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Abstract
Process capability indices are routinely used to estimate the mean-variability
performance of industrial products with respect to both targets and specification
limits. However, when the target variable is defined over a planar surface of a
manufact, it is relevant to assess the capability of the production process locally,
that is, at any spatial location of the surface, in particular if the manufact has
to be split into pieces to obtain single production items. In this article, focus-
ing on the Cpk specification introduced by Clements [Qual Prog., 22, 95–100],
we suggest an approach based on additive quantile models to estimate, in a
Bayesian paradigm, the index locally. We demonstrate its use in the context of
the etching phase of the integrated circuit fabrication process. Since capability
of etching processes is typically assessed for batches of wafers, we also propose
two algorithms based on resampling to perform local capability analysis at the
lot level.
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1 INTRODUCTION

Process capability indices (PCIs) are tools customarily adopted to estimate the mean-variability performance of industrial
processes with respect to both targets and specification limits, and are nowadays a standard tool for commercial activity.
PCIs used in industry are single numerical measures that summarise the process performance. De-Felipe and Benedito1

provide a thorough review on this topic. Amongst different indicators of process capability, the Cpk index2 has gained
popularity. A production process is called capable if Cpk is above a certain threshold. A common reference value is 1.33.1

Hereinafter, we considered the Cpk specification introduced by Clements3 that generalises the usual version of the
index to account for potential asymmetry of the distribution of the target variable. Clements’s quantile-based trans-
formation approach has been fundamental for the development of process capability index estimators for potentially
non-normal data following many different stochastic models (see Kotz and Lovelace4 for a review).

In the case study discussed in this article, a fabrication process in semiconductor manufacturing, known as dry etching,
is considered. The outcome of interest is the depth of trenches defined by photolithographic steps and etched into the wafer
surface. During this phase of the integrated circuit fabrication process, the Cpk index is regularly computed to evaluate the
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process capability of batches of wafers also termed lots. Given a lot of L wafers monitored using a grid of n points, the Cpk is
often obtained in practice putting all the data together. The usual formula (see Equation (1)) of the index is used, ignoring
any source of spatial variability and possibly only inspecting the data quality by adjusting for outliers presence. This
approach would be correct in case data are from rational subgroups,2 but barely this happens. In other words, a unique
Cpk value is calculated for an entire lot to assess the process ability to produce the output within the specification limits.

Assumptions behind PCI calculation are that the outcome measurements are from an i.i.d. process and that the spec-
ification limits are known and fixed. In addition, if a target is known, it is supposed to be different from the specification
limits. If data refer to batches of products, they are assumed to have the same quality amongst and within the lots.5

However, when considering planar manufacts, as in the context considered in this article, experience suggests that the
process capability is rarely homogeneous over their entire surface and assessing it at a local level can be relevant. This is
true, in particular, in those cases where the overall product surface has to be split into pieces to obtain the different items.
This is, in fact, the case of microchip production since hundreds or even thousands of dice are obtained from each single
wafer. In these circumstances, deriving a local version of the Cpk can provide relevant information about the production
process at the chip level. Clearly the measurement effort that is necessary to locally monitor the production process even at
a moderate spatial resolution is huge and some smoothing must be adopted to estimate the index surface. Despite planar
manufacts being recurrent in many industrial production processes, this issue has not been thoroughly investigated.6,7

In this article, we take advantage of the quantile-based specification of Clements’s index to propose a nonparametric
approach grounded on additive quantile regression that permits us to estimate the process capability at any spatial location
of interest in a fully nonparametric manner, that is, without assuming any specific stochastic model for the target variable.

Quantile regression was developed as an extension of the linear regression model in a seminal paper published by
Koenker and Bassett in 1978. In this article, we adopt the Bayesian paradigm to additive quantile regression following
the approach proposed by Fasiolo et al.8 where bivariate splines are employed to grasp spatial regularities in the quantile
surface.

As mentioned above, the capability of the etching process is typically assessed at the lot level. However, wafers in the
same lot may or may not be homogeneous in terms of their local capability. To investigate wafer homogeneity, a procedure
is proposed later on in the article that pairs quantile-regression-based Cpk estimates and resampling to identify subgroups
of lot wafers that can be considered homogeneous. A second procedure is proposed to combine the information taken
from a set of (capacity homogeneous) wafers to produce a local capability analysis at the lot level.

The article is organised as follows. In the next section, we introduce the motivating case study and describe the dataset
at hand. Capability indices and local capability indices are considered in Section 3, whereas a brief review of quantile and
additive quantile modelling, both in the classical and in the Bayesian context, is provided in Section 4. In Section 5, two
algorithms are proposed to evaluate local process capacity for batches of wafers. Monte Carlo evidence of the performance
of the proposed method is reported in Section 6, whereas we present an application of the proposed methodology in
Section 7. Section 8 ends the article with some conclusions and final remarks.

