)
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Figure 22. Two 3d B10-blocks glued together. The superpotential consists of the standard one of 3d
N = 4 theories, which couples the U(B) adjoint chiral to the mesons constructed from the left and
right bifundamentals.

×
∏M+ϵ−n

j=1 Γe
(
t−j
)∏M+ϵ−n

j=0 Γe (tj−2M−1)

M−ϵ+n∏
j=0

Γe

(
(pq)−1tj−B+C+2c−2

)

×

I(A,B̃,C)
(1,0)(1,0)

(
z⃗ (A); z⃗ (C);w2,w1; t;c

)M−ϵ+n+1∏
j=1

Γe

(
tj−M−1w±

1 w±
2

)
B̃=A+C

2 +ϵ−n

w1,2=y1,2t∓β(M+1+ϵ−n)


+

2M+1∏
j=0

Γe

(
(pq)−1tj−B+C+2c−2

)

×

I(A,B̃,C)
(1,0)(1,0)

(
z⃗ (A); z⃗ (C);y2,y1; t;c

)2M+2∏
j=1

Γe

(
tj−M−1y±1 y±2

)
B̃=A+C−B

, (2.34)

where we defined M = B − A+C
2 − 1 and

ϵ =

0 if A + C is even ,

−1
2 if A + C is odd .

(2.35)

We also defined δ̃(x, y) as in (B.11).

3d case. Let’s now consder the 3d theory in figure 22, given by two B10-blocks, a U(A)×U(B)
block and an U(2B) × U(2C) block, glued together.

The partition function of this theory, which we denote by Z(A,B,C)
(1,0)(1,0), is given by

Z(A,B,C)
(1,0)(1,0)

(
Z⃗ (A); Z⃗ (C);Y1, Y2;mA

)
=

=
∫

dZ⃗ (B)∆3d
B

(
Z⃗ (B);mA

)
Z(A,B)
(1,0) (Z⃗ (A); Z⃗ (B);−Y1;mA)Z(B,C)

(1,0) (Z⃗ (B); Z⃗ (C);−Y2;mA) .

(2.36)

If we take the 3d reduction of the identity (2.34) we get the identity, represented in
figure 23, which holds for A + C < 2B. Again, we interpret this relation as the fact that
swapping two B10-blocks is a non-trivial operation. We will provide a brane interpretation
of this move in section 5.
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Figure 23. The 3d B10-blocks swap.

At the level of the partition function we have

Z(A,B,C)
(1,0)(1,0)

(
Z⃗ (A); Z⃗ (C);Y1,Y2;mA

)
=

=
M+ϵ∑
n=0

∑
β=1 if n−ϵ=0,

β=±1 otherwise

δ

(
Y1−(Y2−β(n−ϵ)(iQ−2mA))

)

×
∏M+ϵ−n

j=1 sb

(
iQ
2 +j(iQ−2mA)

)
∏M+ϵ−n

j=0 sb

(
iQ
2 −(j−2M−1)(iQ−2mA)

)×
×

M−ϵ+n+1∏
j=1

sb

(
i
Q

2 −(j−M−1)(iQ−2mA)±(W1−W2)
)

×Z(A,B̃,C)
(1,0)(1,0)

(
Z⃗ (A); Z⃗ (C);W2,W1;mA

)
B̃=A+C

2 +ϵ−n

W1,2=Y1,2∓ 1
2 β(M+1+ϵ−n)(iQ−2mA)


+

2M+2∏
j=1

sb

(
i
Q

2 −(j−M−1)(iQ−2mA)±(Y1−Y2)
)

×Z(A,B̃,C)
(1,0)(1,0)

(
Z⃗ (A); Z⃗ (C);Y2,Y1;mA

)
B̃=A+C−B

, (2.37)

where we defined M and ϵ as before.
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Figure 24. Two 4d B01-blocks glued together for A ≥ B ≥ C.
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Figure 25. Two 4d B01-blocks glued together for B ≥ A , B ≥ C.

2.7 (0, 1)-(0, 1) blocks swap

Finally, we introduce the move implementing the swap of two (0, 1)-blocks.

4d case. We consider the theory obtained by gluing two asymmetric B01-blocks plus some
extra singlets. We have various possibities depending on the ordering of the ranks as shown
in figures 24 and 25.

The index of this theory, which we denote as I(A,B,C)
(0,1)(0,1) for A + C < 2B, is

I(A,B,C)
(0,1)(0,1)

(
z⃗ (A); z⃗ (C);y1,y2; t;c

)
= (2.38)

=F (A,B,C; t;c)
∮

dz⃗ (B)∆B

(
z⃗ (B); t

)
I(A,B)
(0,1) (z⃗ (A); z⃗ (B);y1;pq/t)I(B,C)

(0,1) (z⃗ (B); z⃗ (C);y2;pq/t) ,

where we collected inside F (A, B, C; t; c) some singlets depending on the ranks A, B, C

F (A,B,C; t;c)= (2.39)

=


∏A−B

j=1
Γe(t1−jc−2)
Γe(pqt−j)

∏B−C
j=1

Γe((pq)−1t2−jc−2)
Γe(pqt−j)

∏B
j=1Γe

(
tB−A+1−jc−2

)
if A≥B≥C ,

∏B−A
j=1

Γe(t1−jc−2)
Γe(pqt−j)

∏B−C
j=1

Γe(t1−jc−2)
Γe(pqt−j)

∏B
j=1Γe

(
tB−max(A,C)−jc−2

)
if B≥A,B≥C .

By taking the S-dual of the (1, 0)-(1, 0) move of the previous section (that is by S-dualizing
each (1, 0) block frame by frame), multiplying each frame on the left and right hand side by
an S-wall and using that S2 = 1 we can prove the non-trivial (0, 1)-(0, 1) swap represented
in figure 26.5 We interpret this relation as the fact the swapping two B01-blocks (notice

5The situation where C ≥ B ≥ A can be obtained from a vertical reflection of the one with A ≥ B ≥ C and
thus does not correspond to an independent case. A similar relation holds for B ≥ A, B ≥ C and A + C < 2B.
However, this case is a bit more subtle since in the intermediate frames the orientation of the asymmetric
walls might change in a way that is similar to the difference between figure 24 and 25.
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Figure 26. The 4d B01-blocks swap for A ≥ B ≥ C and A + C < 2B.
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×∏
j=1

A−B

sb (i
Q
2
− j(iQ−2mA))×∏

j=1

B−C

sb (i
Q
2
− j(iQ−2mA))

A

1 Y 1

B

iQ−2mA

A
(+) (−)

iQ−2mA

Z⃑(B)

(iQ/2−mA)(A−B+1)

1 Y 2

B
(+) (−)

Z⃑(C )

(iQ/2−mA)(B−C+1)

iQ−2mA

CZ⃑(A)

Figure 27. Two 3d B01-blocks glued together for A ≥ B ≥ C.

the change of fugacities y1 → w2 and y2 → w1) is a non-trivial move. Also in this case
we have to consider the sum over multiple frames. Moreover, we produce a set of singlets
transforming under USp(2)w1 × USp(2)w2 .

At the level of the index we have for any A, B, C such that A + C < 2B

I(A,B,C)
(0,1)(0,1)

(
z⃗ (A); z⃗ (C);y1,y2; t;c

)
=

=
M+ϵ∑
n=0

∑
α=±1

∑
β=1 if n−ϵ=0,

β=±1 otherwise

δ̃
(
y1,
(
y2t

−(n−ϵ)β
)α)

×
∏M+ϵ−n

j=1 Γe
(
t−j
)∏M+ϵ−n

j=0 Γe (tj−2M−1)

M−ϵ+n∏
j=0

Γe

(
(pq)−1tj−B+C+2c−2

)

×

I(A,B̃,C)
(0,1)(0,1)

(
z⃗ (A); z⃗ (C);w2,w1; t;c

)M−ϵ+n+1∏
j=1

Γe

(
tj−M−1w±

1 w±
2

)
B̃=A+C

2 +ϵ−n

w1,2=y1,2t∓β(M+1+ϵ−n)


+

2M+1∏
j=0

Γe

(
(pq)−1tj−B+C+2c−2

)

×

I(A,B̃,C)
(0,1)(0,1)

(
z⃗ (A); z⃗ (C);y2,y1; t;c

)2M+2∏
j=1

Γe

(
tj−M−1y±1 y±2

)
B̃=A+C−B

, (2.40)

where we defined M and ϵ as before.

3d case. Finally we consider the 3d counterpart of the above discussion. We introduce
the theory in figure 27 obtained by gluing two B01-blocks plus some extra singlets (for
A ≥ B ≥ C). The partition function of this theory, which we denote by Z(A,B,C)

(0,1)(0,1), is given by

Z(A,B,C)
(0,1)(0,1)

(
Z⃗ (A); Z⃗ (C);Y1, Y2;mA

)
=

=
|A−B|∏

j=1
sb

(
i
Q

2 − j(iQ− 2mA)
) |B−C|∏

j=1
sb

(
i
Q

2 − j(iQ− 2mA)
)

(2.41)

×
∫

dZ⃗ (B)∆3d
B

(
Z⃗ (B);mA

)
Z(A,B)
(0,1)

(
Z⃗ (A); Z⃗ (B);Y1;

iQ

2 −mA

)
×Z(B,C)

(0,1)

(
Z⃗ (B); Z⃗ (C);Y2;

iQ

2 −mA

)
.
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By dimensional reduction of the identity (2.40) we obtain the partition function identity
valid for any A, B, C such that A + C < 2B,6

Z(A,B,C)
(0,1)(0,1)

(
Z⃗ (A); Z⃗ (C);Y1, Y2;mA

)
=

=
M+ϵ∑
n=0

∑
β=1 if n−ϵ=0,

β=±1 otherwise

δ

(
Y1 − (Y2 − β(n− ϵ)(iQ− 2mA))

)

×
∏M+ϵ−n

j=1 sb

(
iQ
2 + j(iQ− 2mA)

)
∏M+ϵ−n

j=0 sb

(
iQ
2 − (j − 2M − 1)(iQ− 2mA)

)
×

M−ϵ+n+1∏
j=1

sb

(
i
Q

2 − (j −M − 1)(iQ− 2mA)± (W1 −W2)
)

×Z(A,B̃,C)
(0,1)(0,1)

(
Z⃗ (A); Z⃗ (C);W2, W1;mA

)
B̃=A+C

2 +ϵ−n

W1,2=Y1,2∓ 1
2 β(M+1+ϵ−n)(iQ−2mA)


+

2M+2∏
j=1

sb

(
i
Q

2 − (j −M − 1)(iQ− 2mA)± (Y1 − Y2)
)

×Z(A,B̃,C)
(0,1)(0,1)

(
Z⃗ (A); Z⃗ (C);Y2, Y1;mA

)
B̃=A+C−B

, (2.42)

where we defined M and ϵ as before. We interpret this relation as the fact that swapping
two B01-blocks is a non-trivial operation as depicted for A ≥ B ≥ C in figure 28. A similar
relation holds for B ≥ A, B ≥ C.

3 The mirror and the electric dualization algorithms

3.1 The mirror dualization algorithm

In this section we review the mirror dualization algorithm introduced in [40, 41] for 3d and
4d good linear quiver theories and extend it to the case of 3d and 4d bad linear quivers.

The algorithm consists of the following steps:

1. We chop the quiver into (1, 0) and (0, 1)-blocks by ungauging the gauge nodes.

2. We dualize each block using the basic duality moves.

3. We glue back the dualized blocks by restoring the original gauge symmetries.

4. We follow the RG flow triggered by VEVs that can be generated in the previous step.
This can be done systematically by iterating the (1, 0)-(0, 1) blocks swap (and also
(0, 1)-(0, 1) blocks swap for bad quivers).

We now focus more on the fourth step involving the study of the RG flows.
6Notice that the singlets in (2.39) do not contribute to the 3d partition function as they are charged under

U(1)c for which we activate a real mass deformation.
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~
δ (Y 1−(Y 2−β (n−ϵ )(iQ−2mA))) ×

∏
j=1

M +ϵ−n

sb (i
Q
2
+ j(iQ−2mA))

∏
j=0

M +ϵ−n

sb(i
Q
2
−( j−2M−1)(iQ−2mA ))
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Figure 28. The 3d B01-blocks swap for A ≥ B ≥ C and A + C < 2B.

For good quivers this can be implemented with various approaches as shown in [41]. A
very convenient approach consists in applying the (1, 0)-(0, 1) swap reviewed in section 2.
Indeed the presence of VEVs can be detected from the fact that after the third step some
asymmetric (0, 1)-blocks are left. The (1, 0)-(0, 1) swap has the effect of reducing the
asymmetry of the (0, 1)-blocks and thus can be iterated to implement the propagation of the
VEV. For good quiver theories it is always possible to perform enough (1, 0)-(0, 1) swaps
to reach configurations involving only symmetric (0, 1)-blocks, meaning that they contain
only symmetric Identity-walls which can be trivially implemented by identifying some of the
gauge nodes and disappear leading to the final mirror dual quiver.

This procedure in 3d has a brane counterpart. Asymmetric (0, 1)-blocks correspond to
D5-branes with a non-zero net number of D3-branes. To read out the mirror quiver from
the brane set-up, we need to perform a series of Hanany-Witten (HW) moves, corresponding
to (1, 0)-(0, 1) swaps, to arrive at a configuration of D5-branes with zero net number of
D3-branes which correspond to having only symmetric (0, 1)-blocks. The important fact is
that for good theories, after the action of S-duality, an appropriate sequence of HW moves,
is sufficient to reach the final S-dual brane configuration from which we can read out the
mirror dual quiver theory.
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y3

( pq)
−
1
2 t c−1
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x⃑ (1)

2

pq t j−3c−2

( j=1 ,… ,3 )
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x⃑ (2 )

8
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c

2

( pq /t )
1
2
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1
2
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1
2

pq t
−
1
2 c
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1
2c

( pq)
1
2 t

1
2 c

Figure 29. The 4d linear quiver corresponding to the E
[2,2,2,2,1]
[2,4,3] [USp(18)] theory. The red node is

bad. The SU(2)xi
× SU(2)yj

singlets and the flipping fields (the crosses) are introduced following the
Eσ

ρ [USp(2N)] conventions explained in appendix C.

The situation for bad theories is more intricate. In particular, after the block dualization,
the simple iteration of the (1, 0)-(0, 1) moves is not enough to get rid of all the asymmetric
(0, 1)-blocks and extinguish all the VEVs. In [1] the effect of these VEVs in the bad SQCD
case has been carefully analyzed. Schematically the structure of the 4d index/3d partition
function of the bad SQCD is given by a sum of frames each involving a Dirac delta distribution,
enforcing a particular constraint on the parameters, which multiplies the index/partition
function of an interacting good theory and various singlets including a set of free fields. In
addition, there is an extra frame with no delta distribution. In the previous section we
introduced the new non-trivial (1, 0)-(1, 0) and (0, 1)-(0, 1) swap moves which, as discussed in
appendix D, can be derived from the SQCD result. These new moves basically encapsulate
the subtle analysis of the collision of singularities performed in [1] and, as we are going to
see, by means of these new moves we can implement all the VEVs in bad quiver theories. So
the upgraded version of the algorithm for bad theories includes the (0, 1)-(0, 1) moves in the
fourth step. In section 5 we will discuss the brane counterpart of this QFT analysis.

Let us give a simple example of application of the mirror dualization algorithm to a bad
linear quiver. The example we consider is the case with gauge ranks Nc = (3, 3) and flavor
ranks Nf = (1, 4) corresponding to the partition σ = [2, 2, 2, 2, 1] and sequence ρ = [2, 4, 3].
We show the analysis in 4d, but the 3d steps are completely analogous. The 4d bad theory
is shown in figure 29.

Following the algorithm, we first chop the quiver into five QFT blocks by ungauging the
gauge nodes as depicted in figure 30. We then S-dualize each block using the basic moves
and glue them back. The resulting quiver is given in the first line of figure 31.

At this point we notice the presence of asymmetric B01-blocks. We then perform a
sequence of (1, 0)-(0, 1) swaps. For example we move the leftmost B01-block to the right
across three B10-blocks and move the rightmost B01-block to the left across one B10-block, as
indicated by the orange arrows in the first line of figure 31. After these (1, 0)-(0, 1) moves,
the leftmost B01-block is now symmetric, but we still have one asymmetric B01-block left. We
stress that any other sequence of (1, 0)-(0, 1) swaps would leave some asymmetric B01-block
behind. This is due to the fact that our quiver is bad.

As we have seen in the previous section, in presence of asymmetric B01-blocks the new
(0, 1)-(0, 1) swap in (2.40) is non-trivial and we can apply it. In this case we obtain two
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Figure 30. The decomposition into QFT blocks of the theory in figure 29. We indicate the gaugings
that should be restored to obtain the original theory by indicating their effect on the index.

frames (A) and (B). The first frame has a delta δ̃(y1, y2) enforcing a condition on the yi

fugacities. Since in both (A) and (B) we still have asymmetric B01-blocks, we continue
implementing (1, 0)-(0, 1) and (0, 1)-(0, 1) swaps until we have only symmetric B01-blocks,
as shown in figures 32 and 33 for the intermediate theories (A) and (B) respectively. In the
end, as summarized in figure 34, we find that the mirror dual consists of two frames. Each
frame has an interacting part given by a good quiver theory of the form of Eσ

ρ [USp(2N)]
families defined in appendix C and a free sector. In particular the quivers in the two frames
appearing in figure 34 correspond to the E

[4,3,2]
[2,2,2,2,1][USp(18)] and E

[3,3,3]
[2,2,2,2,1][USp(18)] theories

respectively. In section 5 we will discuss the 3d version of this mirror dualization together
with its brane interpretation.

We then propose that for generic 4d and 3d bad quivers the fourth step of the mirror
dualization algorithm can be implemented by a suitable of combination of (1, 0)-(0, 1) and
(0, 1)-(0, 1) moves which take us to a collection of frames where only symmetric (0, 1)-blocks
are present. Each frame has an interacting part given by a good Eσ

ρ [USp(2N)] or T σ
ρ [SU(N)]

quiver theory and a free sector. Some of these frames come with a delta constraint on the
parameters, so the index/partition function of bad quivers is a distribution.

It is also interesting to present the result by replacing the good interacting quiver theory
in each frame with its own mirror dual by employing the well-known mirror symmetry
of good linear quivers. In our example, such theories obtained by taking another step
of mirror symmetry, which we call electric quivers, are given by E

[2,2,2,2,1]
[4,3,2] [USp(18)] and

E
[2,2,2,2,1]
[3,3,3] [USp(18)], respectively, labeled by swapped partitions. Hence, as shown in figure 35,

we can give an alternative electric dual description of our bad quiver as a sum of good electric
quivers.7 The corresponding index identity is as follows:

I
E

[2,2,2,2,1]
[2,4,3] [USp(18)] (x⃗; y⃗; t;c)=∑

α=±1

[
δ̃ (y1,(y2)α)× 1

Γe (t−1)×Γe

(
w±
1 w±

2

)
×

×I
E

[2,2,2,2,1]
[3,3,3] [USp(18)]

(
x⃗;{w2,w1,y3}; t; t

1
2 c
)]

w1,2=y1,2t∓
1
2
+Γe

(
(pq)−1t2c−2

)
×

2∏
j=1

Γe

(
tj−1y±1 y±2

)
×Γe

(
t

1
2 y±1 y±3

)
×I

E
[2,2,2,2,1]
[4,3,2] [USp(18)] (x⃗;{y2,y3,y1}; t; tc) . (3.1)

7As we shall see in section 7, in certain situations we should take the mirror dual of the free sector as well.
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3.2 The electric dualization algorithm

In this section we propose an electric dualization algorithm which generates the collection
of good frames in the electric dual of a bad quiver theory. The output of this algorithm
is equivalent to the result we can obtain by first running the mirror dualization algorithm
and then taking in each frame the mirror dual of the good quiver theory representing the
corresponding interacting part.

The electric algorithm consists of the following steps:

1. Given a bad theory, choose any ugly/bad node and carve it out from the rest of the
quiver, together with the attached matter and singlets, to isolate a bad SQCD (as
shown in the first step of figure 36).

2. Replace the carved out SQCD theory with the appropriate sum of good theories plus
free sectors (as shown in the second step of figure 36). This corresponds to using the
(1, 0)-(1, 0) swap as shown in figure 37.

