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Abstract

Outcomes observed in laboratory experiments on contests are often not consistent with the results expected
by theoretical models, with phenomena that frequently occur like overbidding or persisting oscillations in
strategic choices. Several explanations have been suggested to understand such phenomena, dealing primarily
with equilibrium analysis. We propose a dynamical model based on the coevolution of strategic choices and
agent preferences. Each agent can have non self-interested preferences, which influence strategic choices
and in turn evolve according to them. We show that multiple coexisting steady states characterized by non
self-interested preferences can exist, and they lose stability as the prize increases, leading to endogenous
oscillating dynamics. Finally, with an emphasis on two specific kinds of agents, we explain how overbidding
can emerge. The numerical results show a good qualitative agreement with the experimental data.

Keywords: Contest models, Endogenous interdependent preferences, Coevolution of strategies and
preferences, Multistability, Non convergent dynamics

1. Introduction

The variety of economic, social and political situations that can be described by contest models has been
extensively analyzed by theoretical and applied social scientists. The first, seminal model of contests was
proposed by Tullock [1], who examined a game in which players, exerting an effort, compete for a prize.
The model introduced in [1] has a unique symmetric Nash equilibrium at which efforts are proportional
to the prize. Predictions of this model have been extensively tested in controlled laboratory experiments1.
In particular, in contest experiments (see [3] and references therein) it is observed that players typically
select strategies that differ from those at Tullock Nash equilibrium x∗. Many experiments show that players
exert an actual average effort that can even amount or exceed the double of x∗, a phenomenon known
as “overdissipation” or “overbidding”. Even if in a small set of experiments, underbidding has also been
observed, in particular when pro-social behavior among contestants is promoted. Furthermore, strategic
choices exhibit persistent erratic oscillations.

The classic Tullock approach cannot explain the aforementioned phenomena, thus several explanations
have been proposed2. A first family of these grounds on behavioral theories. For example, Sheremeta [5]
explained the overbidding observed in comparing different experimental results of several Tullock contest
models in terms of noise in rational decision making. This can be ascribed to many behavioral and de-
mographic factors, which may be the source of the differences in the behavior of players, as well as their
proneness to make mistakes. Baharad and Nitzan [6] proposed an explanation based on probability dis-
tortions, modelled according to the prospect theory of Kahneman and Tversky [7]. Results in [6] were
improved by Sheremeta and Zhang [8] and Chowdhury et al. [9] introducing an autocorrelation bias in win-
ning probability evaluations, a sort of “hot-hand” phenomenon that is well-known in the literature about
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gambling. Another research strand investigated the possibility of adjusted utilities for the agents, who did
not make their decisions solely on the basis of the material payoff. For example, Sheremeta [10] suggested
that agents can take into account an additional value induced by the utility of winning, which leads them
to overestimate the prize. Fonseca [11] introduced a concern for other player payoff in the utility of each
player, reconsidering the idea by Konrad [12] and allowing for altruistic/spiteful players. In [11] players have
other regarding preferences and are inequality averse, so their utility reduces as payoffs become different.
However, none of the previous approaches introduce a link between the dynamical evolution of preferences
and strategies. Concerning experiments in which underbidding has been observed, we mention [13, 14, 15].

We stress that experimental studies also highlighted the occurrence of erratic fluctuations in agent choices,
which, in the aforementioned literature, are explained in terms of exogenous noise. However, Wärneryd in
[16] argued that the intrinsic nonlinearity encompassed in contest models may prevent the agents from
learning to converge. By analogy with the well-known dynamical behavior characterizing nonlinear Cournot
games, he noted that if the agents adopt simple rules to choose their strategies (e.g., best response mecha-
nisms in which they are not able to know their opponent future choices), complex dynamics may arise and
may be used to explain erratic trajectories of strategies.

The approaches adopted in the aforementioned literature have some limitations and unsatisfactory facets,
and leave open several questions that deserve investigation. Among them, the following are particularly im-
portant and represent the research motivations behind the present contribution. Is it possible that strategic
behaviors that are not consistent with the Tullock Nash equilibrium do endogenously emerge from the dy-
namical evolution, and not from exogenous, ex-ante assumptions on the characterization of the players?
What elements do foster robust and persistent underbidding and, in particular, overbidding phenomena?
In fact, in general, preferences are exogenously assigned to the agents, and do not evolve depending on
what the agents experiment during the play of the contest, and hence their effect on the strategic behavior
does not change. Besides those models in which some evolutionary robustness of the considered kinds of
agents is studied, it is not even clear if the non self-interested preferences can endogenously emerge and last.
Moreover, it is interesting to understand if it’s possible to explain fluctuations in the choices of the agents
in terms of endogenous oscillations and what is the role of out-of-equilibrium dynamics in the selection of
strategic behaviors characterized by overbidding? In the modelling carried on in the mentioned contribu-
tions, out-of-equilibrium dynamics are not even taken into account, and it is consequently not possible to
study non convergent trajectories and the emergence of the oscillations observed in laboratory experiments.

The theoretical approach we pursue to tackle the previous questions is based on a dynamical coevolution
of strategic choices and preferences, considering agents who, in addition to the classic self-interested prefer-
ences, can have both positive or negative regard for their opponents. Agent preferences are influenced by the
competitor behavior, which in turn affects strategic choices. We introduce a general setting that allows us to
formulate a four-dimensional discrete dynamical model, for which we study possible steady states and their
dynamical properties. Concerning static analysis, the main result is that possibly multiple coexisting steady
states characterized by non self-interested preferences and either overbidding or underbidding can endoge-
nously emerge. Regarding dynamics, we show that the prize value has an unambiguous destabilizing effect
on steady states, leading to persistent oscillations in strategic choices. Finally, we introduce two particular
kinds of agents, modelled in terms of the way they evaluate their competitor behaviors, for which we study,
also with the aid of numerical simulations, the possible out-of-equilibrium dynamics, the path dependency
of dynamical outcomes and their selection depending on initial configurations. In particular, for the class
of inequality averse agents, we show that dynamics characterized by overbidding strategies endogenously
emerge from the coevolution of preferences and strategic behavior even if no steady states characterized
by overbidding are possible. This also occurs even if we consider agents that initially have both a positive
regard for their competitors and exert very low efforts. Numerical results show a good agreement with
experimental evidence.

We remark that our focus is limited to contests of the Tullock type, since they have mostly attracted
experimental researchers. Moreover, we do not aim to reproduce quantitative characteristics of outcomes
of contest experiments, which can differ depending on the adopted setting. The purpose is to provide a
theoretical explanation and understanding of some key phenomena and to reproduce them qualitatively.

The remainder of the paper is organized as follows. In Section 2, we present the coevolutive model with
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endogenous interdependent preferences in a general setting. The static analysis is carried on in Section 3.
In Section 4, we study the stability of possible steady states for the general model, then we introduce two
particular kinds of agents, for which we specialize analytical results and which we numerically investigate.
Finally, we conclude and suggest directions for future research. Proofs are collected in Appendix.

2. A dynamical model with endogenously evolving interdependent preferences

We consider an infinitely repeated contest in which two players (indexed by i = 1 and 2) compete at
each game stage (indexed by discrete time sequence t ≥ 0) for a prize v > 0, exerting efforts xi,t ≥ 0 at time
t and facing homogeneous and constant marginal costs c > 0. Without loss of generality, we can normalize
marginal cost parameter3, setting c = 1. We recall that in the classic static setting proposed by Tullock,
expected payoff of player i is expressed by

E(πi(xi, x−i)) =







v
xi

xi + x−i

− xi (xi, x−i) 6= (0, 0),

v

2
xi = x−i = 0,

(1)

where x−i can be interpreted as the actual effort of player −i or as player −i effort as expected by player i.
In the present dynamical setting, we adopt the latter meaning, and hence the expected payoff that, at the
end of stage t, each player expects for next game stage at t+ 1 can be described by

E(πi(xi,t+1, x
e
−i,t+1)|Ii,t+1) =











v
xi,t+1

xi,t+1 + xe
−i,t+1

− xi,t+1 (xi,t+1, x
e
−i,t+1) 6= (0, 0),

v

2
xi,t+1 = xe

−i,t+1 = 0,
(2)

where

• xe
−i,t+1 is the effort that agent i expects his competitor will exert at time t+ 1,

• xi,t+1 is the effort of player i at time t+ 1, and

• Ii,t+1 is the information of player i at the end of stage t, before playing stage t+ 1.

We stress that if we proportionally rescale both efforts, the larger they are, the smaller are expected payoffs.

2.1. Interdependent preferences

First of all, we assume that players have other regarding (interdependent) preferences, i.e. their expected
utility for period t+ 1 is a linear combination between his own and his competitor material payoff function

E
(

Ui(xi,t+1, x
e
−i,t+1)|Ii,t+1

)

= E
(

πi

(

xi,t+1, x
e
−i,t+1

)

|Ii,t+1

)

+ ωi,tE
(

π−i

(

xi,t+1, x
e
−i,t+1

)

|Ii,t+1

)

, (3)

where ωi,t ∈ (−1, 1) is the weight given at time t by agent i to the expected payoff of the competitor.
According to the terminology used by Levine [17], Ui(xi,t+1, x

e
−i,t+1) is the adjusted utility of player i,

which reflects player’s own utility and his regard for the opponent, while ωi,t is the coefficient of altruism.
In particular,

• if ωi,t > 0, the player is referred to as altruistic, as such a player has a positive regard for the opponent;

• if ωi,t = 0, the player is referred to as selfish, corresponding to the usual case;

• if ωi,t < 0, the player is referred to as spiteful, as such a player has a negative regard for the opponent;

3Setting c = 1 actually corresponds to consider prize v as a relative prize with respect to costs.
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• the assumption that ωi,t ∈ (−1, 1) means that no player has a higher (positive or negative) regard for
the opponent than for himself.

We stress that the coefficient of altruism encompasses both altruistic and spiteful inclinations. An increase
in the coefficient of altruism could then involve either more altruistic or less spiteful preferences, as well as
its decrease can mean either less altruistic or more spiteful preferences. As a consequence of this, saying
that a player more (respectively, less) altruistically behaves encompasses both the case in which the positive
regard for his opponent increases (respectively, decreases) and that in which the negative regard for his
opponent decreases (respectively, increases), and this accordingly affects his strategic behavior.

Obviously, coefficient ωi,t is not independent of the units in which utility is measured, and utility must
be measured in the “same”interpersonally comparable units for all players. Finally, the linearity of the
adjusted utility in the opponent’s payoff may be taken as a convenient approximation. A similar approach
in oligopoly modelling can be found in [18].

As previously summed up, standard theory applied to contests assumes that players are selfish in the
sense that they only care about their own expected prize. The alternative line of analysis pursued in the
present contribution is that players are not actually selfish, but they also consider the other player payoff.
In alternative contest theory, it is frequently discussed that some notion of fairness plays a role in individual
decision making. For example, Rabin [19] has proposed a formal model of what this might mean. However,
the model we propose, even if similar in spirit to Rabin’s model, more radically departs from the ordinary
assumptions of game theory, because we suppose that player altruistic or spiteful preferences endogenously
evolve through time because of the past play of the contest. This notwithstanding, the spirit is similar to
the psychological game approach in [20, 19], even if the formal model we propose is completely different. In
psychological games, the starting point is that player attitudes toward other players depend on how they
feel they are being treated, and this aspect is modelled assuming that the utility of players depends not
only on strategies, but also on their beliefs. The resulting game is then analyzed using equilibrium theory,
for example, considering consistency among first and higher order beliefs. In the present contribution, we
suppose that players do not care if their opponents play “fairly,”but rather if they are seen as nice people.
Fairness usually requires defining an “exogenous” reference value (e.g., average payoff) related to which the
agents establish if the competitor behavior was fair or not. Conversely, the approach we pursue is based
on a mechanism of endogenous coevolution of strategic behavior and preferences, which depends on how
a player evaluates his opponent choices. This does not require introducing a reference value encompassing
“fairness”, but it, likewise, retains the flavor that player weights on opponent materialistic payoffs depend
both on his own coefficient of altruism or spitefulness (similar to the approach based on beliefs), but they
will also evolve through time. The point we wish to make with this approach is that the phenomena observed
during experiments do not seem to simply reflect social preferences, but their adjustment through time on
the basis of observed behavior.