2 THE MOTIVATING CASE STUDY: ETCHING PROCESS
AND TRENCH DATA

Semiconductor devices are developed by highly integrated sequences of several technological steps on circular-shaped
working substrates called wafers. In the final production phase, wafers are cut into small items, called dice, and then
packaged into chipsets (see Figure 1A). All the phases of the fabrication process are carefully monitored. Data are collected
by a network of measurement points to assess process stability, and punctual measurements are used to make inferences
on the response surface over the entire wafer area in order to check whether quality standards are met even where actual
measures have not been collected.6,7,9

Hereinafter, we consider the dry-etching phase of the integrated circuit production process. One of the preliminary
steps of this process consists in the deposition of a thin SiO2 film over the wafers. Etching technologies aim to transfer
the patterns defined by photolithographic steps to the surface of the wafers by selective material removal (Figure 1B). The
current main option is plasma etching, also called dry etching, which allows precise control of the profile dimensions and
structures.

Wafers are typically processed in batches, that is, the surfaces of a number of wafers are simultaneously exposed to the
plasma radicals and ions that, reacting with the superficial material in a vacuum chamber, easily remove oxide producing
the desired straight profiles.
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886 BORGONI et al.

F I G U R E 1 From virgin silicon wafer to chipset (A); Photoresist thickness before and after the etching process (B)

F I G U R E 2 Sample grid (A). Wafer trench depth measurements in the considered lot (B)

Trench depth is fundamental for a proper functioning of the system; hence, its variability with respect to the product
specification limits is carefully monitored and evaluated by appropriate indices.

In the dataset at hand, the trench depth is measured at 38 sample locations. The monitoring grid for a typical wafer of
the lot is depicted in Figure 2A. The data refer to a batch of six wafers and the sampled depths are displayed simultaneously
in Figure 2B where different colours identify measurements taken in different wafers. To display trench depths of different
wafers together, depth measurements all refer to a typical wafer of the lot. The engineers of the company that provided
the dataset found the process capability of the lot to be acceptable when the Cpk was as high as 1.4, slightly above the
typical threshold of 1.33 usually adopted in capability analysis.

3 CAPABILITY INDICES AND LOCAL CAPABILITY INDICES

Hereinafter, we consider the Cpk quantile approach introduced by Clements3 that generalises the usual version of the
index2 to account for potential asymmetry of the distribution of the considered target variable, indicated now on by Y . In
the application considered in this article, Y is the depth of trenches etched into a silicon wafer.
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Clements’s index is defined by the following equations:

Cpu =
USL − 𝜉𝜏1

𝜉𝜏2 − 𝜉𝜏1

Cpl =
𝜉𝜏1 − LSL
𝜉𝜏1 − 𝜉1−𝜏2

Cpk = min
(

Cpu,Cpl
)

(1)

where 𝜉𝜏 is the quantile of order 𝜏, 0 < 𝜏 < 1 of Y and 𝜏1 < 𝜏2, typically 𝜏1 = 0.5 and 𝜏2 = 0.99865. LSL and USL represent
the lower and upper specification limits of Y , respectively.

Clements’s approach has been pivotal for the development of process capability index estimators for potentially
non-normal data for a wide range of possible models of the target variable such as the Pearson and the Johnson sys-
tem,10,11 the Burr distributions,12 the Weibull and lognormal distribution,13 the t, gamma, and lognormal distributions,14

and the zero-bound process,7 just to mention a few. A detailed review is provided by Kotz and Lovelace.4 To deal with
non-normal processes, many researchers have also focused on methodologies based on transformation of the non-normal
into normal data for the use of normal based PCIs. The Box-Cox transformation approach has the ability to produce
good results, although it has not become very popular amongst practitioners because of the loss of the computed results
with regard to the original scales.15 Accurateness of PCIs for heavily skewed distributions has been discussed by Wu
et al.,16 whereas Kashif et al.17 have demonstrated that Cpk values tend to be conservative of the true capability of the pro-
cess for asymmetric distributions. In any case, relatively small Cpk values are, in general, associated with lower overall
capability.

As mentioned in the introduction, the Cpk index is routinely computed at the lot level in the etching phase of the IC
fabrication process; hence a unique Cpk value is calculated for the entire lot to assess the process ability to produce the
output within the specification limits.

However, the assumption of a uniform capability of the process over the surface of a planar manufact cannot always be
assumed or can be invalidated by empirical evidence. Local capability can be an issue, in particular, when the manufact
has to be parcelled out to obtain individual items, as is the case for microchip production. In these circumstances, the
homogeneity of the process capability can vary from piece to piece and deriving a local version of the Cpk may be worth it.

