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Abstract

This PhD thesis aims to integrate lexical taxonomies and word embeddings to develop

novel methodologies for enhancing Natural Language Processing representations. Lexical

taxonomies serve as a natural means of organising human knowledge in a hierarchical way

and offering formal descriptions of concepts and their relationships, supporting both syntactic

and semantic exchanges. On the other hand, word embeddings are vector representations of

words that capture linguistic patterns and lexical semantics from extensive corpora based on

the idea that words with similar contexts tend to have similar meanings.

This research explores the conjunction of word embeddings with the structure of lexical

taxonomies, enabling the choice of word embeddings that fit the hierarchical structure of the

concepts they represent. Additionally, word embeddings can aid in updating taxonomies to

accommodate evolving languages and knowledge domains. They facilitate the incorporation

of new concepts in the appropriate taxonomic positions by leveraging vast textual data.

Moreover, word embeddings can be valuable for aligning and linking taxonomies, which is

crucial when multiple taxonomies within a single domain, built by different institutions for

varying purposes, need to communicate effectively.

The thesis is divided into several parts.

Part I introduces the two fundamental subjects of word embeddings and lexical tax-

onomies.

Part II focuses on two methods for evaluating word embeddings. One method, TaxoVec,

is a framework to select taxonomy-aware word embeddings leveraging a measure of taxo-

nomic semantic similarity (the HSS), while vec2best offers a general evaluation framework

for word embeddings without a specific taxonomy. It provides a comprehensive evaluation

metric called the PCE (Principal Component Evaluation) for each model.



Part III details two methodologies for enhancing and aligning lexical taxonomies using

word embeddings. NEE enables taxonomy enrichment by estimating data conformity to a

given taxonomy and identifying new entities and concepts. WETA is a domain-independent

method for automatic taxonomy alignment, combining hierarchical similarity and classifica-

tion tasks into a scoring function.

Part IV showcases the practical applications of the proposed methodologies in the context

of Labour Market Intelligence.

This research contributes to Natural Language Processing by providing innovative tech-

niques for enhancing language representation and knowledge, ultimately benefiting various

applications in this domain.
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Part I

Introduction and Background
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1
Integrating Word Embeddings and

Taxonomies

In recent years, lexical taxonomies and distributional semantics have gained momentum in

Natural Language Processing (NLP) applications.

Lexical taxonomies are a natural way to organise human knowledge in a hierarchical form

and to provide a formal description of concepts and their relations, supporting syntactic and

semantic exchanges. Contextually, word embeddings have gained remarkable popularity in

computational linguistics. They are vector representations of words based on the hypothesis

that words occurring in a similar context are prone to have a similar meaning.

Despite their wide usage, finding a unified framework accounting for knowledge-based

and distributional resources is still an open problem.

The idea is that word embeddings, being able to extract linguistic patterns and lexical

semantics from large corpora could benefit from assessing if the structure of the embeddings

fits the structure of lexical taxonomies. That could allow researchers to choose a word

embedding trained on a large corpus of texts to represent words in a vector space that also

fits the hierarchical structure of the concepts it embeds. That is particularly relevant given
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Chapter 1. Integrating Word Embeddings and Taxonomies

the high sensitivity of word embeddings to small changes in hyper-parameters during their

generation [37] and given that the selection of an embedding over another affects the quality

of the overall process or system in which they are used.

On the other hand, taxonomies are not fixed but need updating due to the constant changes

in languages and every field of knowledge. The most adopted approaches to enrich or extend

standard taxonomies lean on expert panels and surveys; those are used to identify and validate

which terms should be added to a taxonomy. The approach relies on human knowledge,

and this makes the process error-prone - different experts can have different opinions - and

manually identifying new concepts and where to put those in the taxonomy structure is

time-consuming and costly. Resorting to word embeddings can help reduce these problems,

allowing to leverage big text data available to try and enrich existing taxonomies with new

concepts in the right places. A similar approach could also be valuable in aligning and linking

taxonomies since usually, within a single domain, multiple taxonomies are built by different

institutions for different purposes and need to be talkative to each other to allow interactions

from one to the other to integrate diverse data. The manual mapping of two taxonomies by

domain experts is a time-consuming and costly task, often leading to inaccuracies. Word

embeddings can be used also in this context to allow automatic aligning taxonomies based

on the semantic meaning of the concepts that can be learnt from large corpora.

1.1 Contribution

In this thesis, the symbiotic utilisation of both lexical taxonomies and word embeddings is

explored, fostering a mutually beneficial relationship between them. More specifically, in the

work described in this thesis:

• We propose a novel method to select taxonomy-aware word embeddings [68]: TaxoVec

is a framework that leverages taxonomic semantic similarity - thanks to the HSS, a

measure of semantic similarity between taxonomic words - to evaluate word embedding

models.

• We develop a novel method for taxonomy enrichment through the use of word embed-

dings [69, 70]: NEE leverages word embeddings to estimate the degree to which data

4



Chapter 1. Integrating Word Embeddings and Taxonomies

conforms to a given taxonomy, identifying new entities and concepts for the taxonomy

itself.

• We present a novel method for taxonomy alignment through the use of word embed-

dings [67]: WETA is a domain-independent, knowledge-poor method for automatic

taxonomy alignment employing a scoring function, which merges the score of a

hierarchical method based on cosine similarity and the score of a classification task.

• We propose a general evaluation method for word embeddings when a taxonomy is

missing in the field: vec2best furnishes the user with an extensive evaluation of word

embedding models. It represents a framework for evaluating word embeddings trained

using various methods and hyper-parameters on a range of tasks from the literature.

The tool yields a holistic evaluation metric for each model called the PCE (Principal

Component Evaluation). It is crucial to have a reliable measure of evaluation that can

produce a performant semantic representation based on the intended scope and the

information they have to embed because of the high sensitivity of word embeddings to

small changes in hyper-parameters during their generation.

In this work, we did not consider contextual word embedding because, as shown by Asu-

dani et al. [12], static word embeddings are still relevant and frequently used in Natural

Language Processing tasks (see the last Section of Chapter 2). Moreover, contextual embed-

dings are more computationally expensive to train than static embeddings [127] and, when

considering a specific application, as is frequently the case, the different meanings of words

are restricted by default, making the trade-off between contextual and static embeddings

favours the latter.

1.2 Working Example

To give a better idea of the relevance of this paper to the current state-of-the-art, let us

consider the 2012 ACM Computing Classification System (CCS)1, a taxonomy devised

by the Association for Computing Machinery (ACM) that serves as the de facto standard

classification system for the computing field.

1https://dl.acm.org/ccs
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Chapter 1. Integrating Word Embeddings and Taxonomies

The CCS is used in the ACM Digital Library (DL)2 to index content for subject-oriented

searching, to find similar documents, to create author expertise profiles, to identify robust

research areas in Institutional Profiles, and to create the topical tag clouds found in aggregated

ACM Special Interest Groups and conference views. Outside the DL, researchers and

institutions use the CCS in their own applications and research projects [126].

The system mentioned above went through seven revisions, the first version being

published in 1964, and revised versions appearing in 1982, 1983, 1987, 1991, 1998, and

the current version in 2012. such a revision reflects the need for keeping a taxonomy that

provides a map of the field of computing in all its breadth up-to-date. For the 2012 version

of the CCS, first drafts were created using inter alia user search logs from the ACM Digital

Library, machine analysis of DL texts and author-supplied keyword occurrences, and manual

examination of extant computer science taxonomies. ACM’s domain experts used these

drafts as their starting point, and the final taxonomy reflects a year-long team effort that

included two review stages and many iterations [126].

The computing field is dynamic and constantly changing therefore it is important to

optimise the process of updating the standard taxonomy. Word embeddings could be used to

propose an update of the CCS, using titles and abstracts of papers to train the models and

using the similarity of novel topics to suggest to some domain experts where to add them to

the existing taxonomy.

On the other hand, the CCS can be used for selecting the word embedding model that

best encodes the structure of the CCS. For example, if we are working with titles and

abstracts of papers, word embeddings could be used for various NLP tasks, e.g. as a vector

representation that will be fed to the neural network for the automation of the citation

screening process [144], or to perform topic modelling [136]. In this context, CCS could be

used to select the word embedding that best represents the Computer Science topics and the

hierarchical relations between them, allowing for better results over these tasks.

2https://dl.acm.org
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1.3 Thesis Structure

The thesis is composed of four main parts, organised as follows.

Part I It is intended to introduce the two main topics on which this thesis is based:

word embeddings and lexical taxonomies. In Chapter 1, we introduce the symbiotic

utilisation of lexical taxonomies and word embeddings, fostering a mutually beneficial

relationship between them. In Chapter 2, we define what are word embeddings and

describe some of the major methodologies used to create them. Lastly, in Chapter 3, we

introduce the concept of taxonomies, giving a formal definition that will be useful in the

following chapters and defining state-of-the-art taxonomy-based semantic similarity

measures.

Part II It focuses on two methods for the intrinsic evaluation of word embeddings.

In Chapter 4, we introduce the topic of word embedding evaluation and present some

relevant works from other authors. In Chapter 5, we propose the HSS - a measure of

semantic similarity between concepts - and TaxoVec - a framework to select taxonomy-

aware word embeddings. Lastly, in Chapter 6, we propose the vec2best tool, a unified

approach to several state-of-the-art intrinsic evaluation tasks over different benchmarks,

which produces a comprehensive measure of evaluation for each model called the PCE

(Principal Component Evaluation).

Part III It describes two methodologies for enhancing and aligning lexical tax-

onomies thanks to word embeddings. In Chapter 7, we introduce the topic of taxonomy

induction, taxonomy enrichment, and taxonomy alignment. In Chapter 8, we present

NEE, a framework designed to identify novel entities in a certain domain and to put

them in the right place within the taxonomy. Lastly, in Chapter 9, we propose WETA, a

domain-independent and knowledge-poor method for automatic taxonomy alignment

via word embeddings.

7
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Part IV The last part shows some applications of the methodologies proposed in the

two previous parts in a specific context: Labour Market Intelligence. In Chapter 10,

we introduce the field of study of Labour Market Intelligence and the projects in

which the works in the later chapters are framed. In Chapter 11, we propose two

tools, NEO and NES, used to automatically enrich the European Skills, Competences,

Qualifications, and Occupations taxonomy (ESCO) with new terms from a free text

corpus. In Chapter 12, we propose JoTA (Job Taxonomy Alignment), a framework used

to align the Italian taxonomy of occupations, CP and the European ESCO occupation

pillar taxonomy. Lastly, in Chapter 13 we present the conclusion of this work.

8



2
Word Embeddings

The task of learning a representation for words and documents from a corpus of texts is a cru-

cial part of Natural Language Processing (NLP) tasks. Over the years, researchers proposed

multiple ways of representing words using vectors, which have an intuitive interpretation,

can be the subject of functional operations, and lend themselves well to be used in many

Machine Learning (ML) algorithms.

The earlier techniques are called conventional models, also known as count-based or

frequency-based models. Later, the distributional representation models, also called static

word embeddings, gained relevance: the context of a word is used to determine its meaning

in a sentence and assign a single vector to it. More recently, contextual models create word

representations that are not unique but multiple and that are directly computed from the

context.
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Chapter 2. Word Embeddings

2.1 Conventional Word Representation Models

2.1.1 Bag of Words (BoW)

In the Bag of Words model, the text is an unordered collection of words, with no attention to

grammar or even to the word’s order.

For example, let us consider the two statements:

Statement 1: One cat is sleeping, and the other one is running.

Statement 2: One dog is sleeping, and the other one is eating.

The representation of those is:

one cat is sleeping and the other dog running eating

S1 2 1 2 1 1 1 1 0 1 0
S2 2 0 2 1 1 1 1 1 0 1

BoW suffers some limitations, such as sparsity: if the length of a sentence is large,

it takes significant time to obtain its vector representation and to get sentence similarity.

Another limitation is that frequent words have more power: their frequency count increases,

increasing their similarity scores. Lastly, ignoring word orders leads to losing the sentence’s

contextual meaning [12].

2.1.2 N-grams

The n-gram model is similar to the BoW, but instead of words, we consider a contiguous

sequence of n tokens. For n = 1,2,3, . . . , it is termed as 1-gram, 2-gram, and 3-gram, also

termed as uni-gram model, bi-gram, and tri-gram.

Considering again the two sentences from the BoW example, their bi-gram level repre-

sentation is shown in the example below.

This model still presents the limitations of the BoW.

10



Chapter 2. Word Embeddings

one cat cat is is sleeping sleeping and and the the other

S1 1 1 1 1 1 1
S2 0 0 1 1 1 1

other one one is is running one dog dog is is eating

S1 1 1 1 0 0 0
S2 1 1 0 1 1 1

2.1.3 Term Frequency-Inverse Document Frequency (TF-IDF)

TF-IDF is used to assess the importance of a term in relation to a collection of documents.

In contrast with term frequency (TF) - which measures how frequently a term occurs in a

document - it also allows finding terms that are frequent in the considered document and

infrequent in other documents of the collection (through the IDF).

If we consider the two sentences from the BoW example, and consider those as two

different documents, we can compute the TF-IDF for each word in each document:

one cat is sleeping and the other running

S1 TF 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1
IDF 0 0.3 0 0 0 0 0 0.3
TF-IDF 0 0.03 0 0 0 0 0 0.03

one dog is sleeping and the other eating

S2 TF 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1
IDF 0 0.3 0 0 0 0 0 0.3
TF-IDF 0 0.03 0 0 0 0 0 0.03

The TF-IDF is computed as:

t f − id f (t,d,D) = t f (t,d)× id f (t,D) (2.1)

with t f (t,d) relative frequency of term t within document d:

t f (t,d) = ftd
∑t ′∈d ft ′d

(2.2)

11
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and id f (t,D) logarithm of the fraction of the total number of documents (N) and the number

of documents containing the term.

id f (t,D) = log
N

∣{d ∈ D ∶ t ∈ d}∣ (2.3)

2.2 Word Embedding Models

Word embeddings are vector representations of words based on the hypothesis that words

occurring in a similar context are prone to have a similar meaning.

Word embeddings can be defined as lookup tables mapping words to vectors of real

numbers [46]. They are functions giving continuous vector representations in RD for elements

of a set V (e.g. a set of words or tokens). Formally, a word embedding e can be represented

as:

e ∶ V → RD

w →∣ e(w) = ve
w

(2.4)

To estimate the word embedding function e, we need to perform an optimisation process

on a large sample of language data on an arbitrary task. In the end, the embedding has accu-

mulated information from the corpus for each word vector, leading to noticeable geometric

relationships [139].

A common distinction between different types of embedding is between static and

contextualised embeddings:

• Static word embeddings use the distributional hypothesis to learn global and constant

vectors. They represent a word by a unique vector condensing every local usage of the

word in the training corpus. Two powerful methods to induce static word embeddings

are neural networks training [45, 107] and co-occurrence matrix factorisation [117, 95].

These word embeddings can be further divided into:

– Euclidean word embeddings use Euclidean geometry as mathematical support

to embed vectors. Yet, due to the intrinsic properties of this geometry, it may

be challenging to embed asymmetric information. These types of embeddings

12
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preferably incorporate symmetric knowledge such as semantic synonymy or

analogy [139].

– Non-Euclidean geometries provide a solution to embed asymmetric relations

such as entailment or logical thinking, but are less used compared to the previous

ones.

• Contextualised word embeddings are models providing variable vectors. Word repre-

sentations are multiple and are directly computed from their context. The context of a

word is usually composed of the words surrounding it. For contextualised embeddings,

non-Euclidean embeddings have not yet been investigated.

The most prominent word embedding models discussed in the following sections are

summarised in Table 2.1.

Table 2.1 The most prominent word embedding models published from 2013 to 2020 [12].

Embedding approach Year Organisation References

word2vec 2013 Google Inc [106, 107]
GloVe 2014 Stanford University [117]
fastText 2016 Facebook AI Research Lab [85]
ELMo 2017 Allen Institute of AI [118]
GPT 2018 OpenAI [120]
BERT 2018 Google AI Lab [50]
GPT2 2018 OpenAI [121]
GPT3 2020 OpenAI [31]

2.3 Euclidean Static Word Embeddings

2.3.1 Word2vec

The word2vec algorithm [107] uses a two-layer feed-forward neural network architecture,

and in the original article, two models were presented, which are Continuous Bag of Word

(CBOW) and skip-gram (SG). The difference between them is the task on which they are

trained: CBOW aims to predict a target word given its context, while skip-gram aims to

forecast, given a target word, its context.
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Figure 2.1 The CBOW and skip-gram model architectures.

Focusing on skip-gram, the model uses each current word as an input to a log-linear

classifier with a continuous projection layer and predicts words within a specific range before

and after the word. More formally, given a sequence of training words w1,w2,w3, . . . ,wT ,

the objective of the skip-gram model is to maximise the average log probability:

1
T

T

∑
t=1

∑
−c≤ j≤c, j≠0

log p(wt+ j∣wt) (2.5)

where c is the size of the training context (which can be a function of the centre word wt).

Some important parameters and settings for the training of word2vec are:

• The training can be executed with the hierarchical softmax, which is a computationally

efficient approximation of the full softmax: instead of evaluating W output nodes in

the neural network to obtain the probability distribution, it is needed to evaluate only

about log2(W) nodes [107].

• The training can also be executed with the negative sampling method, which approaches

the maximisation problem by minimising the log-likelihood of sampled negative

instances [107].
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• Words with a frequency above or below a certain threshold may be sub-sampled or

removed to speed up training.

• The dimensionality of the vectors affects the results: the quality of the word embeddings

increases with the increase of the dimensionality, but after reaching some point, the

marginal gain diminishes.

• The size of the context window determines how many words before and after a given

word are included as context words of the given word.

2.3.2 FastText

Bojanowski et al. [24] developed a version of the continuous skip-gram model called fast-

Text. One of its major improvements to word2vec is to consider sub-word information by

representing each word as the sum of its character n-gram vectors. Formally, given a word w,

and a dictionary of size G, Gw is the set of n-grams of size G appearing in w. Denoting as

zg the vector representation of the n-gram g, w will be represented as the sum of the vector

representation of its n-grams and the score associated to the word w as:

∫(w,c) = ∑
g∈Gw

z⊺gvc (2.6)

where vc is the vector representing the context. This simple representation allows one to

share information between words, and this makes it useful to represent rare words, typos,

and words with the same root. Moreover, it allows the computation of representations for

words not seen during the training phase, called Out Of Vocabulary (OOV) words.

2.3.3 GloVe

GloVe [117] is a global log-bilinear regression model for the unsupervised learning of word

representations. The model leverages statistical information by training only on the nonzero

elements in a word co-occurrence matrix rather than the entire sparse matrix or the individual

context windows in a large corpus.

The idea is to understand the relationship between words by studying the ratio of their

co-occurrence probabilities with various probe words. Compared to the raw probabilities,

15



Chapter 2. Word Embeddings

the ratio is better at distinguishing relevant from irrelevant terms. The training objective

of GloVe is to learn word vectors such that their dot product equals the logarithm of the

words’ probability of co-occurrence. Since the logarithm of a ratio equals the difference of

logarithms, this objective associates the logarithm of ratios of co-occurrence probabilities

with vector differences in the word vector space.

2.4 Non-Euclidean Static Word Embeddings

Another category of word embedding models is that of hyperbolic embeddings, which learn

embeddings in hyperbolic vector spaces that, due to their geometry (hyperbolic space can

be thought of as a continuous version of trees), are more equipped to model hierarchical

structures. In [110], the authors introduced an approach for learning hierarchical represen-

tations of symbolic data by embedding them into hyperbolic space, more precisely into an

n-dimensional Poincaré ball, such that their distance in the embedding space reflects their

semantic similarity. Other non-Euclidean embeddings have been explored (see e.g. [111, 63]).

2.5 Contextualised Word Embeddings

2.5.1 Embeddings from Language Models

The first contextualised embedding model was ELMo [118], which, after pre-training on a

large dataset, transfers the internal representations from the bidirectional language models

(BiLSTM) to a downstream model of interest as contextual word representations.

ELMo considers the complete sentence when assigning an embedding to each word: it

employs a bidirectional design, embedding depending on the sentence’s next and preceding

words. Given a sequence of N tokens (t1, t2, . . . , tN), the aim is to find the language model’s

highest probability in both directions. The likelihood of the sequence is computed using

a forward language model, which models the chance of token tk considering the history

(t1, t2, . . . , tk). A backward language model is identical to a forward language model but

goes backwards through the sequence, anticipating the previous token based on the future

context [12].
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2.5.2 Generative Pre-Training

More recent models use transformer decoders, such as GPT, instead of LSTM or recurrent

networks. Even when the number of parameters is increased, transformer-based models tend

to be more effective [139].