2.2. Endogenous dynamics

We assume that, at the end of each game stage, the efforts played by each agent are disclosed,4 and
hence the information for game stage t+1 is Ii,t+1 = {xi,t, x−i,t} . In addition to this, we make the following
assumptions, in particular on the coevolutive mechanism of strategies xi,t and coefficients ωi,t.

a) the agent strategic behaviors, which are influenced by their interdependent preferences, dynamically
evolves on the basis of a best response mechanism with respect to each agent expectations, i.e. each agent,
at the end of stage t, chooses for stage t+ 1 the strategy that maximizes his adjusted utility:

xi,t+1 ∈ argmaxE
(

Ui(xi,t+1, x
e
−i,t+1)|Ii,t+1

)

; (4)

b) each player i has static expectations, i.e. each agent, at the end of stage t, assumes xe
−i,t+1 = x−i,t;

4A common setting in contest experiments is that, at the end of each game stage, each player is informed about the aggregate
exerted effort. Since we consider a two player game, this indeed implies that a player knows the last period strategy of his
competitor.
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c) the agent preferences are in turn influenced by the behavior of their competitors.

In what follows, in describing the dynamical coevolutive mechanism, we assume xi,0 > 0 and we focus on
those trajectories for which x1,t and x2,t do not simultaneously vanish.

2.2.1. Dynamics for the agent’s strategic behavior

Based on assumption a), each player chooses his next period strategy adopting a myopic best response
to each player’s conjecture on opponent’s choice, in the sense that each player at each stage maximizes his
stage adjusted expected utility E

(

Ui(xi,t+1, x
e
−i,t+1)|Ii,t+1

)

. This assumption can be justified as a result of
impatience, so to explain why players don’t maximize their inter-temporal utility function, thus considering
the possibility of influencing the future play of the opponent. If we assumed perfect forecast (xe

−i,t+1 =
x−i,t+1) and time constant interdependent preferences (ωi,t = ωi), the dynamical model would become
static, as the agent would be able to reach the steady state in just one shot. In this case, the model would
be described in terms of a game Γω = ({1, 2}, [0,+∞)2, E(πi(xi, x−i))), for which it can be shown that the
unique Nash equilibrium x

∗ = (x∗
1, x

∗
2), with

x∗
1 =

v(1 − ω1)
2(1 − ω2)

(2− ω2 − ω1)2
, x∗

2 =
v(1 − ω2)

2(1− ω1)

(2− ω2 − ω1)2
,

always exists. As a particular situation, if we consider selfish preferences (setting ωi = 0), we retrieve the
classic Tullock game Γ0 = ({1, 2}, [0,+∞)2, E(πi(xi, x−i))).

We assume that players have static expectations, i.e. for any i ∈ {1, 2} , and for any t ∈ N we have
xe
−i,t+1 = x−i,t.
According to assumption b), we have that adjusted utility (4) can be written as

E(Ui(xi,t+1, x−i,t)|Ii,t+1) =
xi,t+1

xi,t+1 + x−i,t,

v − xi,t + ωi,t

(

x−i,t

xi,t+1 + x−i,t

v − xi,t

)

. (5)

Solving the optimization problem (assumption a)), we get xi,t+1 ∈ argmaxE(Ui(xi,t+1, x−i,t)|Ii,t+1), so
that, for x−i,t > 0, we obtain the standard best response mechanism with static expectations

xi,t+1 = max{
√

vx−i,t(1− ω1,t)− x−i,t, 0}.

We stress that if x−i,t = 0, from (5) we have that a whatever small effort would guarantee to player i
an expected payoff equal to v, when for a null best response it would reduce to v/2. Since we are mainly
interested in trajectories for which both players exert a positive effort, we simply assume an exogenous
minimum effort ε that is played as the reaction to a null expected strategy. We stress that this is in line
with the setting of lab experiments, in which players usually have a discrete set of strategic choices, and
hence there is a minimum non null effort level that can be exerted.

In Figure 1 (a-b) we report the graphs of some best response functions on varying the prize and the
coefficients of altruism. As the prize increases, the best response to a given effort x−i,t increases as well.
This reflects the increasingly high player involvement in the game, as the prize for which they compete is
more and more relevant. Moreover, altruistic preferences (i.e. when ωi,t > 0) induce milder responses to
the opponent behavior, while the opposite occurs with spiteful preferences. In particular, with altruistic
preferences, best response strategy is always smaller than the classic Tullock Nash equilibrium strategy
(denoted by asterisks in Figure 1 (a-b)), while larger replies are possible for spiteful preferences.

The best response dynamics is the oldest, most familiar and simple instance of adaptive dynamics, widely
studied in economic theory (see e.g., [21]) for a general analysis of this kind of models. Although based
on myopic behavior and naive expectation formation, it can be justified within a general frame. In lab
experiments, best reply mechanisms often describe dynamical paths well (see [22]). However, the main
point of the present contribution is to couple this simple dynamical mechanism with the adaptation of
preferences, with coevolution driving the observed player behaviors and allows mimicking the lab results.
From this point of view, the use of the well-known best response dynamics coupled with the coevolution
of player interdependent preferences allows a deeper understanding of the interaction between the player
maximizing behavior, their expectation formation and the endogenous evolution of the coefficient of altruism.
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2.2.2. Dynamics for the agent’s preferences

There have been a great many experimental studies of infinitely repeated games (see e.g., [23]) and one
main takeaway is that in contrast to predictions based on equilibrium analysis, players tend to reciprocate
the past behaviors of their opponents. We formalize this by assuming that the coefficients of altruism of
each agent evolve according to how they assess whether their competitor has played well or not.

Indeed, the agents do not know altruistic, selfish or spiteful preferences of their competitors, but their
strategic choices at stage t depends on such preferences, which consequently affect the probability of winning
the prize. So agents can compare their own and their competitor expected payoffs5 and evaluate how much
they liked/disliked their competitor behavior, and, based on that, their preferences consequently adapt.

We stress that it is possible to show that if preferences adapted on the basis of the comparison of the
exerted efforts instead of expected payoffs, all the analytical and numerical results we are going to present
would not essentially change. The results we present in the remainder of the paper are discussed in terms
of expected payoff comparison, which allows providing a simpler and clearer economic interpretation, but
they can be rephrased in terms of exerted effort comparison and basically remain identical.

The process of preference evolution can then be outlined in three steps.
a) Agents are informed of the exerted efforts and compare the expected payoffs

In particular, we assume that agents compare the last period expected payoff difference ∆πi,t = πi,t −
π−i,t, for which we have

πi,t = v
xi,t

xi,t + x−i,t

− xi,t ⇒ ∆πi,t = v
xi,t − x−i,t

xi,t + x−i,t

+ x−i,t − xi,t = −∆π−i,t i = 1, 2. (6)

The payoff comparison is modelled in additive terms instead of a ratio, a possible viable alternative,
following the most common use in the literature, as in [19, 24, 17].
b) Agents evaluate how much they like/dislike the expected payoff difference

The agents positively or negatively evaluate the expected payoff difference ∆πi,t. Such evaluation can
be made in terms of own convenience, fairness/unfairness evaluation, status-seeking behavior and so on.
Since a given scenario can be differently evaluated by distinct agents, the way the expected payoff difference
is evaluated defines the agent kind, which can be modelled by introducing a function m : R → R,∆πi 7→
m(∆πi,t) which quantifies the evaluation given by agent i to the behavior of agent −i, inferred from the
expected payoff difference. We investigate some possible relevant kinds of players in Section 4 and the
corresponding functional shapes m, but they have in common that the more m(∆πi,t) positively increases,
the more agent i liked what he experienced after stage t and, symmetrically, the more m(∆πi,t) negatively
decreases, the more agent i disliked it. Such an assessment of the economic observables is actually an
evaluation on the competitor behavior, and it is the element on the basis of which the preferences of each
player adapt.

We assume that m(∆πi,t) is a strictly monotone function on (−∞, 0] and on [0,+∞), respectively. This
means that, for example, depending on the kind of player, a positive expected payoff difference can be either
evaluated in a positive (like) or negative (dislike) way, but given one of these alternatives, as ∆πi,t increases,
the liking/disliking degree increases as well. Finally, we assume that m is a Lipschitz continuous function, i.e.
there are no sudden changes in the (marginal) evaluation of the competitor behavior if it slightly changes.
c) Agent preferences adapt accordingly to the evaluation of the expected payoff difference and on their past
experience

How preferences change depends not only on the evaluation of the last game outcome, but it is also
affected by the player same preferences, i.e. by his identity at stage t, which is a consequence of his history
and past experiences. For example, the reaction of a player to a positive evaluation of the competitor
behavior in the last stage could considerably change depending on the current player preferences. For
example, let us assume that at stage t player 1 negatively evaluates the behavior of his opponent. If player
1 evaluated in a positive way the behavior of player 2 for many periods, so that he currently has a positive

5From now on, for the sake of notation, we drop E(·) and we simply denote the expected payoffs by πi and expected payoff
difference by ∆πi.
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Figure 1: Best response function for different values of prize (panel (a)) and coefficients of altruism (panel (b)). Asterisks
denote the classic Tullock Nash equilibrium strategies. Panel (c): graph of function f̃ on varying its former component x, for
different fixed values of its latter component. Horizontal dotted lines represent ωi,t+1 = ωi,t.

regard for his opponent, a negative evaluation for one period could weaken such regard, but his preferences
will remain characterized in terms of altruism. We could face an opposite situation if player 1′s preferences
evolved toward a negative regard for player 2, as in this case he could become less altruistic. In addition to
this, the intensity of the effect of, for instance, a negative evaluation of the expected payoff difference can
change depending on how much each player current preferences are polarized in terms of positive or negative
regard for his competitor. From the mathematical point of view, this can be described by the process

ωi,t+1 = f̃(m(∆πi,t), ωi,t),

where f̃ : R × (−1, 1) → (−1, 1), (m,ω) 7→ f̃(m,ω) is such that, for any given ω ∈ (−1, 1), x 7→ f̃(x, ω) is
a smooth, strictly increasing function, whose range is (σ1(ω), σ2(ω)) = (ω − k1(ω), ω + k2(ω)) and which
is symmetric with respect to point (0, f̃(0, ω)). We stress that monotonicity with respect to the former
component obviously guarantees that, for each given preference, the higher the evaluation of payoff difference
is, the larger the coefficient of altruism is. Moreover, since we want to avoid exogenous biases toward altruism
or spitefulness, we introduced suitable symmetry assumptions on the involved modelling functions. Based
on this, we can recast function f̃ into the form

f̃(m,ω) =
σ2(ω)− σ1(ω)

2
f(m) +

σ1(ω) + σ2(ω)

2
= ω +

k1(ω) + k2(ω)

2
f(m) +

k2(ω)− k1(ω)

2
, (7)

where f(m) is an odd function6 (so f(0) = 0), for which limm→±∞ f(m) = ±1.
Function σ1(ωi,t) = ωi,t − k1(ωi,t) (respectively, σ2(ωi,t) = ωi,t + k2(ωi,t)) represents, given the current

preferences, the lower bound (respectively, the upper bound) to the coefficient of altruism that can charac-
terize player i at time t+1. In Figure 1 (c) we report three possible graphs of function f̃(·, ωi,t), for different
values of ωi,t. Let us refer to the upper graph in yellow, corresponding to the case of player i with altruistic
preferences at time t. The yellow dotted line represents the value at time t of the coefficient of altruism.

Depending on the positive or negative evaluation of the stage outcome (abscissa m) at time t, his
coefficient of altruism could increase (part of the curve above the yellow dotted line) or decrease (part of the
curve below the yellow dotted line). In such latter case, altruistic preferences could also turn into spiteful
ones. We note that in general f̃(0, ω) 6= ω, i.e. a neutral evaluation of opponent behavior can lead to a
change in the preferences. For example, preferences at time t are represented by the yellow dotted line, but

6For the sake of completeness, in the most general case, function f̃ should be rewritten as in (7) but in terms of a function
f that explicitly depends on ω. Since taking such dependence into account would not introduce new additional, economically
relevant phenomena to those reported in the present contribution, we do not consider dependence of f on ω. This also allows
for a more direct and clear economic explanation of the results.
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Figure 2: Functions σ1 and σ2 (panel (a)) for which k1 and k2 are not monotonic (panel (b)) and disposition k2/k1 is unimodal
on [0, 1) (panel (c)).

the next period coefficient of altruism ωi,t+1 = f̃(0, ω), which graphically corresponds to the intersection
between the yellow graph and the vertical dashed line, lies below the yellow dotted line. The opposite
occurs for the red graph related to ωi,t = 0.1, while for the blue graph related to ωi,t = −0.5 we have

f̃(0, ω) = ω. The occurrence of each of these situations is in principle unrelated to the sign of the coefficient
of altruism, i.e. they all can hold for both altruistic, spiteful or self-interested preferences. We delve deeper
into this point at the beginning of Section 3, when discussing the dynamical evolution of variables of the
model. Possible values of coefficients of altruism at time t + 1 can range between the two dashed yellow
lines, respectively representing values σ1(ωi,t) (lower yellow dashed line) and σ2(ωi,t) (upper yellow dashed
line). These comments can be adapted to discuss red and blue graphs as well.