3. Glue back the dualized parts (as shown in the third step of figure 36). We now have a
collection of quivers.

4. If some of the quivers generated at the previous step still contain ugly/bad nodes,
iterate the procedure until the all the generated frames contain only good gauge nodes.

The first step in figure 36 shows how to carve out a bad SQCD from a bad quiver.
Putting unnecessary singlets aside for the moment, the carved out SQCD essentially consists
of two joint (1, 0)-blocks once we combine the flavour node in the middle with the right
node as shown in the first equality of figure 37. We can then use the (1, 0)-(1, 0) swap as
in the second equality of figure 37.

Once we glue black as shown in the third step of figure 36 we generate a collection of
frames where the rank of the node we focused on now varies in the range

Ñi = max(0, F̃i −Ni), . . . ,
⌊
F eff

i /2
⌋

, (3.2)

where F eff
i is the effective number of flavors defined by F eff

i = Fi + Ni−1 + Ni+1. So we have
now tamed the badness of this node, but we need to check that there no other bad nodes
in the quiver, in particular notice we need to check whether new bad nodes have appeared
because of this replacement. If the theory contains more bad nodes, the procedure needs
to be repeated until we are left only with good nodes.

We are now going to implement the electric algorithm on the example we studied in the
previous section, the E

[2,2,2,2,1]
[2,4,3] [USp(18)] theory. We begin by carving out a bad SQCD with

Nc = 3 and Nf = 4 as shown in the first step of figure 38. As shown in the third line, we use the
(1, 0)-(1, 0) swap (2.34) and glue back to obtain the sum of the quiver theories in the last line.

While the first quiver is good and it is exactly the first dual frame in figure 35, the second
theory has an ugly node and we need to iterate the procedure. As shown in figure 39 we thus
carve out the ugly SQCD with Nc = 3 and Nf = 5, apply the (1, 0)-(1, 0) swap and glue back.
The resulting quiver in the last line is exactly the second dual theory in figure 35.
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Figure 33. The following sequence of (1, 0)-(0, 1) and (0, 1)-(0, 1) swaps applied to the intermediate
theory (B) in figure 31.

Again, one can also manipulate the 3d N = 4 linear quivers in the same way using the
3d version of the (1, 0)-(1, 0) swap move or simply reduce the 4d result to 3d and do some
deformation to obtain the 3d dual. In section 5 we will discuss the 3d version of this mirror
dualization together with its brane interpretation.

One might be concerned that the output of the electric dualization algorithm might change
if we change the order in which we dualize the bad nodes. It turns out the result is the same
regardless of the order. In particular for the frames associated with delta distributions, we will
see in section 4.3 that each frame can be obtained as a result of a series of Higgsings triggered
by VEVs for certain dressed mesonic operators in 4d or monopoles in 3d of the original theory.
We will demonstrate the Higgs mechanism at the index level as a pinching of the contour that
occurs when limits on the fugacities corresponding to the delta constraints of a specific frame
are taken, and we will see that such Higgsing of the index does not depend on the order of
the limits; namely, it does not require a specific order of the RG flows or dualizations.
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Figure 34. The comprehensive result of the mirror dual of the 4d bad linear quiver E
[2,2,2,2,1]
[2,4,3] [USp(18)].

The frame (A) gives the good quiver E
[4,3,2]
[2,2,2,2,1][USp(18)] plus a free sector and a delta constraint,

while the frame (B) gives the good quiver E
[3,3,3]
[2,2,2,2,1][USp(18)] plus a free sector.
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Figure 35. The comprehensive result of the electric dual of the 4d bad linear quiver
E

[2,2,2,2,1]
[2,4,3] [USp(18)].
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Figure 36. The three steps of the electric dualization algorithm. For simplicity we omit some of
the singlets.
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Figure 37. The SQCD electric dualization applied to a bad node of a quiver, which can be understood
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Figure 38. The first iteration of the electric dualization of the E
[2,2,2,2,1]
[2,4,3] [USp(18)] theory. In the

first line we carve out a bad SQCD. The flavor USp(2)x(1) node is drew twice to indicate that the two
separated parts of the quiver both have one singlet attached to it. As in the rest of the paper, bad
nodes are colored in red, while ugly nodes are colored in orange.

Therefore, the electric dualization algorithm introduced in this subsection can be imple-
mented by just choosing a convenient bad node to start with and applying the (1, 0)-(1, 0)
swap. In this sense, the electric dualization algorithm is in practice simpler than the mirror
dualization algorithm of the previous section, which after the block dualization requires a
combination of (1, 0)-(0, 1) and (0, 1)-(0, 1) swaps although they give exactly the same result.

In addition, the electric dualization algorithm can be easily automatized into a computer
code. We have attached to the paper a Mathematica code which, for any 3d linear quiver,
generates the list of its electric dual frames, specifying their FI parameters, the associated
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Figure 39. The second iteration of the electric dualization of the E
[2,2,2,2,1]
[2,4,3] [USp(18)] theory.

delta constraints and the singlets.
Another important property of the electric dualization algorithm is that it does not

need to be restricted to linear quivers and can be applied to other types of quivers such as
star-shaped quivers which we plan to investigate in the future from this perspective.

4 An example in 4d with Nc = (5, 3) and Nf = (3, 2)

In this section we will study the 4d theory with Nc = (5, 3) and Nf = (3, 2), with additional
singlets shown in figure 40, corresponding to the E

[2,2,1,1,1]
[0,4,3] [USp(14)] theory, whose first gauge

node is bad. In the first instance we will dualize it using the mirror dualization algorithm,
as explained in section 3.1. Then we will dualize it by means of the electric dualization
algorithm, as explained in section 3.2, and show how the results of the two algorithms agree.
Finally, we will present a third derivation from a Higgsing perspective, along the lines of
a similar analysis discussed in [1] for the bad SQCD.

4.1 The mirror dualization

Given the theory in figure 40, we can dualize it using the mirror dualization algorithm,
as explained in section 3.1. The result of the first three steps of the mirror algorithm,
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E

[2,2,1,1,1]
[0,4,3] [USp(14)] theory.

decomposition into (1, 0) and (0, 1) QFT blocks, dualization of each QFT block by the basic
duality moves and gluing back, is shown on top of figure 41. We then focus on the fourth step
of the algorithm, consisting in the study of the RG flow triggered by the VEVs. We choose
to first perform some (1, 0)-(0, 1) swaps (as shown by the orange arrows in the first quiver of
figure 41) and then we use the (0, 1)-(0, 1) swap (as shown by the blue arrows in the second
quiver of figure 41), which produces the three frames (A), (B) and (C) and depicted on the
bottom part of figure 41.8 In each of these frames we still have asymmetric B01-blocks, so we
need continue implementing block swaps to follow the RG flow and reach the final dual fames.

(A) For the quiver (A) we apply the sequence of (1, 0)-(0, 1) swaps and two (0, 1)-(0, 1)
swaps summarized in figures 42 and 43, the final result being the single frame with one
delta shown on the bottom of figure 43.

(B) For the quiver (B) we apply the sequence of (1, 0)-(0, 1) swaps and one (0, 1)-(0, 1) swap
summarized in figures 44 and 45, the final result being the two frames on the bottom of
figure 45: the first has two deltas, while the second has just one.

(C) For the quiver (C) we apply the sequence of (1, 0)-(0, 1) swaps and one (0, 1)-(0, 1) swap
summarized in figures 46 and 47, the final result being the two frames on the bottom of
figure 47: the first has one delta, while the second has no delta and is a Wess-Zumino
theory.

Performing these manipulations at the level of the index allows us to also keep track of
all the singlets. The result, shown in figure 48, has the structure of a sum of five frames,
with interacting parts given by Eρ

σ[USp(14)] theories with σ = [2, 2, 1, 1, 1] and respectively
ρ = [3, 2, 2], ρ = [3, 2, 2], ρ = [3, 3, 1], ρ = [4, 2, 1] and ρ = [4, 3].

8All the possible patterns of (1, 0)-(0, 1) and (0, 1)-(0, 1) blocks swap moves give the same result. Some
of them may lead to subtle situations, where one has to refine the fugacities in order to see all the poles
appearing in the index (see the discussion in [1]). The specific pattern chosen for this example, however, is
straightforward and does not involve any further subtlety.
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Figure 41. The first quiver is the result we get after applying the basic S-duality moves to the
original theory in figure 40. We apply the (0, 1)-(0, 1) swaps as indicated by the orange arrows and
we flow to the second quiver, where we did not explicitly write all the singlets to avoid clutter (and
we will keep doing this until the end of the calculation). In this second quiver we also added where
needed a symmetric Identity-wall in order to recognize the structure on which we apply the (0, 1)-(0, 1)
swap. In the next iterations these Identity-wall insertions will be intended and not explicit. After
we apply the (0, 1)-(0, 1) swap on the quiver in the second line we get the three contributions here
labelled as (A), (B) and (C).

Notice that the first and second frames in figure 48 have the same interacting part but
differ for the collection of deltas and singlets. This phenomenon is not peculiar of this specific
example, but happens in many other cases. The first four frames contain one or two deltas,
while the last one has none and thus corresponds to generic non-trivial values of the fugacities.
In all the frames having at least one delta there are some redefinitions of the flavor Cartans
(the wi are the redefined yi). Indeed, as shown in details in [1], this redefinition is needed to
properly repackage all the fields into doublets of the SU(2) symmetries.
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Figure 45. After performing the (1, 0)-(0, 1) swaps depicted in figure 44, we need one more (1, 0)-(0, 1)
swap on both theories and we finally get the two frames shown at the bottom.
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Figure 46. On theory (C) of figure 41 we first apply one (1, 0)-(0, 1) swap and then a (0, 1)-(0, 1)
swap. We get the two frames shown in the bottom part of this picture. Applying on them one
(1, 0)-(0, 1) swap as suggested by the orange arrows, we flow to the theories in figure 47.
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Figure 47. After performing the (1, 0)-(0, 1) swaps depicted in figure 46, we need two more (1, 0)-(0, 1)
swaps on both theories and we finally get the two frames shown at the bottom.
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Figure 48. The comprehensive result of the mirror dualization of the 4d bad linear quiver
E

[2,2,1,1,1]
[0,4,3] [USp(14)].
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4.2 The electric dualization

We now apply the electric dualization algorithm to the bad quiver E
[2,2,1,1,1]
[0,4,3] [USp(14)] in

figure 40.
We first carve out the bad SQCD with Nc = 5 and Nf = 6, use the (1, 0)-(1, 0) swap

in (2.34) and glue back to obtain the sum of frames (A), (B) and (C) in figure 49. Notice
that frame (C) has generic yi fugacities since it has no delta constraints.

Frame (A) contains an ugly node, so we carve out the Nc = 3 and Nf = 5 SQCD and
apply the (1, 0)-(1, 0) swap in (2.34). As shown in figure 50, the result still contains un ugly
node so we need one more iteration to arrive at the final good frame. Notice that these two
iterations, involving the dualization of an ugly node, do not introduce further delta functions.

Frame (B) contains a bad node, so we carve out the Nc = 3 and N4 = 5 SQCD and
apply the (1, 0)-(1, 0) swap in figure (2.34) and we obtain the sum of the two good frames
shown in 51. Notice that in this process we generate one extra delta function so one of the
two final frames will have two delta functions.

Also frame (C) contains a bad node, so we carve out the Nc = 3 and N4 = 3 SQCD
and apply the (1, 0)-(1, 0) swap in (2.34) and we obtain the sum of the two good frames
shown in 52. Notice that in this process we generate one delta function so one of the two
final frames will have one delta functions.

The final result is shown in figure 53 and its index is given by

I
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4.3 The Higgsing perspective

In this subsection we discuss how to recover the result for the index of a bad theory by
studying Higgsings triggered by VEVs for suitable operators. We will follow the same strategy
outlined in [1], where it was shown how the constraint imposed by the delta functions that
appear in the expression (B.9) for the index of the bad SQCD can be interpreted as encoding
a VEV for a dressed meson which Higgses the theory down to the corresponding good SQCD.
Here we will show how the same analysis can be applied to a bad quiver theory, by focusing
on the example of the E

[2,2,1,1,1]
[0,4,3] [USp(14)] theory. Although the analysis of [1] was carried

out both at the level of the index and of the classical equations of motion, here we will only
focus on the index perspective which is simpler especially for quiver theories.

We denote the various chiral fields of the theory as in figure 54. Explicitly, the full
index of the theory reads
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where we are highlighting the contribution of each chiral field appearing in figure 54.
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Figure 49. The local dualization of the bad node of the original theory. The three theories we obtain
(labelled as (A), (B) and (C)) are not good yet, so we have to iterate this procedure. As in the rest of
the paper, bad nodes are colored in red and ugly nodes are colored in orange.
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Figure 50. Theory (A) needs two more local dualization of its ugly nodes to become good.
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Figure 51. Theory (B) needs just one more local dualization of its bad node to produce a sum of
two good frames.
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Figure 52. Theory (C) needs just one more local dualization of its bad node to produce a sum of
two good frames.
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Figure 53. Summary of the result of the electric dualization of the 4d bad linear quiver
E

[2,2,1,1,1]
[0,4,3] [USp(14)].
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Figure 54. The naming convention of the fields in the E
[2,2,1,1,1]
[0,4,3] quiver.

Frame I. We begin by showing how we can recover the theory (A) in figure 49 via Higgsing.
Theory (A) comes with a delta constraint on the index (4.2)9

y1 = y2 . (4.3)

When this constraint is implemented we can see that the following combination of
gamma functions:

Γe

(
c z

(1)
4 y1

)
Γe

(
t z

(1)−1
4 z

(1)
5

)
Γe

(
t−1c−1z

(1)−1
5 y−1

1

)
(4.4)

provide sets of poles that pinch the integration contour of the variables z
(1)
4 , z

(1)
5 at the points

z
(1)
4 = c−1y−1

1 , z
(1)
5 = t−1c−1y−1

1 . (4.5)

Following [63], we then take the residue of the index at these poles.10 This implements at the
level of the index the Higgsing USp(10)→ USp(6) of the left gauge node implemented by the
VEV for the operator composed by the chirals whose index contribution is (4.4), which is a
component of the dressed meson (see [1, 64] for a more detailed analysis of similar VEVs)

⟨D(1)A(1)V (1)⟩ ̸= 0 . (4.6)

After taking the residue and simplifying the contribution of massive fields (which cor-
responds to using the property Γe (x) Γe

(
pq x−1) = 1), we obtain exactly the index of the

theory (A) in figure 49 including the singlets, plus a divergent factor of Γe (1) which has
been argued in [1] to correspond to the delta function that we are evaluating at the origin
when we impose the constraint (4.3).

As discussed in the previous section, from this theory, one can then obtain the theory in
the first frame of figure 53 by dualizing twice the ugly nodes. Since these dualizations do not
introduce further delta functions, these flows are not associated to further Higgsings and we
do not need to discuss them again here. Indeed, as discussed in [1], the frame with generic
fugacities of the SQCD cannot be reached with a VEV since it is not associated to any delta.

9The case y1 = y−1
2 works similarly.

10There are also other combinations of gamma functions that lead to similar poles but for a different
combination of gauge fugacities that corresponds to an action of the Weyl group of the USp(10) gauge
symmetry. Thus, the residues at these other poles give the same result, which compensates with the difference
of the dimensions of the Weyl group that appear in the integration measure before and after the Higgsing.
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Frames II and III. Let us now consider the delta constraint

y1 = y2t
−1 , (4.7)

which is associated to the theory (B) in figure 49. In this case, the corresponding VEV is

⟨D(1)
(
A(1)

)2
V (1)⟩ ̸= 0 , (4.8)

which Higgses the left gauge node of the theory in figure 54 as USp(10)→ USp(4). Indeed,
if we focus on the following combination of gamma functions:

Γe

(
c z

(1)
3 y1

)
Γe

(
t z

(1)−1
3 z

(1)
4

)
Γe

(
t z

(1)−1
4 z

(1)
5

)
Γe

(
t−1c−1z

(1)−1
5 y−1

1

)
(4.9)

we observe that their poles pinch the integration contour at the point

z
(1)
3 = c−1y−1

1 , z
(1)
4 = t−1c−1y−1

1 , z
(1)
5 = t−2c−1y−1

1 . (4.10)

After taking the residue, we obtain exactly the index of the theory (B) in figure 49 including
the singlets and a Γe (1) corresponding to the delta function evaluated at the origin.

As shown in the previous section, at this point we need to dualize the bad node of the
theory (B). This process produces the second and the third frames in figure 53. The second
frame of figure 53 comes with an extra delta function imposing the further constraint

y3 = y1t
− 1

2 . (4.11)

This corresponds to the VEV

⟨D(2)V (2)⟩ ̸= 0 , (4.12)

as it can be understood by looking at the gamma functions of the theory (B) in figure 49

Γe

(
(pq)

1
2 t

1
2 c z

(2)−1
3 y−1

1

)
Γe

(
(pq)−

1
2 t−

1
2 c−1z

(2)
3 y1

)
, (4.13)

which provide two sets of poles that pinch the integration contour at the point

z
(2)
3 = (pq)

1
2 t

1
2 c y−1

1 . (4.14)

Taking the residue at this pole implements the Higgsing USp(6)→ USp(4) of the right gauge
node and yields as a result the index of the theory in the second frame of figure 53, including
the singlets and a Γe (1)2 corresponding to the two deltas evaluated at the origin.

We stress here that this second frame can be equivalently obtained by studying the
two VEVs (4.8) and (4.12) in the opposite order, or in other words the RG flows triggered
by them commute. This is because the Higgsing induced by the first VEV (4.8) does not
affect the chiral fields involved in the second VEV (4.12), as it can be understood from
the fact that the charges of the fields D(2) and V (2) involved in the second VEV (4.12) are
identical in the original theory in figure 54 and in the theory (B) of figure 49 obtained
after studying the first VEV (4.8).

The third frame has no extra delta function and does not correspond to any further
VEV so we do need to discuss it here.
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Figure 55. The intermediate theory obtained after Higgsing the linear quiver with Nc = (5, 3), Nf =
(3, 2) induced by a VEV for a long meson, where for simplicity we are omitting the gauge singlets. We
color in blue the fields that still have a VEV.

Frame IV (and V). We conclude by discussing the Higgsing that leads to the fourth
frame in figure 53. This case is special because it can be obtained by studying a VEV
for a new type of operator that is not present in the SQCD analyzed in [1] and is only
possible for quiver theories.

The delta constraint leading to frame four is

y1 = y2t
− 1

2 (4.15)

and corresponds to a VEV for one compontent of a “long meson” constructed as a sequence
of chirals that runs from one end of the quiver to the other

⟨D(1)A(1)Q(1,2)V (2)⟩ ̸= 0 . (4.16)

Accordingly, if we consider the combination of gamma functions

Γe

(
cz

(1)
4 y1

)
Γe

(
tz

(1)−1
4 z

(1)
5

)
Γe

(
(pq)

1
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5 z

(2)
3

)
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(
(pq)−
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1
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(2)−1
3 y−1

1

)
, (4.17)

these provide sets of poles that pinch the integration contour at the point

z
(1)
4 = c−1y−1

1 , z
(1)
5 = t−1c−1y−1

1 , z
(2)
3 = (pq)−

1
2 t−

1
2 c−1y−1

1 . (4.18)

Taking the residue at these poles leads to a theory that does not take the conventional
form of an Eσ

ρ theory. Such a theory is summarized in figure 55, where for simplicity we are
omitting the gauge singlets. In this theory there are still some fields that are taking a VEV,
which we are denoting in blue in the picture. Indeed, their contribution to the index is given by

Γe

(
(pq)

1
2 t−

1
2 c z

(2)
2 y1

)
Γe

(
(pq)−

1
2 t

1
2 c−1z

(2)−1
2 y−1

1

)
(4.19)

and these gamma functions provide two sets of poles that pinch the integration contour
at the point

z
(2)
2 = (pq)−

1
2 t

1
2 c−1y−1

1 . (4.20)
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Figure 56. The theory resulting after the second Higgsing of the linear quiver with Nc = (5, 3), Nf =
(3, 2), where for simplicity we are omitting the gauge singlets.

Taking the residue at this pole implements the Higgsing USp(4) → USp(2) of the right
gauge node.