The GPT model uses a fine-tuning technique and only uses task-specific parameters that

have been trained on downstream tasks. Moreover, GPT uses a one-way language model, to

extract features, whereas ELMo employs a BiLSTM.

A standard language modelling objective for a sequence of tokens (t1, t2, . . . , tN) to

maximise the likelihood is:

L1(X) =∑ logP(ti∣ti−N , . . . , ti−1;θ) (2.7)

The language model employs a multi-layer transformer decoder with a self-attention

mechanism to anticipate the current word through the previous N words. To achieve an

adequate distribution over target words, the GPT model employs a multi-headed self-attention

operation over the input contextual tokens, accompanied by position-wise feed-forward

layers [12].

2.5.3 Bidirectional Encoder Representations from Transformers

BERT [50] stands for Bidirectional Encoder Representations from Transformers. BERT is

designed to pre-train deep bidirectional representations from an unlabelled text by condi-

tioning on the left and right contexts in all layers, making it fine-tunable with an additional

output layer.

BERT employs masked language modelling to optimise and combine position embedding

with static word embeddings as model inputs. It follows frameworks for both pre-training

and fine-tuning.

Initially, the model is trained on unsupervised learning from two pre-training tasks:

Masked Language Modelling (MLM) and Next Sentence Prediction (NSP). MLM uses a

MASK token hiding a target word in a sentence, and the objective is to reconstruct the

original token given the whole context. NSP is a classification problem where the model has
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to tell whether a sentence can follow another. After the training phase, the representation for

the words is taken from the output of the encoder [139].

The model is then fine-tuned by initialising it using the pre-trained parameters and then

fine-tuning all parameters using labelled data from the downstream jobs.

BERT uses a deep, pre-trained neural network with transformer architecture to create

dense vector representations for natural language.

Static
vectors

Static Word Embedding Contextualised Word Embedding

GenerativeEuclidean

Handles
OOV

Static Non-
Euclidean Word

Embedding

fastText word2vec
GloVe

BERTELMo
GPT

YES

YES
YES

YES

NO

NO
NO

NO

Figure 2.2 Relations between word embeddings based on some basic properties (adapted from [139]).

2.6 Comparative Analysis of Word Embedding Models for

Text Analytics Tasks

The different properties of the word embedding techniques described before are summarised

in Figure 2.2.

The performance of these word embedding techniques for various text analytics tasks

was observed in the review from Asudani et al. [12], and the results are shown in Fig. 2.3.
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The study shows that the domain-specific word embedding performance is higher than the

generalised embedding approach for performing tasks related to text analytics. For example,

for the text classification task, the CBOW model of word2vec and domain-specific embedding

performance are similar; GloVe, fastText, and BERT embedding models show considerable

performance and are limited to a few applications. The researchers utilise the ELMo and

GPT models for text classification tasks in minimal circumstances.

Figure 2.3 Performance of word embedding models based on the review from Asudani et al. [12]. TC: text
classification, SA: sentiment analysis, MTC: medical text classification, NER & RS: named entity recognition
and recommendation system, TM: topic modelling, IWE: impact of word embedding, DSWE: domain-specific
word embedding.

It emerges from the review, that domain-specific word embedding achieves the first

preference as the most suitable embedding for most of the application areas related to text

analytics. The CBOW model also achieves the first preference for performing text classifi-

cation tasks, whereas GloVe, fastText, and BERT models achieve the second preference, as

shown in Tab. 2.2. The CBOW and BERT model achieves the second preference for per-

forming the sentiment analysis task. The CBOW, BERT, and ELMo models achieve second

preference for performing biomedical text mining tasks. The CBOW model is the second

choice for performing operations on the NER and recommendation system. The Skip-Gram
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and GloVe model achieves the second preference to perform topic modelling-related tasks.

The domain-specific word embedding and CBOW embedding models are recommended as

the first preferences, whereas the Skip-Gram model is recommended as a second preference

to analyse the impact of the word embedding model on text analytics tasks [12].

Table 2.2 The most suitable word embedding models for some relevant text analytics tasks [12]. TC: text
classification, SA: sentiment analysis, MTC: medical text classification, NER & RS: named entity recognition
and recommendation system, TM: topic modelling, IWE: impact of word embedding, DSWE: domain-specific
word embedding.

Application
word2vec

CBOW SG GloVe BERT fastText ELMo DSWE

TC ✓□ ✓ ✓ ✓ ✓□
SA ✓ ✓ ✓□
MTC ✓ ✓ ✓ ✓□
NER & RS ✓ ✓□
TM ✓ ✓ ✓□
IWE ✓□ ✓ ✓□

Notes ✓□: first preference, ✓: second preference.

This review shows how static word embeddings are still relevant and frequently used

in Natural Language Processing tasks, and this is the main reason why we did not con-

sider contextual word embedding. Another reason is that contextual embeddings are more

computationally expensive to train than static embeddings, requiring a massive amount of

data and computational power [127], making the evaluation of those embeddings potentially

as expensive as their generation. Moreover, when considering a specific application, as

is frequently the case, the different meanings of words are restricted by default, e.g. with

financial data, there is no context referring to the river’s bank, and the word bank has just one

meaning in each context of those data. For this reason, in many applications, the trade-off

between contextual and static embeddings favours the latter, considering the amount of data

and computational power required by the former.
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3
Lexical Taxonomies

3.1 Background on Taxonomies

A taxonomy is a semantic hierarchy that organises concepts by is-a relations, which express

the notion that an entity is an example of a type (for example, "John is a bachelor") or that a

type is a sub-type of another type (for example, "A dog is a mammal") [30].

In linguistics, is-a relations are called hyponymy: when a term describes some subset

of a category defined by another term, the bigger term is called a hypernym with respect to

the smaller, and the smaller is called a hyponym with respect to the larger. In other words, a

concept represented by a lexical item L0 is said to be a hyponym of the concept represented

by a lexical item L1 if native speakers of English accept sentences constructed from the frame.

An L0 is a (kind of) L1. Here L1 is the hypernym of L0, and the relationship is reflexive and

transitive, but not symmetric [77].

Taxonomies exhibit the capability of improving many NLP and IR tasks [149], such

as query understanding [79], personalised product recommendation [80, 160], question

answering [158]. It also supports a variety of real-world applications, including information

management [112, 72], biomedical systems [91, 41], and e-commerce [1]. More specifically,
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Figure 3.1 A Fragment of the WordNet Noun Hierarchy [77].

many online retailers (e.g., eBay and Amazon) organise products into categories of different

granularities so that customers can easily search and navigate this category taxonomy to find

the items they want to purchase [134].

Human knowledge is inherently organised in the form of semantic, content-specific hier-

archies. Large-scale taxonomies such as Wikipedia Categories1, Freebase [25] and WordNet

[57] are crucial sources of structured knowledge useful for various natural language process-

ing applications. However, although these hierarchies are well developed, they are primarily

generic and laborious to augment and maintain, with new concepts and relations from newly

emerging or rapidly evolving domains such as public health and current affairs [145].

As an example, Figure 3.1 indicates the portion of the hyponymy relation in WordNet’s

noun hierarchy that has to do with printers and devices.

3.1.1 A Formal Definition of Taxonomy

In this section, we introduce a formal definition of taxonomy, relying on the formalisation

proposed by [102].

Definition 3.1.1 (Taxonomy) A taxonomy T is a 4-tuple T = (C,W,Hc
,F).

1https://en.wikipedia.org/wiki/Portal:Contents/Categories
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• C is a set of concepts c ∈ C (aka, nodes) that can be classified in p different hierarchical

levels: C1, . . . ,Cp;

• W is a set of words (or entities, or leaf concepts) belonging to the domain of interest;

each word w ∈W can be assigned to none, one or multiple concepts c ∈ C.

• Hc is a directed taxonomic binary relation existing between concepts, that is Hc
⊆

{(ci,c j) ∣ (ci,c j)∈ C2)∧ i≠ j}.Hc(c1,c2) means that c1 is a sub-concept, or hyponym,

of c2, while c2 is the hypernym of c1, meaning c2 has a broader meaning and constitutes

a category into which c1 falls. The relation Hc(c1,c2) is also known as is-a relation

(i.e., c1 is-a sub-concept of c2).

• F is a directed binary relation mapping words into concepts, i.e. F ⊆ {(c,w) ∣ c ∈

C∧w ∈W}. F(c,w) means that the word w is an entity of the concept c.

T might be represented as a Directed Acyclic Graph (DAG). Therefore, the concepts at

the most specific level have an in-degree of 0, i.e. they don’t have any incoming edge. We

refer to those concepts as leaf concepts, which are concepts representing different entities or

words. Note that - in several taxonomies - the terms representing leaf concepts are also item

words, while concepts at a higher level are not.

3.2 Taxonomy-based Semantic Similarity

In this section, we cover the topic of how to measure semantic similarity between words in a

taxonomy, expressed as a similarity between the concepts to which the two words belong.

That is an important task concerning the taxonomies and will be useful in the definition of a

new method for measuring semantic similarity in taxonomies in Chapter 5.

The measures of semantic similarity can be roughly divided into two main categories:

those that exploit the path connecting two concepts and those that are based on the Information

Content (IC) of the concepts. The most significant measures belonging to these two categories,

as assessed by different researchers [93, 9], are the following.

Path-based Measures These measures employ the path connecting two concepts to esti-

mate their similarity.

The simplest approach is to use the shortest path to assign a similarity score:
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simsp(c1,c2) =
1

φ(c1,c2)+1
(3.1)

where φ(c1,c2) is the shortest path between c1 and c2.

Leacock and Chodorow [94] scale the path similarity by the depth of the taxonomy:

simlc(c1,c2) = − log
φ(c1,c2)

2×max_depth
(3.2)

Wu and Palmer [153] consider the position of LCA(c1,c2), the Lowest Common Ancestor

of c1 and c2:

simwup(c1,c2) =
2×φ(r,LCA)

φ(c1,LCA)+φ(c2,LCA)+2×φ(r,LCA) (3.3)

Where r is the root node. Note that, to simplify the notation, we refer to LCA(c1,c2)
simply as LCA. For this class of methods in the case of polysemy, i.e. words belonging to

several concepts, the minimum φ(c1,c2) is considered, thus the maximum similarity.

Information Content-based Measures The IC-based approach was introduced by Resnik [124].

According to information theory, the IC (or self-information) of a concept c ∈ C can be ap-

proximated by its negative log-likelihood:

IC(c) = − log p(c) (3.4)

Where p(c) is the probability of encountering the concept c.

In the case of a taxonomy, p(c) is monotonic and increases with the rank of the taxonomy:

if c1 is−a c2 then p(c1) ≤ p(c2). Moreover, the probability of the root node is 1. Concepts

probabilities are computed simply as relative frequencies in a text corpus:

p̂(c) = f req(c)
N =

∑n∈words(c) count(n)
N (3.5)

Where words(c) is the set of words subsumed by concept c, and N is the total number of

occurrences of words in the corpus that are also present in the taxonomy. Therefore Resnik

defines the similarity between two concepts c1 and c2 as:
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simres(c1,c2) = IC(LCA) (3.6)

The similarity between the two words is:

simres(w1,w2) = max
c1∈s(w1),
c2∈s(w2)

IC(LCA) (3.7)

Where s(w1) and s(w2) are all the possible senses of w1 and w2 respectively.

Jiang-Conrath [83] built a measure of similarity using the self-information of c1 and c2

as well:

sim jcn(c1,c2) =
1

ICres(c1)+ ICres(c2)−2× ICres(LCA) (3.8)

And a similar measure is built by Lin [97]:

simlin(c1,c2) =
2× ICres(LCA)

ICres(c1)+ ICres(c2)
(3.9)

Similarly to Resnik, these last two methods consider the two concepts with the highest

Resnik similarity in the case of multiple word senses.

Other IC-based measures, sometimes called intrinsic IC-measures, use the structure of

the taxonomy, instead of an external corpus frequency, to compute p̂(c). For instance Seco

et al. [132] compute the IC(c) as:

ICseco(c) = 1−
log(∣descendants(c)∣+1)

logNc
(3.10)

where Nc is the number of concepts in the taxonomy and ∣descendants(c)∣ the number

of sub-concepts of c.

They have two main drawbacks: first, when a word has multiple senses, those methods

compute a value of similarity for each word sense and then consider only the highest; second,

while they consider the structure of the taxonomy, i.e. the relationship between taxonomic

concepts, none of those measures account for the number of words belonging to those

concepts.
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4
Setting the Stage for Word Embeddings

Evaluation

In Chapter 2, we defined a word embedding model and some of the most used methods to

generate word embeddings. In this Chapter, we introduce the topic of the evaluation of a

word embedding model to assess its quality.

Since word embeddings are massively used in several NLP tasks, and given their high

sensitivity to small changes in hyper-parameters during their generation, having a reliable

measure to evaluate their goodness becomes crucial (see, e.g., [96, 37]). Indeed, the ideal

evaluator should be able to analyse word embedding models from different perspectives.

Schnabel et al. [130] clarify that a good embedding should provide vector representations

to allow the relationship between two vectors to mirror the linguistic relation between the

two terms they represent.

Notably, evaluating the intrinsic quality of vector space models, as well as their impact

when used as the input of specific tasks (a.k.a., extrinsic quality), has a practical significance

(see, e.g. [34]), as the selection of an embedding over another affects the quality of the

overall process or system in which they are used. In essence, we may argue that the well-
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known principle garbage-in, garbage-out - that denotes the data quality research field - also

applies to word embeddings, as the lower the quality of the word embeddings, the lower the

effectiveness of the tasks based on them.

4.1 Desired Properties of Embedding Evaluators

The goal of an evaluator is to compare the characteristics of different word embedding models

with a quantitative and representative metric. However, finding a concrete and uniform way to

evaluate these abstract characteristics is not trivial. Wang et al. [148] identify some properties

that a good word embedding evaluator should aim for:

• Testing data: To ensure a reliable score, the testing data should have a good spread

in the word space. Frequently and rarely occurring words should be included in the

evaluation. Furthermore, data should be reliable, correct and objective.

• Comprehensiveness: Ideally, an evaluator should test for many properties of a word

embedding model. This property is meaningful not only for giving a representative

score but also for determining the effectiveness of an evaluator.

• High correlation: The score of a word model in an intrinsic evaluation task should

correlate well with the model’s performance in downstream natural language processing

tasks. That is important for determining the effectiveness of an evaluator.

• Efficiency: Evaluators should be computationally efficient. Most models are created

to solve computationally expensive downstream tasks. Model evaluators should be

simple yet able to predict the downstream performance of a model.

• Statistical significance: The performance of different word embedding models con-

cerning an evaluator should have enough statistical significance, or enough variance

between score distributions, to be differentiated. That is needed in judging whether a

model is better than another and helpful in determining performance rankings between

models.

Existing evaluation methods fall into two major categories: extrinsic and intrinsic eval-

uation. In the following sections, we will present them in detail with examples for each

type.

30



Chapter 4. Setting the Stage for Word Embeddings Evaluation

4.2 Evaluation Methods

4.2.1 Intrinsic Evaluation

Intrinsic evaluations reflect the coherence between word vectors and human judgement.

These tasks typically involve a pre-selected set of query terms and semantically related

target words, which we refer to as a query inventory [130]. The intrinsic term refers to the

fact that it measures the structure of the vectors in the embedding space without adding

external information to the model. These evaluations assess the global quality of the language

representation.

Most methods of intrinsic evaluation are designed to collect judgements that are the

results of conscious processes in a human brain, and such answers may be biased by certain

subjective factors (for example, due to the absence of a clear definition, every person interprets

word relations in their way, introducing the variability to the estimates). Following to [14]

the methods for intrinsic evaluation are divided into:

• Intrinsic conscious evaluation: designed to compare the human assessments with

those emerging from the word embedding models;

• Intrinsic subconscious evaluation: inspired by the classification of data collection

methods in psycho-linguistic research;

• Intrinsic thesaurus-based evaluation: based on a comparison with knowledge bases,

like taxonomies;

• Intrinsic language-driven evaluation: based on a comparison with data underlying

in a language itself, for instance, data that could be found in speech sound signals or

the frequency of occurrence of a pair of words in a corpus.

The most widely known and used metrics for intrinsic evaluation are those in the intrinsic

conscious evaluation group, and there are several available datasets for these evaluation

methods. The most used methods in this category are:

Similarity (or Relatedness) The performance of a model is assessed by evaluating the

correlation between benchmarks constructed by asking human subjects to rate the

degree of semantic similarity or relatedness between two words on a numerical scale

and the cosine similarity in the word embedding model.
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More formally, Spearman correlation is performed on the set of points:

{(x = Si j,y = cos(vwi,vw j)), i ∈ [1,N], j ∈ [i+1,N]} (4.1)

with (Si j)i, j∈[1,N] being a matrix of pair-wise similarities obtained after compilation

of several human judgements, and:

cos(vwi,vw j) =
⟨vwi,vw j⟩

∥ vwi ∥ ⋅ ∥ vw j ∥
(4.2)

being the cosine similarity between the word embedding vectors corresponding to

words wi and w j [139].

That is probably the most used intrinsic evaluation method (see e.g. [130, 17, 56]).

Analogy A semantic question gives an example pair (for example, brother and sister), a test

word (grandson) and asks to find another word that satisfies the relation illustrated by

the example pair for the test word (in this example granddaughter).

More formally, a pair of words is given (A,B) such that R(A,B) holds. Then, a word C

is given, and the objective is to find a word D in the embedding so that R(C,D) holds.

D is found by solving the following problems using the cosine similarity between

vectors [96]:

3CosAdd ∶ argmax
D∈V\{A,B,C}

cos(vB − vA + vC,vD) (4.3)

3CosMul ∶ argmax
D∈V\{A,B,C}

cos(vD,vB) ⋅ cos(vD,vC)
cos(vD,vA)+ ε

, ε = 0.001 (4.4)

To estimate the overall performance of a dataset, we use the correct-answer accuracy.

This task was popularised by [107] and was used e.g. by [130, 17].

Concept Categorisation Given a set of concepts, the objective is to group them into cate-

gories (e.g., helicopters and motorcycles should go to the vehicle class, and dogs and

elephants in the mammal class). It can be considered an unsupervised clustering task.
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More formally, a categorisation dataset D is defined by a set of classes C = (Ci)i∈[1,N],

and a set of words W = (w j) j∈[1,K], such that each word belongs to a specific class:

D = {(w,C(w)),w ∈W}. The goal is to create a set of clusters Cr
= (Cr

i )i∈[1,N] with

the K word vectors. C and Cr are then compared using purity [139]:

Purity(C,Cr) = 1
K

N

∑
i=1

max
j∈[1,N]

∣Ci ∩Cr
j∣ (4.5)

It was used e.g. by [130, 17].

Outlier Word Detection The task is to identify a semantically anomalous word in an already

formed cluster (for example, for a set banana, lemon, book, orange the word book is

the outlier since it is not a fruit).

More formally, we can take a set of words W = {w1,w2, . . . ,wn+1} where there is one

outlier, and we take a compactness score of word w as:

c(w) = 1
n(n−1) ∑

wi∈W\w

∑
w j∈W\w,w j≠wi

sim(wi,w j) (4.6)

The outlier is the word with the lowest compactness score, and to estimate the overall

performance on a dataset, we use the correct-answer accuracy [33].

The method was introduced by [33], even though a similar strategy, called coherence,

was previously introduced in [130].

Synonym Detection It consists of multiple-choice questions that pair a target term with

four synonym candidates (e.g. for the target levied, one must choose between imposed

(correct), believed, requested, and correlated). For each candidate vector, the cosine

similarity with the target is computed, and the candidate with the largest cosine is

chosen. The performance is evaluated in terms of correct-answer accuracy [17].

It was used, e.g., by [17].

Selectional Preferences (or Thematic Fit) It uses datasets containing verb-noun pairs rated

by subjects for how typical it is to have the noun as a subject or object of the verb.

For each verb, the aim is to select the twenty nouns most strongly associated with it
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as subjects or objects and to average the vectors of these nouns to obtain a prototype

vector for the relevant argument slot.

Then, the aim is to measure the cosine of the vector for a target noun with the relevant

prototype vector (e.g., the cosine of people with the eating subject prototype vector).

Systems are evaluated by Spearman correlation of these cosines with the averaged

human typicality ratings[17].

Then, the cosine similarity of a target noun with the prototype vector is computed

(e.g., the cosine of people with the eating subject prototype vector). It was used e.g.

by [130, 17].

Since TaxoVec, the evaluation method we propose in Chapter 5, is similar to the intrinsic

thesaurus-based evaluation metrics, we also present the most used methods in this category

in the following paragraphs.