In what follows, we refer to term f(m(∆πi,t)) in (7) as drift toward altruism, and it encompasses the
effect of the evaluation of the stage t outcome on the next period preferences. In line with the discussion on
the meaning of coefficient of altruism, a negative value of the drift toward altruism must be intended as a
drift toward spitefulness.

Conversely, in (7), the difference k2(ωi,t) = σ2(ωi,t) − ωi,t between the maximum next period value of
the coefficient of altruism and the current one represents how much the regard for player −i can increase
from period t to period t + 1. Similarly, difference k1(ωi,t) = ωi,t − σ1(ωi,t) between the current value of
the coefficient of altruism and the maximum possible at t + 1 describes how much the regard for player
−i can decrease from period t to period t + 1. They encompass an intrinsic characteristic of the players,
which is independent of the behavior of their competitors, but which endogenously depends on the current
preferences. In Figures 2 (a-b) and 3 (a-b) we report some possible shapes for functions σi and corresponding
functions ki.

Before presenting the model, we make some assumptions on functions σi, to take into account only
economically relevant functional shapes and to rule out the occurrence of some trivial or uninteresting
scenarios. We stress that even under the following assumptions, the static and dynamical results are able to
depict the multiplicity of the economically relevant scenarios that are able to describe outcomes of contest
experiments. Essentially, no new scenarios can arise by removing such assumptions, but the discussion of
the result would simply become more elaborated, as branching, marginal situations should be taken into
account.

Firstly, we assume that σi(ω), i = 1, 2, are smooth, strictly increasing functions. This guarantees that,
for example, the greater is the positive regard of an agent for his competitor, the more such regard can
potentially increase and the less it can decrease. Moreover, we implicitly assume that functions σi (and,
consequently, ki as well) are sufficiently regular to compute the required derivatives for the theorem proofs.

Since we want to disregard those functional shapes for σi for which dynamical evolution of variables is
not depending on a coevolution of preferences and of player strategic behavior, we assume that

σ2(ω) > ω > σ1(ω), for any ω ∈ (−1, 1) and lim
ω→±1∓

σ2(ω)− σ1(ω) 6= 0. (8)
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Figure 3: Functions σ1 and σ2 (panel (a)) for which k1 and k2 are monotonic (panel (b)) and disposition k2/k1 is strictly
decreasing [0, 1) (panel (c)).

Assumption (8) means that, independently of the current agent preferences, in principle he can always
become more altruistic and less altruistic. If we allowed for example σ1(ω) = ω, we would have situations
in which the agent cannot become less altruistic, even when facing a previous stage stage outcome that is
evaluated very negatively. In addition to this, if we allowed for σ2(ω) = σ1(ω) for some ω0 ∈ (−1, 1) this
would mean that the evolution of preferences would be “exogenously” locked at ω0, independently of the
evaluation of how much an agent liked/disliked the previous stage outcome. In this case, it is easy to see that
(ω0, ω0) would be a steady state for the equations governing the evolution of ω for every strategic behavior.

Moreover, the present assumption also rules out that σ2(ω) − σ1(ω) → 0 as ω approaches some ω0 ∈
{−1, 1}. This would mean that the evolution of preferences could converge toward ±1, independently of the
evaluation of how much an agent likes/dislikes the outcome of the previous stage outcome.

In addition to this, in line with the symmetric framework we assumed for the whole game and the model
setting, we impose a symmetric behavior for functions ki when the coefficients of altruism have opposite
signs, i.e.

ki(ω) = k−i(−ω), i = 1, 2, ω ∈ (−1, 1). (9)

This guarantees that if the current coefficient of altruism is positive, the regard for the competitor can
decrease as much as it could increase under an opposite value for the coefficient of altruism. We stress
that a consequence of (9) is that k1(0) = k2(0), i.e. when an agent has selfish preferences, he has neither
disposition toward altruism nor toward spitefulness.

Finally, as it will become evident from the analysis in Section 3, the model allows for a multiplicity of
equilibria. To simplify the discussion, we will focus on situations in which up to three symmetric equilibria
arise, as the explanation of more general situations fall within this prototypical one. To guarantee this, we
can assume that either

k2(ω)

k1(ω)
on ω ∈ [0, 1) is monotonic, (10a)

or
k2(ω)

k1(ω)
on ω ∈ [0, 1) is unimodal. (10b)

Function k2(ω)/k1(ω) endogenously determines if an agent is more prone to becoming more altruistic/less
spiteful or to becoming more spiteful/less altruistic.

When k2(ω)/k1(ω) is above (respectively below) 1, we can say that the player has an endogenous dis-
position toward altruism (respectively toward spitefulness), since he is potentially more disposed to become
more altruistic/less spiteful than to become more spiteful/less altruistic (respectively he is more disposed to
become more spiteful/less altruistic than to become more altruistic/less spiteful).

We emphasize that disposition is endogenous, since it can change depending on the current coefficient of
altruism, which evolves over time. Moreover, the disposition toward altruism or spitefulness determines the
positive or negative sign of k2(ω)− k1(ω), so in what follows we can discuss the role of the disposition of a
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player also inspecting the sign of k2(ω)−k1(ω). For example, Figure 2 (c) depicts a situation in which player
i exhibits disposition toward altruism for 0 < ωi,t < 0.5 and ωi,t < −0.5 and disposition toward spitefulness
for −0.5 < ωi,t < 0 and ωi,t > 0.5, while Figure 3 (c) depicts a situation in which player i exhibits a uniform
disposition toward altruism when he is currently spiteful and a uniform disposition toward spitefulness when
he is currently altruistic. Assumptions (10) then restrict the maximum possible number of changes in the
disposition of a player as his preferences range from spitefulness to altruism.

As it will become evident in the remainder of the paper, drift toward altruism and disposition toward
altruism/spitefulness play a crucial role in explaining static and dynamical behaviors of the model.

The graphs of functions σi and ki reported in Figure 2 (a-b) and 3 (a-b) are consistent with all the
previous assumptions. In particular, in Figure 2 (b) functions ki fulfill assumption (10b), whereas in Figure
3 (b) they fulfill assumption (10a).

Finally, we limit the possible heterogeneity between the agents to the initial strategy and/or coefficient
of altruism. All the remaining elements will be the same for both players (i.e. functions f, σi and m).

The resulting model consists of the following four dimensional dynamical system



































x1,t+1 = max{
√

vx2,t(1− ω1,t)− x2,t, 0},
x2,t+1 = max{

√

vx1,t(1− ω2,t)− x1,t, 0},

ω1,t+1 = ω1,t +
k2(ω1,t) + k1(ω1,t)

2
f(m(∆π1,t)) +

k2(ω1,t)− k1(ω1,t)

2
,

ω2,t+1 = ω2,t +
k2(ω2,t) + k1(ω2,t)

2
f(m(∆π2,t)) +

k2(ω2,t)− k1(ω2,t)

2
,

(11)

where ∆πi,t are defined by (6) and depend on xi,t and x−i,t. Model (11) can be written in a compact way
as st+1 = F (st) by introducing function F : (0,+∞)2 × (−1, 1)2 → R

4, s = (x1, x2, ω1, ω2) 7→ F (s) =
F (x1, x2, ω1, ω2), defined by the right hand side in (11).

3. Static analysis

Before analyzing the static properties of model (11), we discuss how variables evolve.
Concerning the equations describing the dynamics of the coefficients of altruism, the preferences evolve

according to an anchoring-and-adjusting mechanism. The anchor corresponds to the current preferences,
encompassed in ωi,t, and it is adjusted according to the evaluation given by players to the outcome of the
previous stage (encompassed in f(m(∆πi,t))), tuned by the potential changes in the regard for the opponent,
(respectively encompassed in k1(ωi,t) and k2(ωi,t)).

Let us start considering the case in which no anchoring is present, i.e. the preference evolution is
independent of the current preferences. This occurs for σ(ω1,t) = −1 and σ(ω2,t) = 1. In this situation, the
next period coefficient of altruism would be a direct consequence of the evaluation of the expected payoff
difference alone, resulting ωi,t+1 = f(m(∆πi,t)).

However, in general, the anchor to past experience acts as a dampening factor for the drift. Assume for
now that, given the current preferences, a player is neither disposed toward altruism nor toward spitefulness
(i.e. k1(ωi,t) = k2(ωi,t)). For example, let us consider current spiteful preferences. We can make reference to
the blue graph in Figure 1, for which k1(ωi,t) = k2(ωi,t) holds true. In this situation, a negative (respectively
positive) evaluation of the opponent behavior drives the agent preferences toward an increase (respectively
decrease) of spitefulness. Due to a conservatism bias, the previous preferences are under-revised with respect
to the signal represented by the expected payoff difference, so that the result is just a reduced adaption
toward altruism. This mechanism is encompassed in coefficient 0 < (k2(ωi,t) + k1(ωi,t))/2 ≤ 1 that rescales
f(m(∆πi,t)) in the latter couple of equations in (11).

In addition to the drift toward altruism, we can however highlight another mechanism that can lead to a
change of preferences, i.e. an endogenous disposition toward altruism or spitefulness. This latter mechanism
is encompassed in additive term (k2(ωi,t)− k1(ωi,t))/2, whose sign is determined by the disposition toward
altruism/spitefulness k2(ωi,t)/k1(ωi,t).
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Let us focus for simplicity on the case of a player with spiteful preferences at stage t who neutrally
evaluates (neither he likes/nor he dislikes) the stage outcome, so that no endogenous drift toward either
altruism or spitefulness is present as a consequence of strategic choices. For the following discussion, we can
refer to Figure 2.

Depending on both the current, negative, coefficient of altruism and his disposition toward either altruism
or spitefulness, the player could both become less altruistic, less spiteful (or even become altruistic) or he
could not change his preferences. If a player exhibits a disposition toward spitefulness, he could become less
altruistic, even in the presence of a neutral evaluation of the stage outcome. However, as already mentioned,
this can change depending on the current degree of spitefulness/altruism, i.e. on the past experiences. For
example, when the actual degree of spitefulness is mild and there is room for a more pronounced spiteful
behavior, the player could decide to act less altruistically if he has a disposition toward spitefulness. For
example, this occurs in the situation reported in Figure 2 (c) for small, negative coefficients of altruism
ωi,t ∈ (−0.5, 0). Conversely, if the current level of spitefulness of a player is very high, it could depict
a scenario in which past strong drifts toward spitefulness (due to particular strategic behaviors) induced
an excess of spitefulness, so that when such drift is no more present, the disposition of the player tends
to counterbalance the spitefulness excess and the negative regard toward the opponent decreases. For
example, this occurs in the situation reported in Figure 2 (c) for large, negative coefficients of altruism
ωi,t ∈ (−1,−0.5). Finally, another possible scenario in the presence of an elevated degree of spitefulness
could depict a player who is unwilling to change his behavior and lock into spitefulness.

To summarize, preference evolution can be described in terms of an anchoring toward past experience,
a drift toward altruism induced by the evaluation of the stage outcome and a path dependent disposition
toward becoming more altruistic/spiteful.

We already discussed the role of prize and preferences on the strategies in Section 2.2.1. In light of
the dynamical evolution of preferences, we stress that overbidding with respect to the classic Tullock Nash
equilibrium strategy can emerge due to the presence of spiteful preferences, which, however, can in turn
emerge from the negative evaluation of the strategic behavior of the competitors, giving rise to the dynamical
coevolution of strategies and preferences.

Now we study possible steady states s∗(x∗
1, x

∗
2, ω

∗
1 , ω

∗
2) of model (11). The first result concerns symmetric

steady states, i.e. those for which x∗
1 = x∗

2 = x∗ and ω∗
1 = ω∗

2 = ω∗. In what follows, we refer to a steady state
at which ωi 6= 0 for at least one i = 1, 2 as non self-interested steady state, while in the opposite case we refer
to it as self-interested steady state. In the former case, we refer to a steady state in which ω∗

i > 0, i = 1, 2
as altruistic steady state, meaning that the steady state is characterized by altruistic preferences. Similarly,
a steady state in which ω∗

i < 0, i = 1, 2 is called spiteful steady state.