Despite the large use of the index in several contexts, almost nothing has been published concerning its use at a local
level, an exception being the work of Borgoni and Zappa6 for lognormal models.

In order to define a spatial version of Cpk, let {Y (s), s ∈ W} with W ⊆ R2 be a random field indexed in the plane
representing the characteristic of interest at any spatial location. In the case study presented below W represents the
silicon wafer. Indicated by 𝜉𝜏(s) the quantile of order 𝜏 of the conditional distribution of Y at location s, a spatial version
of the index in Equation (1) is given by

Cpu(s) =
USL − 𝜉0.5(s)

𝜉0.99865(s) − 𝜉0.5(s)
,Cpl(s) =

𝜉0.5(s) − LSL
𝜉0.5(s) − 𝜉0.00135(s)

,

Cpk(s) = min
(

Cpu(s),Cpl(s)
)
. (2)

A sample estimate of Cpk at each location s can be obtained by estimating the relevant quantiles 𝜉𝜏(s) of Y at s and
plugging these values, indicated by 𝜉𝜏(s) from now on, in Equation (2), that is,

Ĉpu(s) =
USL − 𝜉0.5(s)

𝜉0.99865(s) − 𝜉0.5(s)
, Ĉpl(s) =

𝜉0.5(s) − LSL
𝜉0.5(s) − 𝜉0.00135(s)

,

Ĉpk(s) = min
(

Ĉpu(s), Ĉpl(s)
)
. (3)

In order to graphically represent the estimated Cpk over the entire wafer area, it is necessary to discretise the Cpk(s) surface
using a fine grid of wafer locations, that is, to preliminarily identify a set of points G = (u1, … ,uN), with uj ∈ W for
j = 1 … ,N, calculate Equation (3) at each point of G and, finally, provide a raster representation of the estimated Cpk(s)
surface via a map. Ideally each point of G (or each pixel of the map) could represent a die eventually obtained from the
wafer. We refer to G as prediction grid in the rest of the article.

Clearly, the measurement effort to monitor the capability of the production process at even a moderate spatial
resolution is huge and a modelling approach has to be adopted to estimate the index surface.

In the next section, we suggest estimating local Cpk values in a fully non-parametric manner using additive quantile
regression models.
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4 SEMIPARAMETRIC QUANTILE REGRESSION FOR
TRENCH DEPTH SPATIAL SMOOTHING

Quantile regression was developed as an extension of the linear regression model.18 Let Y be the response variable
of interest and 𝜏 ∈ (0, 1). The quantile regression model specifies the relationship between the quantile, 𝜉𝜏 , of the
conditional distribution of Y and a set of p explanatory variables, x, possibly depending upon a set of unknown
parameters 𝜷𝜏 :

Qy(𝜏|x) = 𝜉𝜏
(

x, 𝜷𝜏
)
.

Alternatively, the model can be specified assuming

Y = 𝜉𝜏
(

x, 𝜷𝜏
)
+ 𝜀𝜏

where 𝜀𝜏 is the error term whose 𝜏th quantile conditional on x is zero.
Direct quantile estimation is generally achieved by considering the following alternative definition of a conditional

quantile

𝜉𝜏(x) = argmin
𝜉

E [𝜌𝜏 (yi − 𝜉) |x] .

where 𝜌𝜏(u) = u ⋅ (𝜏 − I(u < 0)) is the so-called check function and I(A < 0) is the indicator function of the event A, taking
value 1 if A is true and 0 otherwise. Hence, considering the sampling counterparts, one obtains

𝜉𝜏(x) = argmin
𝜉

n∑

i=1
𝜌𝜏 (yi − 𝜉 (xi)) .

In the linear case, the model writes as follows

Qy(𝜏|x) = xT𝜷(𝜏)

and the unknown parameters are estimated by solving

𝜷𝜏 = argmin
𝜷𝜏∈Rp

n∑

i=1
𝜌𝜏

(
yi − xT

i 𝜷𝜏
)
.

The minimization problem above can be formulated as a linear programming problem and efficiently solved via linear
programming methods. This approach is thoroughly described by Koenker.19

Flexible nonparametric specifications for the systematic component have been introduced by Koenker et al.,20 and
Koenker and Mizera21 extended this approach to surface estimation using triograms.

In this article, we suggest modelling the quantiles of the depth of the trenches etched into a silicon wafer as a nonlinear
function of spatial location s = (s1, s2):

Qy(𝜏|s) = 𝜉𝜏(s).