The result of this Higgsing is now an Eσ
ρ theory, which we depict in figure 56 omitting

again the gauge singlet fields for simplicity. However, this is still a bad theory, since the
left node is effectively an SQCD with Nc = 3, Nf = 4. When we dualize the bad node we
produce two frames, one with an extra delta and one without the extra delta.

Let’s focus on the second one which reduces the rank of this node to Nc = 1. Keeping
track of all the singlet fields, one recovers the theory in the fourth frame of figure 53 including
a Γe (1) corresponding to the delta function evaluated at the origin.

The other frame, with extra delta, would lead to an additional frame for the bad quiver
Nc = (5, 3), Nf = (3, 2), which corresponds to a singularity of higher order since it would
carry two delta functions. However, we can argue that such frame does not correspond to
any extra singularity in the index of the bad quiver Nc = (5, 3), Nf = (3, 2). One way to
see this is to apply the identity of the partition functions corresponding to such possible
additional frame to the theory in figure 56. If we do so, we notice that among the singlet
fields there is a contribution of the form Γe (pq) that cancels the divergence of the extra delta
function. Hence, there is no extra singularity when the constraint due to the second gamma
function is imposed. Equivalently, one could study the Higgsing of the theory in figure 56
after imposing the constraint of this second gamma function and notice that in the result one
only finds Γe (1) rather than Γe (1)2 as expected for a frame with two delta functions. We
stress that for this to happen it is crucial that we introduce the redefined fugacities wi and
reconstruct the free fields in the bifundamental representation of pairs of the corresponding
SU(2)wi symmetries, since one of these fields carries a Γe (1). In other words, such a divergent
contribution should be associated to one of the free fields and not to an extra delta singularity.

An alternative way to understand the absence of this additional extra frame is to study a
different RG flow to reach the theory in the fourth frame of figure 53, which follows more closely
the electric dualization we performed in the previous subsection. Indeed, in our previous
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derivation we reached this frame starting from theory (C) in figure 49, which is the generic
fugacity frame with no delta which does not correspond to any VEV. However, as we discussed
previously for the third frame, the RG flows that we are studying are expected to commute.

Hence, we can start from theory (C) in figure 49 and then impose the constraint (4.15).
This corresponds to turning on a VEV for a meson of the right node dressed once

⟨D(2)A(2)V (2)⟩ ̸= 0 . (4.21)

Indeed, the corresponding combination of gamma functions after imposing the constraint
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2 c z

(2)−1
2 y1

)
Γe

(
t z

(2)
2 z

(2)−1
3

)
Γe

(
(pq)−

1
2 t−

1
2 c−1z

(2)
3 y−1

1

)
(4.22)

provides sets of poles that pinch the integration contour at the points

z
(2)
2 = (pq)

1
2 t−

1
2 c y1 , z

(2)
3 = (pq)

1
2 t

1
2 c y1 . (4.23)

Taking the residue at such poles implements the Higgsing USp(6) → USp(2) of the right
gauge node triggered by the VEV for the dressed meson. The result is exactly the fourth
frame in 53, including the singlets and a Γe (1) corresponding to the delta function evaluated
at the origin, as expected. This alternative derivation makes it clear that the previously
mentioned possible extra frame is not actually present.

Finally, the fifth frame in figure 53 cannot be reached via Higgsing, since it is the
generic fugacity frame with no delta and does not correspond to any VEV so we do not
need to discuss it here.

5 The algorithms in 3d and branes

In this section we discuss how the 3d QFT blocks swap moves are realized in the brane
picture. Using these results, one can also find the brane interpretation of each step of the 3d
mirror and electric dualization algorithm. In particular we will consider a specific example
with Nc = (3, 3) and Nf = (1, 4) and explain the brane configurations realizing the mirror
and electric dualization of this quiver theory.

5.1 The brane interpretation of the swaps of the QFT blocks

We begin this section by giving a brane interpretation of the dualities swapping pairs of 3d
QFT blocks discussed in section 2. The (1, 0)-(0, 1) swap in 3d, as explained in [1], is nothing
but the Hanany-Witten brane transition effect [5], which generates or annihilates a D3-brane
in between when NS5 and D5-branes cross each other.

Let’s consider the (0, 1)-(0, 1) swap in (2.42), or equivalently in figure 28, which is one of
the main ingredients in the mirror dualization algorithm. From the Type IIB string theory
perspective, the 3d (0, 1)-block can be realized as a D5-brane sandwiched between two stacks
of D3-branes. Two consecutive (0, 1)-blocks appearing in a generic quiver correspond to the
brane configuration shown in the first line of figure 57. In this set-up, we can let the left and
the right D3s stretch infinitely with the effect of ungauging the left-most and the right-most
gauge nodes of the two (0, 1)-blocks in the field theory language. Then we can replace the
set of infinitely long D3’s by a set of D3s ending on the same number of NS5-branes as
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Figure 57. The brane setup corresponding to two consecutive 3d (0, 1)-blocks and their decoupling
from a quiver by ungauging. The letters A and C over the vertical lines denote the number of
NS5-branes while the letter placed abobe the horizontal lines denote the number of D3’s. The zoomed
sector on the right displays how the D3’s are attached to the stack of NS5’s.

shown in the second line of figure 57, which is the brane set-up corresponding to the left
hand side of the (0, 1)-(0, 1) swap in figure 28.

As we argued from the field theory perspective in section 2.7, this is nothing but the
brane configuration realizing the mirror of an SQCD. In particular, if B − C > A−B, the
corresponding SQCD is a bad/ugly theory, which has multiple mirror duals depending on
the FI parameter as we have studied in Part I [1]. In Part I, we have learned that each dual
frame can be determined at the brane level by the number of decoupled D3’s escaping to
infinity along the parallel direction of two D5-branes. The same idea applies here, and one
can find the brane picture of the 3d (0, 1)-(0, 1) swap.

First let us consider the brane configurations in figure 58, where we allow generic vertical
positions of two D5-branes, denoted by Y1 and Y2, which are real masses for the flavors
associated with the D5’s in the field theory description. The difference between the two real
masses, Y1 − Y2, corresponds to the FI parameter in the original SQCD.

(i) Let’s consider first the B − C > A − B ≥ 0 case (the U(B) node is bad/ugly since
2B > A + C). To read the gauge theory describing the low energy dynamics, we should
move D5’s in such a way that the number of D3’s ending on each side of them is the
same; namely, each D5 should have vanishing net D3 number. For this purpose, out
of the A NS5-branes on the left, we first move A−B of them to the right of the two
D5’s and we bring 2B −A− C of them in between the two D5’s, obtaining the second
configuration in figure 58. Now one can see that once we swap the two D5’s, passing
through the set of NS5’s in between, the D3-branes suspended between the D5’s and the
NS5’s in the middle are completely annihilated, and we obtain the third configuration,
where every D5-branes has the same number of D3’s on both sides. Indeed, such
configuration is unique if Y1 − Y2 ̸= 0 and leads to a quiver gauge description that is
the mirror dual of the U(A + C −B) SQCD with A + C flavors.
Moreover, once we move the NS5-branes back to the original location, we obtain the
fourth configuration, from which the last term on the right hand side of figure 28 can be
read. Note that this configuration can be directly obtained from the first configuration
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(ii ) Case A≥B−C≥ 0> A−B
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B−C B− A

A A+C− B C A+C− B

Figure 58. The brane interpretation of the swapping of two 3d (0, 1)-blocks when Y1 − Y2 ̸= 0.
The orange arrows indicate the rearrangement of NS5-branes, performed via (1, 0)-(0, 1) swaps that
correspond to HW moves. The light blue arrows indicate the swap of two D5-branes. The labels under
dashed ellipses denote the number of D3-branes.

by swapping the two D5-branes without a collision because they are separated along
the vertical direction.

(ii) Similarly, when A ≥ B−C ≥ 0 > A−B (where again the U(B) node is bad/ugly since
2B > A + C) we can move B − C NS5’s from the left and B −A from the right to the
interval in between the two D5’s and swap the two D5-branes to obtain a configuration
with a vanishing net D3 numbers for the two D5-branes. Once we move the NS5-branes
back to the original location, we obtain the fourth configuration, which can also be
obtained from the first configuration simply by swapping the two D5-branes.

The case 0 > B − C > A − B is equivalent to the first case once A and C are exchanged.
The last configuration compatible with the bad node condition 2B > A + C is B − C > A,
which however requires Y1 − Y2 = 0 that we are about to discuss.

If Y1 − Y2 = 0, the configurations with vanishing net D3 numbers for D5-branes are not
unique, which is why there are multiple dual frames when the FI parameter of the original
SQCD vanishes.11 In this case, we can’t naively swap the D5-branes due to their collision.
Instead, now D3-branes can be suspended between the two D5-branes since the D5’s are
placed at the same vertical location. Then some of these D3-branes can move along the D5’s
and escape to infinity, allowing multiple possibilities for brane configurations with vanishing
net D3 numbers for D5-branes. Such escaping D3’s correspond to decoupled (twisted) hypers
in the field theory description, and the remaining brane configuration provides the interacting
fixed point in the IR.

11In order to compare with the brane set-up, one should actually look at the deformation parameters of the
vortex partition function on R2

b × S1 rather than the S3
b partition function that we used so far. The former

can be obtained from factorization of the latter [65, 66], where the omega deformation parameter b is related
to the squashing parameter Q = b + b−1. The delta constraint appearing in the vortex partition function when
the deformation parameters are turned off b = mA = 0 reads Y1 − Y2 = 0, which is what we consider in the
brane set-up.
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Figure 59. The brane interpretation of the swapping of two 3d (0, 1)-blocks when Y1 − Y2 = 0.
The orange arrows indicate the rearrangement of NS5-branes, performed via (1, 0)-(0, 1) swaps that
correspond to HW moves. The red crosses represent the splitting of a D3-brane into two segments,
while the green circles represent the combination of two D3 segments. The pink arrows indicate the
operation of sending a stack of D3-branes to infinity. The labels under dashed ellipses indicate the
number of D3-branes there contained.

Let us look at the brane picture in figure 59, where we place the two D5-branes at
the same vertical location.

(iii) Consider first the B − C > A−B ≥ 0 case. Among the A NS5-branes on the left, we
move A−B + r of them to the right of the two D5’s and 2B −A− C − 2r in between
the two D5’s, obtaining the second configuration in figure 59. Since a D3-brane crossing
over a D5 can be split into two pieces terminating on each side of the D5, the second
configuration is equivalent to the third configuration, where 2B −A−C − r D3-branes
suspended between the two D5’s can be moved infinitely far away along the D5’s.
Eventually, every D5-brane in the remaining configuration has the same number of D3’s
on each side as desired and provides a quiver gauge theory describing the low energy
physics, which is the mirror dual of the U(A + C −B + r) SQCD with A + C flavors.
One can easily read off the maximum value of r by requiring the number of D3-branes
suspended between the two D5-branes to be non-negative; thus, r ≤

⌊
2B−A−C

2

⌋
, i.e.,

A + C −B + r ≤
⌊

A+C
2

⌋
. Finally, once we move the NS5-branes back to the original

location, we obtain the fourth configuration, exactly providing the terms on the right
hand side of figure 28 accompanied by the delta constraints for r = 1, . . . ,

⌊
2B−A−C

2

⌋
. In

fact, one can also consider the configurations corresponding to r = −(A+C −B), . . . , 0
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regarding negative r as moving the branes in the other direction. However, these
configurations do not need to be counted separately because they are obtained as limits
of the configuration with Y1 − Y2 ̸= 0 that we have already considered.
Interestingly, before the decoupling of D3’s, the left D5-brane is originally connected to
NS5-branes on the right by D3-branes while the right D5-brane is connected to NS5-
branes on the left (see the second configuration in figure 59). On the other hand, after
the decoupling of D3’s, the left D5-brane is now connected to NS5-branes on the left
while the right D5-brane is connected to NS5-branes on the right. In this way, although
there is no real swap of the D5’s, the roles of the two D5-branes are interchanged after
the decoupling of D3’s. This is similar to the case with Y1 − Y2 ̸= 0, where the two
D5’s are actually swapped. Indeed, if we take r = 0 in the fourth configuration, it looks
exactly the same as the Y1 − Y2 ̸= 0 configuration with swapped D5’s, apart from the
fact that they now have the same vertical position. This is consistent with what we
observe on the field theory side, where the fugacities of two (0, 1)-blocks are exchanged
after the dualization, which is why we call this duality move the (0, 1)-(0, 1) swap.

(iv-v) The discussion for the other two cases, A ≥ B−C ≥ 0 > A−B and B−C > A (which
now is allowed because the D5-branes are at the same height) is similar.

The brane interpretation of the (1, 0)-(1, 0) swap can be obtained as shown in figure 60
via the S-dualization of the brane configuration for the (0, 1)-(0, 1) swap discussed above.
If the FI parameter is nonzero, we can simply swap the NS5-branes, leading to the two
consecutive (1, 0)-blocks with the middle gauge node of rank A + C −B. If the FI parameter
is zero, some of the D3’s can escape to infinity, and the remaining configuration corresponds
to the U(A+C−B + r) SQCD with A+C flavors, which is equivalent to the two consecutive
(1, 0)-blocks with the middle gauge node of rank A + C − B + r.

5.2 The 3d mirror algorithm and the (0, 1)-(0, 1) swap

In this subsection, we discuss the mirror dualization of the 3d N = 4 quiver example with
Nc = (3, 3) and Nf = (1, 4) and the corresponding brane interpretation, especially using the
result for the (0, 1)-(0, 1) swap obtained in the previous subsection.

The initial brane set-up for the example is shown in the first line of figure 61. One can
decompose the given quiver into the basic QFT blocks (see the second line), S-dualize each
of them and recombine them (see the third line). The corresponding brane configuration
is also given below the recombined quvier. As usual, one has to move D5-branes in such
a way that the net number of D3’s attached to each D5 vanishes. For this purpose, first
we need to carry out a series of (1, 0)-(0, 1) swaps as shown in the figure. In good theories,
the (1, 0)-(0, 1) swaps are enough to reach the frame where each D5 has zero net number
of D3-branes, from which we can easily read out the corresponding quiver gauge theory.
However, for bad theories, the (1, 0)-(0, 1) swaps alone are not able to take us to such (good)
frames regardless of which sequence of the (1, 0)-(0, 1) swaps we perform. Indeed, the last
quiver in figure 61 still has an asymmetric S-wall associated to a D5-brane with non-zero
net number of D3-branes. Hence, we need the (0, 1)-(0, 1) swap as well.

As we argued in the previous subsection, the (0, 1)-(0, 1) swap is realized in the brane
set-up in two different ways, (A) and (B), depending on the relative real mass, i.e. the
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Figure 60. The brane interpretation of the swapping of two 3d (1, 0)-blocks.
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vertical distance between the two D5-branes associated with the (0, 1)-blocks (see the last
brane configurations in figure 61).

In the case (A) with two D5’s having the same vertical location, i.e. Y1 − Y2 = 0, the
(0, 1)-(0, 1) swap corresponds to splitting a D3-brane passing through a D5 into two pieces:
one suspended between the two D5’s and the other suspended between the D5 and the
NS5. Subsequently, the D3 segment suspended between the two D5’s escapes to infinity and
contributes a decoupled singlet to the field theory. This mechanism is illustrated in figure 62,
where the decoupled D3 is colored in pink. We can proceed by performing a couple more
(1, 0)-(0, 1) swaps as shown in the figure and obtain the final dual quiver in the last line.
Remember that this brane manipulation is available because Y1 − Y2 = 0, which is consistent
with the field theory result that the corresponding dual frame is accompanied by the same
delta constraint Y1 − Y2 = 0 on the FI parameters. The manipulations that we have just
described are the counterparts at the level of the branes of the field theory flow (A) in figure 32.

In the case (B), where the two D5’s are separated along the vertical direction, i.e. Y1 −
Y2 ̸= 0, the corresponding (0, 1)-(0, 1) swap is indeed realized by swapping the two D5’s
avoiding any collisions (see figure 63). Then we can further perform the extra steps of the
(1, 0)-(0, 1) swap and the (0, 1)-(0, 1) swap displayed in the figure to obtain the final quiver
in the last line. The manipulations that we have just described are the counterparts at the
level of the branes of the field theory flow (B) in figure 33.

In summary, the complete result is given in figure 64, which corresponds to the following
identity between S3

b partition functions:

Z3d

T
[2,2,2,2,1]
[2,4,3] [SU(9)]

(
X⃗; {Y1, Y2, Y3} ;mA

)
=

=
[
δ (Y1 − Y2)× sb

(
−3i

Q

2 + 2mA

)
× sb

(
i
Q

2 ± (W1 −W2)
)
×

×Z3d

T
[2,2,2,2,1]
[3,3,3] [SU(9)]

(
X⃗; {W2, W1, Y3} ;mA

)]
W1,2=Y1,2∓ 1

2 (iQ−2mA)

+
2∏

j=1
sb

(
i
Q

2 − (j − 1)(iQ− 2mA)± (Y1 − Y3)
)
×

× sb

(
i
Q

2 −
1
2(iQ− 2mA)± (Y1 − Y2)

)
×

×Z
T

[2,2,2,2,1]
[4,3,2] [SU(9)]

(
X⃗; {Y2, Y3, Y1};mA

)
. (5.1)

5.3 The 3d electric algorithm and the (1, 0)-(1, 0) swap

Now we explain the 3d electric dualization algorithm using the (1, 0)-(1, 0) swap and the
corresponding brane picture. As we have seen in the 4d case, the (electric) dual frames
can be easily obtained by applying the bad SQCD result in [1], which is equivalent to the
(1, 0)-(1, 0) swap, on each bad node in a given quiver. In section 5.1 we have observed that
the (1, 0)-(1, 0) swap is realized in two different ways in the brane picture depending on
the FI parameter of the bad node.
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Figure 62. The brane interpretation of the mirror dualization of the quiver gauge theory with
Nc = (3, 3) and Nf = (1, 4). The brane configurations after swapping the (0, 1)-blocks with Y1−Y2 = 0
are illustrated.

As an example, we consider again the case with Nc = (3, 3) and Nf = (1, 4), which is
illustrated in figure 65. Let us first consider the case Y1 − Y2 = 0, which is displayed in the
left column of the figure. In this case, analogously to the (0, 1)-(0, 1) swap, the (1, 0)-(1, 0)
swap corresponds to splitting a D3 passing through an NS5 into two pieces: one suspended
between the two NS5’s and the other suspended between the NS5 and the D5. Subsequently,
one of the D3 segments suspended between the two NS5’s escapes to infinity, resulting in
the first electric dual frame associated with the delta constraint Y1 − Y2 = 0.

On the other hand, if Y1 − Y2 ̸= 0, the corresponding (1, 0)-(1, 0) swap amounts to
swapping the two NS5’s avoiding any collisions, as shown in the right column of figure 65. At
this stage, we still have a bad node and can swap the second (originally the first) NS5 and
the third, resulting in the second electric dual frame with no delta constraint.

The two dual frames obtained via electric dualization using the (1, 0)-(1, 0) swap exactly
coincide with the frames obtained by S-dualizing each mirror frame in the previous subsection.
Furthermore, as already mentioned in section 3.2, the electric dualization does not need
to be restricted to linear quivers and can be applied to other types of quivers such as a
star-shaped, which we relegate to a future work.