Proposition 1. Vector (x∗, x∗, ω∗, ω∗) is a symmetric steady state for dynamical system (11) if and only if

x∗ =
v(1− ω∗)

4
,

k2(ω
∗)

k1(ω∗)
=

1− f(δ)

1 + f(δ)
, (12)

where we set δ = m(0).
At least a symmetric steady state always exists for any δ, and it is the unique one for all δ if and only if

k2(ω)/k1(ω) is strictly monotonic. In this case, ω∗ increases as δ increases.
A self-interested steady state is possible if and only if δ = m(0) = 0.

The components of the steady state related to the strategies correspond to the Nash equilibrium of game
Γω when ω∗

1 = ω∗
2 = ω∗, i.e. are the strategic choices of players whose utility function is the modified utility

(3) with exogenous coefficients of altruism ω∗. We remark that x∗ is larger (respectively smaller) than the
Nash equilibrium strategy of a Tullock contest if and only if it corresponds to the steady state strategies of
a spiteful (respectively altruistic) steady state. This means that overbidding (respectively underbidding) at
symmetric steady states is a direct consequence of spiteful (respectively altruistic) preferences.

This is in line with the literature about other regarding preferences in lab experiments (see [25]). The
relevant facet is that, in the present setting, non self-interested preferences can endogenously emerge from
the coevolution of player behaviors and preferences, and are determined by latter condition in (12), in which
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both identities (i.e. disposition toward altruism/spitefulness) and player evaluation of the stage outcome
(i.e. δ) are involved. Moreover, the extent of overbidding and underbidding is magnified by the prize, as
evident from the former expression in (12), which is again in agreement with experimental findings (see [3]),
in which players more and more overbid as the prize increases.

Let us note that, in such a symmetric scenario, the steady expected payoff differential is null, so δ = m(0)
represents the evaluation that the agents make for a scenario in which ∆π∗

i = 0. A consequence of this is
that the steady state coefficient of altruism does not depend on v.

The left-hand side in the latter condition in (12) encompasses the player disposition toward either
altruism of spitefulness. Conversely, its right hand side is a decreasing function of δ, for which we have
(1 − f(δ))/(1 + f(δ)) = 1 if and only if δ = 0. Moreover, f(m(∆πi)) represents the coefficient of altruism
that a player would adopt just relying on the expected payoff difference, independently of his current
preferences. Since in this case case we would have σ1(ω) = −1 and σ2(ω) = 1 and hence k1(ω) = ω + 1 and
k2(ω) = 1− ω and noting that the latter condition in (12) can be rewritten as

f(δ) =
k1(ω

∗)− k2(ω
∗)

k2(ω∗) + k1(ω∗)
, (13)

the steady state would be ω∗ = f(δ), as immediately predictable also from equation (7). This means that
f(δ) represents the steady state coefficient of altruism corresponding to the symmetric scenario in which the
player preferences evolve just under the drift induced by the evaluation of the strategic behavior.

Conversely, let us now take into account non constant functions σi(ω) and start assuming δ = 0, i.e. we
focus on the case for which the evaluation of a symmetric scenario is neutral, neither positive nor negative.
In this case, player disposition toward altruism would result in an increase of altruism, since, even if the
observation of stage t outcome would not induce any change in the preferences, player disposition would
drive preferences toward an increased level of altruism (or reduced spitefulness). The reverse would occur
in the opposite situation, with disposition toward spitefulness driving preferences toward a reduced level of
altruism (or increased spitefulness). So if a symmetric scenario is neutrally evaluated, a steady state could
only realize if there is disposition toward neither altruism nor spitefulness.

In general, a symmetric configuration of coefficients of altruism is a steady state if and only if the two
above described mechanisms act in opposite7 ways and balance out. So a positive evaluation of a symmetric
scenario must be counter-balanced by a disposition toward spitefulness (otherwise the two forces would add
together, resulting in increasingly altruistic preferences). Similarly, to a negative evaluation of a symmetric
scenario must correspond a disposition toward altruism (otherwise spitefulness would increase).

A unique symmetric steady state is possible for all δ if and only if players have disposition toward altruism
when they have spiteful preferences and disposition toward spitefulness when they have altruistic preferences,
as in the scenario reported in Figure 3. In this case, we can say that players globally have disposition toward
self-interest, as if they are currently altruistic (Figure 3 (c) for ωi,t > 0), their disposition toward spitefulness
would induce a decrease of coefficient of altruism (the graph in Figure 3 (c) lies below the horizontal axis),
with the opposite occurring when they are currently spiteful. If symmetric behaviors are neutrally evaluated
(i.e. δ = 0), this would lead to a decrease of the coefficient of altruism when it is positive and an increase when
it is negative, so only self-interested preferences can emerge at the steady state. Conversely, if symmetric
behaviors are positively or negatively evaluated, this can respectively counterbalance disposition toward
spitefulness or for altruism, allowing for the existence of spiteful or altruistic steady states, respectively.
For example, if players evaluate that their competitors nicely behaved, they would be disposed, to a certain
point, to go against their intrinsic inclination toward self-interested preferences, and they would settle to a
positive regard for their opponent. The self-interested steady state then occurs just in a particular situation,
which requires that players are also neutral with respect to the evaluation of identical expected payoffs. This
actually portrays a situation in which agents are completely self-interested.

Conversely, when players do not globally have disposition toward self-interest, multiple equilibria can oc-
cur. Their number and distribution strongly rely on how endogenous disposition toward altruism/spitefulness
changes. In particular, the simplest scenario occurs under assumption (10b).

7This is the reason for which the right hand side in the latter condition in (12) is a decreasing function of f(δ).
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Corollary 1. If k2(ω)/k1(ω) is unimodal for ω ∈ [0, 1), then there exists δ̄ > 0 such that for δ ∈ (−δ̄, δ̄)
model (11) has three symmetric steady states, with at least an altruistic and a spiteful steady state.

For δ < −δ̄ or δ > δ̄ model (11) has a unique symmetric steady state, which is characterized in terms of
altruism if δ > 0 and of spitefulness δ < 0.

The scenario of Corollary 1 is that reported in Figure 2. In particular, steady state coefficients of altruism
are identified by the intersection between a horizontal line, representing f(δ), and a cubic-like function like
that in Figure 2 (c). In such case, at least a non-self interested steady state always exists, at which either
underbidding or underbidding strategies are chosen.

To summarize, all the previous results show that non self-interested steady states can endogenously
emerge from the coevolution of player strategic behaviors and preferences.

Let us now focus on the possible existence of non-symmetric steady states, i.e. at which x∗
1 6= x∗

2 and
ω∗
1 6= ω∗

2 .

Proposition 2. Vector (x∗
1, x

∗
2, ω

∗
1 , w

∗
2) is an asymmetric steady state for dynamical system (11) if and only

if

x2 =
v(1 − ω∗

1)(1− ω∗
2)

2

(2− ω∗
2 − ω∗

1)
2

, x∗
1 =

v(1 − ω∗
1)

2(1 − ω∗
2)

(2− ω∗
2 − ω∗

1)
2

, (14)

and














f(m(∆π∗
1(ω

∗
1 , ω

∗
2))) =

k1(ω
∗
1)− k2(ω

∗
1)

k1(ω∗
1) + k2(ω∗

1)
,

f(m(−∆π∗
1(ω

∗
1 , ω

∗
2))) =

k1(ω
∗
2)− k2(ω

∗
2)

k1(ω∗
2) + k2(ω∗

2)
,

(15)

Moreover, as v → +∞ we have that asymmetric steady states either vanish or they converge toward a
symmetric steady state.

We start noting that (x∗
1, x

∗
2) corresponds to the Nash equilibrium of game Γω.

Condition (15) is a generalization of the latter one in (12) to the case of ω∗
1 6= ω∗

2 . It can be again
explained in terms of the balancing between the disposition toward altruism/spitefulness and the drift
toward altruism induced by stage outcome evaluation. The main difference between the symmetric and the
asymmetric steady state scenarios is that, in this latter one, the two players can have different evaluations
of the stage outcome, as ∆π∗

1(ω
∗
1 , ω

∗
2) = −∆π∗

2(ω
∗
1 , ω

∗
2). For simplicity, let us assume that player 1 and

player 2 evaluate in opposite ways the expected profits, with a negative evaluation by player 1. The drift
toward spitefulness of player 1 has the same extent of the drift toward altruism of player 2. Recalling the
discussion following Proposition 1, a steady state configuration occurs if player 1 has a disposition toward
altruism that counterbalances the drift toward spitefulness. The difference is that now, to be in a steady
state configuration, player 2, differently from player 2, must have disposition toward spitefulness, since for
player 2 the drift is toward altruism.

We stress that even if several asymmetric equilibria could arise, they are relevant only for suitably small
values of the prize. In fact, as v increases, they either vanish or they are close to a symmetric steady state.
Since the model is strongly characterized in terms of symmetry (in particular assuming the same kind of
players, i.e. function m is the same for both players), it is quite predictable that symmetric steady states play
the main role, in particular as the prize increases and asymmetric configurations become hardly sustainable
without an exogenous player asymmetry8.

Therefore, we limit the study of stability to symmetric steady states. We will give some more details
about asymmetric steady states in the numerical simulations reported in Section 4.

8We stress that the asymptotic behavior of asymmetric equilibria is not due to assumptions (9), which is not used in the
proof of Proposition 2.
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4. Dynamical analysis

The analysis carried on in Section 3 showed that non self-interested steady states can emerge from the
coevolution of preferences and strategies. However, to understand how dynamics select a particular steady
state (for example, those spiteful, linked to overbidding phenomena) and their role in the possible emergence
of endogenous oscillating dynamics, we must investigate out-of-steady state dynamical behaviors.

We begin to analyze the local asymptotic stability of symmetric steady states, in particular by focusing
on the role of the v. We distinguish the general case, in which the two players have non identical initial
strategies and preferences, from the very particular one in which both players are identical also in regard to
this aspect.

Proposition 3. Let s∗ = (x∗, x∗, ω∗, ω∗) be a symmetric steady state of (11) and let us define

θ∗(ω∗) = f(δ)

(

k′1(ω
∗)

2
+

k′2(ω
∗)

2

)

+
k′2(ω

∗)

2
− k′1(ω

∗)

2
.

For general initial conditions, we have that if −2 < θ∗(ω∗) < 0 there exists v̄(ω∗, θ∗(ω∗)) such that s
∗ is

locally asymptotically stable for v < v̄(ω∗, θ∗(ω∗)) and unstable for v > v̄(ω∗, θ∗(ω∗)).
If θ∗(ω∗) < −2 or θ∗(ω∗) > 0, s∗ is never locally asymptotically stable.
In the particular case of ω1,0 = ω2,0 and x1,0 = x2,0, model (11) is equivalent to a two-dimensional

system for which steady state s
∗ is either unconditionally stable or unstable.

The previous proposition shows that, as the prize increases, non-convergent dynamics can arise, giving rise
to endogenous oscillations in line with what is observed in lab experiments, in which erratic behavior and
overbidding more frequently occur when the prize is large [3, 16]. The economic rationale of such phenomena
can be ascribed to overreactive behaviors of the agents in the presence of large prizes, self sustained by the
coevolution of preferences. If at any time players have either different strategies or preferences, since the
best response to the competitor strategic behavior is larger the more the prize increases, we have that a
whatever a small discrepancy between the behavior of players is magnified. Moreover, if, for example, a
player exerted a small effort, the competitor can be induced to play a large effort. This leads to relevant
expected payoff differences, which, depending on the kind of player and his disposition, significantly alter
preferences. This in turn affects the strategic behavior of the players, leading to a strong response to the
competitor strategy due to the large prize.

In the remained of this section, we introduce two analytic expressions for function m, which describe
two particularly economically relevant kinds of players, namely tit-for-tat and inequality averse agents, for
which we specify the previous analytical results and which we numerically investigate.