In particular, we consider a bivariate thin plate spline22 to approximate the conditional quantile spatial field and the
model writes as follows

Qy(𝜏|s) =
K∑

k=1
Bk(s)𝛽𝜏k (4)

where B1(s), … BK(s) is a bivariate thin plate spline basis function known and fixed whereas 𝛽𝜏1, … , 𝛽𝜏K are unknown
coefficients to be estimated from the data.
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BORGONI et al. 889

The semiparametric quantile regression is considered in a Bayesian paradigm since this approach was found to
produce, in our experience, more stable results when extreme quantiles are of interest.

The Bayesian approach to quantile regression is more recent23 and semiparametric quantile modelling in this context
has been discussed by several authors (see amongst others Yue and Rue,24 and Waldmann et al.25).

Hereinafter, we adopt the approach recently suggested by Fasiolo et al.8 This approach bases quantile regression on a
smoothed version of the check function, called the ELF (extended log-f) loss, defined by

𝜌𝜏(y; 𝜆, 𝜎) = (𝜏 − 1)
y
𝜎
+ 𝜆 log

(
1 + e

y
𝜆𝜎

)

where 𝜎 > 0 is a scale parameter and 𝜆 > 0 such that 𝜌𝜏(u) → 𝜌𝜏(u) if 𝜆 → 0+ which allows more accurate quantile esti-
mates and the use of efficient computational methods for model fitting. The estimation procedure is empirical Bayesian
in nature. A gaussian 0 mean improper prior is assumed for 𝛽𝜏1, … , 𝛽𝜏K in Equation (4) and their estimation is carried
out maximising the a posteriori. The precision matrix is assumed to be equal to

∑m
l=1𝛾lSl where Sl is a positive semidefinite

matrix scaled by 𝛾l. Instead 𝛾1, … γm as well as 𝜎 and 𝜆 are fitted to the data.
Since the additive quantile regression is based on the ELF loss, rather than on a probabilistic model for the response,

the lack of a likelihood function does not permit Bayesian inference based on Bayes’ rule to update the corresponding
prior. The belief updating framework26 can be adopted to perform the Bayesian updating via the loss function rather than
the likelihood. The details of the estimation procedure are discussed by Fasiolo et al.8 and implemented in the qgam R
library.27

Once 𝛽𝜏1, … , 𝛽𝜏K have been estimated using the approach sketched above, it is possible to obtain the estimated quan-
tile spatial field 𝜉𝜏(s) by replacing these values with their estimates 𝛽𝜏1, … , 𝛽𝜏K in Equation (4) and, in turn, obtain the
estimate Ĉpk(s) at any spatial location of interest.

5 EXPLORING PROCESS CAPABILITY AT THE LOT LEVEL

As mentioned in the introduction, the capability of the etching process is typically assessed at the lot level. However,
wafers in the same lot may or may not be homogeneous in terms of their local capability and different shapes of the Cpk
surface can be expected. In these circumstances, it is not appropriate to gather the wafers of the same lot to perform a
global analysis on all wafers of the lot. In addition, when more than one wafer is of interest, a strategy is necessary to
combine wafer measurements and perform a local capability analysis at the lot level.

In the rest of this section, we introduce two procedures based on resampling to address these issues, namely assessing
homogeneity of local capability to identify possible homogeneous subgroups of lot wafers and combining information of
different wafers to produce a local capability analysis at the lot level.

5.1 Assessing homogeneity of local capability within a production lot

Process capability is typically addressed at the lot level; hence, the capability indices are calculated considering the mea-
surements collected in all the wafers processed simultaneously in the same lot. For this index to be meaningful, it is
necessary to assume that the production process possesses the same local capacity across wafers. In practice, this must
be verified.

Hereinafter, we describe an algorithm based on resampling to evaluate local homogeneity of a set of wafers. The
procedure aims to identify whether the process has the capability at any given location of a monitored wafer not inferior
to the other wafers of the same lot. If a large proportion of the locations of this wafer are found to have poor capability with
respect to the other wafers of the same lot, then it is to be classified in a separate subgroup. The idea of the procedure is to
randomly take a wafer w from the lot and estimate Ĉw

pk(u) at each location u of a prediction grid prefixed on the wafer area
using the data collected in w. Considering the remaining wafers of the lot, one measurement is randomly sampled from
those collected at each point of the sampling grid, obtaining a new sample of depth measures. The Cpk surface is fitted to
this new sample and the procedure is iterated several times. For each location u of the prediction grid, the fifth percentile,
denoted by C∗

pk,0.05(u), of the simulated estimates of Cpk(u) is computed. Finally, an indicator variable is defined taking
value 1 if the Cpk estimate at u in the wafer w initially considered is below this percentile and 0 otherwise that is, I(u) = 1
if Ĉw

pk(u) < C∗
pk,0.05(u).
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890 BORGONI et al.