5.4 Application: S-walls fusion to the Identity-wall

In this section we are going to consider the linear quiver theory T without flavors.
The central node is bad and by running the electric dualization algorithm, using the

mathematica code, we obtain two frames each with two Dirac-deltas and various chirals. By
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Figure 63. The brane interpretation of the mirror dualization of the quiver gauge theory with
Nc = (3, 3) and Nf = (1, 4). The brane configurations after swapping the (0, 1)-blocks with Y1−Y2 ̸= 0
are illustrated.

using the delta constraints and simplifying the massive chirals we are left with the following
result for the partition function:

Z3d
T = {δ (Y1 − Y3) δ (Y2 − Y4) + δ (Y2 − Y3) δ (Y1 − Y4)}

×sb

(
i
Q

2 ± (Y1 − Y2)
)

sb

(
−i

Q

2 + 2m

)2
sb

(
−i

Q

2 + 2m± (Y1 − Y2)
)

(5.2)

This quiver theory T actually coincides with the quiver obtained by gluing two S-walls for
N = 2 as explained in section 2.2, via gauging of their manifest flavor symmetries. Indeed
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Figure 64. The comprehensive result of the mirror/electric dualization of the 3d bad linear quiver
having Nc = (3, 3) and Nf = (1, 4). On the right we did not include the gauge singlets and the
BF couplings.
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Figure 65. The brane interpretation of the electric dualization of the quiver gauge theory with
Nc = (3, 3) and Nf = (1, 4).
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Figure 66. The theory without flavors T . Notice this corresponds to gluing two S-walls for N = 2.
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by renaming the mass parameters as

Y1 → Y1 , Y2 → Y2 , Y3 → X2 , Y4 → X1 , m→ i
Q

2 −mA (5.3)

we find that

Z3d
T =

∫
dZ⃗2∆3d

2 (Z⃗;mA)Z(2)
S (Z⃗; X⃗;mA)Z(2)

S (Z⃗;−Y⃗ ;mA) = X⃗ Î3d
Y⃗
(mA) (5.4)

with the 3d Identity-wall12

X⃗
Î3d
Y⃗
(mA) =

∑
σ∈S2

∏2
j=1 δ

(
Xj − Yσ(j)

)
∆3d

2 (X⃗;mA)
(5.5)

in accordance with the result presented in section 2.2.
Similarly, for generic N , we can obtain the fusion to Identity of two S-walls using the

electric dualization algorithm. The fusion to Identity was demonstrated in [39] by applying
iteratively the Intriligator-Pouliot duality [47]. So this offers another interesting consistency
check of the dualization algorithm.

6 Expected frames and partitions

The goal of this section is to identify the interacting sector of the various dual frames of
a bad linear quiver as T σ

ρ (SU(N)) theories and to provide a rule to identify the maximal
and minimal frames, which we will define in the following.

As we mentioned at beginning of section 2.1, the notation T σ
ρ (SU(N)) is usually referred

to good theories, for which ρ and σ are ordered partitions of N , with all the elements of the
partition being positive integers. For a bad theory however, the ρ we get by applying (2.1)
is in general merely a sequence of integers whose sum is N . They are not ordered and are
not all positive. By abuse of notation, we will still refer to such ρ as a partition in this
section. Our goal is to extract from this sequence of integers the actual ordered partitions
describing the various dual frames of the theory.

6.1 Higgs branch flows and the σ partition

As explained in section 2.1, given a generic T σ
ρ (SU(N)) quiver, with associated brane set up

depicted in figure 2, it can be useful to move all the D5-branes to the left of the quiver. In
the process of moving the D5-branes we change the number of D3’s in between consecutive
NS5-branes, which becomes

N ′
i = Ni +

∑
j>i

(j − i)Fj . (6.1)

As we explained this set-up contains multiple D3-branes terminating on the same D5. We
can then introduce extra D5-branes and let each D3 end on a different D5 on the left. This
removes any constraints from the s-rule and produces the auxiliary quiver in figure 67.

12In this section the focus is on showing that the partition function of the theory T , computed using the
dualization algorithm, is equivalent to the Identity-wall, in agreement with the results of [39]. Our result
can however also be interpreted as the statement that in each dual frame the interacting part is trivial and
therefore the effective dual theory is a collection of free hypermultiplets, whose number is equal to the rank of
the gauge group of the theory, namely four in the case of the theory T . We will discuss more in detail this
point in section 6.3.
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N 1 ' N 2 '

N

… N k '

Figure 67. A new quiver obtained after moving D5-branes to the left in the brane system of figure 2
with the help of Hanany-Witten moves and introducing extra D5-branes.

This auxiliary quiver is again a T σ
ρ [SU(N)] theory where N and ρ are as above while

σ has been replaced by the maximal partition σ = [1N ]. The quiver in figure 67 can be
Higgsed down to the original quiver, by turning on a nilpotent expectation value for the
meson in the adjoint of the SU(N)X global symmetry rotating the flavors on the left.13 In
conclusion, the effect of the Higgsing we have just described is to change the partition σ

while leaving all other data unchanged.
So far we have parametrized our quivers with the integers {Ni, Fi}, but we can equivalently

use the excess numbers ei instead of the ranks Ni. These are defined as

ei = Ni−1 + Ni+1 + Fi − 2Ni

and are positive if and only if the i-th gauge node is good. Notice that the data {ei, Fi}
uniquely specify the quiver since

−Cj
i Nj = ei − Fi,

where Cj
i denotes the Cartan matrix of the quiver (in our case Ak−1) which is invertible.

Crucially for our purposes, we can observe that the excess numbers as defined above are not
changed by Hanany-Witten moves and consequently they are also invariant under the Higgsing
we have just described. Notice that one can easily prove that the original and the auxiliary
quivers have the same excess numbers by using (6.1). At this stage we can further observe
that the number of dual frames for a bad node depends only on the value of its (negative)
excess number, modulo a subtlety we will discuss momentarily. Actually we have the stronger
result that, upon performing a local dualization, the change in rank of the gauge group of a
bad node also depends only on its excess number. More specifically, the local dualization
replaces the negative excess number of a bad node by a non-negative value as follows:

0 > ei −→ ẽi ≥ 0 , (6.2)

ei±1 −→ ei±1 +
ei − ẽi

2 , (6.3)

13In section 2.1 we explained that the T σ
ρ [SU(N)] theory can be obtained from the T [SU(N)] theory by

turning on nilpotent VEVs for the SU(N)X and SU(N)Y global symmetries labelled by σ and ρ, respectively.
Such an RG flow can be split into one from T [SU(N)] to T

[1N ]
ρ [SU(N)] triggered only by the nilpotent VEV

for SU(N)Y labelled by ρ and the RG flow we are considering here from T
[1N ]
ρ [SU(N)] to T σ

ρ [SU(N)] triggered
by the nilpotent VEV for SU(N)X labelled by σ.
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where

m ≤ ẽi ≤M , (6.4)
m = ei mod 2 , M = min(−ei, F eff

i ) (6.5)

with the effective flavor number F eff
i = Ni−1 +Ni+1 +Fi. If −ei ≤ F eff

i , the range of the dual
excess numbers is completely determined by the original excess number without referring to
Fi, or equivalently σ; therefore, the local dualization and Higgsing commute. If −ei > F eff

i ,
on the other hand, the upper bound of the dual excess number depends on Fi. Nevertheless,
we can pretend the upper bound is always given by −ei, regardless of whether it is larger
than F eff

i or not, and throw away the illegal dual frames violating

ẽi ≤ F eff
i (6.6)

at the end. In principle, this condition must be checked at every gauge node after each
dualization step, but as we will explain shortly, once this condition is satisfied for the final
dual quiver, we are guaranteed that all the intermediate dual quivers satisfy it as well. Thus,
it is enough to check this condition for the final quiver. The condition to be checked is
nothing but the positivity of the rank given in (2.2), which, as we have seen before, must
be satisfied by every T σ

ρ [SU(N)] theory.
Putting the above observations together we conclude that the operations of performing

a local dualization and Higgsing commute, as long as the condition (6.6) is met: the final
quiver does not depend on the order in which we perform them. We can therefore simplify
the analysis by restricting to the case σ = [1N ], in which the quiver just has N flavors
on the left charged under the first gauge group. The complete set of dual frames of the
quiver we are interested in is obtained by determining the dual frames of the auxiliary quiver
with σ = [1N ] first and then performing the Higgsing on each dualization frame. It might
be the case that some of the dual frames of the auxiliary theory with σ = [1N ] we have
introduced before correspond to ρ partitions which do not satisfy (2.2) for the σ partition
we are actually interested in. In this case we should simply drop these dual frames and
restrict to those which do satisfy the constraint. The others are possible dual frames of the
auxiliary theory but do not actually arise in the Higgsed theory. In summary, one should
always enforce (2.2) when working with the auxiliary theory and this is the only way the
set of possible dual frames depends on σ.

As we have mentioned earlier, a priori one should check after each local dualization
operation that (2.2) is satisfied, or equivalently that the rank of all the gauge nodes is above
the bound imposed by (2.2) (which is fixed once the partition σ is known). However, since
upon dualizing a node its rank always decreases, it is not possible that a quiver which does
not satisfy the constraint (2.2) becomes compatible with it after a local dualization move. It
then follows that all final dual frames which satisfy (2.2) can only arise from a sequence of
local dualizations all compatible with (6.6). This guarantees, as desired, that we only need
to enforce (2.2) on the final set of dual frames of the auxiliary theory with σ = [1N ].

One advantage of working with σ = [1N ] is that (2.1) simplifies to

N ′
i =

∑
j>i

ρj (6.7)
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and therefore the ranks of the various gauge groups now depend only on ρ. In short, this is
telling us that the information encoded in σ is inessential for the problem at hand and the
full set of dual frames is obtained by specifying which ρ partition correspond to a duality
frame. As a result, we can immediately derive the following properties:

• The i-th gauge group in the quiver is not good (bad or ugly) if and only if ρi < ρi+1,
meaning that the partition is not ordered.

• If all the elements of ρ are non negative, then Ni ≥ Ni+1 ∀i and therefore the rank of
the gauge groups in the quiver form a decreasing sequence.

• There are bad nodes with Nf < Nc, for which there is no dual frame without delta,
only if some of the elements of the partition ρ are negative. Later on we will see that
also the converse is true: if an element of ρ is negative then, with a sequence of local
dualizations, we can get to a quiver having a node with Nf < Nc.

We will now describe the maximal and minimal ρ partitions we can get for a given
quiver of the same form as in figure 67.

6.2 Local dualizations and moves on the ρ partition

As we have seen, the quiver can be bad only if the initial partition ρ is not ordered. In this
situation we can identify the various dual frames by performing local dualizations at the
bad nodes in the quiver, those such that the total number of flavors Nf is less than twice
the rank of the gauge group Nc. The maximal choice (largest rank for the dualized node)
corresponds to replacing Nc with ⌊Nf /2⌋ while the minimal choice corresponds to replacing
Nc with Nf −Nc when Nf > Nc and with 0 otherwise. We will now see that all possible local
dualization moves can be neatly described in terms of simple manipulations of the partition ρ.

As we have explained, the i-th gauge node is bad or ugly only if ρi < ρi+1. We can
notice that switching the two elements ρi and ρi+1 (i.e. reordering them) corresponds to the
minimal dualization choice Nc → Nf −Nc at the i-th node, without changing the rest of the
quiver. This just follows from (6.7). Similarly, the other dual frames can be obtained by
considering a generalized switching move in which we first reorder the two elements and then
we subtract a positive number a from ρi+1 and add it to ρi, while preserving the inequality
ρi+1 − a ≥ ρi + a. The maximum value we allow for a is therefore

amax =
⌊

ρi+1 − ρi

2

⌋
,

and corresponds to the maximal dual frame Nc → ⌊Nf /2⌋. The value a = 0 corresponds
to the switching we have discussed before and all other values for a correspond to other
intermediate dual frames.

The rule described above needs to be used with care in presence of bad nodes with
Nf < Nc. In this case the minimal frame does not involve replacing Nc with Nf −Nc, which
is negative, but corresponds instead to setting to zero the rank of the gauge group. This
can be implemented with a generalized switching move with a > 0 and all we need to do is
determine the correct value of a. This can be done as follows. The situation we are interested
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Figure 68. On the left we have the linear quiver associated to the partition ρ = [1,−2, 3, 1, 0, 1] of 4.
On the right we have the corresponding diagram on the plane. The polygon is shaded in gray.

in arises when, after the switching, the new quiver includes a node of negative rank. This
happens at the i-th gauge node when ρi is negative and

−ρi >
∑

j>i+1
ρj . (6.8)

While in the initial quiver the rank of the i-th gauge group is Ni = ρi+1 +
∑

j>i+1 ρj and is
positive by assumption, after the switching the rank becomes negative if (6.8) holds. We
can easily check that this happens only if the number of flavors (equal to Ni−1 + Ni+1) is
smaller than Ni. This immediately follows from (6.8)

Ni−1 + Ni+1 = ρi + ρi+1 + 2
∑

j>i+1
ρj < ρi+1 +

∑
j>i+1

ρj = Ni . (6.9)

In this case the minimal dual frame is obtained by performing a generalized switching move
with a = −ρi −

∑
j>i+1 ρj . We should therefore always check after any generalized switching

move that (6.8) is not satisfied. If it is, it means that the move we have just done is not
physically sensible and should therefore be discarded. Our claim is that local dualizations can
be entirely described in terms of manipulations of the corresponding ρ partition and that with
a sequence of generalized switching moves we can obtain all possible dual frames for our quiver.
We are now going to determine the maximal and minimal dual frames for a generic bad quiver.

6.3 The maximal frame

In this subsection we explain how to find the maximal dual frame for a given quiver. By
maximal we mean that for every i the rank of the i-th gauge node has the largest possible
value. We can start by simply observing that, since all dual frames correspond to good
theories, their associated ρ partitions are ordered with non negative elements only. This
condition can be rephrased in a simple geometrical way as we will now explain.

Every quiver, good or bad, can be associated with a sequence of points on the plane
with coordinates (i, Ni). The point associated to the N flavors on the left has coordinates
(0, N) and we also include the point (k + 1, 0) if the quiver has length k. An example is
provided in figure 68.
For each such sequence of points we can consider the polygon shaded in gray in figure 68.
It is easy to see that the quiver is good if and only if the corresponding polygon is convex.
Given any initial quiver, not necessarily good, all its dual frames have an associated polygon
with the following properties:
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1. The polygon is convex and all its edges have integral slope because each dual frame
is good;

2. It contains the polygon associated with the initial quiver because the rank never
increases along a sequence of local dualizations.

In order to describe the maximal dual frame, it turns out we need to consider the minimal
polygon satisfying the two properties above. The ρ partition associated with the minimal
convex polygon, which we denote ρ̃, can be obtained as follows:

ρ̃k+1 =
⌊
Min1≤j≤k+1

(
Nk+1−j

j

)⌋
, (6.10)

and the other k elements of the sequence are defined recursively by

ρ̃ℓ =
⌊
Min1≤j≤ℓ

(
Nℓ−j −

∑
i>ℓ ρ̃i

j

)⌋
. (6.11)

It can be shown that the partition ρ̃ as defined above is ordered since ρ̃i ≥ ρ̃i+1 ∀i and all
the elements ρ̃i are non-negative, therefore the corresponding polygon satisfies property 1
above. Besides being ordered, the partition ρ̃ also satisfies the relation∑

j≥i

ρ̃j ≤
∑
j≥i

ρj ∀i ,

where ρ denotes the partition associated with the initial quiver. It follows that the polygon
corresponding to ρ̃ satisfies also property 2 and is therefore associated with a possible dual
frame. Moreover, due to minimality, every other convex polygon satisfying them contains
the polygon associated with ρ̃. The proof that the quiver associated with the partition ρ̃

defined by (6.10) and (6.11) satisfies the two properties above and the associated polygon
is minimal is presented in appendix E.

Before proceeding with the discussion, let us determine the partition ρ̃ for the example
in figure 68 to illustrate how the procedure works. We have from (6.10) and (6.11):

ρ̃6 =
⌊
Min

(
1, 1

2 , 2
3 , 5

4 , 3
5 , 4

6

)⌋
= 0 ,

ρ̃5 =
⌊
Min

(
1, 2

2 , 5
3 , 3

4 , 4
5

)⌋
= 0 ,

ρ̃4 =
⌊
Min

(
2
1 , 5

2 , 3
3 , 4

4

)⌋
= 1 ,

ρ̃3 =
⌊
Min

(
5−1
1 , 3−1

2 , 4−1
3

)⌋
= 1 ,

ρ̃2 =
⌊
Min

(
3−2
1 , 4−2

2

)⌋
= 1 ,

ρ̃1 =
⌊
Min

(
4−3
1

)⌋
= 1 ,

and therefore ρ̃ = [1, 1, 1, 1, 0, 0], corresponding to the quiver in figure 69. In other words,
the maximal frame in this example is the T [SU(4)] theory.

Our claim is that the maximal dual frame can be obtained by performing a sequence of
local dualizations in which we replace Nc with ⌊Nf /2⌋ for every bad node and the resulting
polygon is the minimal one we have just described. We will now prove our claim using
minimality of the polygon associated with ρ̃ (the proof of minimality is given in appendix E).
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Figure 69. The quiver corresponding to the partition ρ̃ = [1, 1, 1, 1, 0, 0].

Let us consider a bad node of the initial quiver, whose corresponding point in the plane
has coordinates (i, Ni). After the dualization we replace Ni with ⌊(Ni−1 + Ni+1)/2⌋. Since
both (i − 1, Ni−1) and (i + 1, Ni+1) are inside the minimal polygon, the whole segment
connecting them will be inside the polygon as well by convexity. In particular the point
(i, (Ni−1 + Ni+1)/2) will be inside the polygon and since all its edges have integral slope we
conclude that the point (i, ⌊(Ni−1 + Ni+1)/2⌋) as well is inside the polygon. As a result, we
find that after a dualization move the polygon associated with the quiver is still inside the
minimal polygon and by iterating the argument, we conclude this remains true also after an
arbitrary sequence of dualizations. Since after finitely many dualizations the quiver becomes
good and therefore the corresponding polygon is convex, by minimality it will necessarily
coincide with the minimal polygon. We therefore conclude that the dual frame we get by
iterating the dualization move Nc → ⌊Nf /2⌋ is described by the partition ρ̃ and this will
be the maximal dual frame.

Now we are in the position to prove a result we will need later on, namely that for
every linear quiver without any flavors (or equivalently N = 0 in figure 67) the dual frames
obtained via a sequence of local dualizations are all trivial and correspond to a collection
of (twisted) hypermultiplets.14 This follows from the fact that the partition ρ̃ as defined
in (6.10) and (6.11), which describes the maximal frame, coincides with the trivial partition
and consequently the gauge group has rank zero. Notice that this does not imply that the
partition function is simply a product of delta functions times the hypermultiplet contributions.
There might be several such contributions with a different number of deltas and we must
sum over them, resultinging in a far from trivial expression for the partition function. The
claim is that in each such term the interacting part is trivial.

6.4 The minimal frame

Let us now discuss the minimal dual frame. Since as we have seen the maximal dual frame
can be obtained by replacing at each dualization step Nc with ⌊Nf /2⌋, which is the largest
possible rank for the dualized node, one may guess that the minimal dual frame is instead
obtained by replacing every time Nc with Nf −Nc, which is the smallest possible rank. This
is actually correct provided that the initial quiver is such that we never come across bad
nodes with Nf < Nc along the dualization sequence. Whenever such gauge nodes arise, we
cannot replace Nc with Nf −Nc, as we have already explained, and therefore the minimal

14This is consistent with our discussion in the previous section, where we considered the gluing of two S-wall
theories. In the deep IR, using the emergent symmetries, the result can be also expressed as a collection of
free hypers.
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dual frame cannot be obtained in this way. We would now like to understand for which
quivers this issue arises and how to find the minimal dual frame in general.

As we have discussed in section 6.1, we can have a bad node with Nf < Nc in the initial
quiver only if the corresponding partition ρ contains negative elements. Let us now look at
this matter more in detail. Having a gauge node (say the i-th) with Nf < Nc means that
Ni−1 + Ni+1 < Ni and this in terms of the elements of ρ translates into the inequality∑

j≥i

ρj +
∑

j≥i+2
ρj <

∑
j≥i+1

ρj → ρi +
∑

j≥i+2
ρj < 0 . (6.12)

If (6.12) is satisfied, we easily see that after switching ρi and ρi+1 the rank of the i-th node
becomes negative, which is precisely the expected issue. We therefore see that the initial
quiver will have a gauge node with Nf < Nc only if (6.12) is satisfied for some i and is
therefore not enough that one of the elements of ρ is negative. On the other hand, if one
of the elements of ρ is negative, it is always possible with a sequence of dualizations to
get to a quiver such that the corresponding partition satisfies (6.12) and in this theory we
will have a gauge node with Nf < Nc. This can be easily seen as follows: take a negative
element ρi and apply a sequence of switching moves on ρ, bringing the element ρi towards
the end of the partition. This corresponds to dualizing the i-th node of the quiver first,
then the gauge node i + 1 and so on. After a finite number of steps we necessarily end up
with a ρ satisfying (6.12): this inequality is indeed obviously satisfied if we bring e.g. ρi

to the second last position of the partition.
Once we get to a partition satisfying (6.12), we can dualize the node with Nf < Nc by

setting its rank to zero. As a result of this operation the quiver will break into two decoupled
quivers, one of which has no flavors (here we are exploiting the fact that the quiver has the
form of figure 67) and therefore, thanks to the observation of the previous section that the
interacting part of all its dual frames is trivial, we can simply drop it since it affects the dual
frame just by adding a collection of free (twisted) hypermultiplets. The resulting quiver can
be described by a new partition in which we fuse ρi and all subsequent elements into a single
element, without changing anything else. We call this operation on the partition collapse.