A tit-for-tat agent positively evaluates a situation in which his expected payoff is larger than that of
his competitor, as he recognizes this as a situation in which the competitor nicely behaved in his regards,
while he negatively evaluates a situation in which his expected payoff is smaller than that of his competitor,
as he recognizes this as a situation in which the competitor badly behaved in his regards. We stress we
use “tit-for-tat” for this kind of players by analogy with the homonymous game strategy, in which players
replicate competitive and cooperative opponent behaviors. Indeed, in the present contribution, tit-for-tat
is related to the way players evaluate their opponent behaviors, and not to a strategic behavior. Moreover,
tit-for-tat assumes that a player is initially cooperative, conversely, we do not restrict initial preferences.

To model a tit-for-tat kind of player, a possible simple functional shape is

m(∆πi,t) = γ∆πi,t, (16)

where γ > 0 encompasses the strength of the reaction of the player.
An inequality averse agent evaluates in an increasingly negative way any situation in which the expected

payoffs of the two agents are different, since this points out a bad behavior by either himself or his opponent.
According to Fehr and Schmidt [26], agents exhibit a dislike toward unfair material outcomes, both if they
experience unfairness against them and if they are favored by it. Nevertheless, agents more dislike inequities
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potentially causing disadvantage to themselves than those causing advantage to them. Mimicking what is
used in [26], we consider function

m(∆πi,t) = δ − αmax{−∆πi,t, 0} − βmax{∆πi,t, 0} =

{

δ + α∆πi,t if ∆πi,t ≤ 0,

δ − β∆πi,t if ∆πi,t > 0,
(17)

to describe how inequality averse player i evaluates expected payoff differences. In (17) α > β > 0 respec-
tively weight the negative evaluation of player i of the expected material disadvantage −∆πi,t = ∆π−i,t and
of expected material advantage ∆πi,t, while δ > 0 represents the evaluation of a completely inequality-free
scenario.

Large coefficients α and β with respect to δ points out a strong inequality aversion, and hence the more
there are differences in the player behaviors the smaller or more negative the evaluation of the expected
payoff difference is. Conversely, small coefficients α and β with respect to δ encompass a mild or small
inequality aversion.

In the next two subsections we specialize the results of Proposition 1 and Corollary 1 to tit-for-tat and
inequality averse players, and we perform numerical investigations of the possible dynamical behaviors.
To better focus on the main aspects and explanation of results, in what follows we always assume that
monotonicity assumptions (10) on endogenous disposition hold true. Moreover, without loss of generality,
we assume that f ′(0) = 1, as scenarios arising for different values of f ′(0) occur for suitable rescaling
of parameters defining function m. For the numerical simulations, we use functions f(z) = tanh(z) and
σ2(ω) = max(min(aω + b, 1),−1). Expressions for function k1, k2 and σ1 can be obtained from k2(ω) =
σ2(ω)− ω, k1(ω) = ω − σ1(ω) and, thanks to assumption (9), from k1(ω) = k2(−ω).

4.1. Tit-for-Tat players

Firstly, in the next proposition, we specialize general static and dynamical results for the model with
two tit-for-tat players.

Proposition 4. Vector (x∗, x∗, ω∗, ω∗) is a symmetric steady state for (11) if and only if

x∗ =
v(1 − ω∗)

4
, k1(ω

∗) = k2(ω
∗). (18)

Under assumption (10a), the self-interested steady state is the unique symmetric one, and if k′2(0)− k′1(0) ∈
(−4, 0) it is locally asymptotically stable provided that

v <
4

γ(k1(0) + k2(0))
, (19)

otherwise it is unconditionally unstable.
Under assumption (10b), model (11) has three symmetric steady states s

∗
+ = (x∗

a, x
∗
a, ω

∗, ω∗), s
∗
0 =

(v/4, v/4, 0, 0) and s
∗
− = (x∗

s , x
∗
s,−ω∗,−ω∗), where s

∗
0 is locally unconditionally unstable and s

∗
± are locally

asymptotically unstable if k′2(ω
∗) − k′1(ω

∗) < −4, while otherwise they are locally asymptotically stable
provided that

v <
4(1∓ ω∗)

γ(k1(ω∗) + k2(ω∗)(1± ω∗)
. (20)

If ω1,0 = −ω2,0, model (11) reduces to a three-dimensional dynamical system for which s
∗
0 is locally asymp-

totically stable provided that

max

{

−2− k′2(0)

2
+

k′1(0)

2
,
k′2(0)

2
− k′1(0)

2
, 0

}

< v <
4

γ(k1(0) + k2(0))
.

First, we start noting that since a tit-for-tat player neutrally evaluates a stage outcome in which players
exert identical efforts (and hence no drift toward more/less altruism is present), at symmetric steady states a
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player must have disposition neither toward altruism nor spitefulness, as encompassed in the latter condition
in (18). For comments on steady states existence and uniqueness, we refer to the discussion after Proposition
1 and Corollary 1.

Concerning stability, we highlight the predictable destabilizing effect of the strength of reaction of players
to the expected payoff differences. Moreover, the more the coefficient of altruism can potentially increase,
the more s

∗ becomes unstable for smaller values of the prize. Greater kj(ω
∗
i ) potentially allows for larger

preference variations, which in turn causes larger changes in strategic behaviors. Effort differences can
be relevant on payoffs even in the presence of a small prize, leading to self sustained oscillations in the
coevolution of strategies and coefficients of altruism. Conversely, the opposite occurs in the presence of a
small potential variations of preferences.

When three steady states exist, noting that factor (1−ω∗)/(1+ω∗) is decreasing with respect to ω∗, the
stability interval for the altruistic steady state is always smaller than for that spiteful. The explanation for
this can be found in the larger payoffs expected when players underbid with respect to when they overbid.
Assume that both players have slightly different altruistic preferences, close to those at the altruistic steady
state. We recall that at s+ both players have neither disposition toward altruism nor for spitefulness,
since the latter condition in (18) holds true. Due to the difference in the coefficients of altruism, there are
inequalities in exerted efforts that induce inequality in expected payoffs. Since altruistic players underbid,
their expected payoffs are large even in the presence of a small prize, so reduced effort inequalities can lead
to significant payoff differences, which in turn induce relevant changes in the preferences. Since agents have
opposite evaluations of the expected payoff differences, one agent becomes more altruistic, the other less
altruistic and this goes on until the disposition toward spitefulness of the former player and that for altruism
of the latter one become dominating and start counterbalancing the drifts toward altruism induced by stage
outcome evaluation, reversing the phenomenon.

Conversely, when the prize is suitably small and agents are spiteful, expected payoffs are small, which
induces small payoff differences and this does not significantly affect preferences.

Moreover, the self-interested steady state is locally asymptotically unstable. However, if the initial
preferences are characterized in terms of coefficients of altruism with opposite signs, i.e. the degree of
altruism of a player exactly balances that of spitefulness of the competitor, s

∗
0 can attract trajectories

for intermediate values of the prize. The reason for which for small values of v convergence to s
∗
0 is not

possible is that in such prize range asymmetric steady states exist, and attract trajectories starting with
ω1,0 = −ω2,0. We give numerical evidence and explanation of such phenomena in Figure 4, which is obtained
setting γ = 4 and σ2(ω) = max(min(1.1ω + 0.3), 1),−1), which provides a unimodal function k2(ω)/k1(ω).
In the first two rows of Figure 4, we have possible steady states as graphical solutions to System (15) and
the corresponding basins of attraction, obtained on varying the initial coefficients of altruism and setting
x1,0 = 0.1 and x2,0 = 0.4 (accurate numerical investigations show that the reported basins of attraction are
just marginally affected by the initial strategy choices). We discuss the simulations just for ω2 ≥ ω1, due
to the symmetric behavior induced by tit-for-tat players. For very reduced prize values (Figure 4 (a)), we
have three distinct asymmetric steady states (one of which is P1, which lines on ω2 = −ω1), in addition to
the symmetric steady states s

∗
± and s

∗
0 (the self-interested steady state, denoted by an asterisk). Among

them, the attractor around P1 (together with the corresponding one around P ′
1) and s

∗
± attract almost

any trajectory, as it can be inferred by the corresponding basins of attraction reported in Figure 4 (e).
Conversely, steady states P2 and P3 do not play a significant active role on dynamics. As v increases, P2

arrives at P1 and then moves toward P3 (Figure 4 (b)), until they merge (Figure 4 (c)) and disappear (Figure
4 (d)). Conversely, as the prize increases, steady state P1 becomes locally stable and it moves closer to s

∗
0. Its

basin of attraction progressively reduces (Figure 4 (f-h)) to a very small region around line ω2 = ω1. When
asymmetric equilibria still exist, convergence toward them is possible with suitably heterogeneous initial
preferences, otherwise trajectories converge toward symmetric steady states. When P1 and P ′

1 merge with
s
∗
0, it attracts trajectories characterized by opposite coefficients of altruism. The previous considerations

are also evident by looking at the bifurcation diagrams reported in Figure 4 (i-l).
We stress that in-depth, numerical investigations with different functions σi always showed that asym-

metric steady states can exist just for very small values of v or γ. Both these settings are not particularly
interesting from the economic point of view, as in the former one we have that the prize is even smaller than
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Figure 4: Tit-for-tat players: asymmetric steady states and related dynamics. First row: steady states as intersections of the
curves implicitly defined by (15), for different small values of the prize v. Second row: basins of attraction corresponding to the
steady state scenarios in row 1. Third row: bifurcation diagrams for variables x1 and x2 (panel (i)) and ω1 and ω2 (panel (l)),
in which black and blue colors are used for player 1 and 2, respectively, while the black dashed line in panel (i) corresponds to
the self-interested steady state strategy.

the marginal costs, while in the latter one the players are not particularly involved in the competition, since
their reaction to the stage outcomes is very reduced. Both these situations are not realistically compatible
with contest lab experiments.

Now we study the possible dynamics arising for prizes larger than marginal costs (i.e. v > 1), again
setting σ2(ω) = max(min(1.1ω + 0.3), 1),−1) and γ = 4. We stress that for such functions σi(ω) we have
three steady states s

∗
+ = (v/18, v/18, 7/9, 7/9), s∗0 = (v/4, v/4, 0, 0) and s

∗
− = (4v/9, 4v/9,−7/9,−7/9),

where s
∗
+ is locally asymptotically stable for v < 18, s∗− is unstable (it would be stable for v < 0.2812),

while, for ω1,0 = −ω2,0, the self-interested steady state s
∗
0 is stable for v < 1.6667.

In Figure 5 (a-b) we report bifurcation diagrams of variables xi and ωi for different initial settings. In
all the diagrams the initial strategies are set equal to x1,0 = 3 and x2,0 = 4. The black and blue bifurcation
diagrams are obtained setting ω1,0 = −0.5 and ω2,0 = 0.3, i.e. the average coefficient of altruism is negative,
and hence the initial preferences are, on average, characterized by spitefulness. For v < 18, trajectories
converge toward the spiteful steady state, while at v = 18 it loses stability and we have numerical evidence
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Figure 5: Tit-for-tat players: symmetric steady states and related dynamics. First row: bifurcation diagrams for variables x1

and x2 (panel (a)) and ω1 and ω2 (panel (b)), when initial preferences are characterized on average by spitefulness (black and
blue colors), by altruism (red and magenta) and by self-interest (gray and green). Basins of attraction (panel (c)) when v = 30.

of the occurrence of a Neimark-Sacker bifurcation. We note that quasi-periodic trajectories are always
characterized by overbidding (the black/blue bifurcation diagrams in Figure 5 (a) always lie above the
dashed line representing the Nash equilibrium of the classic Tullock game) and spiteful preferences (the
black/blue bifurcation diagrams in Figure 5 (b) always lie below horizontal line ω = 0, corresponding to
self-interested preferences).

Similarly, setting ω1,0 = −0.3 = ω2,0, s
∗
0 loses stability through a Neimark-Sacker bifurcation at v =

1.6667 (green and gray bifurcation diagram). In this case, trajectories of strategies have large oscillations
around the Nash equilibrium of the classic Tullock game, with alternating altruistic and spiteful preferences.

Finally, if initial preferences are, on average, characterized by altruism, as for example setting ω1,0 = 0.5
and ω2,0 = −0.3, we have periodic dynamics around the altruistic steady state, which, as already noted, is
unstable when v > 1.