Thesaurus Vectors Evaluation Method (QVEC) It is based on the idea that word em-

beddings can be evaluated with the vectors of the inverted index of a collection of

documents (the thesaurus vectors) in which each is responsible for a certain category

of human knowledge, like super-senses in WordNet (e.g. food or animal). The di-

mensionality of the thesaurus vectors is equal to the size of the collection, and each

component reports the number of occurrences of the word in a certain document. The

gold standard is represented by the thesaurus vectors. This method was introduced

by [141].

Semantic Networks Evaluation Method It uses manually constructed knowledge graphs

(semantic networks) as a gold standard. In semantic networks, the words are organised

in a graph by their semantic distinctive features based on the judgements of teams of

professional linguists. Semantic networks also feature a measure of similarity for word

pairs based on the shortest path in a graph, which can be compared with the similarity

measure of the same pair calculated by word embeddings [2]. The most well-known

example of such a semantic network is WordNet; another popular semantic network is

DBpedia.

34



Chapter 4. Setting the Stage for Word Embeddings Evaluation

4.2.2 Extrinsic Evaluation

Methods of extrinsic evaluation are based on the ability of word embeddings to be used as

the feature vectors of supervised machine learning algorithms, and the performance of the

supervised model (being measured on a dataset for NLP task) functions as a measure of word

embedding quality. Word embeddings probably could be used in almost any NLP task, and

thus any of them could be considered an evaluation method.

If word embeddings are supposed to be used only to resolve a specific downstream task,

the evaluation of the performance of a supervised model on this task will give an adequate

score of word embeddings performance. But extrinsic evaluation fails if the embeddings that

one wants to evaluate are needed in a wide range of different tasks since various downstream

tasks differ very much, and word embeddings performance scores in various downstream

tasks do not correlate between themselves [14].

In the following, we present the most used metrics for extrinsic evaluation:

POS Tagging POS tagging aims to assign tags to each input token with its Part Of Speech

type - like noun, verb, adverb, or conjunction. Due to the availability of labelled

corpora, many methods can complete this task by either learning probability distribution

through linguistic properties or statistical machine learning.

Chunking The goal of chunking, also called shallow parsing, is to label segments of a

sentence with syntactic constituents. Each word is first assigned with one tag indicating

its properties, such as noun or verb phrases. It is then used to syntactically group words

into correlated phrases. Compared with POS, chunking provides more clues about the

structure of the sentence or phrases in the sentence.

Named-Entity Recognition (NER) The NER task is widely used in natural language pro-

cessing, and it focuses on recognising inside sentences entity classes such as names (e.g.

person, location, or organisation) and numeric expressions (e.g. time and percentage).

Like the POS tagging task, NER systems use both linguistic grammar-based techniques

and statistical models, with the former requiring efforts on experienced linguists and

the latter requiring a large amount of human-labelled data for training.
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Sentiment Analysis (SA) Sentiment analysis is a sentence-level text classification task.

Usually, a text fragment is marked with a binary - or multi-level - label representing

the positiveness or negativeness of the text’s sentiment. Traditional methods focus

more on human-labelled sentence structures, while with the development of machine

learning, more statistical and data-driven approaches have been proposed to deal with

the sentiment analysis task.

4.3 Consistency Study of Extrinsic and Intrinsic Evaluators

Wang et al. [148] conducted a consistency study of extrinsic and intrinsic evaluators via a

correlation analysis. Figure 4.1 shows the Pearson correlation of each intrinsic and extrinsic

evaluation pair of 16 different word embedding models. For example, the entry of the first

row and the first column is the Pearson correlation value of 16 evaluation data pairs of

WS-353 (an intrinsic evaluator) and POS (an extrinsic evaluator).

Figure 4.1 Pearson’s correlation between intrinsic and extrinsic evaluator, where the x-axis shows extrinsic
evaluators while the y-axis indicates intrinsic evaluators. The warm indicates the positive correlation while the
cool colour indicates the negative correlation [148].
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The top 13 rows in Figure 4.1 correspond to 13 word similarity evaluation datasets; the

word analogy results are shown from the 14th row to the 21st row; then there are three

datasets (i.e. AP, BLESS, and BM) for concept categorisation two (WordSim-500 and 8-8-8)

are used for outlier detection, and the last one is for QVEC.

For the similarity datasets, the authors found that larger datasets tend to give more

reliable and consistent evaluation results; they also found that word analogy provides the

most reliable correlation results and has the highest correlation with the sentiment analysis

task. Moreover, the authors found that the outlier detection task does not seem to be a useful

evaluation method, but they expect that, with larger and more reliable datasets available,

the performance should be better. They concluded that word similarity, word analogy, and

concept categorisation are the most effective intrinsic evaluators and that larger datasets tend

to give better and more reliable results. Intrinsic evaluators may perform very differently for

different downstream tasks, and therefore they suggest using those jointly[148].

4.4 Related Work on Word Embedding Evaluation

There is extensive literature on intrinsic evaluation methods for word vector models. Baroni

et al. [17] were the first to systematically compare word embeddings against the count-vector-

based distributional word vectors on various query tasks. In their paper, they perform an

extensive evaluation on a wide range of lexical and semantics tasks across many parameter

settings. Most of those tasks were already widely used to test and compare distributional

semantic models.

Then, Schnabel et al. [130] provided a comprehensive study covering a wide range of

evaluation criteria and popular embedding techniques was conducted. The authors analyse

existing evaluation methods and introduce novel ones, discussing the relative strengths and

limitations. In their article, they clarify that various evaluations result in different orderings

of the embeddings, raising questions on the common assumption that there can be a single

optimal vector representation.

Wang et al. [148] performed an extensive evaluation on many word embedding models for

language processing applications. They report experimental results of intrinsic and extrinsic

evaluators on six-word embedding models, showing that different evaluators focus on distinct
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aspects of word models, and some are more correlated with natural language processing

tasks. Torregrossa et al. [140] provided a similar study focused on the correlation of word

embedding evaluation metrics on various datasets.

Bakarov [14] presented an extensive overview of the field of word embeddings evaluation,

proposing a new kind of intrinsic word embeddings evaluation methods, considering both

widely used (and at the same time widely-criticised) and less mainstream.

Torregrossa et al. [139] provide a survey that focuses on the algorithms and models

used to compute word embeddings and on their methods of evaluation. They also supply

a comparison of those algorithms and methods, highlighting open problems and research

paths; moreover, they contribute a compilation of popular evaluation metrics and datasets.

Lai et al. [92] proposed a measure that normalises the performances on all tasks to the

same scale, thereby simplifying the analysis across multiple tasks. Their indicator is the

Performance Gain Ratio (PGR): the Performance Gain is the performance gain offered by

the embedding compared to a random model, while the PGR is the ratio of the Performance

Gain of a model compared to another one.

Faruqui and Dyer [56] provided a website that allowed the automatic evaluation of

embeddings. They created an online application that enables users to (i) access a suite

of word similarity evaluation benchmarks, (ii) evaluate user-computed word vectors, (iii)

visualise word vectors in a two-dimensional space, and (iv) upload user vectors for exhaustive

offline evaluation. The online application allows the users to evaluate the embeddings using

the benchmarks, but it does not provide an overall evaluation based on those benchmarks

across different tasks. Unfortunately, the website is not maintained anymore.

In the following Chapters, we will propose two frameworks for the evaluation of word

embeddings:

• In Chapter 5, we propose TaxoVec - a framework to select taxonomy-aware word

embeddings, based on the HSS - a measure of semantic similarity between taxonomic

words we developed.

• In Chapter 6, we propose the vec2best tool, a unified approach to several state-

of-the-art intrinsic evaluation tasks over different benchmarks, which produces a

comprehensive measure of evaluation for each model called the PCE (Principal

Component Evaluation).
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5
Embeddings Evaluation Using a Novel

Measure of Semantic Similarity

In Chapter 4, we first provided an overview of the prevailing methods utilised for assessing

word embedding models; in this Chapter, we introduce a novel metric and methodology

for the evaluation of word embeddings. To be more specific, we propose (i) the HSS, as

a measure of semantic similarity between taxonomic words, (ii) a python package1, fully

deployed and available to the whole community, which allows to compute the HSS (and all

the other semantic similarity metrics considered) between any pair of WordNet nouns, and

(iii) TaxoVec, a framework to select taxonomy-aware word embeddings2.

We perform an extensive set of intrinsic and extrinsic evaluation tasks on well-known

benchmarks to evaluate TaxoVec against the state-of-the-art measures of taxonomic semantic

similarity and methods for embedding evaluation.

1https://pypi.org/project/TaxoSS
2Some results of this Chapter were published in [68].
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5.1 Motivation

In recent years, we have witnessed a clear dominance of learning-based methods in NLP

applications [114]. Despite sub-symbolic AI (i.e., machine learning) has shown to outperform

symbolic AI (i.e., knowledge-based AI) in retrieving linguistic patterns from a large amount

of data and in making predictions, those methods still suffer from dependency issues, i.e.

they require large amounts of training data and are domain dependent [36]. This issue is

particularly severe in domains where it is challenging to retrieve labelled data, and there is

extensive use of jargon and linguistic features which sub-symbolic AI struggles to learn, like

rhetoric, irrealis moods, metaphors, etc. [49, 155]. For those reasons, enhancing distributional

models with lexical knowledge brings noteworthy benefits to their use as input features in

several downstream machine-learning tasks.

On the other side, lexical taxonomies are manually built, and their creation and update

are time-consuming, error-prone, require domain-specific knowledge, and usually have low

coverage [62]. The use of taxonomy-aware embeddings can be beneficial to automatically

infer semantic information from domain-specific text corpora to build, update or maintain

lexical taxonomies [69, 104], as will be further discussed in the third part of this thesis.

The evaluation method we propose is similar to the intrinsic thesaurus-based evaluation

metrics as it uses an expert-constructed taxonomy to evaluate the word vectors as an intrinsic

metric [17, 78]. Typically, these approaches evaluate embeddings by their correlation with

manually crafted lexical resources, like expert rating of similarity or relatedness between

hierarchical elements. However, those resources are usually limited and hard to create

and maintain. Furthermore, human similarity judgements evaluate ex novo the semantic

relatedness between taxonomies, but the taxonomy’s structure already encodes information

about the relations between its elements. In this work, instead, we exploit the information

encoded in an existing taxonomy to build a benchmark for the evaluation of word embeddings.

Selecting a word vector model that represents and preserves taxonomic similarity relations

would allow us to generate a unified representation of knowledge-based and data-driven

lexical features and would enable several NLP applications. Some of them are related to the

maintenance and update of the taxonomy itself, like taxonomy refinement and enrichment (see

Chapter 8) or taxonomy alignment (see Chapter 9). Other applications are downstream tasks
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that rely on underlying structured knowledge representation, like recommendations for online

retailers [160], query understanding for search engines [79], and text understanding [152],

to cite a few of them. For this reason, we develop TaxoVec, a framework for embedding

selection driven by a measure of semantic similarity between taxonomic elements (HSS).

Semantic similarity represents a particular case of semantic relatedness [124], considering

only the co-hyponymy and synonymy relations. For instance, the words cat and tiger are

more similar than the words jungle and tiger, while the latter pair seems to be more related.

The semantic similarity strongly depends on the context. For this reason, it is valuable to

find an automated way to compute the similarity between words in a domain-dependent

taxonomy. In Chapter 3, we presented different approaches for measuring semantic similarity

in a taxonomy. Despite all of them being relevant, they have two main drawbacks: first, when

a word has multiple senses, those methods compute a value of similarity for each word sense

and then consider only the highest; second, while they consider the structure of the taxonomy,

thus the relationship between taxonomic concepts, none of those measures accounts for the

number of words belonging to those concepts. To overcome these limitations, we developed

the HSS, a measure that has proven to be valuable in several applications, like taxonomy

enrichment [69, 70], refinement [105], alignment [67], and job-skill mismatch analysis in the

field of labour market [71].

5.2 Methodology

In this section, we will:

• Define the HSS, a measure of similarity within a semantic hierarchy, which will serve

as a basis for the embeddings evaluation;

• Present TaxoSS, a tool for computing Semantic Similarity using the HSS and other

state-of-the-art measures (see Chapter 3);

• Present TaxoVec, the framework for the evaluation of word embedding models using a

measure of similarity within a semantic hierarchy (like the HSS). The TaxoVec’s steps

are shown in Figure 5.1.
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Figure 5.1 TaxoVec’s workflow.

5.2.1 Hierarchical Semantic Similarity (HSS)

To compute the Hierarchical Semantic Similarity (HSS) - similarly to [132] - we compute

p̂(c) using an intrinsic measure, exploiting the structure of the taxonomy instead of an

external corpus. However, the HSS, differently from [132], which uses only the number of

taxonomic concepts, considers also the entities of the taxonomy:

p̂(c) = Nc
N (5.1)

where N is the cardinality, i.e., the number of entities (words) of the taxonomy and Nc is

the sum of the cardinality of the concept c with the cardinality of all its hyponyms. Note

that p̂(c) is monotonic and increases with granularity, thus respects our definition of p (see

Sec. 3.2 of Chapter 3).

Now, given two words w1 and w2, Resnik defines c1 ∈ s(w1) and c2 ∈ s(w2) to be all the

concepts containing w1 and w2 respectively, i.e. the senses of w1 and w2. Therefore, there are

∣s(w1)∣× ∣s(w2)∣ possible combinations of their word senses, where ∣s(w1)∣ and ∣s(w2)∣
are the cardinality of s(w1) and s(w2) respectively. We can now define L as the set of all the

lowest common ancestors for all the combinations of c1 ∈ s(w1),c2 ∈ s(w2).

The hierarchical semantic similarity between the words w1 and w2 can therefore be

defined as:

simHSS(w1,w2) = ∑
ℓ∈L

p̂(ℓ = LCA ∣ w1,w2)× IC(LCA) (5.2)
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Where p̂(ℓ = LCA ∣ w1,w2) is the probability of LCA being the lowest common ancestor

of w1,w2, and can be computed as follows applying the Bayes theorem:

p̂(ℓ = LCA ∣ w1,w2) =
p̂(w1,w2 ∣ ℓ = LCA) p̂(LCA)

p̂(w1,w2)
(5.3)

We define Nℓ as the cardinality of ℓ and all its descendants.

Now we can rewrite the numerator of Eq. 5.3 as:

p̂(w1,w2 ∣ ℓ = LCA) p̂(ℓ = LCA) =
S<w1,w2>∈ℓ

∣descendants(ℓ)∣2 ×
Nℓ

N . (5.4)

Where the first leg of the right-hand side is the class conditional probability of the pair

< w1,w2 > having ℓ as the lowest common ancestor and the second one is the marginal

probability of the class ℓ. The term ∣descendants(ℓ)∣ represents the number of sub-concepts

of ℓ. Since we could have at most one-word sense wi for each concept c, ∣descendants(ℓ)∣2

represents the maximum number of combinations of word senses < w1,w2 > which have ℓ as

lowest common ancestor. S<w1,w2>∈LCA is the number of pairs of senses of word w1 and w2

which have LCA as lower common ancestor.

The denominator of Equation 5.3 can be written accordingly as:

p̂(w1,w2) = ∑
k∈L

S<w1,w2>∈k

∣descendants(k)∣2 (5.5)

5.2.2 TaxoSS: a Tool for Computing Semantic Similarity

Semantic similarity can be useful for a vast number of tasks, with embedding selection being

the one we are focusing on here. For this reason, we decided to implement the HSS and all

the other automatic semantic similarity measures considered in Sec. 3.2 of Chapter 3 as a

fully-fledged python package. That is going to facilitate the user who wants to use it. This

library, called TaxoSS (Taxonomic Semantic Similarity), allows computing taxonomic-based

similarity (using WordNet 3.0) as well as corpus-based similarity measures. For the latter,

there is a default measure based on the English Wikipedia dump of the year 2008, but the

user can also use a different corpus.
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The python library TaxoSS that we created allows the user to easily compute semantic

similarity between concepts using eight different measures: HSS, WUP, LC, Shortest Path,

Resnik, Jiang-Conrath, Lin, and Seco.

Fig. 5.2 and 5.3 show the use of the package for the computation of the semantic similarity

between two words using different metrics. Fig. 5.3 also shows how the user can use their

corpus to compute the similarity through corpus-based similarity measures.

Figure 5.2 An example of the use of the semantic similarity function with the HSS metric.

Figure 5.3 An example of the use of the semantic similarity function with Resnik metric and the use of an ad hoc
Information Content file created through a corpus of choice.

5.2.3 TaxoVec: Embeddings Evaluation and Selection of the Best Em-

bedding

Following the previous literature on intrinsic word embedding evaluation (see Chapter 4),

which correlates the cosine similarity between pairs of word vectors with human scores of

relatedness/similarity, we assess the goodness of a vector model by the Pearson correlation

coefficient between the cosine similarity of pairs of word vectors and their taxonomic

semantic similarity.

The taxonomic semantic similarity can be measured with all the metrics presented in

Sec. 3.2 of Chapter 3 or using the HSS (see Section 5.2.1).

In other words, to obtain the embedding evaluation using a measure of semantic similarity,

we generate a variety of vector representations of a large text corpus, and we select the one that
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better represents the taxonomy according to different measures of semantic similarity. That

is, we want the similarity between word vectors to reflect as much as possible the semantic

similarity between words in the taxonomy, so we select the embedding that maximises the

correlation between cosine similarity and semantic similarity.

5.3 Experimental Results

In this experimental section, we select the best word embedding model as the one that

maximises the correlation between cosine similarity and semantic similarity as it is computed

by HSS and WUP (see Section 3.2), and as the one that maximises the correlation between

cosine similarity and the similarity assessed by the evaluators in the benchmarks MEN and

SimLex999 (see Section 6.4.2). To evaluate the effectiveness of the HSS for the selection of

word embeddings, we perform intrinsic and extrinsic evaluations to compare the embedding

model selected through HSS, WUP, MEN, and SimLex999.

Our experiments rely on a lexical taxonomy and a corpus:

• Taxonomy: WordNet [109] provides a structured hierarchy of meanings (senses)

and synsets (a collection of words belonging to a specific context). We used the

implementation of WordNet inside the NLTK library [22] while calculating the required

information using NLTK’s native functions (e.g., calculating the lowest common

ancestor) and custom functions (e.g., calculation of cardinality).

• Corpus: English Wikipedia dump of the year 2008. The main reason for not choosing

a more recent update is that the last release of WordNet 3.0 (the version we used for

our experiments) was from 2006, making the use of a newer Wikipedia dump version

unnecessary. The dump used already includes the pre-processed data version that we

used without performing further cleaning.

We generate 80 different embedding models with fastText. Among them, we select the

four that better correlate their cosine similarity with the HSS, WUP, MEN, and SimLex999. To

evaluate these four models and compare the semantic similarity measures used to select them,

we use their vectors as input features in four downstream NLP tasks. The four NLP tasks are,

in order of presentation: categorisation, sentiment classification, hypernym detection, and

synonym detection.
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5.3.1 Generation of the Embeddings

We trained our vector models with the fastText library using both skipgram and CBOW. We

tested the following parameters:

• Five values of embeddings sizes: 25, 50, 100, 250, and 500;

• Four for the number of epochs: 5, 10, 20, and 50;

• Two for the learning rate: 0.05 and 0.1.

We considered sub-words with 5 to 6 letters while setting the minimum word count as

100, running on an Intel Core i7 CPU with 32 GB RAM. The best embeddings chosen by

each measure for each dataset are reported in Tab. 5.1.

Table 5.1 Best embeddings for each measure.

Algorithm Size Epoch Learning rate

HSS (ours) SG 500 5 0.05
WUP [153] CBOW 50 10 0.01
MEN [32] SG 250 10 0.05
SimLex999 [78] CBOW 500 50 0.01

Given that with HSS and WUP, we can compute the similarity for each pair of terms in

the taxonomy, for this evaluation we have (n× (n− 1))/2 pairs of terms for each vector

model, where n is the number of words present both in the taxonomy and the text corpus. In

our case, the number of common words is 53,451, for a total of 1,428,477,975 possible word

pairs for each model, which would make the computation intractable. To reduce the number

of samples, we start from 0 pairs and, following [131], we increase the sample size until the

Pearson correlation stabilises. The process of choosing the number of pairs is detailed in the

following paragraph.

5.3.2 Choosing the Number of Pairs

To define the minimum number of pairs required for our experiments, after randomly generat-

ing 100k pairs presented both in WordNet and our corpus vocabulary, we recursively generate

samples of pairs while increasing the number of samples by 100 in each step. Fig. 5.4 shows

the Pearson correlation of the HSS score and cosine similarity of each paired sample, while

the orange line indicates the rolling average of 100. To define the Point of Stability (PoS)
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Figure 5.4 Variation in Pearson Correlation of HSS score and cosine similarity vs. the number of word pairs.
The orange line indicates the rolling average of 100.