If the percentage of 1’s is greater than a threshold believed appropriate for the considered fabrication process, say 20%,
then wafer w is removed from the lot since the process has, on average a poorer local capability than the other wafers of
the lot. The procedure is re-applied by sampling another wafer of the lot until all the wafers have been inspected. The
algorithm is described more in detail below.

Let W be a typical wafer of the lot L and M = card(L). Let G = (u1, … ,uN), with uj ∈ W for j = 1 … ,N, be the pre-
diction grid, S = (s1, … , sn) be the sample grid and Y = Y1, … ,Yn be the data sample. Let B be the number of sampling
replicates.

Procedure 1.

Input: Y, G, B, S, L, 𝜏
Output: subsets of the lot wafers

set temp ≔ L
while card(temp) ≠ 0

Sample wafer w ∈ L and calculate Ĉw
pk

(
uj
)
for each uj ∈ G.

Set L′ ≔ L − w and M′ = M − 1
for b ∈ B

for each si ∈ S extract randomly one value Y from the M′ available
in L′ and obtain a new sample Y∗b = Y∗

b1, … ,Y∗
bn

calculate Ĉ∗
pk,b

(
uj
)
for each uj ∈ G using Y∗b

end for
for u ∈ G

calculate C∗
pk,𝜏(u) = quantile

((
Ĉ∗

pk,b(u), b = 1, … ,B
)
, 𝜏

)

set I(u) = 1 if Ĉw
pk

(
uj
)
< C∗

pk,0.05(u) and I(u) = 0 otherwise
end for
if 100 ×N−1 ∑

u∈G
I(u) > 𝜹 set L ≔ L′ and M = M′

set temp ≔ L − w
end while

As mentioned above, ideally, the spatial locations included in the prediction grid can be interpreted as potential dice
obtained from the wafer. A by-product of the procedure is then to identify all the dice of the wafer where the process is of
poor capability as compared to the dice in the same positions located in the other wafers of the lot. This also allows us to
display those dice via a map that points out the portion or portions of the wafer area where variability with respect of the
specification limits is critical.

5.2 Combining local information of different wafers for lot local capability analysis

Once a subgroup of homogeneous wafers has been identified, it is necessary to combine the measurements taken at
different points of each single wafer of the lot to perform a local capability analysis at the lot level. We propose below a
resampling procedure for this task. The data of different lots are pulled together in a unique dataset. Being K the number
of wafers in the set, one of the available K measurements is selected at random for each location of the monitoring grid
to generate a resampled replicate of the data. The Cpk surface is estimated as detailed in Sections 3 and 4 using this
replicate and the procedure is repeated numerous times. This permits one to estimate the distribution of the estimated Cpk
conditional to each spatial location. Hence, a 1 − α probability interval can be constructed using the simulated percentiles
of this distribution for a selected value α. If the interval is entirely below some conventional value 𝜀, the point is marked as
one where the process is poorly capable. Repeating this procedure for all the points of interest, for instance for a prediction
grid representing the location of the dice obtained by a typical wafer of the lot, allows one to build a map highlighting
those dice of the lot where the process is expected to be too variable for the considered specification limits. The procedure
is described in detail below. The notation used in the pseudo-code has been introduced in the previous subsection.
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BORGONI et al. 891

Procedure 2.

Input: Y, G, B, S, 𝜀, α
Output: capability map

for b ∈ B
for each si ∈ S extract randomly one value Y∗

i from the K
available and obtain a new sample Y∗b = Y∗

b1, … ,Y∗
bn

calculate Ĉ∗
pk,b(u) for each u ∈ G using Y∗b

end for
for u ∈ G

calculate C∗
pk,α∕2(u) = quantile

((
Ĉ∗

pk,b(u), b = 1, … ,B
)
, α∕2

)

C∗
pk,1−α∕2(u) = quantile

((
Ĉ∗

pk,b(u), b = 1, … ,B
)
, 1 − α∕2

)

set I(u) = 1 if
[
C∗

pk,α∕2(u), C∗
pk,1−α∕2(u)

]
< 𝜀 and I(u) = 0 otherwise

end for
draw the map of I(u)

6 NUMERICAL EXPERIMENTS

In this section, some results of a large simulation study are reported to evaluate the performance of the method described
in Section 4. The quantile additive model is used to estimate quantiles adopting a bivariate thin plate spline (TPS) transfor-
mation of the spatial coordinates in the predictor of the quantile regression (QR). This model will be indicated by QRTPS.
Equation (2) is used to estimate Cpk(s) at any desired location s.