Convergence toward the altruistic or spiteful steady state basically depends on the characterization of the
initial preferences, on average, in terms of altruism or spitefulness, as evident from the basins of attraction
reported in Figure 5 (c). If ω1,0 + ω2,0 < 0, trajectories converge toward an attractor characterized by
spitefulness, while if ω1,0 + ω2,0 > 0 trajectories converge toward an attractor characterized by altruism
(and, as analytically proved, only for ω1,0 + ω2,0 = 0, convergence is toward an attractor characterized,
at least on average, by self-interest). We stress that these phenomena are mainly driven by the initial
preferences alone, while they are essentially independent of the initial strategic choices, at least when xi,0

are not too extreme to give rise at first to overreaction phenomena in the best response mechanism.
To summarize, both Proposition 4 and numerical investigations show that tit-for-tat players, in recipro-

cating their competitor behaviors, allow for the emergence of non self-interested dynamics, self-sustained by
the coevolution of their preferences and strategic behavior. Both overbidding and underbidding phenomena
are possible. However, since contest experiments are characterized by a strong degree of competitiveness
and, the initial attitude of players can be encompassed in initial spiteful preferences, a scenario with tit-
for-tat kind of players coevolves giving rise to dynamics driven by spiteful preferences, with overbidding
phenomena. Conversely, when pro-social attitude is promoted (e.g., [15]), reduced efforts and underbid-
ding are observed. This can be explained in terms of stimulating altruistic preferences, which then bolster
dynamics characterized in terms of positive coefficients of altruism and underbidding.

4.2. Inequality averse players

The next proposition presents specialized static and dynamical results for the model with two inequality
averse players. Since the conditions defining steady states do not become simpler than those in (15), we
avoid repeating them. Moreover, since the discussion on asymmetric steady states with tit-for-tat players is
still applicable for inequality averse players, we just focus on symmetric steady states.
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Proposition 5. Under assumption (10a), or under assumption (10b) and if δ is suitably large, model (11)
has a unique symmetric steady state s

∗
+ = (x∗

a, x
∗
a, ω

∗, ω∗) with ω∗ > 0.
Under assumption (10b) and if δ is suitably small, model (11) has three steady states s∗+ = (x∗

a, x
∗
a, ω

∗
a, ω

∗
a),

s
∗
−,1 = (x∗

s,1, x
∗
s,1, ω

∗
s,1, ω

∗
s,1), s

∗
−,2 = (x∗

s,2, x
∗
s,2, ω

∗
s,2, ω

∗
s,2) with ω∗

s,1 < ω∗
s,2 < 0 < ω∗

a.
Each of the previous steady states is locally asymptotically stable provided that k′2(ω

∗)− k′1(ω
∗) ∈ (−4, 0)

and

v <
8(1− ω∗)

(α− β)f ′(δ)(k1(ω∗) + k2(ω∗))(1 + ω∗)
, (21)

in which ω∗ is replaced by the corresponding steady state coefficient of altruism.
If k′2(ω

∗)−k′1(ω
∗) < −4 or k′2(ω

∗)−k′1(ω
∗) > 0, the steady state is unconditionally unstable, in particular

s
∗
−,2 is always unconditionally unstable.

Since an inequality averse player positively evaluates a stage outcome at which no inequality is present
between player behaviors, it is understandable that a steady state characterized in terms of altruism always
exists in a symmetric scenario. However, if the disposition toward altruism/spitefulness non-monotonically
depends on the coefficient of altruism, also spiteful steady states can exist, at least for small values of δ, as
shown and discussed in Corollary 1.

Concerning stability, we have that the greater is the difference between aversion toward his own material
disadvantage with respect to that toward the competitor material disadvantage, the smaller is the threshold
prize value after which a steady state becomes unstable. This can be explained as follows. The more α is
different from β, the more the effect on the preferences of the evaluation of the stage outcome is different.
Note that, differently from tit-for-tat players, inequality averse players can in principle provide the same
evaluation of payoff differences (when α = β), since they both dislike inequalities. However, even if, as ∆πi

diverts from zero, their dislike increases, the more α− β is large, the more ∆πi differently increases for each
player. This can amplify the difference between preferences, which can self-sustain due to the consequent
inequalities in player strategies that cause differences in expected payoffs.

Once more, an altruistic steady state has, ceteris paribus, a reduced interval of prize values above which
instability arises. This is again due to larger payoffs expected by altruistic players, possibly inducing larger
payoff differences that, in the case of inequality averse players, self-sustain.

At a first glance, Proposition 5 seems to show that when inequality averse players are involved, dynamics
characterized in terms of altruism should dominate. An altruistic steady state always exists, and it can
also be the unique one. Even when it becomes unstable, one could expect that oscillating dynamics around
positive values of coefficient of altruism should arise, with consequent underbidding in strategies. However,
the scenarios that arise can be quite surprising.

We discuss dynamics with the help of numerical simulations. We thoroughly checked, by changing the
involved parameters and the shapes of functions σi, that the reported simulative results are robust and the
consequent comments hold true in general.

We consider σ2(ω) = max(min(1.1ω + 0.3), 1),−1) and we set α = 4 and β = 0.6 (such values are
among those proposed in [26]). If we set δ = 0.1, we have three symmetric steady states, as shown in
Figure 6 (a), corresponding to s

∗
−,1 = (0.43v, 0.43v,−0.72,−0.72), s∗−,2 = (0.32v, 0.32v,−0.30,−0.30), s∗+ =

(0.04v, 0.04v, 0.82, 0.82).
Moreover, from condition (21), s∗+ is locally asymptotically stable for v < 0.58, while s∗−,1 for v < 29.05.

So, the prize values for which s
∗
+ is stable are very small, in particular less than marginal costs. In Figure 6

(b-c) we report the bifurcation diagrams for strategies and coefficients of altruism considering initial values
close to s

∗
+. Notwithstanding, for v > 3.3 trajectories converges toward the spiteful steady state and, when

s
∗
−,1 becomes unstable, toward an attractor at which preferences are always characterized by spitefulness and

strategies by overbidding. As evident from Figure 6 (d-h), the spiteful steady state s∗−,1 attracts trajectories
that also start from initial altruistic preferences. We stress that the basins reported in Figure 6 (d-h) are
obtained by setting initial strategies close to 0.04v, i.e. to the steady state strategies related to s

∗
+. The

attractor arising from the loss of stability of s∗+ very quickly grows and as v →∼ 3.2 it tends to collide with
the boundary of the basin of attraction of s∗−,1, and hence to disappear. So, even for quite small values of
the prize, s∗+ does not play any economically significant role in the dynamics (we recall that, in agreement
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Figure 6: Inequality averse players, δ = 0.1. First row: three symmetric steady states characterized in terms of either
spitefulness or altruism (panel (a)). Panels (b-c): bifurcation diagrams for variables x1 and x2 and ω1 and ω2, when initial
preferences are characterized by altruism (black and blue colors are respectively used for player 1 and 2). Second row: s

∗

−,1

(blue asterisk, turquoise basin of attraction) coexisting with another attractor (yellow basin of attraction) arisen from the loss
of stability of s∗+ (red asterisk). Third row: s

∗

−,1 (blue asterisk) attracts almost any trajectory (panel (g)) and, as v further

increases, it loses stability and a closed invariant curve emerges (panel (h)).

with Proposition (26), some trajectories starting with ω1,0 = ω2,0 can still converge toward s
∗
+) and starting

from almost any initial condition we have convergence toward the spiteful steady state or the attractor
arising when it becomes unstable. The scenario reported in Figure 6 shows that, at least when multiple
steady states are present, the spiteful steady state is that dynamically relevant, giving rise to overbidding
phenomena even if the players initially have altruistic preferences, especially when the prize increases.

What is most surprising is that dynamics characterized by spiteful preferences can emerge even in the
absence of spiteful steady states. To this end, we consider the same setting we used for the simulations
reported in Figure 6, but we increase δ, setting it equal to 0.4. In this case, as shown in Figure 7 (a), we
have a unique altruistic symmetric steady state s∗+ = (0.02v, 0.02v, 0.91, 0.91), which is locally asymptotically
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stable just for v < 0.45. As v increases, a closed invariant curve emerges around s
∗
+ giving rise to quasi-

periodic dynamics. However, such attractor moves away from s
∗
+, and it quickly reaches regions of the

phase space in which coefficients of altruism are negative and hence strategic choices are larger than those
corresponding to the classic Tullock Nash equilibrium. The bifurcation diagrams reported in Figure 7 (b-c)
are obtained setting ω1,0 = 0.9, ω2,0 = 0.905 and x1,0 = x2,0 = 0.31, i.e. coefficients of altruism are very close
to those at s∗+. They show that, even if for small values of the prize, dynamics are characterized in terms of
altruism, strategies (respectively coefficients of altruism) shift upward (respectively downward), highlighting
overbidding phenomena. As evident from Figure 7 (d-g), the attractor arising when s

∗
+ becomes unstable

“travels” along the diagonal of phase plane (ω1, ω2), shifting toward the region in which both coefficients
of altruism are negative. To better explain such dynamical behavior, we make reference to the initial parts
of the time series of xi and ωi reported in Figure 7 (h-i). The initial conditions are close to s

∗
+, and both

players have initial altruistic preferences and underbid. However, the small difference between their initial
preferences causes slightly different strategic behaviors, which lead to inequalities in the expected payoffs,
which is significant due to the underbidding of the agents. Inequality aversion then brings about a change in
the preferences. Since they both dislike the stage outcome, this creates a drift toward spitefulness that starts
decreasing the coefficient of altruism. However, the effects of aversion toward his own material disadvantage
with respect to that toward the competitor material disadvantage are different, and hence the extent of the
decrease of the coefficients of altruism is different for each player, and this amplifies inequality between player
behaviors and hence between payoffs. The decrease of coefficients of altruism then goes on, and altruistic
preferences turn into spiteful ones, due to the persistence of a behavior of the competitor that is evaluated
as bad. As the players become more spiteful, they increase the exerted effort and they start overbidding
(t = 5). This progressively reduces expected payoffs, and hence the difference between them. However,
such differences persist, as they are sustained by inequality aversion toward own material disadvantages,
which, due to the erratic evolution of both preferences and strategies, alternately affect different players.
Spitefulness and overbidding increases until they reach a point (t = 15), at which, due to the large, negative
coefficient of altruism, each player disposition toward altruism is dominating, leading to a slow increase of
the coefficient of altruism, also because of reduced expected payoffs and consequently reduced inequality.
Such an increase goes on until inequalities are bearable. As the overbidding reduces and payoff inequality
tends to increase, an abrupt inversion of preference trajectories occurs, with a fast return of spitefulness
sustained by inequality aversion.

We note that maximum positive drift toward altruism is bounded by the value of δ. However, increasing
δ, the altruistic steady state is more altruistically polarized, and hence it’s stability region further shrinks. So
the increased possible drift toward altruism is opposed by the larger inequalities that steady state instability
creates, so the final dynamical behavior is essentially the same of that described for reduced values of δ.

If we considered functions σi for which k2(ω)/k1(ω) is strictly increasing and just one symmetric altruistic
steady state exists, we would observe dynamical behaviors that are similar in all and for all to those reported
in Figure 7.

We note that simulations show that altruistic steady states can play a more relevant dynamical role if
we decrease α and β. This means that players are weakly inequality averse, i.e. they are quite indifferent to
what they observe from stage outcomes. So it is not surprising that in these cases dynamics are characterized
more by the initial preferences than by a coevolution of preferences and strategies. However, these scenarios
are not particularly interesting from the economic point of view, as they are not consistent with the strong
competitiveness degree encompassed in contest lab experiments, for which strategic behavior is expected to
have greater influence on players.

We stress that, as we mentioned in the Introduction, in the literature it was already shown that inequality
aversion could be an explanation of overbidding, but assuming exogenous spitefulness for players. The
previous results show that overbidding due to inequality aversion is robust with respect to endogenous
preference evolution and can emerge even if the players are (initially) altruistic.

To summarize, when inequality averse players are involved, the static analysis would suggest that al-
truism and underbidding should be dominant, but the dynamical analysis highlights that spitefulness and
overbidding can endogenously emerge, giving rise to non convergent dynamics, once more self-sustained by
the coevolution of strategies and preferences.
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Figure 7: Inequality averse players, δ = 0.4. First row: the unique symmetric steady state is characterized in terms of altruism
(panel (a)). Panels (b-c): bifurcation diagrams of variables x1, x2 and ω1, ω2, when initial preferences are characterized by
altruism (black and blue colors are respectively used for player 1 and 2). Second and third rows: attractor evolution as
v increases (panels (d-g)) and related position with respect to locally asymptotically unstable altruistic steady state (red
asterisk). Third row, panels (h-i): time series of variables x1, x2 and ω1, ω2 when v = 14.