(i.e., a point from which the correlation remains within the POS), we considered a Corridor

of Stability (CoS) of ±0.01. Although the rule of thumb proposed by [43] and the work

of [131] suggest a larger CoS (between 0.05 and 0.1) due to difficulties in achieving a tighter

CoS mainly caused by the cost of the additional samples. Since such a cost is not relevant in

our case, we decided to consider COS as ±0.01, which results in a PoS of 35,000.

Comments on the Best Embedding To better clarify the matter, using the ap [7] dataset,

in Fig.5.5, we provide a scatter plot produced over the best embedding model - as emerges

from Tab. 5.1 - generated with UMAP3. We chose twenty random records for the first ten

categories. Each icon and colour is assigned to one category, demonstrating how well the

clusters are separated from each other. Analysing the scatter plot, it can be observed that:

• Categories that are conceptually more distant concerning the other categories show

a clearer separation, for instancep chemical element and × monetary unit, while

categories semantically close together have less clear boundaries, such as legal

documents and ★ assets;

3Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be
used for visualisation similarly to t-SNE, but also for general non-linear dimension reduction
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Figure 5.5 UMAP plot of the best word-embedding model resulting from Tab. 5.1, that is algorithm=skipgram, size=500, epochs=5, and learning rate = 0.05.
Each icon is assigned to one category in ap [7].
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• Some cases are on the borderline of two or more classes. While such cases may seem

to show model weakness, such observations can be explained based on the nature

of the non-contextual embeddings since by definition they cannot represent words

with multiple meanings. For example, in the scatter plot mentioned above, the word

capital, which belongs to ★ assets in WordNet, is on the border of ⧫ social unit and

district. That can be explained by using the Wikipedia corpus (i.e., a generic corpus)

for generating the embeddings.

Below, we describe the four downstream NLP tasks performed to evaluate the embedding

selection procedure. For each task, we comment on the results.

5.3.3 Evaluation on Natural Language Processing Tasks

Categorisation

Following [17], we cluster the vectors from each selected embedding, applying the k-means

algorithm from the scikit-learn library [116], with the default parameters. In the next step,

the purity of each cluster is calculated. The number of clusters is equal to the number of

classes in each dataset. To account for the variation in results we compute the average value

of 50 iterations for each pair.

The datasets used in these experiments are AP [7], containing 403 concepts organised

into 21 categories, BM [20], including 4,668 concepts belonging to 56 categories, and

ESSLLI [18], from the ESSLLI 2008 Distributional Semantic Workshop shared-task set,

containing 45 concepts divided into nine categories.

The purity values of clusters are reported in Tab. 5.2, where a purity close to 1 shows

that the cluster is well reproduced, while a purity close to 0 indicates poor cluster quality.

These results show that the embedding chosen by our similarity measure outperforms the

other three embeddings, chosen by WUP, MEN, and SimLex999 measure when applied on

three well-known categorisation datasets used by [17].

Sentiment Classification

We carry out the sentiment classification task on three user review datasets: Binary and

Multi-class Amazon Review and Binary Movie Review.
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Table 5.2 Categorisation: Cluster purity obtained from each embedding and dataset.

AP [7] BM [20] ESSLLI [18]

HSS (ours) 0.75 0.62 0.81
WUP [153] 0.68 0.43 0.73
MEN [32] 0.71 0.58 0.77
SimLex999 [78] 0.71 0.49 0.78

Replicating the experiment done in [130], we perform binary sentiment classification on

the dataset from [101]. This dataset contains 50K movie reviews divided equally between

binary labels. Utilising the embeddings as the features of a logistic regression [55], we

compute a linear combination of embeddings, weighted by the word count in each review.

We use the Scikit-learn library [116] to apply the mentioned regression and calculate the

accuracy values for each selected embedding by performing a 10-fold cross-validation. The

results of this task (classification accuracy) can be seen in Tab. 5.3.

Using the binary and the multi-class Amazon cellphone review datasets4 we perform both

binary and multi-class sentiment classification. These datasets contain 26,845 and 29,988

reviews labelled 0 or 1 for the binary dataset and from 1 (absolutely negative) to 5 (absolutely

positive) for the multi-class dataset. In both cases, we down-sample the dataset based on

the minority label. Tab. 5.3 shows the mean and the standard deviation of the performance

metrics that result from 10-fold cross-validation. Our measure can outperform WUP, MEN,

and SimLex999 benchmarks. The exception is the multi-class dataset, in which HSS produces

results similar to those of SimLex999.

Hypernym Detection

For this task, we employ the BATS benchmark dataset [73], which contains 99,200 questions

in 40 morphological and semantic categories. In particular, we use three lexicography

categories, namely, Hypernyms (Animals, Miscellaneous) and Hyponyms (Miscellaneous).

To generate hypernym-hyponym pairs (corresponding to the positive pairs), we extract all

the possible pairs, deduplicate them, and remove all the pairs with at least one word from the

embedding vocabulary. The process leads to 1,129 pairs. To generate the negative pairs, we

4https://jmcauley.ucsd.edu/data/amazon/
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Table 5.3 Sentiment Classification.

Accuracy Precision Recall F1

Multi-class Amazon Review

HSS (ours) 0.4±0.04 0.4±0.04 0.41±0.04 0.4 ±0.04
WUP [153] 0.34±0.06 0.33±0.04 0.34±0.06 0.31±0.05
MEN [32] 0.4±0.04 0.39±0.04 0.4±0.04 0.39±0.04
SimLex999 [78] 0.41±0.02 0.4±0.02 0.41±0.02 0.4±0.02

Binary Amazon Review

HSS (ours) 0.82±0.02 0.81±0.03 0.84±0.03 0.82±0.02
WUP [153] 0.72±0.03 0.71±0.04 0.74±0.04 0.72±0.03
MEN [32] 0.81±0.02 0.79±0.03 0.83±0.02 0.81±0.02
SimLex999 [78] 0.8±0.04 0.79±0.04 0.82±0.05 0.8±0.04

Binary Movie Review

HSS (ours) 0.84±0.01 0.84±0.01 0.84±0.02 0.84±0.01
WUP [153] 0.72±0.02 0.72±0.02 0.72±0.02 0.72±0.02
MEN [32] 0.82±0.01 0.82±0.01 0.82±0.02 0.82±0.01
SimLex999 [78] 0.83±0.01 0.83±0.01 0.84±0.02 0.83±0.01

use the aforementioned categories to randomly select words and form pairs, arriving at 1,129

pairs that do not have a hypernym-hyponym relationship. Finally, by subtracting the vectors

of pair words, we create a single vector, and we use it as the feature for training the classifier.

To compensate for the potential effect of the randomly generated pairs on the results, we

repeat the process ten times, each time using a logistic regression model to classify the pairs.

Tab. 5.4 shows the mean and standard deviation of the outcomes for chosen embeddings.

The HSS outperforms the other benchmarks except for the MEN dataset, which achieves the

same precision as our method.

Table 5.4 Hypernym detection.

Accuracy Precision Recall F1

HSS (ours) 0.72±0.013 0.72±0.012 0.75±0.017 0.73±0.013
WUP [153] 0.68±0.015 0.71±0.02 0.65±0.014 0.68±0.013
MEN [32] 0.71±0.014 0.72±0.017 0.72±0.015 0.72±0.012
SimLex999 [78] 0.69±0.023 0.68±0.251 0.73±0.017 0.70±0.019
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Synonym Detection

As for the previous task, we used the BATS benchmark to generate the training data for the

logistic regression classifier. To create positive pairs (i.e., pairs with synonym relationships),

first, we generate all the possible combinations of 2 for each entry in Synonym-exact and

Synonym-intensity files. Then, we combine them with the pair made from the synonymous

words in the Antonym-gradable file, which results in 4,663 pairs that we reduced to 4,011

pairs after de-duplication. Similar to the method described in the previous task, we generate

negative pairs by iterating through the vocabulary ten times.

As reported in Tab. 5.5, despite close results to the SimLex999 dataset, the embedding

chosen by the HSS carries out a better synonym classification than the other methods.

Table 5.5 Synonym detection.

Accuracy Precision Recall F1

HSS (ours) 0.616±0.006 0.609±0.007 0.624±0.012 0.617±0.006
WUP [153] 0.54±0.007 0.534±0.007 0.537±0.014 0.536±0.007
MEN [32] 0.586±0.006 0.58±0.007 0.586±0.008 0.583±0.006
SimLex999 [78] 0.612±0.007 0.605±0.008 0.618±0.004 0.611±0.005
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6
A Unified Framework for Intrinsic

Evaluation of Word-Embedding

Algorithms

In Chapter 4, we provided an overview of the most common methods for assessing word

embedding models, and in Chapter 5 we introduced a framework to select taxonomy-aware

word embeddings leveraging a measure of taxonomic semantic similarity (the HSS).

In this Chapter, we propose the vec2best tool [10], a unified approach to several state-

of-the-art intrinsic evaluation tasks over different benchmarks, which provides the user with

an extensive evaluation of word embedding models. vec2best represents an approach to

evaluate word embeddings trained with different methods and hyper-parameters on a set of

tasks from the literature and produces a comprehensive measure of evaluation for each model

called the PCE (Principal Component Evaluation)1.

1Some results of this Chapter are in press at Cognitive Computation Journal [11].
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6.1 Motivation

Evaluating the intrinsic quality of vector space models, as well as their impact when used as

the input of specific tasks (a.k.a., extrinsic quality), has a practical significance, see, e.g. [34],

as the selection of an embedding over another affects the quality of the overall process or

system in which they are used. In essence, we may argue that the well-known principle

garbage-in, garbage-out - that denotes the data quality research field - also applies to word

embeddings, as the lower the quality of the word embeddings, the lower the effectiveness of

the tasks based on them.

The state-of-the-art approaches for word embedding evaluation can be divided into two

major classes, as seen in Chapter 4: intrinsic and extrinsic evaluation.

Intrinsic evaluation of word embeddings directly test for syntactic or semantic relation-

ships between words [107, 17]. Those tasks typically involve a pre-selected set of query

terms and semantically related target words, with human judgements on word relations (i.e.,

absolute intrinsic evaluation).

Methods of extrinsic evaluation are based on the ability of word embeddings to be used

as the input features of machine learning algorithms; the performance of the downstream

model acts as a measure of word embeddings quality [14]. Extrinsic evaluators are more

computationally expensive and may not be directly applicable. Moreover, Schnabel et

al. [130] state that extrinsic evaluations, although valid in highlighting specific aspects of

embedding performance, should not be used as a proxy for generic quality.

In essence, the contributions of vec2best are:

1. It represents an approach to evaluate word embeddings trained with different methods

and hyper-parameters on a set of tasks from the literature;

2. It produces a comprehensive measure of evaluation for each model called the PCE

(Principal Component Evaluation);

3. It has been implemented as a pip-python package, available to the whole community2.

Anyone can contribute by improving it by adding (domain-specific) benchmarks and

tasks.

2The package is publicly available at https://pypi.org/project/vec2best/.
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6.2 Methodology

Figure 6.1 The workflow of vec2best

As seen in the previous section, there already are a fair number of intrinsic evaluation

methods and datasets. What is missing is a unified method of evaluation that merges the

results of those methods to provide a comprehensive measure of the model’s worth. That is

the motivation behind vec2best: a pipeline to execute the main intrinsic evaluation tasks to

provide an extensive and overall evaluation - called PCE - of word embeddings.

vec2best enables the users to obtain an overall evaluation of their word embeddings,

providing at the same time insights regarding the performance achieved by the models on the

different tasks and benchmarks that are state-of-the-art methods for intrinsic evaluation.

vec2best considers four state-of-the-art tasks, namely: word similarity, word analogy,

concept categorisation, and outlier detection. The choice to focus on these four tasks follows

from what Wang et al. [148] found in their correlation analysis to study the performance

consistency of extrinsic and intrinsic evaluators. They argue that word similarity, word

analogy, and concept categorisation are the most effective intrinsic evaluators. Since intrinsic

evaluators can perform differently for different downstream tasks, they suggest using these

three intrinsic evaluators jointly when testing a new word embedding model. Regarding

outlier detection Wang et al. [148] say that with larger and more reliable datasets available,

they expect the outlier detection task to have better performance, and this is why we included

it too.

To evaluate each of these tasks, vec2best uses several benchmarks, as shown in Table 6.1

(more details about these benchmarks can be found in Section 6.4.2). The overall evaluation
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Table 6.1 The benchmarks considered for each task and their evaluation metric.

Task Evaluation Metric Benchmark Source

Similarity [74] Spearman
correlation

Cosine
similarity

WS353 [59]
RG65 [128]
RW [99]
MEN [32]
MTurk287 [122]
SimLex999 [78]
MC30 [109]
MTurk771 [75]
YP130 [157]
Verb143 [15]
SimVerb3500 [65]
SemEval17 [35]
WS353REL [2]
WS353SIM [2]

Analogy [6] Accuracy

3CosAdd
Google [106]

3CosMul

3CosAdd
MSR [108]

3CosMul

Spearman
correlation

3CosAdd SemEval2012
[87]

Categorisation [76] Purity Clustering

AP [7]
BLESS [19]
BM (battig) [20]
ESSLLI 1a [18]
ESSLLI 2b [18]
ESSLLI 2c [18]

Outlier
detection [33] Accuracy

Compactness
score

8-8-8 [33]
WordSim500 [23]
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for each task can be computed in three different ways: as the mean, as the minimum, or as the

maximum of the evaluation obtained for all its benchmarks. For the analogy task, we need to

re-scale the evaluation on SemEval2012 to make it range between [0,1] as the evaluations on

the other tasks, since the evaluation metric is different (Spearman correlation vs. accuracy).

Then for each one of these possible evaluations and each task, we compute the first

principal component obtained through the Principal Component Analysis (PCA).

PCA is one of the most widely used methods to reduce the dimensionality of a dataset

such that most of the information in the data is preserved. PCA achieves that through the

principal components (PCs), which are linear functions of those in the original dataset,

uncorrelated with each other while keeping a maximum variance. The problem of finding the

PCs reduces to solving an eigenvalue/eigenvector problem [84].

It is common practice to standardise the variables to avoid problems with the covariance

matrix. Starting from a n× p data matrix X, where n is the number of word embedding

models evaluated, and p is the number of tasks on which those models were evaluated, each

data value xi j—i-th model and j-th task— is centred and divided by the standard deviation s j

of the n evaluations computed for task j: zi j = (xi j − x̄ j)/s j.

Given the standardised variables z1, . . . ,zp and their correlation matrix R, the eigenvectors

ak of R define the q < p uncorrelated maximum-variance linear combinations

Zak =

p

∑
j=1

a jkz j, k ∈ {1, . . . ,q} (6.1)

that are called principal components (PCs). The matrix Z in (6.1) is a n× p matrix having

columns z1, . . . ,zp. By keeping just the first PC - the one that explains most of the variance

present in the original p variables - we can obtain a single measure of evaluation:

PCE∗
= Za1 =

p

∑
j=1

a j1z j. (6.2)

To improve the interpretability of such a measure and make it easier to compare the perfor-

mance of different models, we consider the normalised PCE∗ measure:

PCE =
PCE∗−min(PCE∗)

max(PCE∗)−min(PCE∗) ∈ [0,1]. (6.3)
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Values of PCE equal to 0 and 1 are associated with models characterised by the lowest and

larger value of PCE∗, respectively. It is possible to show that ρ1 j = Corr(Za1,z j) = a1, j
√

λ1,

where λ1 is the largest eigenvalue of the matrix R and a1, j is the j-th element of a1. Thus, the

correlation coefficients ρ1 j, j = 1, . . . , p, have concordant signs only if a1 contains concordant

values. Thanks to the Perron-Frobenius theorem [113], this condition is satisfied when the

elements in R are positive, which typically is the case if metrics z1, . . . ,zp have a similar

interpretation (e.g., higher values are associated with better performances). In the case

that ρ1 j > 0 for each j, then higher values of z1, . . . ,zp lead to higher values of PCE and,

consequently, PCE = 1 is associated to the best model. Differently, if ρ1 j ≤ 0 for each j,

them PCE = 1 is associated with the worst model.

Since we aim at defining a metric that takes value 1 when it evaluates the best model, in

the case ρ1 j ≤ 0, we define

PCE = 1−
PCE∗−min(PCE∗)

max(PCE∗)−min(PCE∗) . (6.4)

The evaluation of each one of the four tasks - Similarity, Analogy, Categorisation,

and Outlier Detection - gives us three different values, namely: PCEMIN , PCEMAX , and

PCEMEAN , which refer to the minimum, the maximum, and the mean of the evaluations of

each task over the different benchmarks and metrics considered, as in Tab. 6.1. In this way,

we have an overall evaluation based on the worst-case scenario (the conservative one), one

based on the best scenario, and the last based on a synthesis of all the evaluations for each

task. The standard measure of the quality of a given PC is the proportion of total variance

that it accounts for:

π j =
λ j

∑p
j=1 λ j

, (6.5)

where λ j is the j-th largest eigenvalue of R.

It is well-known that the presence of outliers may impact the resulting PCs since they

typically enlarge marginal variances. Nonetheless, in our framework, an outlier refers to a

model performing particularly well (or badly) in one or more metrics. Since we aim to detect

the best-performing model, outliers are particularly informative.
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6.3 vec2best as an Off-the-Shelf Tool

Finally, vec2best has been implemented as a pip-python package, and it can be invoked

using a few lines of code shown below:

1 from vec2best.functions import compute_pce

2 path_to_model = 'data/example_models'

3 result = compute_pce(path_to_model)

The function compute_pce has other six parameters (categorization=True, simi-

larity=True, analogy=True, outlier_detection=True, pce_min=True, pce_max=

True, pce_mean=True) set by default as True, and so the output consists in the evaluation

of the models over the three tasks and over the PCEMIN , PCEMAX , PCEMEAN . By setting

some of those parameters as False, the PCE can be computed over a subset of those tasks

or the evaluation could be computed only for one or two of the three types of PCE.

The output is saved, and the output on the screen shows the percentage of explained

variance of the first principal component, and the top 3 models according to the chosen PCE.

The following is an example of the output:

1 from vec2best.functions import compute_pce

2 path_to_model = 'data/example_models'

3 compute_pce(path_to_model, analogy=False, outlier_detection=False,

4 pce_max=False, pce_mean=False)

1 PCE min - percentage of explained variance: 0.95

2 cat sim PCE_min

3 example_models/ft_0_5_50_5.vec 0.38 0.29 1.00

4 example_models/glove_5_50_5.vec 0.41 0.25 0.94

5 example_models/wv2_model_11.vec 0.24 0.17 0.34
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6.4 Experimental Results

6.4.1 Datasets and Settings for Reproducibility

Training corpus For consistency, we performed the training of the different models on the

same corpus, and following [130], we chose the Wikipedia dump (2008-03-01). The used

dump already includes the pre-processed version of data that we used as our data without

performing further cleaning.

Models For the training, we used three of the most important methods of non-contextual word

representations from large text corpora: word2vec [106], fastText [24], and GloVe [117].

The grid of parameters for word2vec and fastText is as follows:

• algorithm ∈ {CBOW, SG (skip-gram)}3

• epochs ∈ {5, 10, 25}

• size ∈ {50, 100, 150, 300}

• window ∈ {5, 10, 15}

For GloVe, we considered the same hyper-parameters except for the algorithm. That

accounts for 135 word embedding models trained in total. We chose the fastText parameters

following the suggestions on the fastText site 4. The fastText and word2vec models were

trained using the Gensim library5, while the GloVe models were trained using the officially

released toolkit6.

The part of the evaluation on the tasks of similarity, analogy, and categorisation is based on

the Python package word-embeddings-benchmarks 7 [81]. The part of the evaluation on the

task of outlier detection is based on the code and benchmarks provided by Camacho-Collados

and Navigli [33] 8 and by Blair et al. [23] 9.

3only for fastText and word2vec
4https://fasttext.cc/docs/en/unsupervised-tutorial.html
5https://radimrehurek.com/gensim/index.html
6https://nlp.stanford.edu/projects/glove/
7https://github.com/kudkudak/word-embeddings-benchmarks
8http://lcl.uniroma1.it/outlier-detection/
9https://github.com/peblair/wiki-sem-500
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6.4.2 Benchmarks

The benchmarks used are listed in Table 6.1.

Word Similarity

We chose 14 datasets for word similarity evaluation. Among these datasets, WS353,

WS353SIM, WS353REL, and RW are the more popular because of their high-quality word

pairs. The characteristics of these benchmarks are the following:

• WS353 has 353 pairs assessed by semantic similarity with a scale from 0 to 10.