The above discussion suggests a method to identify the minimal dual frame. The rule
to find the corresponding partition works as follows:

1. We first pick the last negative element of ρ, such that all subsequent elements in the
partition are non negative. We focus on this subpartition and reorder it, putting the
smallest element as last. We can simply ignore all the vanishing elements at the end of
the resulting partition if any.

2. We then perform a sequence of local dualizations, bringing the last negative element
towards the end of the partition until we satisfy the inequality (6.12) and collapse the
partition. At this stage the negative element is gone.

3. We repeat the above steps until we get to a ordered partition with positive elements only.
Notice that if all elements of ρ are positive, then only the first step is nontrivial and is
equivalent to reordering the elements of the partition. This corresponds to a sequence of
duality moves Nc → Nf − Nc, in agreement with the expectation that we need to reduce
the rank of the gauge groups as much as possible at each step.
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Figure 70. The bad quiver corresponding to the partition ρ = [0, 3, 1] on the left and the associated
good maximal frame with partition ρ = [2, 1, 1] on the right.

4 3

4

Figure 71. The quiver corresponding to the partition ρ = [0, 1, 3].

Before discussing the proof that the above procedure does indeed provide the minimal
frame, let us discuss the example with ρ = [0, 3, 1] shown on the left of figure 70. In this case
the minimal dual frame according to the above rule is described by the partition ρ = [3, 1]
and therefore corresponds to a U(1) theory with 4 flavors. The maximal frame is instead
described by the partition ρ = [2, 1, 1] and corresponds to the theory on the right of figure 70.
One can easily check that these are the only two possible dual frames.

We can now notice that the partition ρ = [2, 2], despite being smaller than [3, 1] and
bigger than [2, 1, 1], does not arise. We therefore find that, contrary to the case of the SQCD,
not all partitions between the maximal and minimal appear as actual dual frames because
we cannot reach them with a sequence of local dualizations. We would like to stress that this
fact depends on the ordering of the elements of the initial partition. Indeed, if we consider
instead from the theory in figure 71 which just involves inverting the last two elements of ρ

in figure 70, the maximal and minimal dual frames do not change but this time we do find a
dual frame associated with the partition [2, 2]. The corresponding sequence of generalized
switching moves (or local dualizations) is

[0, 1, 3]→ [0, 2, 2]→ [2, 0, 2]→ [2, 2, 0] = [2, 2] .

In conclusion, all possible dual frames are labelled by partitions in between those associated
with the minimal and maximal dual frames but not all such partitions actually correspond to
a physical frame appearing in the partition function of the bad theory.

Let us now come to the proof of minimality of the dual frame we have constructed above.
If we start from the quiver associated with the partition ρ and apply our rule, we obtain a
new ordered partition we denote I(ρ). We want to prove that I(ρ) is larger than (or equal
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to) the partition associated with any of the other dual frames. The derivation we provide is
based on two technical lemmas. We will first illustrate the argument assuming their validity
to explain the general idea and then give the proofs of the lemmas in appendix E. We start by
observing that the rule we have given to derive the minimal dual frame does not change good
quivers (since all steps are trivial). In particular, if we apply it to any of the dual frames of
our theory we simply recover the partition describing it. On the other hand, if we perform
a generalized switching move (local dualization) on the partition ρ obtaining ρ′ and apply
our rule to it, we find another partition I(ρ′) which in general differs from I(ρ). If we can
prove that I(ρ) ≥ I(ρ′) for every duality move we obtain the desired result, since every dual
frame arises as the outcome of a finite sequence of local dualizations and our rule, as we have
noticed above, does not affect the corresponding partitions since in every dual frame the
theory is good. Said differently, I(ρ′) = ρ′ if ρ′ is the partition associated with a dual frame.

We have reduced the problem to proving that I(ρ) ≥ I(ρ′), with I(ρ′) the partition
obtained by applying the rule after a local dualization. This can be proven by induction on
the length of the quiver. We first prove this is true for quivers of length one (SQCD), or
equivalently partitions of length two, and then show that assuming the property holds for
partitions of length k − 1 implies it holds for partitions of length k.

For quivers of length one the associated partition is ρ = (Nf −Nc, Nc). If Nf −Nc > Nc,
then the theory is good and we automatically have ρ = ρ′ = I(ρ) = I(ρ′). If instead the
theory is bad and Nf − Nc > 0 then by applying our rule we find I(ρ) = (Nc, Nf − Nc),
whereas any local dualization will lead to ρ′ = I(ρ′) = (Nc − a, Nf − Nc + a) with a ≥ 0
and we immediately conclude I(ρ) ≥ I(ρ′). If instead Nf < Nc, by using our rule we simply
collapse the partition and get I(ρ) = (Nf ), which is larger than any other partition of Nf .
We therefore conclude that I(ρ) ≥ I(ρ′) in all cases.

Let us now come to the inductive step, which is the most intricate. By induction we know
that for every partition of length k−1 we have I(ρ) ≥ I(ρ′) and we want to show this implies
the same inequality for every partition of length k. Let us denote the initial partition as

ρ = (ρ1, ρ2, . . . , ρk) . (6.13)

If we now perform a local dualization at a gauge node which is not the first, the element
ρ1 is not affected and the new partition is

ρ′ = (ρ1, ρ′2, . . . , ρ′k) . (6.14)

As a preliminary step, let us apply our rule to the subpartitions of ρ and ρ′ obtained by
removing the first element ρ1 and denote the resulting ordered partitions as I(ρ̂) and I(ρ̂′)
respectively. By induction we know that I(ρ̂) ≥ I(ρ̂′). The next step is to apply our rule to

ρ̃ = (ρ1, I(ρ̂)) ,

obtaining a partition of length k I(ρ̃) and to

ρ̃′ = (ρ1, I(ρ̂′)) ,

obtaining another partition I(ρ̃′). From the inequality I(ρ̂) ≥ I(ρ̂′) it is possible to show
that I(ρ̃) ≥ I(ρ̃′). This will be proven in Lemma 1. We can then conclude by observing
that I(ρ̃) = I(ρ) and I(ρ̃′) = I(ρ′) due to the way our rule is defined.
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All is left to do is to analyze the case in which we dualize the first node of the quiver
(which is possible only if ρ1 < ρ2). In this case the partition ρ′ is of the form

ρ′ = (ρ2 − a, ρ1 + a, ρ3, . . . , ρk) ,

with a ≥ 0. By applying our rule to ρ we get a partition which is larger than that we find by
applying it to ρ′. This is the content of Lemma 2 and can be proven directly without using the
inductive step. Assuming the validity of the two lemmas, we have showed that our rule does
provide the minimal dual frame. The proofs of the two lemmas are provided in appendix E.

7 From unitary to special unitary gauge nodes

In this section we explain how the knowledge of a 3d mirror pair between quivers with unitary
gauge groups and the associated mapping of the global symmetries that is provided by the
dualization algorithm allow us to automatically find the mirror of a theory where some of the
gauge nodes are replaced with special unitary groups (see also [58] for related discussions).
The same problem was addressed in [27] from the perspective of the brane webs.

The key idea is that we can turn a unitary gauge node into a special unitary one by
gauging its U(1) topological symmetry in an N = 4 preserving way.15 By knowing how this
symmetry is mapped across the mirror duality we can then easily study this deformation in
the dual. The topological symmetry is typically mapped to a flavor symmetry, so that the
mirror dual that we get after the gauging is again Lagrangian and is obtained by suitably
introducing some U(1) gauge node. The precise mapping of which flavor symmetry the
topological symmetry that we want to gauge maps to can be easily understood from the
dualization algorithm perspective.

We will first explain this procedure for some good 3d N = 4 theories and then discuss
some examples of bad SQCD’s. As usual we will show this procedure at the level of the
S3

b partition function.

7.1 Good SQCD

Let us start considering the case of the good unitary SQCD, that is the U(Nc) gauge theory
with Nf ≥ 2Nc flavors. By gauging the only U(1) topological symmetry we get the SU(Nc)
SQCD with Nf ≥ 2Nc flavors. Since we are gauging a topological symmetry, in order to do
that in an N = 4 preserving way we should introduce a twisted vector multiplet rather than
an ordinary vector multiplet. The difference between the two is that their representations
under the SU(2)H and the SU(2)C factors of the N = 4 SO(4)R

∼= SU(2)H × SU(2)C R-
symmetry are swapped. In terms of the N = 2 subalgebra, this means that the N = 2
adjoint chiral inside the twisted vector multiplet, which in our case is just a singlet since
we are gauging a U(1) symmetry, compared to an ordinary vector multiplet has the same
canonical R-charge of 1 but opposite axial charge.16 This in particular indicates that there is

15Here we will be concerned with 3d N = 4 theories, but this applies also to less supersymmetric or
non-supersymmetric theories; e.g. 3d N = 2 Seiberg-like dualities for a special unitary gauge group can be
obtained from the unitary one using this method [67].

16We remind that the canonical R-symmetry is defined as U(1)R = U(1)H + U(1)C , where U(1)H and
U(1)C are the Cartans of SU(2)H and SU(2)C respectively. This is not the parametrization that we use in
our expressions for the S3

b partition function, where instead to recover the canonical R-symmetry we should
replace mA = i Q

4 .
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a new quadratic superpotential term between the added U(1) adjoint chiral and the trace
of the original U(Nc) adjoint chiral

δW = ΦU(1)TrΦU(Nc) . (7.1)

Integrating them out we are left with a traceless adjoint chiral, as expected since now the
gauge group is SU(Nc).

At the level of the S3
b partition function, the contribution of the adjoint chiral for a

twisted vector is obtained from the one for an ordinary vector that we have encouneterd so
far by replacing mA → iQ

2 −mA. Hence, from the partition function of the U(Nc) SQCD17

eiπ(Y2−Y1)
∑Nf

a=1 XaZ3d
SQCDU(Nc,Nf )

(
X⃗;Y1−Y2

)
=

=eiπ(Y2−Y1)
∑Nf

a=1 Xa

∫
dZ⃗Nc ∆3d

Nc
(Z⃗;mA)e2πi(Y1−Y2)

∑
j

Zj

Nc∏
j=1

Nf∏
a=1

sb

(
i
Q

2 ±(Zj−Xa)−mA

)
,

(7.2)

we can get that of the SU(Nc) SQCD by integrating over Y2−Y1 and adding the singlet chiral

sb

(
i
Q

2 − 2mA

)∫
d(Y2 − Y1) e

2πi(Y2−Y1)
(

1
2
∑Nf

a=1 Xa+B

)
Z3d

SQCDU(Nc,Nf )(X⃗;Y1 − Y2) =

= sb

(
i
Q

2 − 2mA

)∫
dZ⃗Nc ∆3d

Nc
(Z⃗;mA)

Nc∏
j=1

Nf∏
a=1

sb

(
i
Q

2 ± (Zj −Xa)−mA

)

×
∫

d(Y2 − Y1) e
2πi(Y2−Y1)

(
1
2
∑Nf

a=1 Xa+B−
∑

j
Zj

)

= sb

(
i
Q

2 − 2mA

)∫
dZ⃗Nc δ

∑
j

Zj −B − 1
2

Nf∑
a=1

Xa

∆3d
Nc

(Z⃗;mA)

×
Nc∏
j=1

Nf∏
a=1

sb

(
i
Q

2 ± (Zj −Xa)−mA

)

=
∫

dZ⃗Nc δ

(∑
j

Zj

)
∆̃3d

Nc
(Z⃗;mA)

Nc∏
j=1

Nf∏
a=1

sb

i
Q

2 ±

Zj −Xa + B + 1
2

Nf∑
a=1

Xa

−mA


= Z3d

SQCDSU(Nc,Nf )(X⃗;B) , (7.3)

where in the last step we performed the change of variables Zj → Zj + B + 1
2
∑Nf

a=1 Xa and
we defined the SU(Nc) vector multiplet contribution

∆̃3d
Nc

(Z⃗;mA) =
sb

(
−iQ

2 + 2mA

)N−1∏N
j<l sb

(
−iQ

2 + 2mA ± (Zj − Zl)
)

∏N
j<l sb

(
iQ
2 ± (Zj − Zl)

) (7.4)

17Observe that we added the contact term eiπ(Y2−Y1)
∑Nf

a=1
Xa . When considering the unitary theory, this

can always be trivialized by setting
∑Nf

a=1 Xa = 0 since the diagonal U(1) part of the flavor symmetry can be
re-absorbed with a gauge rotation, but it is instead crucial when gauging to go to the special unitary theory.
The specific contact term we added is the one that appears in the expression for the partition function of the
bad SQCD in (B.13).
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Figure 72. On top the mirror dual of the U(Nc) SQCD with Nf ≥ 2Nc flavors. On the bottom the
mirror dual of the SU(Nc) SQCD with Nf ≥ 2Nc flavors obtained by gauging U(1)Y2−Y1 . We wrote
the charges for one representative adjoint chiral and one bifundamental.

by first using the relation sb (x) sb (−x) = 1 to simplify the contribution of the massive fields.
Notice that when integrating over Y2 − Y1 we had the possibility to introduce the parameter
B which, together with the U(1) diagonal flavor symmetry parameter 1

2
∑Nf

a=1 Xa, appears as
the real mass for the U(1) baryonic symmetry in the final partition function of the SU(Nc)
SQCD. One can gauge this baryonic symmetry to go back to the U(Nc) SQCD.

Let us see what is the effect of the gauging in the mirror dual, which is depicted on
the top of figure 72. The detailed mapping of the global symmetries has been worked out
in [41] and is reviewed in appendix B.2. The symmetry that we want to gauge corresponds
to the combination Y2 − Y1, and the parameters Y1, Y2 only appear in the contribution
to the partition function of the two flavors attached respectively to the leftmost and the
rightmost U(Nc) gauge nodes, which is

Nc∏
j=1

sb

(
±(Z(Nc)

j − Y1) + mA

)
sb

(
±(Z(Nf−Nc)

j − Y2) + mA

)
, (7.5)

where the label k = 1, · · · , Nf − 1 on the gauge parameters Z
(k)
j increases going from the

left to the right of the quiver. It is useful to perform the redefinition

Ỹ1 = Y2 − Y1 , Ỹ2 = Y1 + Y2 ⇐⇒ Y1 =
Ỹ2 − Ỹ1

2 , Y2 =
Ỹ1 + Ỹ2

2 , (7.6)

so to get the contribution
Nc∏
j=1

sb

(
±
(

Z
(Nc)
j − Ỹ2 − Ỹ1

2

)
+ mA

)
sb

(
±
(

Z
(Nf−Nc)
j − Ỹ1 + Ỹ2

2

)
+ mA

)
. (7.7)

Notice that the parameter Ỹ2 is redundant since it can be removed by performing an overall
change of variables Z

(k)
j → Z

(k)
j + Ỹ2

2 . The gauging that we performed in (7.3) consists then in
integrating over Ỹ1 with the phase e2πiBỸ1 and the twisted vector multiplet, which results in
the quiver depicted on the bottom of figure 72. Notice that the parameter B associated with
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the baryonic symmetry in the SU(Nc) SQCD appears as the parameter for the topological
symmetry of the new U(1) gauge node, but shifted by some of the Xa due to the contact terms
in (B.8) (we call the resulting parameter B̃ in the figure). Moreover, adding a twisted vector
multiplet as opposed to an ordinary vector multiplet when gauging a flavor symmetry in the
mirror dual is the correct thing to do since we recall that under mirror symmetry the SU(2)H

and the SU(2)C factors in the N = 4 SO(4)R
∼= SU(2)H × SU(2)C R-symmetry are swapped.

7.2 A good linear quiver example

Let us consider now a more complicated example. We start from the mirror pair between
linear quiver theories with unitary gauge nodes only that are depicted in figure 73, where
we also specify the mapping between flavor masses and FI parameters that can be obtained
from the dualization algorithm. From this, we want to derive the mirror pair of figure 74
where on one side of the duality two U(2) and one U(5) gauge nodes have been replaced
by SU(2) and SU(5) respectively. We consider this mirror pair to compare with the same
example studied in [27] using the brane webs, see eqs. (4.19)-(4.23) there; here we rederive
it using the field theory technique we explained above for the SQCD.

We can obtain the quiver on the top of figure 74 from the one on the top of figure 73 by
gauging three U(1) symmetries that correspond to the following combinations of FI parameters:

Y2 − Y3 , Y7 − Y8 , Y13 − Y14 , (7.8)

while leaving the others unchanged. This can be achieved by performing a redefinition of
all the FI parameters

Yi = U + V + W + Ỹi , i = 1, 2 ,

Yi = V + W + Ỹi , i = 3, · · · , 7 ,

Yi = W + Ỹi , i = 8, · · · , 13 , (7.9)

where the Ỹi parameters are not all independent since we introduced the three extra parameters
U , V , W . The gauging we are interested in corresponds in the S3

b partition function to
integrating over U , V , W since only the combination of FI’s in (7.8) depend on them, while
those of all the other gauge nodes do not. If we focus on the relevant part of the partition
function we have18

sb

(
i
Q

2 − 2mA

)3 ∫
dU dV dW e−2πi(B1U+B2V +B3W )e2πi(U+Ỹ2−Ỹ3)

∑
j

Z
(2)
j

× e2πi(V +Ỹ7−Ỹ8)
∑

j
Z

(7)
j e2πi(W+Ỹ13−Ỹ14)

∑
j

Z
(13)
j =

= sb

(
i
Q

2 − 2mA

)3
e2πi(Ỹ2−Ỹ3)

∑
j

Z
(2)
j e2πi(Ỹ7−Ỹ8)

∑
j

Z
(7)
j e2πi(Ỹ13−Ỹ14)

∑
j

Z
(13)
j

×
(∫

dU e2πiU(
∑

j
Z

(2)
j −B1)

)
︸ ︷︷ ︸

δ(
∑

j
Z

(2)
j −B1)

(∫
dV e2πiV (

∑
j

Z
(7)
j −B2)

)
︸ ︷︷ ︸

δ(
∑

j
Z

(7)
j −B2)

18Here we ignore any contact term for simplicity. As we have seen in the SQCD case, these would just
have the effect of shifting the parameters Bi for the baryonic symmetries, so that we have some redefined
parameters B̃i.
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×
(∫

dW e2πiW (
∑

j
Z

(13)
j −B3)

)
︸ ︷︷ ︸

δ(
∑

j
Z

(13)
j −B3)

= sb

(
i
Q

2 − 2mA

)3
e2πi(Ỹ2−Ỹ3)B1e2πi(Ỹ7−Ỹ8)B2e2πi(Ỹ13−Ỹ14)B3

× δ

∑
j

Z
(2)
j −B1

 δ

∑
j

Z
(7)
j −B2

 δ

∑
j

Z
(13)
j −B3

 . (7.10)

The three delta functions impose the conditions that turn the desired unitary nodes into
special unitary, with the parameters Bi playing the role of the three new baryonic masses. The
three singlets correspond to the adjoint chirals inside the twisted vector multiplets associated
with the gauged U(1) topological symmetries and their role is again to give mass to the trace
parts of the adjoint chirals for the three unitary nodes that we turned into special unitary.

Let us study now the effect of the gauging in the mirror dual depicted on the bottom
of figure 73. From the redefinition (7.9) we can see for example that the U(1) symmetry
corresponding to the parameter U we want to gauge acts with charge 1 on two out of the
four flavors attached to the rightmost U(4) gauge node. The U(1) symmetry associated with
V instead acts on the other two flavors of the rightmost U(4) node, on both of the flavors
attached to the U(4) on its left and on the single flavor attached to the U(2) node. Finally,
the last U(1) symmetry we gauge, which is associated with the parameter W , acts on all
the four flavors attached to the U(5) node and two out of the four flavors attached to the
U(6) node. Again for each of these three gaugings we add a twisted vector multiplet, as
appropriate when gauging a flavor symmetry in the mirror dual. The result of the gauging
can then be summarized with the quiver on the bottom of figure 74. Again the parameters
Bi for the baryonic symmetry are mapped in the mirror dual to the topological symmetries
of the new U(1) nodes, up to possible shifts by Xa due to contact terms.