5. Conclusions

Coevolution of other regarding preferences and agent behaviors proved to be an effective tool to un-
derstand the emergence of non self-interested preferences, and consequently of strategic choices that can
explain overbidding or underbidding phenomena, as well as erratic behavior. The carried on analysis shows
the importance played by agent preferences in determining both possible steady and dynamical outcomes.
Moreover, it highlights how a static investigation of contest models can be misleading, as preference evo-
lution can drive trajectories very far from steady states. The way player preferences evolve depending on
the observation and evaluation of the contest outcomes leads to the selection of particular steady configu-
rations, when multiple of them coexist. In addition, for example in the case of inequality averse players, it

22



can even sustain the endogenous occurrence of overbidding when no steady states characterized in terms of
overbidding do exist. Moreover, the coevolutive approach that we pursued allows a clear explanation of the
rationale behind each static or dynamical result.

We aim at developing future research in several directions. First, we have so far considered a symmetric
setting, with homogeneous players. Introducing heterogeneity also allows for testing the robustness of the
results in an evolutionary perspective. Moreover, different preference evolution mechanisms can be taken
into account, considering, for instance, an exogenous reference value on which basis the agents evaluate the
behavior of their opponents. Finally, the model we proposed is related to a classic Tullock contest setting,
but this approach can be extended to different situations, as for example in public good games. In addition
to this, it could be applied to conflict models, to understand the ebb and flow often observed in the level of
hostilities, with waves of extreme contrasts followed by an ostensible quiet, and again by extreme violence.

Appendix

Proof [Proposition 1 and Corollary 1] For a symmetric equilibrium we set ω1 = ω2 = ω. From the former
couple of equations we immediately obtain the former expression in (12). Since ∆πi(x1(ω, ω), x2(ω, ω)) = 0
we have

{

0 = k1(ω)+k2(ω)
2 f(m(0)) + k2(ω)−k1(ω)

2 ,

0 = k1(ω)+k2(ω)
2 f(m(0)) + k2(ω)−k1(ω)

2 ,

which provides the latter condition in (12). Note that such condition can be rewritten as

f(δ) =
k1(ω

∗)− k2(ω
∗)

k2(ω∗) + k1(ω∗)
. (22)

Let g : (−1, 1) → R defined by g(ω) = (k1(ω) − k2(ω))/(k2(ω) + k1(ω)). From k1(0) = k2(0) we have
g(0) = 0, and since k1(ω) = k2(−ω), function g(ω) is odd. Moreover, since k2(ω) → 0+ as ω → 1− and
k1(ω) → 0+ as ω → −1+, from assumption (8), since |σ2(ω)− σ1(ω)| > µ we have k2(ω) + k1(ω) > µ, and
hence limω→−1− k2(ω) ≥ µ and limω→1− k1(ω) ≥ µ, from which g(ω) → ±1 as ω → ±1. Since f(δ) ∈ (−1, 1),
thanks to the Intermediate Values Theorem, we have that equation (22) always has at least a solution. The
conclusion on the self-interested steady state is straightforward from (12).

Setting ρ(ω) = k2(ω)/k1(ω), we have that the right hand side in (22) can be rewritten as g(ω) =
(1 − ρ(ω))/(ρ(ω) + 1), for which g′(ω) = (−2ρ′(ω))/((1 + ρ(ω))2), i.e. the monotonicity of g is opposite to
that of ρ(ω). This means that if ρ(ω) is strictly monotonic, we then have that (22) has a unique solution.
Note that, thanks to assumption (9), we have g(0) = 0 and, thanks to assumption (8), we have g(±1∓) = ±1,
so if ρ(ω) is strictly monotonic, function g must be strictly increasing (which means that k2(ω)/k1(ω) must
be strictly decreasing). So a straightforward geometric consideration shows that if δ increases, also the
solution to (22) increases as well. The strict monotonicity of ρ(ω) is also necessary for uniqueness. It is
clear that if ρ(ω) is monotonic but not strictly monotonic, then (22) has infinitely many solutions for some
δ. If ρ(ω) is not monotonic, then for some ω̄ we must have ρ′(ω̄) = 0 and ω̄ is an extremum point. If it is
for example a maximum point, for δ belonging to a suitably small left neighborhood of f−1(ρ(ω̄)) we have
at least a couple of solutions to (22). Moreover, since k1(ω) = k2(−ω), function g is odd and unimodal
on [0, 1), it is a cubic-like function, so we immediately have the result about the maximum number and
characterization of symmetric steady states of Corollary 1. ✷

Proof [Proposition 2] From the former couple of equations in (11) we immediately obtain (14). Recalling
that ∆π2,t = −∆π1,t the latter couple of equations requires











0 =
k1(ω1) + k2(ω1)

2
f(m(∆π1)) +

k2(ω1)− k1(ω1)

2
,

0 =
k1(ω2) + k2(ω2)

2
f(m(−∆π1)) +

k2(ω2)− k1(ω2)

2
,

which immediately provides (15).
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We limit to detail the proof for those ω1 for which (k1(ω1) − k2(ω1))/(k1(ω1) + k2(ω1)) > 0, the other
case can be similarly handled. For simplicity, let us again denote by m the restriction of function m(x)
to x ≥ 0. Since σ2(ω) ≥ ω + µ > ω > ω − µ ≥ σ1(ω) we have that ki(ω) 6= 0 on (−1, 1), so −1 <
(k1(ω)− k2(ω))/(k1(ω) + k2(ω)) < 1 and hence the latter condition in (15) can be then rewritten as

(1− ω∗
1ω

∗
2)(ω

∗
2 − ω∗

1)

(2− ω∗
1 − ω∗

2)
2

=
1

v
m−1

(

f−1

(

k1(ω
∗
1)− k2(ω

∗
1)

k1(ω∗
1) + k2(ω∗

1)

))

. (23)

As v → +∞, the right hand side of the previous identity pointwise converges toward the null function for
any given ω∗

1 . This means that, for any ω∗
1 , for suitably large values of v, we have that ω∗

2 solving the
previous identity can be made as close as we like to ω∗

1 . This concludes the proof. ✷

Proof [Proposition 3] We start considering general initial conditions. We note that function F defining
model (11) is Lipschitz continuous but not differentiable at x1 = x2. However, the classic argument on the
eigenvalues of the Jacobian matrix of F at the steady state can be adapted and still holds at a symmetric
steady state s

∗ of (11). For the reader’s sake, we detail the proof.
Let us consider a symmetric steady state s

∗ of (11). Note that x∗
1 = x∗

2 6= 0, so it is possible to find a
suitable neighborhood Ω ⊂ (0,+∞)2 × (−1, 1)2 of s∗ such that if (x1, x2, ω1, ω2) ∈ Ω, we have xi ≥ µ > 0
for some µ > 0. This guarantees that on each subset

Ω+ = Ω ∩ {(x1, x2, ω1, ω2) ∈ R
4 : x2 ≥ x1}, Ω− = Ω ∩ {(x1, x2, ω1, ω2) ∈ R

4 : x2 ≤ x1},
function F ha continuous partial derivatives, and hence it is Frechet differentiable. Let J± be the Jacobian
matrices of F on Ω±, for any norm, we then have that there are two balls B(s∗, δ+) and B(s∗, δ−) such
that, respectively, for any h ∈ R

4 : s∗ + h ∈ Ω±

lim
‖h‖→0

‖F (s∗ + h)− F (s∗)− J±(s∗)h‖
‖h‖ = 0,

Let us assume that ρ(J±(s∗)) < 1, and let us consider a norm ‖‖ for which J±(s∗)‖ < ρ(J±(s∗))+ε < 1−ε,
for some suitable ε > 0. Thanks to Frechet differentiability and recalling that s∗ is a steady state, there is
a ball B(s∗, δ+) such that for any h ∈ R

4 : s∗ +h ∈ B(s∗, δ+) we have ‖F (s∗ +h)− s
∗ −J+(s∗)h‖ ≤ ε‖h‖

and there is a ball B(s∗, δ−) such that for any h ∈ R
4 : s∗ + h ∈ B(s∗, δ−) we have ‖F (s∗ + h)− F (s∗)−

J−(s∗)h‖ ≤ ε‖h‖. We then have, respectively on B(s∗, δ±) that

‖F (s∗ + h)− s
∗‖ ≤ ‖F (s+ h)− s

∗ − J±(s∗)h‖+ ‖J±(s∗)h‖ ≤ ε‖h‖+ (ρ(J±) + ε)‖h‖,
so that on B = B(s∗, δ+) ∪ B(s∗, δ−) we have ‖F (s∗ + h) − s

∗‖ ≤ k‖h‖ with k < 1, and this guarantees
convergence toward s

∗ of iterations that start in B.
The Jacobian matrix of System (11) is defined for any x1 6= x2 and results

J =









0 j12 j13 0
j21 0 0 j24
j31 j32 j33 0
j41 j42 0 j44









,

where

j12 =
1

2

√

v(1− ω1)

x2
− 1, j13 = −1

2

√

vx2

1− ω1
, j21 =

1

2

√

v(1− ω2)

x1
− 1, j24 = −1

2

√

vx1

1− ω1
,

and

j31 = −
m′(∆π)f ′(m(∆π))

(

k1(ω1)
2 +

k2(ω1)
2

)

(x2
1+2x1x2+x2

2−2vx2)

(x1+x2)2
= −j32,

j33 = f(m(∆π))
(

k′
1(ω1)
2 +

k′
2(ω1)
2

)

+
k′
2(ω1)
2 − k′

1(ω1)
2 + 1,

j41 =
f ′(m(−∆π))m′(−∆π)

(

k1(ω2)
2 +

k2(ω2)
2

)

(x2
1+2x1x2+x2

2−2vx2)

(x1+x2)2
= −j42,

j44 = f(m(−∆π))
(

k′
1(ω2)
2 +

k′
2(ω2)
2

)

+
k′
2(ω2)
2 − k′

1(ω2)
2 + 1,
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in which we set ∆π = ((x2 − x1)(x1 − v + x2))/(x1 + x2).
We have that J+(s∗) (i.e. the Jacobian matrix of the restriction of F to Ω+ evaluated at s∗) is

J+(s∗) =









0 0 − v
4 0

0 0 0 − v
4

m′(0+)z −m′(0+)z 1 + θ 0
−m′(0−)z m′(0−)z 0 1 + θ









,

where we set

z = f ′(δ)

(

k1(ω
∗)

2
+

k2(ω
∗)

2

)

1 + ω∗

1− ω∗ , θ = f(δ)

(

k′1(ω
∗)

2
+

k′2(ω
∗)

2

)

+
k′2(ω

∗)

2
− k′1(ω

∗)

2
.

A straightforward computation shows that the characteristic polynomial of J+(s∗) is

p(λ) = λ

(

λ3 − 2(θ + 1)λ2 +

(

θ2 + 2θ +
φ

4
+ 1

)

λ+

(

−φ

4
− φθ

4

))

, (24)

where we set φ = vz(m′(0−) +m′(0+)).
Similarly, we have that J−(s∗) (i.e. the Jacobian matrix of the restriction of F to Ω− evaluated at s∗)

is

J−(s∗) =









0 0 − v
4 0

0 0 0 − v
4

m′(0−)z −m′(0−)z 1 + θ 0
−m′(0+)z m′(0+)z 0 1 + θ









.

A straightforward computation shows that the characteristic polynomial of J−(s∗) is again (24), so the
conditions under which the eigenvalues of J+(s∗) and J−(s∗) lie inside the unit circle are the same. This
also means that conditions under which their eigenvalues lie outside the unit circle are the same, and
hence reverting the following inequalities we will obtain conditions under which a symmetric steady state is
unstable.

Polynomial (24) has indeed a null eigenvalue, so conditions under which its eigenvalues lie inside the unit
circle are those for the roots of a third degree polynomial. We recall that, as reported, for example, in [27],
such conditions are















T +D − 1 +M < 0
−(T +D + 1 +M) < 0
M − T ·D − 1 +D2 < 0
−(M − T ·D + 1 +D2) < 0

where T = 2θ + 2,M = θ2 + 2θ +
φ

4
+ 1, D =

φ(θ + 1)

4
, (25)

so conditions (25) become























θ(φ−4θ)
4 < 0,

− (θ+2)(φ+4θ+8)
4 < 0,

(

θ+1
4

)2
φ2 −

(

θ2

2 + θ + 1
4

)

φ+ θ2 + 2θ < 0,

(θ+1)2

16 φ2 +
(

2(θ+1)2−1
4

)

φ− (θ + 1)2 − 1 < 0.