• RG65 has 65 pairs assessed by semantic similarity with a scale from 0 to 4.

• RW has 2 034 pairs of words with low frequency (rare words) assessed by semantic

similarity with a scale from 0 to 10.

• MEN has 3 000 pairs assessed by semantic relatedness with a discrete scale from 0 to

50.

• MTurk287 has 287 pairs assessed by semantic relatedness with a scale from 0 to 5.

• SimLex999 has 999 pairs assessed by semantic similarity with a scale from 0 to 10.

• MC30 has 30 pairs, a subset of RG65 which contains 10 pairs with high similarity, 10

with middle similarity, and 10 with low similarity.

• MTurk771 has 771 pairs assessed by semantic relatedness with a scale from 0 to 5.

• YP130 has 130 pairs of verbs assessed by semantic similarity with a scale from 0 to 4.

• Verb143 has 143 pairs of verbs assessed by semantic similarity with a scale from 0 to

4.

• SimVerb3500 has 3 500 pairs of verbs assessed by semantic similarity with a scale

from 0 to 4.

• SemEval17 has 500 pairs assessed by semantic similarity with a scale from 0 to 4

prepared for the SemEval-2017 Task 2.

• WS353REL has 252 pairs, a subset of WS353 containing no pairs of similar concepts.

• WS353SIM has 203 pairs, a subset of WS353 containing similar or unassociated (to

mark all pairs that receive a low rating as unassociated) pairs.
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Word Analogy

For word analogy evaluation, the Google dataset contains 19 544 questions, divided into

semantic and morpho-syntactic categories, each with 8 869 and 10 675 questions. The

MSR dataset contains 8 000 analogy questions divided into 16 morphological classes. Both

3CosAdd and 3CosMul inference methods are implemented. Lastly, SemEval2012 contains

10 014 questions divided into 10 semantic classes and 79 sub-classes.

Word Categorisation

Four datasets are used in concept categorisation evaluation. The AP dataset contains 402

words that are divided into 21 categories. The BLESS dataset consists of 200 words divided

into 27 semantic classes. The BM dataset is the larger, with 5 321 words divided into 56

categories. Lastly, ESSLLI 1a contains 44 words divided into 6 semantic classes, ESSLLI 2b

contains 40 words divided into 3 semantic classes, and ESSLLI 2c contains 45 words divided

into 9 semantic classes.

Outlier Detection

For the outlier detection task, the 8-8-8 dataset has 8 clusters, each one represented by a set

of 8 words with 8 outliers. The WordSim500 consists of 500 clusters, each one represented

by a set of 8 words with 5 to 7 outliers.

6.4.3 Results

In Tables 6.2, 6.3, 6.4, 6.5 we show the results obtained by the 135 word embedding models

(see Sec. 6.4.1) - grouped by the five different types of models (GloVe, fastText CBOW, and

SG, word2vec CBOW and SG) - over the four tasks (similarity, analogy, categorisation, and

outlier detection) and their benchmarks.

The models with the best results overall are the word2vec (CBOW and SG), which

achieve - on average - the best results in 13 out of 14 benchmarks for similarity (only for

MC30 the best result is obtained only by the fastText CBOW models), and 4 out of 6 for

categorisation. In the analogy task, the word2vec CBOW models achieve, on average, the
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best results on 3 tasks out of 5. For the task of outlier detection, word2vec CBOW and SG

obtain the same results, which are, on average, the best over both benchmarks.

FastText CBOW over-performs fastText SG on most benchmarks, and these models

achieve the best performance on average over 10 benchmarks out of 27 in total (versus only

1 time over 27 for fastText SG.

GloVe models achieve the best performance on average only for the categorisation task

(on BLESS and ESSLLI 1a benchmarks).

Overall, we can say that word2vec SG is, on average, the best performing on the task of

similarity because those word embeddings achieve the best results on 10 out of 14 of the

benchmarks (see Table 6.2). FastText and word2vec CBOW models obtain the best results on

average on 3 benchmarks out of 5 for analogy. word2vec SG models are the best performing

for the categorisation task (3 out of 6 benchmarks), and, lastly, for outlier detection, word2vec

CBOW and SG models obtain, on average, the best results over both benchmarks considered.

Table 6.2 Mean and standard deviation obtained by the models - grouped by the five different types of models -
over all the benchmarks for the similarity task.

WS353 RG65 RW MEN MTurk287

GloVe 0.44±0.21 0.61±0.26 0.24±0.13 0.55±0.27 0.51±0.24
ft - CBOW 0.59±0.03 0.76±0.02 0.38±0.02 0.73±0.02 0.67±0.01
ft - SG 0.56±0.04 0.77±0.02 0.39±0.03 0.68±0.03 0.63±0.02
w2v - CBOW 0.6±0.02 0.79±0.01 0.37±0.02 0.72±0.02 0.67±0.01
w2v - SG 0.66±0.03 0.77±0.03 0.39±0.02 0.73±0.03 0.67±0.01

SimLex999 MC30 MTurk771 YP130 Verb143

GloVe 0.23±0.13 0.59±0.25 0.5±0.25 0.38±0.19 0.37±0.19
ft - CBOW 0.35±0.04 0.76±0.02 0.62±0.03 0.39±0.05 0.39±0.05
ft - SG 0.29±0.03 0.71±0.04 0.58±0.03 0.44±0.03 0.45±0.03
w2v - CBOW 0.35±0.04 0.74±0.02 0.63±0.02 0.4±0.05 0.4±0.04
w2v - SG 0.33±0.04 0.75±0.03 0.63±0.03 0.46±0.05 0.49±0.05

SimVerb
3500

SemEval17 WS353RELWS353SIM

GloVe 0.12±0.07 0.36±0.14 0.38±0.18 0.55±0.27
ft - CBOW 0.22±0.03 0.51±0.02 0.51±0.03 0.68±0.02
ft - SG 0.17±0.02 0.48±0.02 0.49±0.05 0.65±0.04
w2v - CBOW 0.23±0.02 0.49±0.01 0.5±0.02 0.72±0.01
w2v - SG 0.2±0.03 0.51±0.01 0.61±0.03 0.73±0.02
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Table 6.3 Mean and standard deviation obtained by the models - grouped by the five different types of models -
over all the benchmarks for the analogy task.

Google
Add

Google
Mul

MSR
Add

MSR
Mul

SemEval
2012

GloVe 0.53±0.1 0.47±0.14 0.38±0.07 0.34±0.09 0.15±0.02
ft - CBOW 0.45±0.05 0.43±0.1 0.5±0.06 0.46±0.12 0.16±0.02
ft - SG 0.51±0.09 0.49±0.12 0.42±0.11 0.41±0.13 0.14±0.02
w2v - CBOW 0.61±0.09 0.55±0.13 0.44±0.09 0.38±0.14 0.16±0.02
w2v - SG 0.54±0.11 0.51±0.14 0.36±0.11 0.33±0.14 0.15±0.02

Table 6.4 Mean and standard deviation obtained by the models - grouped by the five different types of models -
over the benchmarks for categorisation.

AP BLESS BM

GloVe 0.62±0.02 0.78±0.03 0.41±0.01
ft - CBOW 0.6±0.02 0.69±0.04 0.39±0.01
ft - SG 0.62±0.03 0.73±0.06 0.43±0.01
w2v - CBOW 0.63±0.02 0.73±0.04 0.44±0.01
w2v - SG 0.64±0.03 0.75±0.06 0.44±0.01

ESSLLI
2c

ESSLLI
2b

ESSLLI
1a

GloVe 0.6±0.02 0.75±0.02 0.78±0.03
ft - CBOW 0.62±0.03 0.74±0.01 0.76±0.03
ft - SG 0.6±0.04 0.74±0.04 0.73±0.05
w2v - CBOW 0.6±0.02 0.78±0.03 0.77±0.02
w2v - SG 0.62±0.04 0.77±0.04 0.77±0.04

We can consider the results of the word embedding evaluations robust if the best model

does not change over different ways of computing the PCE. To this end, we consider three

different PCE evaluations (PCEMIN , PCEMAX , PCEMEAN) and a combination of two of

those, computed as follows:

PCEi = α ⋅PCEMIN
i + (1−α) ⋅PCEMAX

i , (6.6)

where α ∈ [0,1] and i = 1, . . . ,n. Then we check which is the best model in each one of

these combinations and according to PCEMEAN too.
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Table 6.5 Mean and standard deviation obtained by the models - grouped by the five different types of models -
over the benchmarks for outlier detection.

8-8-8 WordSim500

GloVe 0.13±0.04 0.46±0.15
ft - CBOW 0.16±0.01 0.51±0.01
ft - SG 0.12±0.03 0.53±0.01
w2v - CBOW 0.16±0.02 0.57±0.01
w2v - SG 0.16±0.01 0.57±0.01

In Tab. 6.6, we can see that in 9 cases out of 12, the best model is word2vec CBOW with

25 epochs, a dimension equal to 300, and a window of size equal to 5. For PCEMEAN , the

best model differs from that one only because it is SG instead of CBOW. Only for PCEMIN -

the most conservative scenario evaluation - and for the combination with α = 0.1, the best

model is word2vec SG with 25 epochs, a dimension equal to 300 and a window of size of 10.

We can say that this analysis is a strong hint at the robustness of vec2best since the best

model is very consistent with different final evaluations, with only two parameters diverse in

3 cases out of 12.

Figure 6.2 shows that the correlation of the overall evaluation for the three tasks performed

by vec2best with the final evaluation metric PCE is high, ranging from 0.38 to 0.91, with

the only exception of a modest correlation between the PCEMIN and the final evaluation for

the categorisation task (0.09). This result was achieved thanks to the PCA, which reduces

the dimensionality while preserving most of the information in the data.

The four tasks - analogy, similarity, categorisation, and outlier detection - show a less

strong correlation with one another, except similarity and outlier detection, which display a

correlation of 0.9. The task that has the lowest correlation with the others is the categorisation

one. That leads us to think that by using these four tasks for computing the PCE, we are not

considering redundant information, and each task contributes valuable information to the

final evaluation.

In Figure 6.3, we can see the three scatter-plots that show the relation between PCEMAX ,

PCEMEAN and PCEMIN shown in couples. We can see that the three measures display a

linear joint distribution and also that all three report the majority of models with a high PCE

value, while there are few models with a low PCE, separated from the others.
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Table 6.6 The evaluation of the best and worst model according to different configurations of PCE.

Model PCE

ααα=0.0 (PCEMINPCEMINPCEMIN) w2v_vectors_SG_25_300_10 1.00
ααα=0.1 w2v_vectors_SG_25_300_10 0.99
ααα=0.2 w2v_vectors_CBOW_25_300_5 0.98
ααα=0.3 w2v_vectors_CBOW_25_300_5 0.98
ααα=0.4 w2v_vectors_CBOW_25_300_5 0.98
ααα=0.5 w2v_vectors_CBOW_25_300_5 0.98
ααα=0.6 w2v_vectors_CBOW_25_300_5 0.99
ααα=0.7 w2v_vectors_CBOW_25_300_5 0.99
ααα=0.8 w2v_vectors_CBOW_25_300_5 0.99
ααα=0.9 w2v_vectors_CBOW_25_300_5 1.00
ααα=1.0 (PCEMAXPCEMAXPCEMAX ) w2v_vectors_CBOW_25_300_5 1.00
PCEMEANPCEMEANPCEMEAN w2v_vectors_SG_25_300_5 1.00
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Figure 6.2 The correlation between PCEMAX , PCEMEAN and PCEMIN respectively and the evaluation over the tasks performed by vec2best.
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In Figures 6.4, 6.5, 6.6, we can see the relation between the hyper-parameters and the

three measures of PCE, showing that better results are obtained with a bigger vector size

for each type of model; fastText SG models and GloVe were the only ones to get better

results with smaller window size. Except for the GloVe models, the number of epochs is the

parameter that seems to make the smallest difference in the final performance of the word

embedding model.
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Figure 6.4 The performance of the models according to PCEMEAN with different hyper-parameters configura-
tions.
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Figure 6.5 The performance of the models according to PCEMIN with different hyper-parameters configurations.
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Figure 6.6 The performance of the models according to PCEMAX with different hyper-parameters configurations.
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7
Setting the Stage for Taxonomy

Enrichment and Alignment

In Chapter 3, we defined what a taxonomy is and how to measure semantic similarity between

words in a taxonomy. In this Chapter, we will introduce the topic of taxonomy induction from

free text. Secondly, we will expose different methodologies to enrich a taxonomy with new

and pertinent concepts. Lastly, we will approach how the alignment of different taxonomies

concerning the same field has been dealt with in the literature.

7.1 Taxonomy Induction

With massive Web data available, several taxonomies are constructed from human-compiled

resources such as Wikipedia or Wikidata, see for example [119, 103, 133]. Several methods

have been developed to induce taxonomies from text corpora even though this task is far from

being solved, given that inducing taxonomies from text corpora has three main drawbacks

[149]:
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• Text corpora may vary in size, topic and quality, which makes it unlikely to develop a

single solution;

• The accuracy of free-text taxonomies is usually lower than the accuracy of many

Wikipedia-based ones;

• The task is still insufficiently studied in emerging and specific domains and for non-

English languages.

At the current state, a free-text-based taxonomy construction system typically operates in

three steps [149]: (i) extracting is-a relations, (ii) constructing a complete taxonomy from

is-a relations, and (iii) cleansing the taxonomy created (i.e. removing relations that create

cycles).

We will explore these three steps in the following sections.

7.1.1 Extracting is-a Relations

The most used methods for extracting is-a relations can be divided into pattern-based methods

and distributional approaches.

Pattern-based Methods

Pattern-based methods extract the is-a relation between the terms x and y based on the

lexico-syntactic paths connecting x and y in a corpus, i.e. if x and y appear in the same

sentence and satisfy a particular pattern.

A typical pattern is "[C] such as [E]", where [C] and [E] are placeholders of noun phrases

that are regarded as the hypernym y and the hyponym x respectively for an is-a relation

(x,y) [77].

Despite the successful applications, these patterns are too specific to cover all linguistic

circumstances. Simple pattern matching is also prone to error due to idiomatic expressions,

parsing errors, incomplete extractions and ambiguous issues. Moreover, using patterns

as features may result in the sparsity of the feature space, and these methods are overly

language-dependent.
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Distributional Approaches

Distributional approaches predict is-a relations between terms based on their distributional

representations by either unsupervised or supervised models.

Unsupervised measures Early works of distributional similarity measures mostly focus

on symmetric measures such as cosine similarity or Jaccard; asymmetric measures model

the asymmetric property of is-a relations, following the Distributional Inclusion Hypothesis

(DIH) [64], that assumes that a hyponym only appears in some of its hypernym’s contexts,

while a hypernym appears in all contexts of its hyponyms.

Supervised measures With training sets available, classification and ranking methods train

a model to predict hypernymy based on the representations of a term pair (x,y). The most

popular representations for x and y are word embeddings generated by pre-trained neural

language models such as word2vec or GloVe (see Chapter 2).

Hypernym generation approaches directly model how to generate hypernyms based on

the representations of hyponyms in the embedding space: they predict a pair (x,y) by whether

the model can map −→x to a vector close to −→y .

Their main disadvantages are that they are less precise in detecting specific is-a relations

and tend to discover broad semantic similarities, hypernymy relations can sometimes con-

fused with synonymy or co-hyponymy. Moreover, the models are heavily dependent on the

training set.

7.1.2 Taxonomy Induction

There are three main approaches for taxonomy induction from is-a relations, which are

presented in the following sub-sections.

Incremental Learning

Several methods construct an entire taxonomy from a seed taxonomy via incremental learning.

The extracted terms can either refer to existing entities in the taxonomy or new ones and,

for example, Shen et al. [135] propose a graph-based method to link these terms to the
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taxonomy or insert new entities into the taxonomy. These methods are similar to the

taxonomy enrichment methods that we will discuss in the following section.

Clustering

Taxonomy learning can be modelled also as a clustering problem, where similar terms

clustered together may share the same hypernym. Alfarone and Davis [5] propose a method

in which the lowest common ancestor of a collection of terms clustered by K-Medoids is

inferred as their common hypernym.

Graph-based Approaches

Graph-based approaches are naturally suitable for this task because taxonomies can gen-

erally be represented as graphs. A frequently used algorithm is the optimal branching

algorithm [146]: it first assigns edge weights based on graph connectivity (e.g., in-degree,

betweenness) and finds an optimal branching based on Chu-Liu/Edmonds’s algorithm [89].

After noisy edge removal, a rooted tree is constructed with maximum weights.

7.1.3 Taxonomy Cleansing

The final step of taxonomy learning is taxonomy cleansing, which removes wrong is-a

relations to improve the quality.

Incorrect is-a relations may arise in taxonomies in the form of cycles, or with the issue of

entity ambiguity.

The transitivity property does not necessarily hold in automatically constructed tax-

onomies, for example, the facts (Albert Einstein, is-a, professor) and (professor, is-a, position)

do not mean that (Albert Einstein, is-a, position) [149].

7.2 Taxonomy Enrichment

In the past literature, despite the automatic construction of taxonomies from scratch having

received considerable attention [149], the same cannot be said for the augmentation of

existing hierarchies. Most of the work in the area of automated taxonomy enrichment relies
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heavily on domain-specific knowledge [21, 58] or lexical structures specific to an existing

resource, like the WordNet synset [138, 88, 129] or Wikipedia categories [137]. In recent

years, some scholars have tried to overcome those limitations by developing methodologies

for the automated enrichment of generic taxonomies.

Wang et al. [150] use a hierarchical Dirichlet model to construct a complete taxonomy for

an online corpus and associate each document in the corpus with the relevant categories from

this complete taxonomy. The framework has three steps: (i) detecting meaningful missing

categories, (ii) modelling the category hierarchy using a hierarchical Dirichlet model and

predicting the optimal tree structure according to the model, and (iii) reorganising the corpus

using the complete category structure.

The missing category discovery is achieved with a semi-supervised learning method,

using a combination of labelled data and search click log data to augment the labelled one.

To generate a classifier the authors use Linear Support Vector Machine (SVM). For the step

of hierarchy reconstruction, they use a hierarchical Dirichlet model to capture the generating

process of a taxonomy based on the content of the item pages and search click log data from

users. The authors formulate the problem of finding the optimal tree as a structure learning

problem solved by the Maximum Spanning Tree (MST) algorithm for directed graphs. The

last step is item page re-tagging, aimed at augmenting the category set for each item page

with relevant new categories: given a set of potential new categories they use a multi-label

classification method based on a set of features, including centroid-based similarity features,

click features and features derived from relationships among categories.

Vedula et al. [145] use word embeddings to find semantically similar concepts in the

taxonomy. They create word embeddings from a text corpus to represent new concepts and

taxonomy concepts, and thanks to those, they find for each new concept its k-Nearest Neigh-

bours (k-NN), limiting the research for the new concept’s parents to their ancestors. Then,

using a combination of graph-theoretic features and semantic similarity-based features, they

predict the potential parent-child relationship between existing concepts and new concepts.

The graph-theoretic features they use are:

• Katz similarity: for each new word x and potential parent p they compute:

KS(x, p) =
lMAX

∑
l=1

η
l∣pathsl(x, p)∣ (7.1)
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• Random walk betweenness centrality: they consider all combinations of pairs of x’s

k-NN and compute random walks between them. Then, they compute the betweenness

centrality for each p.

• Information propagation score: it aims at propagating weight from x’s k-NN following

relations connecting hyponym and hypernym:

IP(v) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w0(v) v ∈ Nx

∑(u,v∈E)
(1−δ)IP(u)
p(u)α eld(v)β

v ∉ Nx,u,v ∈V
(7.2)

On the other hand, the semantic similarity-based features are:

• Ancestor-neighbour similarity: for each x they compute the pairwise term overlap

between the potential parent’s text and each k-NN, merging the results using the mean

of the overlaps.

• New-concept similarity: they compute Jaccard similarity between words in the text of

the new term with those in the text of the potential parent.

• Pointwise mutual information:

PMI(x, p) = log( num(x, p)
num(x)num(p)) (7.3)

with num number of occurrences or co-occurrences of terms.

This work by Vedula et al. [145] was evaluated on Wikipedia and WordNet.

Aly et al. [8] use the similarity between Poincaré term embeddings to find orphans

(disconnected nodes) and outliers (child assigned to wrong parents) in a taxonomy. They

create Poincaré embeddings using hypernym relationships extracted from a combination of

general (e.g. Wikipedia) and domain-specific (web pages) corpora using lexical-syntactic

patterns. These Poincaré embeddings use a hyperbolic space and are designed for modelling

hierarchical relationships between words as they explicitly capture the hierarchy between

them in the embedding space. These embeddings are used to compute a rank between every

child x and parent y of the existing taxonomy, defined as the index of y in the list of sorted

Poincaré distances of all entities of the taxonomy to x: these ranks are used to place new

concepts (orphans) and misplaced concepts (outliers) in the taxonomy.