The data were generated according to different scenarios in order to assess the performance of the proposed method-
ology with respect to: (1) an optimal parametric benchmark model and different sample sizes, (2) robustness to model
specification, (3) robustness to outliers, (4) robustness to sample grid configurations.

6.1 Comparison with optimal parametric models and the impact of the sample size

In the first scenario, the log-normal distribution is used. The parameters of the log-normal distribution, say 𝜇 and 𝜎, are
spatialised as a function of the point coordinates that is, 𝜇(s) and 𝜎(s). Then, the quantile conditional to s are worked
out for any desired s and Cpk(s) is calculated as in Equation (2). In particular, we set 𝜇 (s1, s2) = 𝛽0 + 𝛽1s2 and 𝜎 (s1, s2) =
𝛼0 + 𝛼1s2

1 + 𝛼2s2
2.

The quadratic shape for the variance surface is considered here (as well as in the next sections) following the usual
assumption in response surface theory.2 In our experience, modelling more irregular variance surfaces is definitely a
challenging task to tackle with, in particular when the sample size is relatively small as in the case study considered in
the article.

The parameters of the two equations are preliminarily estimated using the dataset at hand. This allows us to adopt
the LSL and USL of the actual etching process that produced the data described in Section 2 when we calculate Cpk(s).

The proposed approach is compared to the one suggested by Borgoni and Zappa6 based on Generalised Additive Mod-
els for Location, Scale and Shape (GAMLSS,28) for log-normal data. Once the parameters of the log-normal distribution
have been estimated using GAMLSS, the quantiles of interest are worked out to calculate Cpk(s) at any desired location
s. The parameters of the log normal distribution conditioned to each spatial location were parametrized using the same
equations reported above to generate the data. This model will be indicated by PCI-GAMLSS from now on.

In the simulation exercise, two different cases are considered assuming a sample grid of 45 and 52 points dislocated
in a circular domain centred at the origin representing the wafer. These sample grids are superimposed on the maps in
Figure 3A,B, where the Cpk surface, calculated as described above, is displayed.

Each Monte Carlo experiment is based on 1000 simulations. Figure 3C,D show the average Ĉpk(s) surfaces in the two
cases using QRTPS, whereas Figure 3E,F show the same values obtained using PCI-GAMLSS. Each surface is discretized
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892 BORGONI et al.

F I G U R E 3 Cpk(s) surface and sample grids: (A) and (B); averaged Monte Carlo QRTPS Cpk(s) estimates: (C) and (D); averaged Monte
Carlo PCI-GAMLSS Cpk(s) estimates: (E) and (F). The colour scale of all plots of the panel is set using the deciles of Cpk(s) values at the
prediction grid depicted in figures (A) and (B)

by estimating Cpk(s) over a grid of 1876 points. For each point, Ĉpk(s) is computed using the two methods and the 1000
estimates are averaged to obtain a single value used to colour the corresponding pixel of the rasterized surface in Figure 3.

Figure 3 suggests that both approaches succeed in retrieving the shape of the Cpk surface picking up the correct pseudo
paraboloid structure of the spatial index. However, the estimates obtained using PCI-GAMLSS appear to be too optimistic,
estimating upwards the actual values of local Cpk, in particular in the south part and close to the border of the wafer,
whereas the approach based on additive quantile regression produces estimates on average closer to the true value of the
index.
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BORGONI et al. 893

6.2 Robustness to model misspecification

In the second scenario, the robustness of the proposed approach to the stochastic model assumed to generate the
data is considered. This time, the data are generated according to a symmetric distribution and, in particular, a gener-
alised t-distribution is used. More specifically, at each sample location s. the value of the target variable is generated
setting Y (s) = 𝜇(s) + 𝜎(s)T, where T is a central t-student random variable with 9 degrees of freedom. We assumed
𝜇(s) = 𝛽0 + 𝛽1s1 + 𝛽2s2 + 𝛽3s2

1 + 𝛽4s2
2 and 𝜎(s) = 𝛼0 + 𝛼1s2

1 + 𝛼2s2
2 in the simulation and, as above, the parameter of the two

equations were preliminarily estimated using the dataset at hand. Figure 4A shows the true Cpk surface; Figure 4B,C
show the average Ĉpk(s) surfaces estimated by QRTPS using 45 and 52 points grids, respectively. Also, in this scenario, the
Cpk surface is adequately reconstructed by the additive quantile model. The surface appears to be slightly overestimated
particularly in case of the smaller sample grid.