(26)

Since we aim at studying stability on varying v, we solve each condition with respect to φ. Let

φ1(θ) = 4θ, φ2(θ) = −4θ − 8, φ3(θ) =
4θ(θ + 2)

(θ + 1)2

and

φ−(θ) =
2
(

−2θ2 − 4θ − 1−
√

8(θ + 1)2 + 1
)

(θ + 1)2
, φ4(θ) =

2
(

−2θ2 − 4θ − 1 +
√

8(θ + 1)2 + 1
)

(θ + 1)2
,
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solving (26) for φ, depending on θ, we find

θ < −2 −2 < θ < 0 0 < θ < 2
Condition1 φ > φ1(θ) φ > φ1(θ) φ < φ1(θ)
Condition2 φ < φ2(θ) φ > φ2(θ) φ > φ2(θ)

Condition3 φ3(θ) < φ < 4
φ3(θ) < φ < 4
( if θ = −1, φ < 4)

φ3(θ) < φ < 4

Condition4 φ−(θ) < φ < φ4(θ)
φ−(θ) < φ < φ4(θ)
( if θ = −1, φ > −4)

φ−(θ) < φ < φ4(θ)

We start focusing on θ < −2, whose study we subdivide into two cases.

Let − 3+
√
5

2 ≤ θ < −2. We have

φ2(θ) ≤ φ3(θ) ⇔ −4θ − 8 ≤ 4θ(θ + 2)

(θ + 1)2
⇔ 4(θ + 2)(θ2 + 3θ + 1)

(θ + 1)2
≥ 0, (27)

in which the last expression is true for θ2 + 3θ + 1 ≥ 0, i.e. when − 3+
√
5

2 ≤ θ < −2, so conditions 2 and 3
are not compatible in such interval.

Let θ < − 3+
√
5

2 . We have

φ4(θ) < φ3(θ) ⇔
2
(

−2θ2−4θ−1+
√

8(θ+1)2+1
)

(θ+1)2 < 4θ(θ+2)
(θ+1)2 ⇔ 16θ−2

√
8θ4+32θ3+48θ2+32θ+9+8θ2+2

(θ+1)2 > 0

⇔ 32(θ2 + 3θ + 1)(θ2 + θ − 1) > 0,
(28)

which is true since θ2 + 3θ + 1 is positive for θ < − 3+
√
5

2 as well as θ2 + θ − 1, since it is positive for

θ < − 1+
√
5

2 . So condition 3 and 4 are not compatible for θ < − 3+
√
5

2 and (26) has empty solution.
So we conclude that s∗ is unconditionally unstable for θ < −2.

Now we focus on θ < −2, whose study we again subdivide into two cases.

Let 0 < θ ≤
√
5−1
2 . We have

φ1(θ) ≤ φ3(θ) ⇔ 4θ ≤ 4θ(θ + 2)

(θ + 1)2
⇔ 4θ(θ2 + θ − 1)

(θ + 1)2
≤ 0, (29)

in which the last expression is true for θ2 + θ − 1 ≤ 0, i.e. for 0 < θ ≤
√
5−1
2 , so condition 1 and 3 are not

compatible in such interval.

Let θ >
√
5−1
2 . Recalling (28), we have that φ4(θ) < φ3(θ) since θ2 + 3θ + 1 is positive for θ >

√
5−3
2 as

well as θ2 + θ − 1, since it is positive for θ >
√
5−1
2 . So condition 3 and 4 are not compatible for θ >

√
5−1
2

and hence (26) has empty solution.
So we conclude that s∗ is unconditionally unstable also for θ > 0.
Let us now consider the case of θ ∈ (−2, 0). We note that if m′(0−) + m′(0+) > 0, we have that as v

increases in (0,+∞), φ increases in (0,+∞), while if m′(0−) +m′(0+) < 0, we have that as v increases in
(0,+∞), φ decreases in (−∞, 0).

So we start considering the solution to (26) in the case of m′(0−)+m′(0+) > 0, so we are interested only
in solutions φ ∈ (0,+∞). Since θ ∈ (−2, 0), both conditions 1 and 2 are always fulfilled, while condition 3
reduces to φ ∈ (0, 4), and we set

v̄(ω, θ) =
4

(m′(0−) +m′(0+))f ′(δ)
(

k1(ω)
2 + k2(ω)

2

)

1+ω
1−ω

. (30)

We have
2
(

−2θ2 − 4θ − 1 +
√

8(θ + 1)2 + 1
)

(θ + 1)2
< 4,
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as it can be equivalently rewritten into

2
(

−2θ2 − 4θ − 1 +
√

8(θ + 1)2 + 1
)

(θ + 1)2
< 4 ⇔

2
(

4θ2 + 3 + 8θ −
√
8θ4 + 32θ3 + 48θ2 + 32θ + 9

)

(θ + 1)2
> 0 ⇔ 8θ(θ + 1)2(θ + 2) > 0,

which is indeed true recalling that θ ∈ (−2, 0).
Now we focus on the solution to (26) in the case of m′(0−) +m′(0+) < 0, so we are interested only in

solutions φ ∈ (−∞, 0). Conditions 1 and 2 can be summarized as

φ >

{

4θ −1 ≤ θ < 0
−4θ − 8 −2 < θ < −1

(31)

and we set

v̄(ω, θ) =







4θ

(m′(0−)+m′(0+))f ′(δ)
(

k1(ω)
2 +

k2(ω)
2

)

1+ω

1−ω

−1 ≤ θ < 0,

−4θ−8

(m′(0−)+m′(0+))f ′(δ)
(

k1(ω)
2 +

k2(ω)
2

)

1+ω

1−ω

−2 < θ < −1.

Moreover, recalling (29), we have φ3(θ) < φ1(θ) on −1 ≤ θ < 0 and, recalling (27), we have φ3(θ) < φ2(θ)
on −2 < θ < −1, so condition (31) guarantees condition 3.

Finally, also condition 4 is guaranteed by condition (31). In fact, we can note that the right-hand side
in (31) is greater or equal than −4 on (−2, 0), φ4 > 0 and

2
(

−2θ2 − 4θ − 1−
√

8(θ + 1)2 + 1
)

(θ + 1)2
< −4 ⇔

2
(

√

8(θ + 1)2 + 1− 1
)

(θ + 1)2
> 0,

which is true since
√

8(θ + 1)2 + 1 ≥ 1.
Now let us discuss what happens if x1,0 = x2,0 and ω1,0 = ω2,0. In this case, both equations describing

the dynamics of strategic behavior are the identical, as well as those describing preference adjustment
mechanism. This means that four dimensional model (11) reduces to the two dimensional model







xt+1 =
√

vxt(1 − ωt)− xt,

ωt+1 = ωt +
k2(ωt) + k1(ωt)

2
f(m(0)) +

k2(ωt)− k1(ωt)

2
,

(32)

where xt and ωt represent the time invariant strategies of both players. The Jacobian matrix of the map
defining the right-hand side of (32) is

J =





√

v(1−ω)
x

− 1 −
√
xv

2
√
1−ω

0
k′
2(ω)
2 − k′

1(ω)
2 + f(δ)

(

k′
1(ω)
2 +

k′
2(ω)
2

)

+ 1



 ,

which evaluated at a symmetric equilibrium becomes

J∗ =

(

0 − v
4

0
k′
2(ω

∗)
2 − k′

1(ω
∗)

2 + f(δ)
(

k′
1(ω

∗)
2 +

k′
2(ω

∗)
2

)

+ 1

)

,

from which it is evident that stability does not depend on v. ✷

Proof [Proposition 4] Characterization of the steady state coefficient of altruism in (18) immediately follows
from the latter condition in (12) and f(δ) = 0. Concerning stability, we start noting that at a symmetric
steady state, since k1(ω

∗) = k2(ω
∗), we have

(

k2(ω
∗)

k1(ω∗)

)′
=

k′2(ω
∗)k1(ω∗)− k2(ω

∗)k′1(ω
∗)

k21(ω
∗)

=
k′2(ω

∗)− k′1(ω
∗)

k1(ω∗)
,
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so the sign of k′2(ω
∗) − k′1(ω

∗) is determined by the monotonicity of k2(ω
∗)/k1(ω∗). We already showed

in the proof of Proposition 1 that if k2(ω
∗)/k1(ω∗) is strictly monotonic, it must be strictly decreasing, so

k′2(ω
∗)−k′1(ω

∗) < 0 and from Proposition 3 s
∗
0 is unconditionally unstable if θ(0) = (k′2(0)−k′1(0))/2 < −2.

Conversely, if k′2(0) − k′1(0) > −4, from the proof of Proposition 3 we have that stability is guaranteed
provided that (30) holds true, that in the present case reduces to (19).

Under assumption (10b), recalling that the right-hand side in (22) vanishes for ω∗ = 0 and approaches
1 as ω∗ → 1−, we have that k2(ω)/k1(ω) is strictly increasing at s∗0, while it is strictly decreasing at s∗±, so
s
∗
0 is unconditionally unstable since k′2(0)− k′1(0) > 0, while for s∗± conditional stability is again guaranteed

by (30) holds true, that in the present case reduces to (20).
Noting that for a tit-for-tat player m is an odd function, we have that the equations of model (11)

governing dynamics of ω can be written as

ω1,t+1 = ω1,t +
k2(ω1,t) + k1(ω1,t)

2
f(m(∆π1,t)) +

k2(ω1,t)− k1(ω1,t)

2
,

ω2,t+1 = ω2,t −
k2(ω2,t) + k1(ω2,t)

2
f(m(∆π1,t)) +

k2(ω2,t)− k1(ω2,t)

2
,

so, if ω1,0 = −ω2,0, model (11) becomes a three dimensional system with a unique variable ωt = ω1,t = −ω2,t

for coefficients of altruism, i.e.














x1,t+1 =
√

vx2,t(1− ωt)− x2,t,

x2,t+1 =
√

vx1,t(1 + ωt)− x1,t,

ωt+1 = ωt +
k2(ωt) + k1(ωt)

2
f(m(∆π1,t)) +

k2(ωt)− k1(ωt)

2
.

Evaluating at (x1, x2, ω) = (v/4, v/4, 0) the Jacobian matrix corresponding to the function defining the
right-hand side of the last system we find

J∗ =







0 0 − v
4

0 0 v
4

γ
(

k1(0)
2 + k2(0)

2

)

−γ
(

k1(0)
2 + k2(0)

2

)

k′
2(0)
2 − k′

1(0)
2 + 1






,

whose characteristic polynomial is

p(λ) = −λ

(

λ2 −
(

k′2(0)

2
− k′1(0)

2
+ 1

)

λ+
γv

4
(k1(0) + k2(0))

)

.

Setting

T =
k′2(0)

2
− k′1(0)

2
+ 1, D =

γv

4
(k1(0) + k2(0)),

the eigenvalues of p(λ) lie inside the unit circle provided that






1 + T +D > 0
1− T +D > 0
1−D > 0

⇔











2 +
k′
2(0)
2 − k′

1(0)
2 + γv

4 (k1(0) + k2(0)) > 0

−k′
2(0)
2 +

k′
1(0)
2 + γv

4 (k1(0) + k2(0)) > 0
1− γv

4 (k1(0) + k2(0)) > 0

which concludes the proof. ✷

Proof [Proposition 5] Under assumption (10a), characterization of the steady state coefficient of altruism
immediately follows from (12) and f(δ) > 0. Similarly, under assumption (10b), recalling Corollary (1),
for suitably large values of δ, we have a unique symmetric steady state with ω∗ > 0. For its stability, we
start noting that for (17) we have m′(0−) = α and m′(0−) = −β, with α − β > 0. From Proposition 3
any symmetric steady state is unconditionally unstable if θ(ω∗) = (k′2(ω

∗)− k′1(ω
∗))/2 < −2 or if k′2(ω

∗)−
k′1(ω

∗) > 0, which holds true for s∗−,2 at which k2(ω
∗
s,2)/k1(ω

∗
s,2) is strictly increasing, and hence k2(ω

∗) −
k1(ω

∗) as well, recalling the first part of the proof of Proposition 4. Conversely, if k′2(ω
∗)−k′1(ω

∗) ∈ (−4, 0),
since have m′(0−) +m′(0−) > 0, the steady state is stable under condition (30), which in the present case
becomes (21). ✷
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