76



Chapter 7. Setting the Stage for Taxonomy Enrichment and Alignment

Shen et al. [134] use a set of <query concept, anchor concept> from an existing hierarchy

to train a model to predict the parent-child relation between the anchor and the query concepts:

the whole procedure is called TaxoExpan.

Given an existing taxonomy T 0
= (N 0

,E0), TaxoExpan generates a set of <query concept,

anchor concept> using as positive examples a child (nc) and a parent (np) that are in a relation

nc is-a np, while as negative examples nc and N randomly sampled nodes. They model the

matching score between a query concept ni and an anchor concept ai by projecting them into

a vector space, using a position-enhanced graph neural network, whose key idea is to learn

a set of position embeddings and enrich each node feature with its corresponding position

embedding. Using such self-supervision data, TaxoExpan learns a model to predict whether

a query concept is the direct hyponym of an anchor concept. For each new concept, they run

the inference procedure and find its best parent node in the existing taxonomy, solving:

a∗i = argmaxai∈N 0 logP(ni∣ai,Θ) (7.4)

It was evaluated on Field-of- Study (FoS) Taxonomy in Microsoft Academic Graph

(MAG).

Table 7.1 The related work on taxonomy enrichment.

Paper Methodologies used Datasets for evaluation

[150] Hierarchical Dirichlet model Datasets from a commercial search engine
[145] Word embeddings, k-NN Wikipedia, WordNet
[8] Poincaré word embeddings Data of SemEval2016 TExEval
[134] Graph neural network Microsoft Academic Graph (MAG)

In Chapter 8, we present NEE, a framework that leverages word embeddings to estimate

the degree to which data conforms to a given taxonomy, identifying new entities and concepts

for the taxonomy.

7.3 Taxonomy Alignment

In recent literature, taxonomy alignment has received considerable attention, and different

approaches have been proposed to create an efficient mapping.

77



Chapter 7. Setting the Stage for Taxonomy Enrichment and Alignment

In one of the first approaches, Euzenat et al. [54] compute the similarity between entities

through a system of quasi-linear equations, which start from lexical similarity derived by

WordNet 2.0 and gradually includes contributions from structure comparing functions.

Avesani et al. [13] use a syntactic and a semantic score of taxonomic similarity, called

COMA and S-match, respectively. COMA exploits element and structure-level syntactic

similarity, while S-match uses WordNet 2.0 to derive semantic similarity between words.

Wu et al. [154] propose an approach based on Wikipedia-matching, and keywords

are considered to perform document classification without employing standard occurrence

methods.

Despite being relevant and widely used, those methods are built on specific lexical

resources (WordNet, Wikipedia) and thus are not suitable for different domains.

Jung [86] uses LSA (Latent Semantic Analysis) to group sets of related entities based on

their co-occurrence matrix and TF-IDF, also considering the description of the taxonomic

concepts.

Wu et al. [151] train a bilingual topic model on contextual text extracted from the web to

build semantic vectors of the topics of two multi-lingual taxonomies. The cosine similarity

between those vectors represents the relevance of each concept in the source taxonomy with

its candidate-matched categories. Then, each candidate entity is evaluated through syntactic

similarity.

Da Silva et al. [48] present Alin, an interactive ontology matching approach that uses

expert feedback to approve or reject selected mappings and to dynamically improve the set of

mappings through the use of anti-patterns. Alin chooses the first mappings through semantic

and lexical similarity metrics, then suspends some using semantic criteria. It then uses expert

feedback and mapping anti-patterns to reject the inconsistent mappings with those accepted

by the expert.

Real et al. [123] developed an approach in which matches can use domain-specific lexicon

and grammar to improve their performance when matching domain-knowledge resources.

Lv and Peng [100] propose a periodic learning optimisation model based on an interactive

grasshopper optimisation algorithm is proposed. They also introduce a roulette wheel

approach to select the most problematic mappings and reward or punishment mechanisms to

propagate user feedback to the evolving population.
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Those kinds of approaches make use of contextual information and learning algorithms.

However, none of them considers the vertical structure of the taxonomy to match entities

nor employ distributional semantics, which has shown to be beneficial in several NLP

applications.

Table 7.2 The related work on taxonomy alignment.

Paper Methodologies used Datasets for evaluation

[54] Similarity-based paradigm BibTeX/MIT/UMBC, Karlsruhe,
INRIA

[13] Similarity-based paradigm Google, Looksmart and Yahoo
[154] Document classification WordNet, Wikipedia
[86] Latent Semantic Analysis ACM Classification, On-line Medi-

cal Dictionary (OMD)
[151] Bilingual Biterm Topic Model (BiBTM) JD.com/Bay.com, Dmoz.org/Yahoo
[48] Interactive Ontology Matching OAEI 2018
[100] Grasshopper optimisation algorithm OAEI 2020

In Chapter 9, we propose WETA, a domain-independent, knowledge-poor method for

automatic taxonomy alignment via word embeddings.
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8
Taxonomy Enrichment with Word

Embeddings

In Chapter 7, we introduced the topic of taxonomy induction and different methodologies

to enrich a taxonomy with new and pertinent concepts. In this Chapter, we present NEE, a

framework that leverages word embeddings to estimate the degree to which data conforms to

a given taxonomy, identifying new entities and concepts for the taxonomy itself1.

8.1 Setting the Stage

Unlike the automated construction of new taxonomies from scratch, which is a well-

established research area [149], the augmentation of existing hierarchies is gaining in impor-

tance, given its relevance in many practical scenarios (see Section 7.2 in Chapter 7). Human

languages are evolving, and online content is constantly growing. As a consequence, people

often need to enrich existing taxonomies with new concepts and items without repeating

1Some results of this Chapter were published in [69].
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their whole construction process every time. To date, the most adopted approach to enrich

or extend standard de-jure taxonomies leans on expert panels and surveys that identify and

validate which term has to be added to a taxonomy. The approach relies on human knowledge,

with no support from the AI side, and this makes the process costly and time-consuming.

To extract semantic information from text corpora, we resort to distributional semantics,

in which words are represented by semantic vectors, usually derived from a large corpus

using co-occurrence statistics or neural network training, and their use improves learning

algorithms in many NLP tasks.

Given an existing taxonomy T - see Def. 3.1.1 in Chapter 3 - the goal of NEE is to extend

T with new mentions (entities) coming from a text corpus. Each mention is assigned to one

or multiple candidate destination nodes of T , along with a score value and a set of measures.

More formally:

Definition 8.1.1 (Taxonomy Enrichment Problem (TEP)) Let T be a taxonomy as in Def.3.1.1,

and let D be a corpus; a Taxonomy Enrichment Problem (TEP) is a 3-tuple (M,Hm
,S),

where:

• M is a set of mentions extracted from D, i.e., m ∈M;

• S ∶W ×M→ [0,1] is a scoring function that estimates the relevance of m with respect

to an existing word w. Ideally, the scoring function might consider the frequency of m, as

well as the similarity between m and w according to D.

• Hm
⊆ {(c,m)∣c∈ C∧m∈M} is a taxonomic relation (edge) existing between a <concept,mention>

pair. Intuitively, Hm models the pertinence of m to be an entity of the existing concept c;

A solution to TEP computed over D is a 7-tuple T D
= (C,W,Hc

,F ,M,Hm
,S).

8.2 Methodology

In this section, we describe our overall approach to enriching a taxonomy with new emerging

entities, which is mainly composed of three steps:

• Learn word embeddings;

• Suggest new entities;

• Vote and enrich.

NEE’s workflow is shown in Fig. 8.1.
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Figure 8.1 A representation of the NEE workflow highlighting the main modules.

8.2.1 Step 1: Synthesise Word Embeddings

The first step requires learning a vector representation of the words in the corpus to preserve

the semantic relationships expressed by the taxonomy itself. To accomplish that, we apply

the procedure described in Chapter 5. We rely on three distinct sub-tasks, which are the

following:

• Train different word embedding models;

• Construct a measure of pairwise semantic similarity between taxonomic elements,

namely hierarchical semantic relatedness (HSS);

• Evaluate the embeddings generated in i) in terms of correlation between the HSS and

the cosine similarity between a pair of terms in the taxonomy.

Step 1.1 Generation of Embeddings We compute the word embeddings associated with

all the words in the taxonomy using different models and different hyper-parameters. NEE

employs and evaluates three of the most important methods to induce static word embeddings

from large text corpora. One, GloVe [117], is based on co-occurrence matrix factorisation

while the other two, word2vec [106], and fastText [24], on neural networks training. Notice

that FastText considers sub-word information, and this allows one to share information

between words to represent rare words, typos and words with the same root.

Step 1.2 Computation of the Hierarchical Semantic Similarity (HSS) We compute the

HSS between all the pairs of words in the taxonomy. We defined the HSS in Section 5.2.1 in

Chapter 5 as:
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simHSS(w1,w2) = ∑
ℓ∈L

p̂(ℓ = LCA ∣ w1,w2)× IC(LCA) (8.1)

between two words w1 and w2.

Step 1.3 Word Embedding Selection Finally, the performance of each word vector model

generated in Step 1.1 is assessed - following the TaxoVec framework (see 5.2.3) - by the

Pearson Correlation of the HSS between all the pairs of words in the taxonomy with the

cosine similarity between their vectors in the model space. The Correlation coefficient can

be interpreted as a measure of the fidelity of the vector model to the taxonomy.

8.2.2 Step 2: Suggest New Entities

Step 2 is aimed at extracting new terms from the corpus and suggesting the most suitable

concepts under which they could be positioned in T . To do this, NEE works in three distinct

steps shown in PseudoCode 1: first, it computes the word embedding models and finds

the most appropriate; second, it extracts a set of mentions M from the corpus D; then, it

proposes a set of measures, namely GAS (Generality, Adequacy, and Specificity) to estimate

the suitability of a mention m ∈M as an entity of the concepts in C.

PseudoCode 1 NEE
Require: T (C,W,Hc

,F) as in Def. 3.1.1; D dataset;
1: E ← best_embedding(D,T )
2: M←∅ //init the set of mentions

3: for all w ∈W do
4: M←M∪most_similar(−−−→E[w],S) //ordered according to S of Eq.8.2

5: for all m ∈M do
6: Gm ← compute Eq.8.3
7: for all c ∈ C do
8: Sm,c,Am,c ← compute Eq.8.4, 8.5
9: Hm

← user_eval(m,c,Gm,Am,c,Sm,c)
10: return (M,Hm)

Step1

Step2

Step3

Step 2.1 Extract New Mentions from the Corpus First, we select a starting word w0

from the taxonomy. Then we consider the top-5 mentions in D with associated the highest
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score value S with w0, where the score S(m,w) of the mention m w.r.t. the generic word w

is defined as:

S(m,w) = α ⋅ cos_sim(m,w)+ (1−α) ⋅ f req(m) (8.2)

where cos_sim(m,w) is the cosine similarity between the mention m and the word w in the

word embedding model E selected in Sec. 8.2.1. We concentrate on the most important terms,

(i) computing the score value only for the top-k most similar mentions and (ii) filtering out the

words which are rarely used in the corpus. To do this, we compute the cumulative frequency

of f req(m), and we keep only the mentions determining the 95% of the cumulative.2

Step 2.2 Suggest the Best Entry Concepts for the New Mention Once M is synthesised,

the most suitable concepts are identified based on three measures, namely GAS (Generality,

Adequacy, and Specificity), that estimate the fitness of a concept c for a given mention m.

Generality and Specificity. The Generality (G) of a mention m measures to which extent

the mention’s embedding is similar to the embeddings of all the words in the taxonomy T as

a whole, despite the concept. Conversely, the Specificity (S) between the mention m and the

concept c measures to which extent the mention’s embedding is similar to the embeddings

that represent the words associated with concept c in E . They are defined as follows.

Gm =
1

∣W∣ ∑
w∈W

S(m,w) (8.3) Sm,c =
1

∣F(c,w)∣ ∑
w∈F(c,w)

S(m,w) (8.4)

Adequacy. The Adequacy (A) between m and c estimates the fitting of the new mention m,

extracted from the corpus, to the concept c in the taxonomy, based on the vector representation

of m and the words w ∈ F(c,w), i.e. their use in the corpus. A is computed as:

Am,c =
eSm,c − eGm

e−1 ∈ [−1,1] (8.5)

2k is set to 1,000 whilst α is set to 0.85 to weight the frequency less than the similarity.
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On one side, the Adequacy of a mention m to the concept c is directly proportional to the

similarity with the other words w ∈ F(c,w) (i.e., the Specificity to the concept c). On the

other side, the Adequacy is also inversely proportional to the similarity of m with all the

words w ∈W (i.e., its Generality). The Adequacy is defined to hold the following:

Am,c

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

>
=
<

0 if Sm,c
>
=
<

Gm

> Am2,c2 if Sm,c −Gm = Sm2,c2 −Gm2 ∧ Sm,c > Sm2,c2

The first property guarantees zero to act as a threshold value, that is, a negative value of

A indicates that the mention is related more to the taxonomy, rather than that specific concept

c. Conversely, a positive A indicates the mention m might be a sub-concept of c. The second

property guarantees that, given two pairs of concepts and mentions - e.g. (m,c) and (m2,c2)
- if the difference between their Specificity and Generality values is the same, then the pair

having the higher Specificity will also have a higher value of Adequacy, still allowing NEE to

distinguish between the two.

8.2.3 Step 3: Vote and Enrich

Finally, the method requires some field experts to validate the outcome of Sec. 8.2.1 and

Sec. 8.2.2, which are fully automated. The user evaluation is composed of two questions. We

ask to evaluate Q1) if the mentions extracted from the corpus in Step 2.1 are valid additions to

the taxonomy and Q2) to which extent the concepts suggested as an entry for a new mention

are appropriate for it, based on the name of the mention and the concepts. For Q1, the user

is asked to give a yes/no answer, while Q2 is evaluated using a 1-6 Likert scale (from 1:

Completely disagree, to 6: Completely agree). The user feedback is used as judgement for

quality, meaning that a high evaluation of the best-proposed suggestion implies a high-quality

suggestion.

8.3 Requirements and Hyper-parameters

In order to use NEE, the user needs to start by selecting the taxonomy they need to update,

and a corpus of data which is relevant for the field, as shown in the first line of PseudoCode 1.
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The user also needs to define a grid of hyper-parameters for the training of word embed-

ding models (step 1), and the value of α ∈ [0,1] (see Eq. 8.2 in step 2). The greater α is, the

more important the cosine similarity between the mention and the word in the taxonomy is,

the smaller, the more important the frequency of the mention in the corpus is.
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9
Taxonomy Alignment via Word

Embeddings

In Chapter 7, we introduced the topic of taxonomy induction and alignment, and we saw

how this topic has been dealt with in the literature. In this Chapter, we propose WETA, a

domain-independent, knowledge-poor method for automatic taxonomy alignment via word

embeddings. WETA associates all the leaf terms of the origin taxonomy to one or many

concepts in the destination taxonomy, employing a scoring function, which merges the score

of a hierarchical method based on cosine similarity and the score of a classification task1.

9.1 Setting the Stage

As seen in Chapter 3, lexical taxonomies are a natural way of expressing the semantic

relationships between words and concepts through is-a relations. They constitute a lingua

franca for the domain they represent. Taxonomies are the mainstay of several downstream

1Some results of this Chapter were published in [67].
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applications, beyond being used by industry practitioners and policymakers to facilitate

knowledge sharing and information retrieval. Usually, within a single domain, multiple

taxonomies are built by different institutions for different purposes, and sometimes for

several languages or jargon. As a consequence, the problem of mapping those different

taxonomies is of primary importance.

The manual mapping of two taxonomies by domain experts is a time-consuming and

costly task, which often leads to inaccuracies. Here arises the importance of developing

automated taxonomy alignment methods. An automatic taxonomy alignment method allows

mapping each concept in the origin taxonomy onto a ranked list of the most relevant concepts

in the destination taxonomy, helping the domain experts reduce the choices to a smaller set

of concepts.

To develop our automated taxonomy alignment method, we resort to word embeddings,

which have empirically shown to capture linguistic regularities from texts [107], demonstrat-

ing their ability to enrich existing knowledge structures as well, see e.g. [125, 51].

Note that WETA is knowledge-poor and domain-independent since it doesn’t require any

resource but the two taxonomies.

Suppose we have two taxonomies, To and To, defined as in Def. 3.1.1 in Chapter 3. Given

a hierarchical level x, we define Co
x and Cd

x as the set of all the c ∈ To and c ∈ Td respectively,

that are classified in level x.

Definition 9.1.1 (Taxonomy Alignment Problem (TAP)) Given an origin taxonomy To and

a destination taxonomy Td , the problem is to suggest one or more concepts c ∈ Td for each

word w ∈ To. A Taxonomy Alignment Problem (TAP) consists in assigning to each w ∈ To n

possible matches c ∈ Td .

Definition 9.1.2 (WETA) Let To and Td be respectively an origin and a destination taxonomy

as in Def.3.1.1. WETA provides a 3-tuple (ψ,h,S), where:

• ψ ∶ Wo × Cd
→ [0,1] is a scoring function that estimates the relevance of c ∈ Td with

respect to a word w ∈ To considering the prediction scores of a multi-class classification

task;

• h ∶ Wo × Cd
→ [0,1] is a scoring function that estimates the relevance of c ∈ Td with

respect to a word w ∈ To considering the semantic similarity of w with c and all its

hypernyms;
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• S(ψ,h)⊆ {(w,c) ∣ w∈Wo∧c∈ Cd} is the score of an alignment relation existing between

a word in To and a concept in Td , blending the results of the above-mentioned scoring

functions.

9.2 Methodology

This section aims to describe the global approach used to align the taxonomies To and Td .,

which is mainly composed by the steps shown in Fig.9.1.

The first step allows us to train and select the best word embedding model, which is

then used in the second step to suggest for each leaf concept wo ∈Wo n possible alignments

cd ∈ Cd
p . The last step consists of the suggestions validation because the utility of WETA is the

help it provides to the domain experts, narrowing the choices for the alignment that would

otherwise be done from scratch.

ESCO

CP
Synthetise

HSS

Best Word
Embedding

Hierarchical
Method

Generate
Word

Embeddings

Corpus

Classification
Method

Blended
Method

Domain 
expert

Validated
Alignment

Step 1
Step 2

Step 3

Figure 9.1 A representation of the WETA workflow highlighting its main modules.

The structure of WETA is shown in PseudoCode 2.

9.2.1 Step 1: Generate and Evaluate Embeddings

The main goal of the first step of WETA is to induce a vector representation of taxonomic

terms, such that it represents as much as possible the similarity of words within the taxonomy.

To accomplish this, we apply the procedure described in Chapter 5. We perform three distinct

tasks:

• We generate word embeddings;

• We compute the HSS (see Section 5.2.1 in Chapter 5) for terms in To and Td;
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• We select the embeddings for which the correlation between the cosine similarity

between taxonomic terms and their HSS is maximised for both To and Td (see Sec-

tion 5.2.3 in Chapter 5).

Embeddings Generation

As the input for the word embedding generation, we consider a corpus constituted of one

sentence for each concept in To and Td , containing the label of the concept, all the words

associated with it and its description.

For the generation of the word embedding models, WETA can rely on state-of-the-art

methods for word embedding generation. Their use allows for the testing of different vector

space models, tuning the parameters to find the best vector space to represent the taxonomies.

HSS Computation

We compute the HSS between all the pairs of words in the taxonomy. We defined the HSS in

Section 5.2.1 in Chapter 5 as:

simHSS(w1,w2) = ∑
ℓ∈L

p̂(ℓ = LCA ∣ w1,w2)× IC(LCA) (9.1)

between two words w1 and w2.

Selection of the Best Word Embedding

The performance of each word vector model generated before is assessed - following the

TaxoVec framework (see 5.2.3) - by the Pearson Correlation of the HSS between all the pairs

of words in the taxonomy with the cosine similarity between their vectors in the model space.