Any U(N) node of good linear quivers can be turned into an SU(N) node in this way,
and the same gauging on the mirror dual side leads to the mirror dual of such SU(N) quiver.
In general, the freezing of the diagonal U(1) allows a new baryonic symmetry, which appears
as the topological symmetry of the new gauge node on the dual side. Furthermore, this
manipulation is also applicable to a bad theory. The only difference is that the bad theory
brings multiple mirror duals associated with some delta distributions of the FI parameters,
some of which will be gauged to construct the SU(N) nodes.

7.3 Bad SQCD examples

In this subsection we extend the procedure we just explained for gauging the topological
symmetry to the case of bad theories with unitary nodes to obtain bad theories with special
unitary nodes. We will focus on the bad SQCD, but the same analysis can be equally applied
to bad linear quiver theories. The main difference compared to the previous section is in
the effect of this gauging on the dual side.

As we have explained in this paper, for a bad theory we have both a mirror dual and an
electric dual. In particular, the electric dual was defined starting from the mirror dual and
taking the mirror dual of the interacting part of each frame given by a good theory. As we
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have anticipated in section 3, in certain situations it might be useful to dualize also the free
sector which is given by decoupled (twisted) hypers. We can do this by using the elementary
mirror duality relating the SQED with one hyper to a free twisted hyper. At the level of
partition function this corresponds to the following identity:

sb

(
− iQ

2 +2mA

)∫
dZ e2πiξZ sb

(
iQ

2 −mA±Z

)
= sb

(
iQ

2 −
1
2(iQ−2mA)±ξ

)
. (7.11)

The reason why this further dualization is important when studying special unitary
quivers is that the twisted hypers are charged under the topological symmetry which we
are gauging, so in principle they are no longer free. However, even though this further
dualization should be performed in each frame, this is actually trivial in the frames with a
delta function. Indeed the presence of such a delta indicates, as explained in this paper and
in [1], that some monopole operator is taking a VEV that causes a spontaneous breaking of
the topological symmetry. Hence, in these frames when we gauge the topological symmetry
this gets Higgsed due to the VEV and in the IR the twisted hypers charged under it become
free again. In conclusion, this extra dualization of the free sector is important only for the
case with no deltas and generic FI parameters.

Notice also that the effect of the gauging on the frames containing delta functions is just
to implement the constraint they set. The partition function of the special unitary SQCD
is then given by a sum of apparently good unitarity SQCDs with FI parameters tuned to
the specific values set by the delta constraint. In particular, contrary to the case of the bad
unitary SQCD, the partition function will not be a distribution. Nevertheless because of the
constraint on the FI parameters all the frames contributing to the partition function are still
bad, indeed they contain monopole operators below the unitarity bound.

We will now discuss explicitly two particular cases, the SU(Nc) SQCD with Nc = Nf = 2
and Nc = 6, Nf = 7.

7.3.1 Nc = Nf = 2

Electric dual. We begin by recalling the result for the partition function of the electric dual
of the U(Nc) SQCD with Nc = Nf = 2 from [1] which we review in (B.13)19

Z3d
SQCDU(2,2)

(
X⃗;Y1 − Y2

)
× e−πi(Y1−Y2)

∑2
a=1 Xa =

=
[
δ (Y1 − Y2)× eπi(iQ−2mA)

∑2
a=1 Xa

× sb

(
iQ

2 − (iQ− 2mA)
)
Z3d

SQCDU(1,2)

(
X⃗;Y2 − Y1 − (iQ− 2mA)

) ]

+
[
e−πi(Y2−Y1)

∑2
a=1 Xa ×

2∏
j=1

sb

(
iQ

2 − (j − 1) (iQ− 2mA)± (Y1 − Y2)
)]

. (7.12)

Now we gauge the topological symmetry exactly in the same way as we did for the good
SQCD. On the l.h.s. the result is identical to the good case; we just get the SU(2) SQCD

19Compared to (B.13) we actually used the constraint imposed by the delta to simplify some of the
contributions, as explained in [1].
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with two flavor

sb

(
i
Q

2 − 2mA

)∫
d(Y2 − Y1) e2πiB(Y2−Y1)Z3d

SQCDU(2,2)

(
X⃗;Y1 − Y2

)
e−πi(Y1−Y2)

∑2
a=1 Xa =

= sb

(
i
Q

2 − 2mA

)∫
dZ⃗2∆(3d)

2

(
Z⃗;mA

) 2∏
j=1

2∏
a=1

sb

(
i
Q

2 −mA ± (Zj −Xa)
)

×
∫

d(Y2 − Y1) e
2πi(Y1−Y2)

(∑2
j=1 Zj−B− 1

2
∑2

a=1 Xa

)

=
∫

dZ⃗2 δ

 2∑
j=1

Zj −B − 1
2

2∑
a=1

Xa

 ∆̃(3d)
2

(
Z⃗;mA

) 2∏
j=1

2∏
a=1

sb

(
i
Q

2 −mA ± (Zj −Xa)
)
=

= Z3d
SQCDSU(2,2)

(X⃗, B) . (7.13)

On the other hand, integrating over Y2 − Y1 on the r.h.s. of (7.12) gives the following
contributions.

• Electric frame (A): the first frame in (7.12) has an interacting part given by an SQED
with two flavors and a delta function. The effect of the gauging is simply to implement
the constraint set by the delta function[ ∫

d(Y2 − Y1) e2πiB(Y2−Y1) × δ (Y1 − Y2)

× eπi(iQ−2mA)
∑2

a=1 Xa ×Z3d
SQCDU(1,2)

(
X⃗;Y2 − Y1 − (iQ− 2mA)

) ]
=

= eπi(iQ−2mA)
∑2

a=1 XaZ3d
SQCDU(1,2)

(
X⃗;−(iQ− 2mA)

)
. (7.14)

The electric frame (A) is then an SQED with two flavors with FI parameter frozen to
the value −(iQ− 2mA).

• Electric frame (B): the second frame of theory (7.12) has only a free sector consisting
of two twisted hypermultiplets. As we have explained, to obtain a correct electric
dual frame, we have to dualize each twisted hyper using (7.11) as follows since we will
gauge the topological symmetry that they are charged under, which will make them
interacting:

sb

(
iQ

2 −
1
2(iQ− 2mA)±

(
Y1 − Y2 ±

1
2(iQ− 2mA)

))
= sb

(
− iQ

2 + 2mA

)∫
dZ e2πiZ(Y1−Y2+ 1

2 (iQ−2mA)) sb

(
iQ

2 −mA ± Z

)
× sb

(
− iQ

2 + 2mA

)∫
dW e2πiW(Y1−Y2− 1

2 (iQ−2mA)) sb

(
iQ

2 −mA ±W

)
(7.15)

where in the first line we have massaged the chirals in the second frame of (7.12) such
that they come in pairs correctly reconstructing the twisted hypermultiplets. Now we
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mA

S
iQ−2mA

(A)

1

2

i
Q
2
−mA

2mA

±
1
2
(iQ−2mA)

X2−X1

X⃑

−(iQ−2mA)

1

2

mA

S
iQ−2mA

(B)

1

2

i
Q
2
−mA

2mA

∓
1
2
(iQ−2mA)

−(B−
1
2∑a=1

2
X a)

±
1
2
(B−

1
2∑a=1

2
Xa)

iQ−2mA

2

2

mA

iQ−2mA

X⃑ , B

=

+

Figure 75. The electric and mirror dual frames of the SU(2) theory with two flavors (Nc = Nf = 2).
The electric frames have frozen FI parameters, whereas the mirror frames have frozen flavor mass
parameters. Note that the baryonic mass parameter B only appears in frame (B).

proceed with gauging the topological symmetry with the usual prescription

sb

(
i
Q

2 − 2mA

)∫
d(Y2 − Y1) e2πiB(Y2−Y1) × e−πi(Y2−Y1)

∑2
a=1 Xa

sb

(
− iQ

2 + 2mA

)∫
dZ e2πiZ(Y1−Y2+ 1

2 (iQ−2mA)) sb

(
iQ

2 −mA ± Z

)
× sb

(
− iQ

2 + 2mA

)∫
dW e2πiW(Y1−Y2− 1

2 (iQ−2mA)) sb

(
iQ

2 −mA ±W

)
. (7.16)

Performing the Y2 − Y1 integration explicitly, we get

sb

(
−i

Q

2 + 2mA

)∫
dZ e2πiZ(iQ−2mA) sb

(
iQ

2 −mA ±
(

Z ±
(
1
2B − 1

4

2∑
a=1

Xa

)))
(7.17)

where we have used that
∫
d(Y2 − Y1) e2πiξ(Y2−Y1) = δ(ξ) and shifted the integration

variable Z → Z + 1
2B − 1

4
∑2

a=1 Xa. Hence, the electric frame (B) is also given by the
N = 4 SQED with two flavors, but compared to frame (A) it has different frozen FI
and mass parameters.

In both cases, we get an N = 4 SQED with two flavors, which is compatible with the
findings of [26, 27, 56, 68]. However, the mass parameter B for the baryonic symmetry of the
SU(2) SQCD only appears in frame (B). In particular, from the partition function expression
we see that the U(1) baryonic symmetry of the SU(2) SQCD is identified with the Cartan
of the SU(2) flavor symmetry of the SQED with two flavors of frame (B). This indicates
that this frame is capturing the baryonic branch of the SU(2) theory.

Mirror dual. If we start instead from the mirror dual of the U(2) SQCD in (7.12) and
perform the gauging, the situation is as follows.
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• Mirror frame (A): the first mirror frame is again an SQED theory with two hypers (the
mirror of the first frame in (7.12)) and comes with the same delta function. When we
gauge the topological symmetry, which is now a flavor symmetry, we simply implement
the delta constraint fixing the mass parameter. Both the electric frame (A) and the
mirror frame (A) are depicted in the first line of figure 75.

• Mirror frame (B): in this case we directly gauge the topological symmetry in the second
frame of (7.12) consisting of two twisted hypers (without dualizing them first). We
then obtain again an SQED theory with two hypers. Both the electric frame (B) and
the mirror frame (B) are depicted in the second line of figure 75. Notice that now the
barionic mass B appears as an FI parameter in the mirror dual. In particular, the U(1)
baryonic symmetry is mapped to the U(1) topological theory which is enhanced in the
IR to SU(2) in the SQED with two flavors.

As a nice consistency check we notice that the mirror frames on the right column of
figure 75, which we obtained by starting from the mirror dual of the U(2) SQCD in (7.12)
and then gauging, can also be obtained by mirror dualizing directly the frames on the left
column of figure 75.

7.3.2 Nc = 6, Nf = 7

Electric dual. We begin by recalling the result for the partition function of the electric
dual of the U(Nc) SQCD with N6 = Nf = 7 from [1] which we review in (B.13)

Z3d
SQCDU(6,7)

(
X⃗;Y1 − Y2

)
× e−πi(Y1−Y2)

∑7
a=1 Xa =

=
∑

β=±1

[
δ

(
Y1 −

(
Y2 − β

1
2(iQ− 2mA)

))
× e−πi(Y2−Y1+2β(iQ−2mA))

∑7
a=1 Xa

× sb

(
iQ

2 − 3(iQ− 2mA)
) 2∏

j=1
sb

(
iQ

2 ± j(iQ− 2mA)
)

×Z3d
SQCDU(3,7)

(
X⃗;Y2 − Y1 + 2β(iQ− 2mA)

) ]

+
∑

β=±1

[
δ

(
Y1 −

(
Y2 − β

3
2(iQ− 2mA)

))
× e−πi(Y2−Y1+β(iQ−2mA))

∑7
a=1 Xa

× sb

(
iQ

2 − 4(iQ− 2mA)
) 3∏

j=1
sb

(
iQ

2 ± j(iQ− 2mA)
)

×Z3d
SQCDU(2,7)

(
X⃗;Y2 − Y1 + β(iQ− 2mA)

) ]

+
[
e−πi(Y2−Y1)

∑7
a=1 Xa ×

5∏
j=1

sb

(
iQ

2 −
(

j − 5
2

)
(iQ− 2mA)± (Y1 − Y2)

)

×Z3d
SQCDU(1,7)

(
X⃗;Y2 − Y1

) ]
. (7.18)
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Now we gauge the topological symmetry. Once again on the l.h.s. we get the partition
function of the special unitary SQCD

sb

(
i
Q

2 − 2mA

)∫
d(Y2 − Y1) e2πiB(Y2−Y1)Z3d

SQCDU(6,7)

(
X⃗;Y1 − Y2

)
e−πi(Y1−Y2)

∑7
a=1 Xa =

= sb

(
i
Q

2 − 2mA

)∫
dZ⃗6∆(3d)

6

(
Z⃗;mA

) 6∏
j=1

7∏
l=1

sb

(
i
Q

2 −mA ± (Zj −Xl)
)

×
∫

d(Y2 − Y1) e
2πi(Y1−Y2)

(∑6
j=1 Zj−B− 1

2
∑7

a=1 Xa

)

=
∫

dZ⃗6 δ

 6∑
j=1

Zj −B − 1
2

7∑
a=1

Xa

 ∆̃(3d)
6

(
Z⃗;mA

) 6∏
j=1

7∏
a=1

sb

(
i
Q

2 −mA ± (Zj −Xa)
)

= Z3d
SQCDSU(6,7)

(X⃗, B) . (7.19)

On the other hand, integrating over Y2 − Y1 on the r.h.s. gives the following contributions.

• Electric frame (A): the first frame in (7.18) has an interacting part given by a U(3)
theory with 7 hypers, 2 free twisted hypers and a delta function. The effect of the
gauging is simply to implement the constraint set by the delta function

∑
β=±1

∫ d(Y2−Y1) e2πiB(Y2−Y1)δ

(
Y1−

(
Y2−β

1
2(iQ−2mA)

))

×e−πi(Y2−Y1+2β(iQ−2mA))
∑7

a=1 Xa

×sb

(
iQ

2 −3(iQ−2mA)
)

sb

(
iQ

2 +(iQ−2mA)
)

sb

(
iQ

2 ±2(iQ−2mA)
)

×Z3d
SQCDU(3,7)

(
X⃗;Y2−Y1+2β(iQ−2mA)

) =
=
∑

β=±1

eπiβ(iQ−2mA)B×e−
5
2 πiβ(iQ−2mA)

∑7
a=1 Xa

×
2∏

j=1
sb

(
iQ

2 −
1
2(iQ−2mA)±β

2j+1
2 (iQ−2mA)

)
Z3d

SQCDU(3,7)

(
X⃗; 52β(iQ−2mA)

) .

(7.20)

This result has the structure of an N = 4 SQCD with U(3) gauge group and seven
hypers, again with frozen FI parameter, plus two twisted hypers.

• Electric frame (B): the second frame in (7.18) has an interacting part given by a U(2)
theory with 7 hypers, 2 free twisted hypers and a delta function. The effect of the
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gauging is simply to implement the constraint set by the delta function

∑
β=±1

∫ d(Y2−Y1) e2πiB(Y2−Y1)δ

(
Y1−

(
Y2−β

3
2(iQ−2mA)

))

×e−πi(Y2−Y1+β(iQ−2mA))
∑7

a=1 Xa

×sb

(
iQ

2 −4(iQ−2mA)
)

sb

(
iQ

2 +(iQ−2mA)
) 3∏

j=2
sb

(
iQ

2 ±j(iQ−2mA)
)

×Z3d
SQCDU(2,7)

(
X⃗;Y2−Y1+β(iQ−2mA)

) =
=
∑

β=±1

e3πiβ(iQ−2mA)B×e−
5
2 πiβ(iQ−2mA)

∑7
a=1 Xa

×
3∏

j=1
sb

(
iQ

2 −
1
2(iQ−2mA)±(Y2−Y1+β(j−1)(iQ−2mA))

)

×Z3d
SQCDU(2,7)

(
X⃗; 52β(iQ−2mA)

) . (7.21)

This result has the structure of an N = 4 SQCD with U(2) gauge group and seven
flavors, again with a frozen FI parameter, plus three twisted hypers.

• Electric frame (C): the third frame in (7.18) has an interacting part given by a U(1)
theory with 7 hypers, 5 free twisted hypers and no delta function. In this case, when
gauging the topological symmetry the hypers become interacting and so, to have the
correct electric dual, we should dualize each twisted hyper into an SQED using (7.11)
as follows:

5∏
j=1

sb

(
iQ

2 −
1
2(iQ− 2mA)± (Y1 − Y2 − (j − 3)(iQ− 2mA))

)
(7.22)

= sb

(
− iQ

2 + 2mA

)5 5∏
j=1

∫
dWj e2πiWj(Y2−Y1+(j−3)(iQ−2mA)) sb

(
iQ

2 −mA ±Wj

)
.

Now we gauge the topological symmetry with the usual prescription and obtain

sb

(
i
Q

2 − 2mA

)∫
d(Y2 − Y1) e2πiB(Y2−Y1) × e−πi(Y2−Y1)

∑7
a=1 Xa

× sb

(
− iQ

2 + 2mA

)5 5∏
j=1

∫
dWj e2πiWj(Y2−Y1+(j−3)(iQ−2mA)) sb

(
iQ

2 −mA ±Wj

)

×
∫

dZ ∆(3d)
1 (Z;mA)× e2πi(Y2−Y1)Z ×

7∏
a=1

sb

(
iQ

2 −mA ± (Z −Xa)
)

. (7.23)
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Then we perform the integration over Y2−Y1, getting δ(B− 1
2
∑7

a=1 Xa+Z+∑5
j=1 Wj),

which becomes δ(W5) with the following reparametrization:

Z → Z , (7.24)
W1 →W1 − Z , (7.25)
Wj →Wj −Wj−1 , j = 2, . . . , 4 , (7.26)

W5 →W5 −W4 −B + 1
2

7∑
a=1

Xa . (7.27)

Integrating over W5, we obtain the electric frame (C):

e−4πi
(

B− 1
2
∑7

a=1 Xa

)
(iQ−2mA)

× sb

(
−i

Q

2 + 2mA

)∫
dZ e4πiZ(iQ−2mA) ×

7∏
a=1

sb

(
iQ

2 −mA ± (Z −Xa)
)

× sb

(
−i

Q

2 + 2mA

)∫
dW1 e−2πiW1(iQ−2mA) sb

(
iQ

2 −mA ± (W1 − Z)
)

× sb

(
−i

Q

2 + 2mA

)3 4∏
j=2

∫
dWj e−2πiWj(iQ−2mA) sb

(
iQ

2 −mA ± (Wj −Wj−1)
)

× sb

(
iQ

2 −mA ±
(

W4 + B − 1
2

7∑
a=1

Xa

))
(7.28)

whose corresponding quiver is shown in figure 76. Notice that in this linear quiver
all the FI parameters are frozen but the baryonic symmetry acts non-trivially, so this
frame describes the baryonic branch of the theory.

Mirror dual. If we start instead from the mirror dual of the U(6) SQCD with seven hypers
in (7.18) and perform the gauging the situation is as follows.

• Mirror frame (A): the first frame in the mirror of (7.18) has an interacting part given
by the mirror of the U(3) theory with seven hypers, 2 free twisted hypers and a delta
function. The effect of the gauging is simply to implement the constraint set by the
delta function which just fixes the flavor mass parameter. Both the electric frame (A)
and the mirror frame (A) are depicted in the first line of figure 76.

• Mirror frame (B): the second frame in the mirror of (7.18) has an interacting part given
by the mirror of the U(2) theory with seven hypers, 3 free twisted hypers and a delta
function. The effect of the gauging is simply to implement the constraint set by the
delta function which just fixes the flavor mass parameter. Both the electric frame (B)
and the mirror frame (B) are depicted in the first line of figure 76.

• Mirror frame (C): the last frame in the mirror of (7.18) is the mirror of the U(1) theory
with seven hypers, which is a linear quiver with 6 U(1) nodes, and 7 hypers and 5 free
twisted hypers (which now we are not supposed to dualize). Gauging the topological
symmetry corresponds to gauging one the flavor nodes with the 5 hypers. We obtain
the last quiver in 76 where we see that the baryonic mass B is now the FI of the new
gauge node.
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Figure 76. The electric and mirror dual frames of the SU(6) theory with 7 hypers.