6.3 Robustness to outliers

In the third scenario, we considered the robustness of the procedure to outliers. The data are generated using the same
constellation of parameters adopted in the first scenario but an increasing percentage 𝛿 of outliers is forced into the dataset,
namely 𝛿 = 5%, 10%, and 15%. These outlying observations were obtained by replacing 𝛿% of the values generated in
scenario 1, with measurements drawn randomly from a uniform distribution in the interval (0, y𝛿)where y𝛿 is the sample
𝛿 percentile of the simulated data. The panel in Figure 5 shows the results for the three considered cases using the sample
grid of size 45, whereas the true Cpk surface and the sample grid are displayed in Figure 3A. It is found that, on average,
the proposed procedure is quite robust to the presence of outliers. Comparing the maps in Figure 5 with Figure 3C (i.e.,
the estimates obtained when no anomalous data are present), we noticed that the Cpk values are only slightly increased
in the presence of outlying observations and overestimation tends to mildly increase as the percentages of outliers gets
larger.

6.4 Robustness to sample grid configurations

Although a detailed discussion of the impact of the spatial shape of the sampling grid on the wafer area is beyond the
scope of the present paper and has been discussed elsewhere (see for instance References 9,29), in the fourth scenario we
briefly evaluated whether and how different spatial configurations of the spatial grid can impact the estimation of the Cpk
surface. The data are generated using the log-Gaussian model with the same set of parameters adopted in the first scenario.
In particular, the panel in Figure 6 shows the results for two different spatial configurations of a 45-points sample grid.
In the first case, a sample grid allocated on concentric circles is considered. The points are allocated in space according to
the optimal criterium discussed by Borgoni and Zappa.29 In the second case, a complete spatial random sample is adopted
where the 45 measurement points are drawn from a uniform distribution over the wafer region. Figure 6A,B show the
sample points along with the actual Cpk surface, whereas Figure 6C,D display the estimated Cpk surfaces. In both cases, a
reasonably good approximation of the Cpk surface is obtained on average, although it was found that the spatial allocation
of points does impact estimation to some extent, a result that was somehow expected and found in other studies (see
Reference 29). We just mention that using a log-normal GAMLSS model in this case provided a Cpk estimated map (not
reported here) that nicely reproduced the true spatial shape shown in Figure 6A,B. However, akin to scenario one, Cpk
values are remarkably estimated upward.

7 CASE STUDY: ETCHING PROCESS CAPABILITY

7.1 Cpk surface for trench depth

In this section, the proposed approach is applied to the wafer lot described in Section 2 where the trench depth is
monitored by 38 sample locations displayed in Figure 2A.

The additive quantile model is applied to smooth the quantile surfaces of order 0.00135, 0.5, and 0.99865 for each
wafer of the lot and Equation (2) is used to estimate the Cpk(s) surface using the additive quantile model to estimate the
quantile of interest at each location of the prediction grid. Results are reported in Figure 7 where the estimated Cpk(s)
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894 BORGONI et al.

F I G U R E 4 Cpk(s) surface: true (A), averaged Monte Carlo QRTPS Cpk(s) using a sample grid of size 45 (B) and using a sample grid of
size 52 (C). The colour scale of all plots of the panel is set using the deciles of Cpk(s) values at the prediction grid depicted in figure (A)

 15264025, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asm

b.2673, W
iley O

nline L
ibrary on [03/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BORGONI et al. 895

F I G U R E 5 Averaged Monte Carlo QRTPS Cpk(s) estimates in case of %5, (A), 10%, (B), and 15%, (C), of outlying observations. The
colour scale of all plots of the panel is the same adopted in Figure 3A that is, using the deciles of Cpk(s) values at the prediction grid depicted
in figure (3A), which are clearly not affected by outliers
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896 BORGONI et al.

F I G U R E 6 Cpk(s) surface and sample grids with concentric circular and random points configuration: (A) and (B); averaged Monte
Carlo QRTPS Cpk(s) estimates: (C) and (D)

surface of each wafer of the lot is discretised using a grid of 1876 points internal to the wafer area. Two of the six wafers,
labelled 8 and 15 in Figure 7, present substantial differences as far as the shape of the surface and the values of the index
are concerned, the latter being much smaller than in the other wafers of the same lot.

The above analysis suggests, first, that the capability of the production process is not homogeneous over the wafer
area, hence supporting the idea that the variability with respect to the specification limits of the etching process has to be
evaluated locally that is, at each relevant spatial location. Second, the local capacity of the etching process may vary from
wafer to wafer, hence making a standard lot-level capability analysis questionable.