9.2.2 Step 2: Taxonomy Alignment Method

We propose a methodology for taxonomy alignment that suggests, for each word, or leaf

concept, wo ∈ To, a set of n possible destination concepts in Td . The destination concepts are

selected among most specialised concepts in Td , i.e. those which are at the lowest level p,

that is {c1, . . . ,cn} ∈ Cd
p .
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PseudoCode 2 WETA
Require: To(Co

,Wo
,Hc

,F), Td(Cd
,Wd

,Hc
,F) as in Def. 3.1.1;

1: E ← best_embedding(To,Td)
2: L

(wo)
H p ←∅

3: for all wo ∈Wo do
4: L

(wo)
H ← compute Eq. 9.2

5: L
∗(wo)
H ← compute Eq. 9.3

6: L
(wo)
H p ← compute Eq. 9.4

7: L
(wo)
C ←∅

8: for all wo ∈Wo do
9: {c1(p), . . . ,cn(p)} ∈ Cd

p ← classification_task(To,Td)

10: L
(wo)
C ← compute Eq. 9.5

11: S ←∅
12: for all wo ∈Wo do
13: S ← u common matches from L

(wo)
H p ,L

(wo)
C

14: S ← S ∪ best ⌈n−u
2 ⌉ suggestions from L

(wo)
H p \S

15: S ← S ∪ best ⌊n−u
2 ⌋ suggestions from L

(wo)
C \S

16: return (Wo
,Cd

,S)

Generate and evaluate
embeddings

Hierarchical approach

Classification approach

Blended approach

To do this, we perform two different processes that lead to independent results, and then

we blend their suggestions to obtain a robust mapping between taxonomies.

Hierarchical Approach

For each wo ∈Wo, the set of words of the origin taxonomy, we create a set of tuples that

contains the cosine similarity between wo and each element in w ∈Wd:

L
(wo)
H = {(w,sim(wo,w)) ∣ w ∈Wd} ∀wo ∈Wo (9.2)

where sim is the cosine similarity between the vector representations of the two inputs in

the best word embedding model, see Sec. 9.2.1. This set is then ordered decreasingly on

sim(wo,w).
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Given the i-th pair (w,sim(wo,w))i, we can refer to its similarity as simi to define the

function W as follows:

W(simi) = (simi)2
⋅ (simi − simi+1) (9.3)

where to transform each similarity score, we consider the next similarity in the ordered set of

tuples. Thanks to W , we can highlight the situations in which, for example, the similarity

score between wo and the first word in L
(wo)
H is significantly higher than the other scores,

rather than a situation where all the elements present high similarity.

Now, we exploit the hierarchical concepts: for each w ∈ L
(wo)
H , we extract its respective

hypernym at the level p. In other words, we consider the more specific concept level for each

word in L
(wo)
H because our goal is to map the words in To into concepts in Td , even though we

started the procedure considering the similarities word-word. We define L
(wo)
H p as the set that

contains all the level p hypernyms of every (w,sim) ∈ L
(wo)
H , we order them, and we keep

the n with associated the highest similarity. More formally:

L
(wo)
H p = {(cp,hp) ∣ ∃(w,sim) ∈ L

(wo)
H ∶ F(cp,w)∧ cp ∈ Cd

p} ∀wo ∈Wo

with hp = max
sim∈Sp

sim, Sp = {sim∣ (w,sim) ∈ L
(wo)
H }

(9.4)

We keep only the n pairs with the highest similarity score hp.

Classification Approach

This approach relies on a multi-class classification task, developed at the level p of Td .

For the classification task, we have Cd
p as the target variable, which is the more specific

concept level that does not represent an entity, and the word embeddings associated with

each wo ∈Wo as the independent variable. For each word wo, at the end of the classification

process, we consider the prediction scores and select the n top-scored level p concepts:

L
(wo)
C = {(cp(1),ψ(cp(1))), . . . ,(cp(n),ψ(cp(n)))} ∀wo ∈Wo (9.5)

where ψ(cp(i)) is the prediction score of cp(i) associated to cp(i) for the instance wo.
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Blended Approach

The last part of this step blends the results obtained respectively from the hierarchical

approach and the classification one.

First, for each wo ∈Wo, we store the u shared matches of the two methods. We complete

the sets with other r = n−u matches by considering some suggestions from the hierarchical

approach and some from the classification one. Since the latter allows us to obtain a better

final performance, we choose ⌈ r
2⌉ suggestions from the classification approach’s set and ⌊ r

2⌋
from the hierarchical approach’s one.

9.2.3 Step 3: Evaluation of the Suggestions

The usefulness of WETA lies in providing a limited number of suggestions to the domain

experts to simplify their work of taxonomy alignment that otherwise would be all manual.

The last step consists of the validation by the domain experts of the suggestions provided to

complete the alignment procedure.

To evaluate the methodology based on the experts’ validation, we consider the top-n

Accuracy, which lets us compute how many of the n suggestions include the concept that has

been chosen as the correct one by the domain experts.

For the evaluation, we also use the MRR (Mean Reciprocal Rank) because the taxonomy

alignment solution can be seen as a ranking problem since the aim is to provide suggestions

to the domain experts to facilitate their work in mapping taxonomies:

MRR =
1

∣Wo∣

∣Wo∣
∑
i=1

⋅

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
ranki

if there is a correct suggestion for i

0 otherwise
(9.6)

where ranki refers to the rank position of the correct suggestion.
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Lastly, we consider the wMRR [16], a weighted version of the MRR that also considers

the hypernyms of the suggestions to assess the correctness of the suggestion:

wMRR =
1
∣S∣

∣S∣
∑
i=1

⋅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ranki

if there is a correct suggestion for i

3
4

1
ranki

if suggestion i has a correct level 3 hypernym

2
4

1
ranki

if suggestion i has a correct level 2 hypernym

1
4

1
ranki

if suggestion i has a correct level 1 hypernym

0 otherwise

(9.7)

9.3 Requirements and Hyper-parameters

In order to use WETA, the user needs to start by selecting the two taxonomies they need to

bridge, as shown in the first line of PseudoCode 2.

The user also needs to define a grid of hyper-parameters for the training of word embed-

ding models for step 1. For step 2, they need to choose a value n, the number of suggestions

for each word, or leaf concept, wo ∈ To, and the methodology to use for the classification

task. In Chapter 12 for example we considered n = 5 and we used 5-fold cross-validation

to select the most performant out of four different classification methods: Random Forest,

Support Vector Machine, K-Nearest Neighbours, and a 2-layer Neural Network.
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Word Embeddings and Taxonomies in

Labour Market Intelligence
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10
Setting the Stage for Labour Market

Intelligence

In this concluding part, we will present various applications of the methodologies introduced

in the second and third segments of this thesis, focusing on a specific and pertinent domain:

Labour Market Intelligence (LMI).

10.1 What is Labour Market Intelligence

Recently, the labour demand and supply conveyed through specific Web portals and ser-

vices have grown exponentially. That contributed to introducing the term Labour Mar-

ket Intelligence (LMI), which refers to the use and design of AI algorithms and frame-

works to interpret Labour Market Information for supporting decision-making (see, e.g.,

[142, 115, 82, 143, 147, 98, 159, 42]).

In the LMI scenario, the problem of monitoring, analysing, and understanding these

labour market changes (i) timely and (ii) at a very fine-grained geographical level has become

practically significant in our daily lives. Machine learning has been applied to compute and
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estimate the impact of robotisation on the occupations of the US Labour Market [61, 60] as

well as to investigate skill relevance in the US standard taxonomy O*NET [3].

In 2010, the European Commission issued the communication “A new impetus for

European Cooperation in Vocational Education and Training (VET) to support the Europe

2020 strategy",1 aimed at promoting education systems in general, and VET in particular. In

2016, the European Commission highlighted the importance of Vocational and Educational

activities, as they are "valued for fostering job-specific and transversal skills, facilitating

the transition into employment and maintaining and updating the skills of the workforce

according to sectoral, regional, and local needs".2 In 2016, the EU and Eurostat launched the

ESSnet Big Data project, involving 22 EU member states with the aim of "integrating big data

in the regular production of official statistics, through pilots exploring the potential of selected

big data sources and building concrete applications". In 2014, the EU Cedefop agency - aimed

at supporting the development of European Vocational Education and Training - launched a

call-for-tender3 for realising a system able to collect and classify Web Job Advertisements

from 5 EU Countries (see [38]). Moreover, a further project started to extend and scale the

ML-based system to the whole EU, including its 27 country members plus the UK and all

the 32 languages of the Union [39] (see some results e.g. [26, 27, 47, 29, 44]). The two tools

presented in Chapters 11 and 12 are framed within this research activity.

Labour Market Intelligence constitutes a valuable field in which we can apply the method-

ologies developed and explained in the previous Chapters of this thesis for multiple reasons.

Firstly, in the context of the European Labour Market, there is a dominant taxonomy, ESCO,

the European multilingual classification of Skills, Competencies, and Occupations (see Sec-

tion 10.2). This taxonomy is recognised as the standard in the European context, and it needs

to be kept up to date and to be able to interact with the national taxonomies that were used

previously. Secondly, in light of what we exposed at the beginning of this Chapter, there is a

1Publicly available at https://goo.gl/Goluxo
2Commission Communication "A New Skills Agenda for Europe" COM(2016) 381/2, available at https:

//goo.gl/Shw7bI
3Real-time Labour Market information on Skill Requirements: Setting up the EU system for Online Job

Advertisements analysis AO/DSL/VKVET-GRUSSO/Real-time LMI 2/009/16. Contract notice - 2016/S
134-240996 of 14/07/2016
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large amount of data on this topic, Online Job Ads (OJAs), which can be used to train word

embedding models able to represent all this information gathered from the web.

10.1.1 The Web Intelligence Hub Online Job Advertisements Database

The data used in the works described in the following chapters is part of the Web Intelligence

Hub Online Job Advertisements database (WIHOJA) 4. The data consists of the Online Job

Advertisements (OJA) collected and classified in the EU, including its 27 country members

plus the UK, from 2018 onward. For different works, we considered the data referred to some

of these countries and in various timelines - coherently with the scope and the availability.

10.2 ESCO Taxonomy

In the context of LMI, multiple taxonomies define occupations and skills, and their main

difference is the context in which they are applied.

In the USA context, O*NET is the standard taxonomy5, while ESCO (European Skills,

Competences, Qualifications, and Occupations)6 is the European multilingual standard

classification of Skills, Competences, and Occupations. It acts as a dictionary, describing,

identifying, and classifying professional occupations and skills relevant to the EU labour

market and education and training. Those concepts and the relationships between them can

be understood by electronic systems, and that allows different online platforms to use ESCO

for services like matching job-seekers to jobs based on their skills, and suggesting training to

people who want to re-skill or up-skill.

ESCO provides descriptions of 3008 occupations and 13.890 skills linked to these occu-

pations, translated into 28 languages (all official EU languages plus Icelandic, Norwegian,

Ukrainian, and Arabic).

In the works presented in this section, we will always refer to ESCO as the standard

taxonomy used to classify skills and occupations.

4https://www.cedefop.europa.eu/en/about-cedefop/public-procurement/towards-european-web-
intelligence-hub-european-system-collection-and-analysis-online-job

5https://www.onetonline.org
6https://tinyurl.com/sv4squr
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11
Tools for Taxonomy Enrichment with

New Emerging Occupations and Skills

In this Chapter, we explore two tools, NEO and NES, which aim at automatically enriching

the European Skills, Competences, Qualifications, and Occupations taxonomy (ESCO) with

new terms from a free text corpus1. The taxonomy enrichment procedure is based on the

one - which can be applied to any domain - proposed in Chapter 8, and the word embedding

selection procedure is based on the one introduced in Chapter 5.

NEO and NES are framed within the research activity of the EU grant collecting and

classifying OJAs over all 27+1 EU Countries described in Chapter 10 [53].

1Some results of this Chapter were published in [69].
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11.1 NEO: Taxonomy Enrichment with New Emerging Oc-

cupations

NEO is a framework that (i) suggests new emerging occupations from Online Job Ads (OJAs)

along with the most similar concept within the taxonomy, by employing word-embedding

algorithms; (ii) proposes GASC measures (Generality, Adequacy, Specificity, Comparability)

to estimate the adherence of the new occupations to the most suited taxonomic concept,

enabling the user to approve the suggestion and to inspect the skill-gap.

The experiments we performed on 2M+ real OJAs collected in the UK in 2018, sustained

by a user study, confirm the usefulness of NEO for supporting the taxonomy enrichment task

with emerging jobs.

NEO’s workflow is shown in Fig. 11.1.

OJAs

HSS

Best Word
Embedding

Embeddings

New
Emerging

Occupations

Step 1 Step 2 Step 3

ESCO

Generate Word
Embeddings

Synthesise
HSS

Suggest New
Occupations

Enriched
ESCO

vote
suggestions

approved
NEOs

Figure 11.1 A representation of the NEO workflow highlighting the main modules.

11.1.1 Overview of NEO

NEO is a tool developed to assist experts in i) intercepting new occupation terms widely used

in the job market but not part of ESCO and ii) adding them to the adequate class of the ESCO

taxonomy. Its underlying data, a large corpus of OJAs, have been collected in the context of

a research call-for-tender described in Chapter 10.

In this context, without loss of generality, we present the results for the ICT-related

occupations in the UK market.

We display an example of the ESCO occupation pillar structure in Figure 11.2. ESCO

occupation pillar consists of 5 hierarchical levels. Levels 1 to 4 are concept levels that go
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from professional macro groups (level 1) to unit groups (level 4), the lowest level concepts.

Level 5 is an entity level, containing professional units, i.e. the detailed job denominations

called narrower occupations. Each ESCO narrower occupation comes with any number

alternative labels, placed at level 6, that are different ways to refer to the same professions of

their level 5 parents. The new mentions found by NEO would be added at this last level, as

seen in Figure 11.2.
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Figure 11.2 Motivating Example. Representation of the ESCO taxonomy, with new mentions representing novel
jobs not yet included in ESCO as they emerge from the UK Web Labour Market Demand (2M+ Online Job
Advertisements processed in 2018).

Experimental Settings. The corpus contains 2,119,025 OJAs published in the United

Kingdom during the year 2018, referring to the ESCO ICT positions reported in Tab. 11.1,

and classified as we specified in [26, 28]. OJA’s titles were pre-processed, applying the
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following pipeline: (1) tokenization, (2) lowercase reduction, (3) punctuation and stop-words

removal (4) n-grams computation.

Table 11.1 OJAs collected from the UK in 2018. Only Information and Communication Technology (ICT)
occupation codes are shown.

ISCO code Occupation Number of OJAs

1330 ICT service managers 176863
2511 Systems analysts 402701
2512 Software developers 740112
2513 Web and multimedia developers 225784
2514 Applications programmers 30383
2519 Software and applications developers and analysts 44339
2521 Database designers and administrators 42305
2522 Systems administrators 45542
2523 Computer network professionals 15411
2529 Database and network professionals 110210
3511 ICT operations technicians 44585
3512 ICT user support technicians 168705
3513 Computer network and systems technicians 55222
3514 Web technicians 5708
3521 Broadcasting and audiovisual technicians 11121

11.1.2 Step 1: Synthesise and Select the Word Embedding Model

We trained space vector models using various architectures: word2vec, GloVe and fastText,

generating 260 models. Hyper-parameter selection for each architecture was performed with

a grid search over the following parameter sets:

• word2vec (80 models): algorithm ∈ {SG, CBOW} × HS ∈ {0, 1} × embedding size ∈ {5,

20, 50, 100, 300} × number of epochs ∈ {10, 25, 100, 200};

• GloVe (20 models): embedding size ∈ {5, 20, 50, 100, 300} × number of epochs ∈ {10,

25, 100, 200};

• fastText (160 models): algorithm ∈ {SG, CBOW} × embedding size ∈ {5, 20, 50, 100,

300} × number of epochs ∈ {10, 25, 100, 200} × learning rate ∈ {0.01, 0.05, 0.1, 0.2}

Average training times (with std) in seconds were 890±882 for word2vec, 55±74 for

GloVe and 246±333 for fastText, running on an Intel i-7 CPU equipped with 32GB RAM.
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The intrinsic evaluation performed to select the embedding that better preserves taxo-

nomic relations follows the framework of TaxoVec that we presented in Chapter 5. We

computed the Pearson correlation of the cosine similarity between each pair of occupations

and their corresponding HSS. We did not need to select a sub-sample of the concepts as

explained in Section 5.3.2 of Chapter 5 because here we restricted the concepts considered to

the ICT ones (see Tab. 11.1) and their narrower occupations, instead of all the ones in the

ESCO taxonomy.

The model with highest Pearson correlation, equal to 0.31 with p_value ≃ 0, has the

following parameters: architecture=fastText, algorithm=CBOW, size=300, epochs=100,

learning rate=0.1. Fig. 11.3 provides a scatter plot produced over the best embedding model -

as emerges from Tab. 11.1 - generated using UMAP. 2. Each icon is assigned to one ISCO

level 4 group, as in Fig. 11.2. ESCO concepts and words belonging to each group are shown,

distinguishing between narrower occupations (shallow shape) and alternative labels (filled

shape). Focusing on Fig. 11.3, one might observe that though a data engineer and a data

scientist were designed to be sub-concepts in ESCO, as they belong both to the ▼2511:

System Analyst ISCO group, their meaning is quite different in the real-labour market, as

any computer scientist knows. The former indeed shares much more with ■ 2521: Database

designers and administrators rather than its theoretical group. Conversely, in many practical

cases, the taxonomy perfectly adheres to the real labour market demand for occupations.

That is the case of ◆ 3521: Broadcasting and audio-visual technicians, which composes a

very tight cluster in the map, showing a perfect match between de-facto and de-jure labour

market occupations. That also applies to ∗ 3513: Computer network and systems technicians,

even though to a lesser extent.3 This analysis is useful to labour market specialists and

policymakers to identify mismatches in the taxonomies and provide accurate feedback to

improve the taxonomy.

2Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be
used for visualisation similarly to t-SNE, but also for general non-linear dimension reduction

3Both best/worst embeddings are available at https://tinyurl.com/worst-neo and https://tinyurl.com/best-neo
respectively.
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Figure 11.3 UMAP plot of the best word-embedding model resulting in Step 1, that is FastText, CBOW algorithm, Learning rate=0.1, embedding size=100,
epochs=100. Each icon is assigned to one ISCO level 4 group, as in Fig. 11.2. The ESCO concepts and words belonging to each group are shown distinguishing
between narrower occupations (shallow shape) and alternative labels (filled shape). The image is also available at https:// tinyurl.com/best-neo for better
visualisation.
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11.1.3 Step 2: Suggest New Emerging Occupations

In Chapter 8, we introduced a set of measures, namely GAS (Generality, Adequacy, and

Specificity) to estimate the suitability of a mention m ∈M as an entity of the concepts in C.

In the case of NEO, we introduce another measure specific to the Labour Market scenario, the

Comparability.

Comparability

To better investigate the comparability of the new mention m with the existing concepts in the

taxonomy, we consider their required skills. The skills are identified in the context of [40]

in the OJAs’ descriptions, and classified using the ESCO skills/competencies pillar. Let us

consider a set Kc of skills associated with the occupations belonging to the concept c in the

OJAs, and a set Km of skills associated with the mention m ∈M in the OJAs. Given the

set KU = Kc ∪Km of the L skills associated with at least one out of m and c, we define two

L-dimensional vectors tc = (tc1, . . . , tcL) and tm = (tm1, . . . , tmL) where the generic elements

tcl and tml represent the revealed comparative advantage (rca) 4 of skill kl for c and m

respectively. If kl ∉ Kc, tcl = 0, and similarly if kl ∉ Km, tml = 0. Given these vectors tc and

tm, the Comparability (C) between the concept c and the mention m is defined as:

Cm,c =
∑L

l=1 min(tml, tcl)
∑L

l=1 max(tml, tcl)
(11.1)

The Comparability represents a method to assess the similarity between an ESCO

occupation and a potentially new one not based on their vector representation but on their

characteristics in the domain of interest. We can consider it together with the first three

measures (see Chapter 8): the GASC (Generality, Adequacy, Specificity, and Comparability).

User interface

As a first step, the user selects the starting word w0 among the occupations already in

ESCO (data analyst in the example in Fig. 11.4). Then, NEO prompts the five mentions

4The rca ∈ [0,+∞] was introduced in 2018 in [4] to assess the relevance of skills in the US taxonomy
O*Net. We adopted the rca to work on ESCO.
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Figure 11.4 New mentions from OJAs starting from the word data analyst.

with associated the highest score with w0 (shown in the example in Fig. 11.4). The user can

therefore select a mention m (business system analyst) to evaluate to which extent the mention

fits as an entity of the starting word’s ESCO concept c j and as an entity of the other two ESCO

concepts cl,ck ∈ C \ c j, that is those with associated the highest value of Adequacy with the

mention m (ict business analyst and ict system analyst in Fig. 11.5a). For each of these three

pairs mention m and ESCO concept, NEO provides the GASC measures5 (see Fig. 11.5a).

Specifically, the tool suggests three entry concepts. The first is the starting concept or, in case

the user selected a word, the concept to which that word belongs, {ci ∈ C∣s = ci ∨F(s,ci)}.