Again we notice that the mirror frames on the right column of figure 76, which we
obtained by starting from the mirror dual of the U(6) SQCD in (7.18) and then gauging, can
also be obtained by mirror dualizing directly the frames on the left column of figure 76.
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A Conventions for the 4d index and the 3d partition function

A.1 The 4d index

We will here list our conventions for the 4d N = 1 supersymmetric index [69–71].
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For a theory with gauge group G and chiral multiplets of R-charge r, in the representations
RG and RF of the gauge and flavor symmetry groups, the index is given by the following
integral:

IG(x⃗) =
∮ rkG∏

j=1

dzj

|WG|2πizj

[(p; p)∞(q; q)∞]rkG∏
ρ⃗∈G Γ(z⃗ ρ⃗ )

∏
σG∈RG

∏
σF ∈RF

Γ
(
(pq)r/2z⃗ σ⃗G x⃗ σ⃗F

)
, (A.1)

where ρ⃗ are the roots of the gauge group G, σ⃗G and σ⃗F are the weights of the representations
RG and RF , |WG| is the dimension of the Weyl group of G, and z⃗ and x⃗ are the gauge and
flavor fugacities. It is convenient to define the integration measure for the USp(2N) group

dz⃗N = 1
2N N !

N∏
j=1

dzj

2πizj
, (A.2)

and the combination

∆N (z⃗; t) = ∆N (z⃗)AN (z⃗; t) , (A.3)

containing the contributions from the vector multiplet ∆N (z⃗) and the antisymmetric chiral
multiplet AN (z⃗; t)

∆N (z⃗N )= [(p;p)∞(q;q)∞]N∏N
i=1Γe

(
z±2

i

)∏N
i<j Γe

(
z±1

i z±1
j

) , AN (z⃗; t)=Γe (t)N
N∏

i<j

Γe

(
tz±1

i z±1
j

)
. (A.4)

A.2 The 3d partition function

In this section we introduce the notation for the 3d N = 2 S3
b partition function [72–74].

For a theory with gauge group G and chiral multiplets of R-charge r, in the representations
RG and RF of the gauge and flavor symmetry groups, the S3

b partition function is given
by the following integral:

Z(Y, k, X⃗) = 1
|WG|

∫ rkG∏
j=1

dZjZcl(Y, k)
∏

σ⃗G∈RG

∏
σ⃗F ∈RF

sb

(
iQ
2 (1− r)− σ⃗G(Z⃗)− σ⃗F (X⃗)

)
∏

ρ⃗∈G sb

(
iQ
2 − ρ⃗(Z⃗)

) ,

(A.5)

where ρ⃗ are the roots of G, σ⃗G and σ⃗F are the weights of the representations RG and RF ,
|WG| is the dimension of the Weyl group of the gauge group G, Z⃗ and X⃗ are parameters in
the Cartan of the gauge and flavor groups and Q = b + b−1 with b the squashing parameter
of S3

b . The classical term

Zcl(Y, k) = exp

2πiY
rkG∑
j=1

Zj + πik
rkG∑
j=1

Z2
j

 (A.6)

contains the contribution of the FI parameter Y and of the level k Chern-Simons. It is
convenient to define the integration measure for the U(N) group

dZ⃗N = 1
N !

N∏
a=1

dZa , (A.7)
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and the combination

∆3d
N (Z⃗;mA) = ∆3d

N (Z⃗ )A3d
N (Z⃗;mA) , (A.8)

containing the contributions from both the vector ∆3d
N (Z⃗ ) and the adjoint chiral multiplet

A3d
N (Z⃗;mA)

∆3d
N

(
Z⃗
)
= 1∏N

a<b sb

(
iQ
2 ± (Za − Zb)

) , A3d
N (Z⃗;mA) =

N∏
a,b=1

sb

(
−i

Q

2 + 2mA + (Za − Zb)
)

.

(A.9)

B The SQCD

B.1 The 4d good SQCD

The 4d USp(2Nc) SQCD with Nf flavors, shown on top of figure 77, has the following index:

ISQCD(Nc,Nf )(x⃗; y1, y2; t; c) =

=
∮

dz⃗Nc ∆Nc (z⃗; t)
Nc∏
j=1

Nf∏
a=1

Γe

(
(pq)

1
2 t−

1
2 z±j x±

a

)

×
Nc∏
j=1

Γe

(
cz±j y±1

) Nc∏
j=1

Γe

(
t

Nf
2 −Nc+1c−1z±j y±2

)

×
Nf∏
a=1

Γe

(
(pq)

1
2 tNc−

Nf
2 − 1

2 cx±
a y±2

) Nc∏
j=1

Γe

(
pqt1−jc−2

)
. (B.1)

If the SQCD is good (namely Nf ≥ 2Nc), its mirror dual is unique and its index is the following:

IŜQCD(Nc,Nf≥2Nc)
(x⃗; y1, y2; t; c) =

=
∮ Nc∏

k=1

(
dz⃗

(k)
k ∆k

(
z⃗ (k); pqt−1

))Nf−Nc−1∏
k=Nc+1

(
dz⃗

(k)
Nc

∆Nc

(
z⃗ (k); pqt−1

))

×
Nf−1∏

k=Nf−Nc

(
dz⃗

(k)
Nf−k ∆Nf−k

(
z⃗ (k); pqt−1

))

×
Nc−1∏
k=1

k∏
j=1

k+1∏
l=1

Γe

(
t

1
2 z

(k)±
j z

(k+1)±
l

)Nf−Nc−1∏
k=Nc

Nc∏
j=1

Nc∏
l=1

Γe

(
t

1
2 z

(k)±
j z

(k+1)±
l

)

×
Nf−2∏

k=Nf−Nc

Nf−k∏
j=1

Nf−k−1∏
l=1

Γe

(
t

1
2 z

(k)±
j z

(k+1)±
l

)

×
Nc∏
j=1

Γe

(
t

1
2 z

(Nc)±
j y±1

)
Γe

(
t

1
2 z

(Nf−Nc)±
j y±2

)

×
Nc∏

k=1

k∏
j=1

Γe

(
(pq)

1
2 t

k−Nc
2 c−1z

(k)±
j x±

k

)Nf−Nc−1∏
k=Nc+1

Nc∏
j=1

Γe

(
(pq)

1
2 t

k−Nc
2 c−1z

(k)±
j x±

k

)
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×
Nf−Nc∏

k=1

Nf−k∏
j=1

Γe

(
(pq)

1
2 t

k−Nc
2 c−1z

(k)±
j x±

k

)

×
Nc∏

k=1

k∏
j=1

Γe

(
(pq)

1
2 t

Nc−k−2
2 cz

(k)±
j x±

k+1

)Nf−Nc−1∏
k=Nc+1

Nc∏
j=1

Γe

(
(pq)

1
2 t

Nc−k−2
2 cz

(k)±
j x±

k+1

)

×
Nf−1∏

k=Nf−Nc

Nf−k∏
j=1

Γe

(
(pq)

1
2 t

Nc−k−2
2 cz

(k)±
j x±

k+1

)

×
Nc∏

k=1
Γe

(
(pq)

1
2 t−

1
2 cx±

k y±1

)Nf−Nc∏
k=1

Γe

(
(pq)

1
2 tNc−

Nf
2 − 1

2 cx±
k y±2

)

×
Nc∏
j=1

Γe

(
tNf−Nc+2−jc−2

)
. (B.2)

Therefore we have

ISQCD(Nc,Nf≥2Nc)(x⃗; y1, y2; t; c) = IŜQCD(Nc,Nf≥2Nc)
(x⃗; y1, y2; t; c) . (B.3)

B.2 The 3d good SQCD

The 3d U(Nc) SQCD with Nf flavors, shown on top of figure 78, has the following partition
function:

Z3d
SQCDU(Nc,Nf≥2Nc)

(
X⃗;Y1 − Y2

)
=
∫

dZ⃗Nc ∆
(3d)
Nc

(
Z⃗;mA

)
× e

2πi(Y1−Y2)
∑Nc

j=1 Zj

×
Nc∏
j=1

Nf∏
a=1

sb

(
iQ

2 −mA ± (Zj −Xa)
)

(B.4)

If the SQCD is good (namely Nf ≥ 2Nc), its mirror dual is unique and its partition function
is the following:

Z3d

ŜQCDU(Nc,Nf≥2Nc)

(
Y1, Y2;Xk+1 −Xk (k = 1, . . . , Nf − 1)

)
=

=
∫ Nc∏

k=1

(
dZ⃗

(k)
k ∆(3d)

k

(
Z⃗(k); iQ

2 −mA

))Nf−Nc−1∏
k=Nc+1

(
dZ⃗

(k)
Nc

∆(3d)
Nc

(
Z⃗(k); iQ

2 −mA

))

×
Nf−1∏

k=Nf−Nc

(
dZ⃗

(k)
Nf−k ∆

(3d)
Nf−k

(
Z⃗(k); iQ

2 −mA

))Nf−1∏
k=1

e
−2πi(Xk−Xk+1)

∑Nk
j=1 Z

(k)
j

×
Nc−1∏
k=1

k∏
j=1

k+1∏
l=1

sb

(
mA ±

(
Z

(k)
j − Z

(k+1)
l

))

×
Nf−Nc−1∏

k=Nc

Nc∏
j=1

Nc∏
l=1

sb

(
mA ±

(
Z

(k)
j − Z

(k+1)
l

))

×
Nf−2∏

k=Nf−Nc

Nf−k∏
j=1

Nf−k−1∏
l=1

sb

(
mA ±

(
Z

(k)
j − Z

(k+1)
l

))

×
Nc∏
j=1

sb

(
mA ±

(
Z

(Nc)
j − Y1

))
sb

(
mA ±

(
Z

(Nf−Nc)
j − Y2

))
, (B.5)
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where the rank of the U(Nk)Z(k) gauge node is given by

Nk =


k for k = 1, . . . , Nc − 1 (increasing ramp)
Nc for k = Nc, . . . , Nf −Nc (plateau)
Nf − k for k = Nf −Nc + 1, . . . , Nf − 1 (decreasing ramp)

. (B.6)

Therefore we have(
e2πiY2

∑Nf
a=1 Xa

)
Z3d

SQCDU(Nc,Nf≥2Nc)

(
X⃗;Y1−Y2

)
=

=
(

e2πiY1
∑Nc

a=1 Xa×e2πiY2
∑Nf −Nc

a=1 Xa

)
Z3d

ŜQCDU(Nc,Nf≥2Nc)
(Y1,Y2;Xk+1−Xk) , (B.7)

which is the 3d reduction of (B.3). This identity is represented in figure 78.
Moreover, we find it convenient to shift all of the magnetic gauge variables by Y1, so that

also on this mirror side the integral depends on the combination Y2 − Y1. We get(
eπi(Y2−Y1)

∑Nf
a=1 Xa

)
Z3d

SQCDU(Nc,Nf≥2Nc)

(
X⃗;Y1−Y2

)
=

= e
2πi(Y2−Y1)

(∑Nf −Nc

a=1 Xa− 1
2
∑Nf

a=1 Xa

)
Z3d

ŜQCDU(Nc,Nf≥2Nc)
(0,Y2−Y1;Xk+1−Xk) . (B.8)

B.3 The 4d bad SQCD

The 4d USp(2Nc) SQCD with Nf < 2Nc−1 corresponding the bad case (or with Nf = 2Nc−1
corresponding to ugly case) has, as its electric dual, a sum of frames, as represented in figure 79.
The corresponding index identity is the following [1]:

ISQCD(Nc, Nc≤Nf≤2Nc−1)(x⃗; y1, y2; t; c) =

=
M+ϵ∑
n=0

∑
α=±1

∑
β=1 if n−ϵ=0,

β=±1 otherwise

{
δ̃
(
y1,
(
y2t

−(n−ϵ)β
)α) ∏M+ϵ−n

j=1 Γe
(
t−j
)∏M+ϵ−n

j=0 Γe (t j−2M−1)

×
M−ϵ+n∏

j=0
Γe

(
c−2t j−2M

)M−ϵ+n+1∏
j=1

Γe

(
t j−M−1w±

1 w±
2

)

× I
SQCD

(
Nf

2 +ϵ−n, Nf

) (x⃗;w2, w1; t; t
M−ϵ+n+1

2 c
)∣∣∣∣∣∣

w1,2=y1,2t∓
1
2 (M+ϵ−n+1)β


+


2M+1∏

j=0
Γe

(
c−2t j−2M

) 2M+2∏
j=1

Γe

(
t j−M−1y±1 y±2

)

× ISQCD(Nf−Nc, Nf)
(

x⃗; y2, y1; t; t
2Nc−Nf

2 c

) , (B.9)

where we defined M = Nc −
Nf

2 − 1 and

ϵ =

0 Nf even ,

−1
2 Nf odd .

(B.10)
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We also defined

δ̃ (x, y) = 2πix

(p; p)∞(q; q)∞
δ (x− y) . (B.11)

Notice that each frame but the last one is associated with a delta function enforcing a
constraint on the yi fugacities. Notice also that for Nf = 2Nc − 1, i.e. the ugly case, only
the last term with no delta constraint contributes.

On the other hand for Nf < Nc, i.e. the evil SQCD case, we have

ISQCD(Nc, Nf <Nc)(x⃗; y1, y2; t; c) =

=

Nf
2 +ϵ∑
n=0

∑
α=±1

∑
β=1 if n−ϵ=0,

β=±1 otherwise

δ̃
(
y1,
(
y2t

−(n−ϵ)β
)α) ∏M+ϵ−n

j=1 Γe
(
t−j
)∏M+ϵ−n

j=0 Γe (tj−2M−1)

×
M−ϵ+n∏

j=0
Γe

(
c−2tj−2M

)M−ϵ+n+1∏
j=1

Γe

(
tj−M−1w±

1 w±
2

)

× I
SQCD

(
Nf

2 +ϵ−n, Nf

) (x⃗;w2, w1; t; t
M−ϵ+n+1

2 c
)∣∣∣∣∣∣

w1,2=y1,2t∓
1
2 (M+ϵ−n+1)β

 .

(B.12)
In this case each frame comes with a delta function and there is no frame with generic fugacities.

B.4 The 3d bad SQCD

The 3d U(Nc) SQCD with Nf < 2Nc − 1 corresponding the bad case (or with Nf = 2Nc − 1
corresponding to ugly case) has, as its electric dual, a sum of frames, as represented in
figure 80, whose partition function reads [1]

Z3d
SQCDU(Nc,Nc≤Nf≤2Nc−1)

(
X⃗;Y1 − Y2

)
× eπi(Y2−Y1)

∑Nf
a=1 Xa =

=
M+ϵ∑
n=0

∑
β=1 if n−ϵ=0,

β=±1 otherwise

δ
(
Y1 − (Y2 − β(n− ϵ)(iQ− 2mA))

)
×

×
∏M+ϵ−n

j=1 sb

(
iQ
2 + j(iQ− 2mA)

)
∏M+ϵ−n

j=0 sb

(
iQ
2 − (j − (2Nc −Nf − 1))(iQ− 2mA)

) × eπi(W1−W2)
∑Nf

a=1 Xa

×
M−ϵ+n+1∏

j=1
sb

(
iQ

2 −
(

j −Nc +
Nf

2

)
(iQ− 2mA)± (W1 −W2)

)

×Z3d

SQCDU

(
Nf

2 +ϵ−n,Nf

) (X⃗;W2 −W1
) ∣∣∣∣∣

W1,2=Y1,2∓ 1
2 β(M+ϵ−n+1)(iQ−2mA)


+

eπi(Y1−Y2)
∑Nf

a=1 Xa ×
2Nc−Nf∏

j=1
sb

(
iQ

2 −
(

j −Nc +
Nf

2

)
(iQ− 2mA)± (Y1 − Y2)

)

×Z3d
SQCDU(Nf−Nc,Nf)

(
X⃗;Y2 − Y1

) . (B.13)
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On the other hand for Nf < Nc, i.e. the evil SQCD case, we have

Z3d
SQCDU(Nc,Nf <Nc)

(
X⃗;Y1 − Y2

)
× eπi(Y2−Y1)

∑Nf
a=1 Xa =

=

Nf
2 +ϵ∑
n=0

∑
β=1 if n−ϵ=0,

β=±1 otherwise

δ
(
Y1 − (Y2 − β(n− ϵ)(iQ− 2mA))

)
×

×
∏M+ϵ−n

j=1 sb

(
iQ
2 + j(iQ− 2mA)

)
∏M+ϵ−n

j=0 sb

(
iQ
2 − (j − (2Nc −Nf − 1))(iQ− 2mA)

) × eπi(W1−W2)
∑Nf

a=1 Xa

×
M−ϵ+n+1∏

j=1
sb

(
iQ

2 −
(

j −Nc +
Nf

2

)
(iQ− 2mA)± (W1 −W2)

)

×Z3d

SQCDU

(
Nf

2 +ϵ−n,Nf

) (X⃗;W2 −W1
) ∣∣∣∣∣

W1,2=Y1,2∓ 1
2 β(M+ϵ−n+1)(iQ−2mA)

 . (B.14)

In this case each frame comes with a delta function and there is no frame with generic fugacities.

C Eσ
ρ [USp(2N)] and T σ

ρ [SU(N)] theories

The description of the Eσ
ρ [USp(2N)] and the T σ

ρ [SU(N)] theories requires some preliminary
definitions.

Given an integer N , we define the two partitions

ρ = [ρ1, ρ2, . . . , ρL] =
[
N lN , (N − 1)lN−1 , . . . , 1l1

]
, (C.1)

σ = [σ1, σ2, . . . , σL] =
[
NkN , (N − 1)kN−1 , . . . , 1k1

]
, (C.2)

with σT < ρ and where some of the ln, km integers can be zero and must satisfy the conditions

N =
N∑

n=1
n · ln =

N∑
m=1

m · km , (C.3)

L =
N∑

n=1
ln , K =

N∑
m=1

km . (C.4)

The gauge ranks Ni and the flavor ranks Mi are given by

NL−n =
L∑

j=n+1
ρj −

N∑
m=n+1

(m− n)km , (C.5)

ML−m = km . (C.6)

The above definitions apply to the case in which the linear quivers are good theories.
However, by abuse of notation, in the main text we still referred with Eσ

ρ [USp(2N)] and
T σ

ρ [SU(N)] to the bad 4d and 3d linear quivers, respectively. In such a case, ρ is not a
partition, but just a sequence of integers summing up to N , which is not necessarily ordered
nor of positive integers

ρ = [ρ1, ρ2, . . . , ρL] ,
L∑

i=1
ρi = N . (C.7)
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z⃑(
1
)

x 1

2

pq
/t

√
pq

t1−
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c−

1

2

z⃑(2
)

x 2

√
pq

tN
c
−
3

2
c

4

pq
/t

√
pq

t2−
N

c

2
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1

z⃑(
N

c
−
1
)
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(
N
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)

pq
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…
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z⃑(
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c
)

x
N

c

√
pq
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1 2
c

2
N
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pq
/t

√
pq

c−
1

2 x
N

c
+
1

√
pq

t−
1
c

√
pq

t1 2
c−

1

t1 2
t1 2

t1 2

y 1

t1 2

2

z⃑(
N

c
+
1
)

2
N

c

pq
/t

√
pq

/t
c

…

…

2

z⃑(N
f
−
1
)

x
N

f
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All of the above formulas still apply to the bad case, except for the first equalities in (C.3)
and (C.4). Instead, in this case L is just the number of entries in the sequence ρ.

C.1 The 4d Eσ
ρ [USp(2N)] family

The index corresponding to the generic Eσ
ρ [USp(2N)] theory in figure 81 is
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, (C.8)

where ξ[u⃗, v⃗] is the (uniquely determined) charge of the field transforming in the bifundamental
representation of the groups parametrized by the Cartans u⃗ and v⃗. Indeed in the saw-like
structure formed by the SU(2)yi × USp(2Nj)zj chirals, the only fixed charge is that of the
first one (the one transforming under SU(2)y1 ×USp(2N1)z1), and its value is c. The other
charges in the saw are uniquely fixed by the NSVZ condition at each gauge node and by the
requirement that the fields forming a triangle form a superpotential term. Therefore they
cannot be written in a generic way, and we employ the notation ξ[u⃗, v⃗] just explained. The
last term in (C.8) encodes the flipping fields (represented in figure 81 as crosses): they flip the
SU(2)yj ×USp(2Nj) chirals dressed with k = 0, . . . , Nj −Nj−1 powers of the antisymmetric.
If Nj −Nj−1 ≤ 0 for a certain j, that chiral has no flipping field attached. The superpotential
of Eσ

ρ [USp(2N)] theories is discussed in section 2.