7.2 Etching capability analysis for lots

Although the capability of the process is typically assessed at the lot level, the previous analysis suggests that the pro-
cess may be inhomogeneous across wafers. Hence, the local homogeneity of the process capability has to be preliminary
explored. To this end, we applied Procedure 1 to identify potential subgroups of lot wafers where the etching process
may suffer a too high variability with respect to the specification limits of the trench depth. The algorithm identified a
remarkably poor local variability in wafers 8 and 15 since a large proportion, higher than one-fourth, of the dice has an
estimated Cpk below the threshold denoted by C∗

pk,0.05(u) in Procedure 1. In particular, 23.45% of the dice of wafer 8 have
an estimated Cpk below the fifth percentile of the die-conditional distribution obtained via resampling whereas, in wafer
15, this percentage was found as large as 85%.
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BORGONI et al. 897

F I G U R E 7 Estimated Ĉpk surface for the six wafers of the lot. The colour scale is set by pulling together the Cpk estimates obtained at
the points of the prediction grid of each wafer and calculating the decile of the overall set of estimates
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898 BORGONI et al.

F I G U R E 8 Dice with low local process capability: wafer 8 (A) and wafer 15 (B)

F I G U R E 9 Maps identify in red the dice where the process has a low local capacity: subgroup 1 (A) subgroup 2 (B)

This algorithm, in addition, allows us to build a map representing those pixels of the wafer where low Cpk values
occurred. The maps in Figure 8 display the result. Wafer 8 was the second wafer of the lot inspected by Procedure 2
whereas wafer 15 was the fifth. Similar results were obtained changing the order in which the wafers were evaluated.

The algorithm identified two sub-groups in the lot. The first includes the two wafers labelled 8 and 15 and the second
includes all the other wafers of the lot.

In order to evaluate the local process capability for each of the two subgroups, Procedure 2 was applied using 1.4 as
the threshold, that is, the usual target adopted in capability analysis. Clearly, other values more appropriate for specific
situations can be adopted. The results are reported in Figure 9. Considering a typical wafer of the lot, the two maps
highlight in red those dice of the wafer area where the probability interval obtained by algorithm 2 is below the considered
threshold for each sub-group. For those dice, the process has a capability that can be considered significantly poor. In
particular, in the first subgroup (wafer labelled 8 and 15), the percentage of the dice where the process is not capable
is about 27.5% of the entire die yield (Figure 9A) whereas in the second sub-group the process capability was found
appropriate for all dice; hence the entire surface of the wafer is coloured in white.
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BORGONI et al. 899

8 CONCLUSIONS

PCIs are routinely used in fab practice to estimate the mean-variability performance of industrial processes with respect
to both targets and specification limits. Cpk, in particular, is also commonly adopted for commercial ends. When the
target variable is defined over a planar surface of a manufact, it is also relevant to assess the capability of the production
process at any spatial location of the surface, in particular for those manufacts that have to be parcelled out to obtain
single items.

Moving from the quantile specification of the Cpk introduced by Clements,3 we proposed a methodology based on
additive quantile regression to estimate the Cpk surface of the outcome variable on planar manufacts. We used bivariate
thin plate splines to account for spatial regularities of the outcome and adopted a Bayesian framework for inference.
Using simulation experiments, we demonstrated that the proposed approach manages to identify the actual Cpk surface
in different scenarios and found it robust to model specification as well as to outlying observations.

We note that the sample size is also a relevant issue since grids of different size or spatial density may change the
resolution of the Cpk surfaces and impact on the estimated variability. In microchip fabrication the number and the posi-
tion of the sample locations are typically fixed at the beginning of the production, according to specific fabrication issues.
The reduction of the sample size is only considered when the process moves from an experimental phase to production.
A detailed investigation of the impact of modifying the shape or the size/density of the monitoring grid has been inves-
tigated elsewhere (Borgoni et al.9 and Borgoni and Zappa29). However, this issue is beyond of the scope of the present
article and has been only marginally considered in the simulation study.

We also suggested a procedure to evaluate whether the process capability is homogeneous amongst the wafers pro-
cessed in the same lot when considered at the local level. This procedure excludes each wafer of the lot in turn and
compares the Cpk surface estimated for this wafer with the others using an algorithm based on resampling. If the consid-
ered wafer has a low capability for a large portion (dice) of its area, it is removed from the lot and the procedure proceeds
by inspecting another wafer. This approach allows the identification of those wafers of the lot characterised by poor capa-
bility. Finally, we proposed a second procedure to evaluate the local process capability for a group of wafers possibly
identified by the previous algorithm. Using resampling, a probability interval of the Cpk is calculated conditioned to each
spatial location. The interval is compared to a reference value and the process is considered having a low capability at the
die level if the interval is below the considered threshold. In this way, we are able to draw a map that displays the portion
of the wafer (dice) where the process has too high a variability with respect to the considered specification limits. The
effectiveness of the two procedures has been exemplified using a dataset including georeferenced measures of the trench
depth etched into a batch of wafers during the dry etching phase of the integrated circuits fabrication process.
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