C.2 The 3d T σ
ρ [SU(N)] family

The partition function corresponding to the generic T σ
ρ [SU(N)] theory in figure 82 is
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Figure 81. The theory Eσ
ρ [USp(2N)]. The crosses represent the singlets flipping the chiral on which

they are placed (possibly dressed with some power of the antisymmetric). Their number is written in
square brackets: if Nj −Nj−1 ≤ 0, the SU(2)yj

×USp(2Nj) chiral has no flipping field.
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Figure 82. The theory T σ
ρ [SU(N)].

D Derivation of the (1, 0)-(1, 0) swap move

In this appendix we will derive the (1, 0)-(1, 0) blocks swap moves in 4d (namely (2.34)
and (2.40)). Their 3d counterpart can be demonstrated analogously, or can just be obtained
by taking the 3d limit of the 4d identities.

Let us start considering the 4d theory (I) at the top of figure 83, built as a concatenation
of two (1, 0) blocks. The ranks of the groups are taken such that they satisfy A ≥ B ≥ C and
A + C < 2B. The proof for the other ranges discussed in section 2.7, namely C ≥ B ≥ A

and B ≥ A, B ≥ C, is analogous.
We can merge the USp(2A)x(A) and the USp(2C)x(C) flavor symmetries into a larger

USp(2(A+C))x flavor symmetry, add and remove singlets (which we write aside) to recognise
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Figure 83. We express the two joint (1, 0)-blocks as a bad SQCD with extra singlets.

the USp(2B) SQCD with A + C flavors with the standard choice of singlets in (II). It is
also conveint to shift the c fugacities so we can apply formula (B.9) to get the electric dual
of the SQCD as sum of frames. Notice that we are allowed to apply the bad SQCD result
only because we assumed A + C < 2B from the very beginning.

Finally we can rewrite each SQCD of fame as two joint (1, 0) blocks by splitting the
USp(2(A + C))x group into the original USp(2A)x(A) and USp(2C)x(C) flavor symmetries,
multiplying and dividing by the missing USp(2A)x(A)×USp(2)w2 and USp(2C)x(C)×USp(2)w1

singlets needed for this operation (or the USp(2A)x(A)×USp(2)y2 and USp(2C)x(C)×USp(2)y1

singlets for the frame outside the summation). This process, together with the implementation
of the c redefinitions (explicitly written in the picture), leads to sum of quivers (III) in figure 84
corresponding to the (1, 0)-(1, 0)block swap (2.34) we wanted to demonstrate.

E Properties of maximal and minimal frames

E.1 Properties of the maximal frame

The partition associated with the maximal frame is defined by the equations (6.10) and (6.11):

ρ̃k+1 =
⌊
Min1≤j≤k+1

(
Nk+1−j

j

)⌋
, (E.1)

and
ρ̃ℓ =

⌊
Min1≤j≤ℓ

(
Nℓ−j −

∑
i>ℓ ρ̃i

j

)⌋
. (E.2)

Let us first prove this is a partition, namely that all the ρ̃i are positive and they are ordered
ρ̃i ≥ ρ̃i+1. The ordering can be proven as follows. From the definition (E.2) we know there
is at least a value of j such that

ρ̃i + 1 >
Ni−j −

∑
ℓ>i ρ̃ℓ

j
. (E.3)

For later convenience let us introduce the quantity Ai =
∑

ℓ>i+1 ρ̃ℓ. The equation above
can therefore be written as

ρ̃i + 1 >
Ni−j − ρ̃i+1 −Ai

j
.
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Figure 84. After taking the electric dual of the bad SCQD we replace each good SQCD frame with
two joint (1, 0)-blocks. Keeping into account the delta constraint we can simplify the contribution
of the massive singlets. The highlighted singlets (the same contribution in each frame) need to be
flipped and moved to (I) to obtain the identity we wanted to prove.
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We also know that

ρ̃i+1 ≤
Ni+1−m−1 −Ai

m + 1 = Ni−m −Ai

m + 1 , (E.4)

which holds for arbitrary 0 ≤ m ≤ i, and in particular for m = j. Plugging this relation
with m = j inside (E.3) we find

ρ̃i + 1 >
Ni−j −Ai − (Ni−j −Ai)/(j + 1)

j
= (Ni−j −Ai)

j + 1− 1
j(j + 1) = Ni−j −Ai

j + 1 .

We can now notice that the r.h.s. of this expression and of (E.4) are identical and therefore
by combining them we find ρ̃i + 1 > ρ̃i+1 and since all ρ̃i’s are integer by definition we
conclude that

ρ̃i ≥ ρ̃i+1 , (E.5)

as desired. The positivity of the integers ρ̃i now follows immediately by noticing that (E.1)
clearly implies that ρ̃k+1 is nonnegative. The inequality (E.5) then tells us the same is true
for all other elements ρ̃i with i ≤ k.

What we have just shown is that (6.10) and (6.11) define a good unitary quiver with
k gauge groups of rank Ñi =

∑
j>i ρ̃j . By setting m = 0 in (E.4) we find ρ̃i+1 ≤ Ni − Ai

and therefore

Ñi =
∑
j>i

ρ̃j = ρ̃i+1 + Ai ≤ Ni , (E.6)

meaning that the rank of each gauge group is smaller than that of the original quiver we
started from. Now all we need to do to fully justify the argument of section 6.3 is to prove
maximality of the quiver defined by the partition ρ̃. This means showing that for every
ordered partition Π of N with k + 1 elements Πi (defining a good unitary quiver with k

gauge groups of rank N̂i =
∑

j>i Πj), if the condition ∑j>i Πj ≤
∑

j>i ρ̃j is not satisfied ∀i,
then it is not possible that N̂i ≤ Ni for every i and therefore the associated polygon cannot
contain that of the original quiver. Since our local duality moves can only decrease the rank
of the gauge groups, such a quiver cannot correspond to any of the dual frames we get via
a sequence of local dualizations. This result then implies that (6.10) and (6.11) define the
maximal dual frame. We will prove this result by induction.

We first argue that Πk+1 cannot be greater than ρ̃k+1. If this was the case, that is if
we assume Πk+1 ≥ ρ̃k+1 + 1, then we would conclude that

N̂k+1−j ≥ jΠk+1 ≥ jρ̃k+1 + j ∀j > 0 , (E.7)

where we have used the definition N̂i =
∑

j>i Πj and the fact that the partition Π is ordered
and therefore the element Πk+1 is the smallest. The contradiction now comes from (E.1),
which implies that there is at least a value of j such that

ρ̃k+1 + 1 >
Nk+1−j

j
⇒ jρ̃k+1 + j > Nk+1−j .
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Combining this with (E.7) we conclude that there is at least a j such that N̂k+1−j > Nk+1−j

and therefore the quiver cannot correspond to a dual frame of the original one. Said differently,
for every partition associated with one of the dual frames the (k + 1)-th element cannot
be larger than ρ̃k+1.

For the inductive step we have to show that the conditions ∑j>i+1Πj ≤
∑

j>i+1 ρ̃j and
N̂ℓ ≤ Nℓ ∀ℓ imply that also ∑j>i Πj ≤

∑
j>i ρ̃j must hold. As a preliminary remark, we

observe that for every j > 0

N̂i+1−j =
∑

ℓ>i+1−j

Πℓ ≥
∑

ℓ>i+1
Πℓ + jΠi+1 =

∑
ℓ>i

Πℓ + (j − 1)Πi+1 , (E.8)

where we have used the fact that the partition Π is ordered. The argument now proceeds
as before: we assume by contradiction that the inequality we want to derive does not hold.
Since we assume ∑j>i Πj >

∑
j>i ρ̃j while ∑j>i+1Πj ≤

∑
j>i+1 ρ̃j by induction, we conclude

that Πi+1 ≥ ρ̃i+1 + 1. From (E.8) we then find

N̂i+1−j ≥
∑
ℓ>i

Πℓ+(j−1)Πi+1 >
∑
ℓ>i

ρ̃ℓ+(j−1)Πi+1≥
∑
ℓ>i

ρ̃ℓ+(j−1)ρ̃i+1+j−1 , (E.9)

where we exploit the assumption that the inequality we want to derive is not satisfied. The
above expression can be rewritten as

N̂i+1−j ≥
∑
ℓ>i

ρ̃ℓ + (j − 1)ρ̃i+1 + j =
∑

ℓ>i+1
ρ̃ℓ + jρ̃i+1 + j ∀j > 0 . (E.10)

We now conclude by observing that the definition (E.2) implies that there is at least a
j > 0 such that the r.h.s. of (E.10) is strictly larger than Ni+1−j and therefore the partition
Π we are considering does not correspond to a dual frame of the original quiver. This
completes our proof.

E.2 Proof of the lemmas for the minimal frame

Let us now prove the lemmas needed in deriving the extremality of the minimal dual frame.

Proof of Lemma 1. The statement is that I(ρ), the partition we get by applying our rule
to [ρ1, µ], is larger than (or equal to) I(ρ′), namely the partition we find by applying our
rule to [ρ1, µ′], if µ ≥ µ′. Notice that in section 6.4 the partitions µ and µ′ are denoted I(ρ̂)
and I(ρ̂′) respectively and are themselves obtained by applying our rule to the sequences
of integers ρ̂ and ρ̂′. On the other hand, the inequality we are after holds true for arbitrary
partitions µ and µ′ such that µ ≥ µ′. In order to prove this, let us consider separately
the cases ρ1 < 0 and ρ1 ≥ 0.

For ρ1 < 0 all we have to do is to collapse the partitions µ and µ′. It is convenient
to introduce the two sequences

an =
∑
i>n

µi; bn =
∑
i>n

µ′
i; 0 ≤ n < k − 1 . (E.11)

Since µ ≥ µ′, we have an ≤ bn ∀n and therefore ρ1 + an ≤ ρ1 + bn. If we denote as n′ the last
value of n such that ρ1+an > 0, the effect of the collapse is to leave the first n′ elements from
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µ1 to µn′ of the partition unchanged and to replace the element n′ + 1 with ρ1 + an′ . This
will be the last element of the resulting partition. Due to the inequality ρ1 + an ≤ ρ1 + bn, we
conclude that also the collapse of µ′ will leave the first n′ elements unchanged and therefore
the inequality we are looking for follows directly from µ ≥ µ′.

For ρ1 ≥ 0 we have instead to reorder the two partitions, which is equivalent to putting
ρ1 in the right position along the partitions. If ρ1 ends up at position i for the partition µ,
we have µi−1 > ρ1 ≥ µi. We call the resulting partition I(ρ). Analogously, for the second
partition ρ1 ends up in position j if we have µ′

j−1 > ρ1 ≥ µ′
j and we call the resulting partition

I(ρ′). Notice that i and j are not necessarily equal. Similarly to the previous case, define

an =
∑

m<n

I(ρ)m; bn =
∑

m<n

I(ρ′)m; 2 ≤ n ≤ k . (E.12)

If i = j then we have an ≥ bn due to µ ≥ µ′ and therefore I(ρ) ≥ I(ρ′) as desired. If instead
i < j we still have an ≥ bn for n ≤ i and n > j directly from µ ≥ µ′, whereas in the range
i < n <≤ j the inequality an ≥ bn follows from

an =
∑

m<n−1
µm + ρ1 ≥

∑
m<n

µm ≥
∑

m<n

µ′
m = bn.

In the last case j < i we again find an ≥ bn for n ≤ j and n > i as a result of the inductive
step, whereas in the intermediate range j < n ≤ i the inequality follows from

an =
∑

m<n−1
µm + µn−1 >

∑
m<n−1

µm + ρ1 ≥
∑

m<n−1
µ′

m + ρ1 = bn .

This concludes the proof of Lemma 1.

Proof of Lemma 2. The statement is that if we apply our rule to the partition ρ we get a
partition I(ρ) which is larger than (or equal to) the I(ρ′) we get by applying it to

ρ′ = [ρ2 − a, ρ1 + a, ρ3, . . . , ρk] , (E.13)

where ρ1 < ρ2 and a is a non negative integer such that ρ1 + a ≤ ρ2 − a. As before, we
can first apply our rule to the subpartition obtained by deleting the first two elements of ρ

and ρ′ and then to the entire partitions without affecting the final result. We can therefore
assume without loss of generality that the elements ρ3, . . . , ρk are ordered and all positive.
We divide the discussion into cases according to the sign of ρ1,2.

If both ρ1 and ρ2 are negative then also ρ1 + a and ρ2 − a will be negative and therefore
the effect of our rule will be in both cases to collapse twice the tail of the partition [ρ3, . . . , ρk].
We can now notice that this double collapse leads to the same answer we would get by
starting from the partition [ρ1 + ρ2, ρ3, . . . , ρk], where we have “fused” the first two elements
together. Since after this fusion operation ρ and ρ′ become identical, the outcome is the
same and therefore we conclude I(ρ) = I(ρ′) in this case.

If both ρ1 and ρ2 are non negative then also ρ1 + a and ρ2 − a will be non negative and
the effect of applying our rule will simply be to put these elements in the correct position
along the ordered partitions. More precisely, we find20

I(ρ) = [ρ3, . . . , ρI−1, ρ2, ρI , . . . , ρJ−1, ρ1, ρJ , . . . ] , (E.14)

I(ρ′) = [ρ3, . . . , ρL−1, ρ2 − a, ρL, . . . , ρM−1, ρ1 + a, ρM , . . . ] . (E.15)
20Notice that ρ2 can be at the beginning of the partition (I = 3) and/or ρ1 can be at the end of the partition

(J = k + 1). Our argument applies in this case as well. The same remark applies to the partition I(ρ′).
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Indeed we have the inequalities I ≤ L ≤ M ≤ J . It is convenient in this case to introduce
the sequence of integers

ρ′′ = I(ρ)− I(ρ′) = [I(ρ)i − I(ρ′)i] .

By inspection the first I − 1 elements are zero, those in the range (I, L − 1) are positive,
those in the range (L, M − 1) are zero again, those in the range (M, J − 1) are negative and
the rest are zero. We now introduce the sequence of partial sums of ρ′′

cn =
∑

m≤n

ρ′′m.

Since both I(ρ) and I(ρ′) are partitions of N , we necessarily have ck = 0. Due to the
structure of the sequence ρ′′, we find that the sequence cn is initially zero, then it starts
increasing until it reaches the value a (if a > 0), it is constant for a while and then decreases
back to zero. Overall, we have cn ≥ 0 ∀n. Since cn is also equal to the sum of the first n

elements of I(ρ) minus the sum of the first n elements of I(ρ′), the positivity of cn directly
implies I(ρ) ≥ I(ρ′) as desired.

If ρ1 < 0 and ρ2 ≥ 0 the outcome of our rule depends on the value of ρ1, ρ2 and a. We
will therefore discuss all possible cases separately. Let us examine first of all the effect on the
partition ρ. We first put the element ρ2 in the correct position, say it ends up in position I

(namely the position between ρI−1 and ρI). This implies that ρi with i < I is larger than ρ2
(with the exception of ρ1 of course). After this we collapse the partition using ρ1. There are
two cases to be considered: either the element ρ2 disappears in the collapse (it is included
in the last element of the partition I(ρ)) or it does not.

Let us consider the first case. In this situation the partition I(ρ) will have the form21

I(ρ) = [ρ3, . . . , ρJ , ρ̂] ; ρ̂ = ρ1 + ρ2 +
∑
n>J

ρn ,

where necessarily J < I. In the partition ρ′ we have the elements ρ1 + a and ρ2 − a, which
are smaller than or equal to ρ2. Regardless of their sign, the resulting partition I(ρ′) will
be of the form

I(ρ′) = [ρ3, . . . , ρJ−1, . . . ] .

If there is a collapse, it cannot involve ρJ−1 due to the inequality ρ̂ ≥ 0 and the fact that
ρJ > ρ2, implying that ρ1 + a + ρJ +∑

n>J ρn > 0. If both ρ1 + a and ρ2 − a are non
negative (and therefore no collapse is involved), we know they will end up in the partition in
position I, which is larger than J , or after it since they are smaller than (or equal to) ρ2.
Overall, we conclude that the first J − 3 elements of I(ρ) and I(ρ′) are equal and I(ρ) has
length J − 1. If I(ρ′) also includes the element ρJ , then we immediately reach the desired
inequality I(ρ) ≥ I(ρ′). Otherwise it means that in I(ρ′) the element ρJ is removed by the
collapse and both ρ2 − a and ρ1 + a + ρJ +∑

n>J ρn are strictly smaller than ρJ . These
observations lead again to I(ρ) ≥ I(ρ′).

Let us now move to the discussion of the second option. In this case I(ρ) will have the form

I(ρ) = [ρ3, . . . , ρI−1, ρ2, ρI , . . . , ρJ , ρ̃] ; ρ̃ = ρ1 +
∑
n>J

ρn .

21I(ρ) can also be just [ρ̂] with ρ̂ =
∑

n≥0 ρn = N , in which case, I(ρ) ≥ I(ρ′) trivially.
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We have indeed the inequality ρI−1 > ρ2 ≥ ρI and also ρJ+1 > ρ̃ due to our rule. If both
ρ1 + a and ρ2 − a are negative the effect of applying the rule on ρ′ will be to collapse the
partition twice, which is equivalent (as we have explained) to collapsing the partition once
with ρ1 + ρ2. Since ρ̃ ≥ 0 and ρ2 ≥ ρJ+1, we have ρ1 + ρ2 +

∑
n>J+1 ρn ≥ 0 and this

implies I(ρ′) will be of the form

I(ρ′) = [ρ3, . . . , ρJ+1, . . . ] .

This is a consequence of the inequality ρ1 + ρ2 +
∑

n>J+1 ρn ≥ 0 which tells us the collapse
cannot involve ρJ+1. If we now consider the difference

I(ρ)− I(ρ′) = [0, . . . , 0, ρ2 − ρI , ρI − ρI+1, . . . , ρJ − ρJ+1, . . . ] ,

we see that all the J − 1 elements displayed are non negative and since I(ρ) has exactly
length J we conclude that I(ρ) ≥ I(ρ′).
When instead both ρ1 + a and ρ2 − a are non negative, then I(ρ′) has the form

I(ρ′) = [ρ3, . . . , ρI−1, . . . , ρℓ, ρ2 − a, . . . , ρK , ρ1 + a, . . . ] .

it is now convenient to consider again

an =
∑

m≤n

I(ρ)m ; bn =
∑

m≤n

I(ρ′)m .

The difference an − bn can be checked to be non negative for n ≤ ℓ − 2, is equal to a for
n = ℓ − 1 and also for all n up to Min{J − 1, K − 1}. If K ≥ J this directly implies the
desired result, otherwise for K ≤ n ≤ J − 1 we find an − bn = ρn+1 − ρ1 > 0. Since in any
case an − bn ≥ 0 for every n < J , we conclude again that I(ρ) ≥ I(ρ′).
Finally, in the case in which ρ2 − a ≥ 0 and ρ1 + a < 0 we have that I(ρ′) is produced
by a collapse induced by ρ1 + a and then we put ρ2 − a in the correct position. All the
elements from ρ3 to ρJ will necessarily be present in I(ρ′) since ρ1 + a +∑n>J ρn = ρ̃ + a

is non negative and therefore ρJ cannot be involved in the collapse. If ρ2 − a is larger than
ρJ the partition I(ρ′) will be of the form

I(ρ′) = [ρ3, . . . , ρ2 − a, . . . , ρJ , . . . ] .

If instead ρ2 − a < ρJ the element following ρJ in I(ρ′) can be either ρ2 − a or ρJ+1 or ρ̃ + a

and as a result I(ρ′) will be respectively of the form

• I(ρ′) = [ρ3, . . . , ρJ , ρ2 − a, . . . ] ,

• I(ρ′) = [ρ3, . . . , ρJ , ρJ+1, . . . ] ,

• I(ρ′) = [ρ3, . . . , ρJ , ρ̃ + a, ρ2 − a] .

In each of these four possibilities, by considering the difference I(ρ)− I(ρ′), we easily find
again that I(ρ) ≥ I(ρ′). This concludes our argument.
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