The second and third concepts c j,ck ∈ C \ ci suggested are the two with the highest value

of Adequacy Ai j with the new mention m, as it is shown in Fig. 11.5a. For each pair, NEO

provides a comparison of the rca of skills for both the mention and the concept (Fig. 11.5b).

These skills, together with the GASC measures, support the domain expert in evaluating if

the suggested entry is appropriate or not as an entity of a concept, as thoroughly explained in

the following Sec. 11.1.4.

5In the online tool, all the GASC measures are expressed as a percentage to facilitate the user in the
comparison among them.
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(a) The suggested classes with their GASC measures.

(b) The new mention’s skills and the suggestion’s skills.

Figure 11.5 Vote the best class for the new mention selected (business system analyst).
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11.1.4 Step 3: Vote and Enrich with User Evaluation

To evaluate the effectiveness of NEO, we recruited 10 ML engineers and labour market experts

involved in developing the ML-based system within [40], but not in this research activity.

We asked the experts to evaluate the system as detailed in Sec. 8.2.3 in Chapter. 8.

Q1: Does NEO suggest valid new emerging occupations? In Q1, we ask the voters whether a

suggested mention can be considered an occupation or not. Out of 60 proposed mentions, 11

are repeated, starting from different words. For the remaining 49 unique mentions, 6 of them

were evaluated to not be proper occupations, according to the majority of the votes. That

means that 88% of the occupations were successfully evaluated as new occupations. Though

6 out of 49 mentions did not pass the test, they are strongly related to the starting concept,

referring to skills requested by those job profiles.6 Fig. 11.6 shows the new occupations

found by NEO and the median of Likert scores of experts along with the ESCO concept

suggested by NEO and approved by experts.

Q2: To which extent do the new mentions fit the suggested taxonomic concepts? To

assess the significance of our GASC measures, we use two well-known hypothesis tests,

Spearman’s ρ and Kendall’s τ coefficient, that proved to be effective in the labour market

domain (see, e.g. [156]).

Table 11.2 The results of correlation analysis between GASC and Likert values.

Measure Kendall p-value Spearman p-value
τττ (H0 ∶ τ = 0)(H0 ∶ τ = 0)(H0 ∶ τ = 0) ρρρ (H0 ∶ ρ = 0)(H0 ∶ ρ = 0)(H0 ∶ ρ = 0)

Generality −0.03 0.14 −0.04 0.13
Adequacy 0.20 2.48×10−21 0.27 1.61×10−21

Specificity 0.14 1.59×10−11 0.19 2.59×10−11

Comparability 0.34 2.21×10−60 0.45 8.33×10−62

The correlation values are shown in Tab. 11.2 while the distribution of the GASC measures

grouped according to values of the Likert scale is shown in Fig. 11.7. The association between

the Likert values and the corresponding Adequacy, Specificity, and Comparability is positive,

and hypothesis tests indicate that it is statistically significant. The strongest correlation is

6The mentions evaluated not to be proper occupations are data analytics, business intelligence, penetration
testing, operation, data management, and drupal.
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Figure 11.6 Alluvial diagram showing the mentions recognised as New Emerging Occupations with the median
of Likert values (i.e., neo∣score) and the corresponding ESCO concept suggested by NEO and validated by
experts.
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between Likert values and Comparability, indicating that this is the measure on which the

experts relied more. Conversely, the association between the Likert values and the Generality

is not statistically significant, coherently with the nature of Generality that does not aim to

rank concepts concerning a mention.
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Figure 11.7 Box-plots representing the distribution of Generality, Adequacy, Specificity and Comparability
grouped for each value of the Likert scale.

In summary, our results - sustained by an expert user study - show that NEO is able (i)

to accurately identify novel occupations and (ii) to put them in the right place within the

taxonomy. That, in turn, makes NEO a tool for supporting the process of identification of

new emerging occupations, enriching the taxonomy accordingly, taking into account the real

labour market demand.
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11.2 NES: Identifying New Emerging Skills

11.2.1 Overview of NES

NES aims at enriching the European standard labour market taxonomy ESCO [52] with new

emerging skills (i.e., skills not included in the ESCO skill pillar yet [90]) derived from Online

Job Advertisements (OJAs). It is developed as part of the research activity of an ongoing

EU grant aimed at realising the first EU real-time labour market monitoring system [53] (see

Chapter 10).

NES is a system that:

• Processes 5M+ OJAs’ descriptions published in Italy, France, Spain, Romania and the

United Kingdom in their corresponding languages in 2019 and 2020;

• Identifies the terms that might represent a new emerging skill and presents them to the

user, along with the most similar ESCO skills and the ESCO occupation groups for

which they are required;

• Enables users to approve or disapprove the suggestion.

Our approach is composed of three steps shown in Fig. 11.8 and described in the following

subsections: (i) synthesise and select word embeddings, (ii) suggest the new emerging skills,

and (iii) confirm the suggestion.

Figure 11.8 Workflow of NES , built following the approach proposed by Giabelli et al. [69].
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11.2.2 Step 1: Synthesise Word Embeddings

To prepare the dataset of the OJAs descriptions to be processed by the word embedding

algorithm, we need to perform the following steps, which are data-independent but language-

dependent:

• Pre-processing. We apply state-of-the-art pre-processing functions that include (i)

converting all letters to lower or upper case; (ii) converting numbers into words or

removing numbers; (iii) eliminating punctuation; (iv) expanding known abbreviations

(e.g., aka, asap); (v) removing stop words, sparse terms, and particular words.

• Selection of the sentinel words for each language. A sentinel word is a word that is

more likely to identify a sentence that might contain a skill. The idea is that skills are

more likely to appear together in a text. We use the top-100 ESCO skill requested

within the OJA corpus as a sentinel word.

• Identification of the skill sentences for each language. Once a list of sentinel words

is found, we use them to extract sentences from each OJA description. The idea is to

train word embeddings only on sentences containing skills to remove the bias.

• n-gram generation. This step scans the sentences to identify separate words that should

be considered as a single word, and we identify up to 4-grams in the pipeline.

At the end of this step, the OJAs descriptions can be seen as a set of OJA sentences to be

processed by the word-embedding algorithm.

We selected the best one using the HSS and the procedure described in Chapter 5. We

trained 24 fastText word vector models with the following architectures and parameters for the

French dataset: algorithm ∈ {SG, CBOW}, size ∈ {50, 100, 150}, epochs ∈ {5, 10}, learning

rate ∈ {0.05, 0.1}. For choosing the minimum number of pairs of skills in the taxonomy

required for computing the Pearson correlation between the simHSS(w1,w2) and the cosine

similarity for the trained models, we followed the method described in Section 5.3.2. We

computed the HSS and the cosine similarity between 30 000 pairs of skills and the best model

found, with r = 0.11 and p_value ≃ 0, has the following parameters: architecture=fastText,

algorithm=CBOW, size=50, epochs=10, learning rate=0.1. We used the same parameters

also for the models we trained for the datasets in the other languages considered.

116



Chapter 11. Tools for Taxonomy Enrichment with New Emerging Occupations and Skills

To have more homogeneous vector representations, we use the best settings to train a

model for each industrial sector, i.e. with only the OJAs referring to that specific sector. The

industrial sectors are: Information and communications, Accounting, administration and

secretariat, Managers, Quality, safety, and environmental control and certification, Staff

management, human resource organisation, Installation and maintenance, Logistics, trans-

ports and distribution, Marketing, Communication and Assistance of customers, Production

of goods, delivery of service, Design, research and development, and Sales.

11.2.3 Step 2: Suggest New Skills

This step is aimed at extracting new skills from the corpus of OJAs. Starting from a skill

s0 in the taxonomy T , we consider the top-5 mentions in the corpus D with associated the

highest score value S with s0, following the Equation 8.2 proposed in Chapter 8. This score

considers the cosine similarity and also the frequency of the skills, to filter out the ones less

present.

To consider only really novel skills, we discard the mentions that are too similar to the

ESCO ones, e.g., n-grams composed by the same words of an ESCO skill in a different order.

11.2.4 Step 3: Validation

This step validates the outcome of the previous ones - which are fully automated - by asking

the following questions to the International Country Experts (ICE).

(Q1) Do you consider the term:

• A novel skill;

• A specification of an existing one (e.g., MS-Excel is a specification of MS Office);

• A generalisation of an existing one (e.g., MS Office is a generalisation of MS

Excel);

• A synonym with the existing one (e.g., ASD is the acronym for Autism Spectrum

Disorder);

• The term is neither a novel skill nor an alternative term.

(Q2) Do you consider the term a soft/hard/digital skill or none of them?
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(a) The list of new skills is suggested as they emerge from the OJA of the selected
language.

(b) After selecting a new emerging skill, NES shows which ESCO skills are closest and a
form for user feedback.

Figure 11.9 NES user interface.
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(Q3) Provide a judgement on the relevance of the suggestion on a 6-point Likert scale:

the lower, the better. (1. Strongly Relevant; 2. Relevant; 3. Marginally relevant; 4.

Undecided; 5. Not so relevant 6. Not relevant at all.).

(Q4) If you think that the term should be rephrased, please suggest a correction.

The validation framework presented to the ICE is shown in Figure 11.9. In the application,

the user can look at the details of each suggestion. For each suggested term, the top closeness

is the score (see Section 11.2.3) with the existing ESCO skill from which it was found.

An evaluation involving International Country Experts (ICE) from Spain, France, Italy,

and Romania7 to vote the recommendations provided by NES shows the system’s effectiveness.

The results are shown in Tab. 11.3: the accuracy of terms being recognised as skills, whether

the expert acknowledged the system’s ability in catching specifications, synonym, and

generalisations of existing ESCO terms.

Table 11.3 Results from the ICE evaluation.

Country Accuracy Specification Synonym Generalisation

Spain 85/131 (65%) ✓ ✓ ✓
France 130/229 (56%) ✓ × ✓
Italy 141/191 (76%) ✓ ✓ ✓
Romania 41/59 (70%) ✓ ✓ ✓

7UK suggestions are implemented in NES but the UK was not involved in the project, thus has no ICE
evaluation.
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12
JoTA: Aligning Multilingual Job

Taxonomies through Word Embeddings

In this Chapter, we present JoTA (Job Taxonomy Alignment), a specific version of WETA (see

Chapter 9) used to align the Italian taxonomy of occupations CP1 and the European ESCO2

occupation pillar taxonomy. JoTA associates all the leaf terms of the origin taxonomy CP

to one or many concepts in the destination taxonomy ESCO, employing a scoring function,

which merges the score of a hierarchical method and the score of a classification task3. The

taxonomy alignment procedure is based on the one - which can be applied to any domain

- proposed in Chapter 9, and the word embedding selection procedure is based on the one

introduced in Chapter 5.

JoTA is developed in the context of an EU Grant aiming at bridging the national tax-

onomies of EU countries towards the European Skills, Competences, Qualifications and

1http://professioni.istat.it/cp2011/
2https://tinyurl.com/sv4squr
3Some results of this Chapter were published in [66].
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Occupations taxonomy (ESCO) using AI Algorithms4. Results, validated within the EU

project activities to bridge the Italian Occupation taxonomy CP, confirm the usefulness

of WETA in supporting the automatic alignment of national labour taxonomies. The final

mapping is available on the ESCO website 5 and it is employed on the EURES Portal6 to

bridge Italian Job Ads to the ESCO taxonomy to obey the EURES 2016/589 regulation.

12.1 Overview of the Data
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Figure 12.1 Representation of CP and ESCO occupation pillar with examples from ICT professions and a match
found by WETA.

Nominally, both the CP and the ESCO occupation pillar consist of 5 hierarchical levels.

Levels 1 to 4 are concept levels, as shown in Fig 12.1. They go from professional macro

groups (level 1) to unit groups (level 4), the lowest level concepts, that represent the unit

professions. Level 5 is an entity level, containing professional units, i.e. the detailed job

denominations. In ESCO, those professions are named preferred labels while they are called

occupations in CP. Each ESCO preferred label (and each occupation in CP) comes with

4A Data Driven Bridge Towards ESCO using AI Algorithms, granted by EURES (call EaSI-EURES
VP/2019/010)

5https://esco.ec.europa.eu/en/use-esco/eures-countries-mapping-tables
6https://ec.europa.eu/eures/public/homepage
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a description (or occupational profile) and any number of non-preferred labels, which are

called alternative labels in ESCO and examples of occupations in CP. Those terms are placed

at level 6 in both the taxonomies, but actually, they are different ways to refer to the same

professions of their level 5 parents. Therefore, both the taxonomies are constituted by four

concept levels and two entity levels, in which the second entity level (level 6) is just different

ways to express the same professions of the first level. Since the scope of the alignment is

to map the lexicon of the Italian taxonomy CP to the occupation pillar taxonomy ESCO,

we develop a mapping that aims at matching each of the 800 level 5 occupations in CP into

its most suitable hypernym (parent concept) between the 426 ESCO level 4 concepts. By

definition, each level 6 CP entity will be an example of occupation of its level 5 CP hypernym,

also in the new mapping. The sizes of the two taxonomies are listed in Tab. 12.1.

Fig. 12.1 provides a detailed overview of the two taxonomies and contains some classifi-

cation and match examples for ICT professions.

Table 12.1 Size of the two taxonomies’ levels.

Taxonomy
Level

1 2 3 4 5 6

CP 9 37 129 511 800 5754
ESCO 10 42 125 426 2942 12524

Validation Set The training of the classification task and the best classification model

selection is performed on a validation set containing 1677 instances < wo,cd >.

To create this validation set, firstly, we selected the syntactic matches between words

in CP and concepts in the ESCO occupation pillar, comparing their labels and defining the

correspondence of characters. Secondly, we explored probabilistic matches by exploiting

a fuzzy matching technique that uses the Levenshtein Distance to compute the syntactic

similarity between strings. Finally, we manually assessed pairings to remove incorrect results.
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12.2 Step 1: Generate and Evaluate Embeddings

For the first step, we computed several word embedding models and evaluated them through

the method described in Sec. 5.2.3 in Chapter 5.

JoTA employs the state-of-the-art method based on neural networks training FastText. As

the input for the word embedding generation, we created a corpus constituted of a sentence

for each leaf concept in the ESCO occupation pillar and CP, containing the label of the leaf

concept, all the words associated with it, and its description. In total, we had 3742 sentences

(800 for CP and 2492 for ESCO) with a mean length of 437±192 all in Italian, since CP

has only one Italian version and, for ESCO, we used the Italian occupation’s names and

descriptions.

We have trained 200 FastText models with these parameters:

• Algorithm = {cbow, skipgram};

• Size = {50, 100, 150, 200, 300};

• Epochs = {10, 50, 100, 150, 200};

• Learning rate = {0.01, 0.05, 0.1, 0.2}.

All of them had minCount= 1, minN= 2. The average training time (with std) in seconds

is 86±56.

For choosing the minimum number of pairs required for computing the Pearson correla-

tion between the simHSS(w1,w2) and the cosine similarity for the trained FastText models,

we followed the method described in Section 5.3.2.

We have recursively generated samples of pairs, increasing the sample size from 100 to

40 000 by 100 in each step. Fig. 12.2 shows in blue the Pearson correlation of the HSS score

and the cosine similarity of each paired sample, while the orange line indicates the moving

average of 10. To define the Point of Stability (POS) - i.e. a point from which the correlation

remains within the Corridor of Stability (COS) - we considered a Corridor of Stability of

±0.01. The POS resulted in 25 500, and we decided to consider 30 000 pairs of words to

evaluate the best word embedding model.

The best model found computing the Pearson correlation of HSS score and cosine sim-

ilarity of 30 000 pairs of words is the one with parameters: algorithm=cbow, size= 150,
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Figure 12.2 Pearson correlation distribution over the samples of pairs of words.

epochs= 100 and learning rate= 0.05. With this configuration of parameters, the Pearson

correlation is 0.244 with a p-value of ≃ 0.

Table 12.2 shows as an example four ESCO occupations and their three most similar vec-

tors in the best word embedding model, selected through the cosine similarity (in parenthesis).

We chose these occupations randomly, and from them, it can be seen that the word embedding

model seems to capture the semantic similarity in the domain of the labour market.

12.3 Step 2: Classification and Hierarchical Approach

This step is based on the procedure explained in Section 9.2.2 in Chapter 9.

For the classification task, we employed 5-fold cross-validation to tune the hyper-

parameters of four different classification methods: Random Forest, Support Vector Machine,

K-Nearest Neighbours, and a 2-layer Neural Network. Then we used 5-fold cross-validation

to select the network configurations and hyper-parameters with the highest top-5 Accuracy.

The selected model, with a top-5 Accuracy of 0.8867, is a 2-layer neural network with (i)

ReLU activation function for the hidden layers, (ii) categorical cross-entropy as loss function,

(iii) RMSprop as an optimiser, (iv) 100 epochs, and (v) a batch size of 64.
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Table 12.2 Examples of word similarity on the basis of the best word embedding model.

ESCO occupation Top 3 most-similar Cosine
similarity

armatore_ferroviario
(rail layer)

deviatore_ferroviario (rail switchper-
son)

0.93

armatore_ferrovie (rail layer) 0.89
segnalatore_ferroviario (rail mar-
shaller)

0.88

agente_polizia
(police officer)

agente_polizia_locale (local police of-
ficer)

0.91

agente_polizia_stato (state police offi-
cer)

0.88

agente_polizia_giudiziaria (court en-
forcement officer)

0.87

acconciatore_spettacolo
(performance
hairdresser)

acconciatore_signora (women’s hair-
dresser)

0.80

acconciatore_uomo (men’s hair-
dresser)

0.80

acconciatore (hairdresser) 0.73

responsabile_beni_servizi
(product and services
manager)

responsabile_servizi (services man-
ager)

0.95

responsabile_servizio_clienti (cus-
tomer service manager)

0.92

responsabile_servizi_imprese (busi-
ness service manager)

0.91

The Hierarchical approach and the Classification approach provide, for each level 5

concept of CP, five concepts in the ESCO occupation pillar that could be used to map the CP

concept and that need to be validated by domain experts.

12.4 Step 3: Evaluation

For each co ∈ To, we examine their suggested matches with concepts in Td to assess the

correctness of the method in comparison with the mapping between To and Td validated

by a group of domain experts involved as reviewers in the project which ended up in

December 2020. That, in turn, reduces the human effort for building a mapping from scratch,

concentrating the effort on validating the approach.
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For the evaluation, we consider the top-5 Accuracy because we are interested in knowing

how many of the five suggestions from Step 2 include the concept that has been chosen as

the correct one by the domain experts. We also compute the MRR (Mean Reciprocal Rank)

and the wMRR (weighted Mean Reciprocal Rank) that were presented in Section 9.2.3 of

Chapter 9.

The evaluation’s results are shown in Tab. 12.3.

Table 12.3 The results of top-5 Accuracy, MRR, wMRR.

Method top-5 Accuracy MRRMRRMRR wMRRwMRRwMRR

String matching 0.4 0.32 0.45
String matching - Token Set 0.49 0.4 0.5
String matching - Token Sort 0.41 0.32 0.44
String matching - Weighted Ratio 0.36 0.28 0.43
Classification Approach 0.77 0.64 0.71
Hierarchical Approach 0.76 0.63 0.69
Blended Approach 0.8 0.66 0.72

We evaluated our final method (Blended Approach) and both the single methods that we

developed (Hierarchical and Classification Approach). The classification method achieves

better performances on all three evaluation metrics than the hierarchical one, and the blended

approach achieves the best performances thanks to the union of the first two methods.

We also evaluated four different methods of string matching, using them as baselines.

For these string-matching methods, we relied on a Python package (RapidFuzz) that uses the

Levenshtein Distance to calculate the differences between strings. All three of our methods

achieve better results on the three evaluation metrics than the baseline methods.

In Fig. 12.3, we show the level 1 hypernym of the origin entities and the corresponding

level 1 hypernym of the destination concepts. Some categories have the same name (e.g.

Clerical support workers or Armed forces) or an equivalent name (e.g. Technical professions

and Technicians and associate professionals, but there is not an exclusive relationship

between them, e.g. a relevant part of the CP Technical professions are mapped in the ESCO

Professionals section. Other concepts have different names, e.g. Legislators, entrepreneurs,

top management and Managers, but the former is aligned almost exclusively with the latter.
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0 - Armed forces occupations

1 - Managers

2 - Professionals

3 - Technicians and associate professionals
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8 - Plant and machine operators and assemblers

9 - Elementary occupations

1 - Legislators, entrepreneurs and top management

2 - Intellectual, scientific and highly skilled professions

3 - Technical professions

4 - Clerical support workers

5 - Highly qualified professions in business activities and services

6 - Craftsmen, skilled workers and farmers

7 - Plant operators, stationary and mobile machine operators and vehicle drivers

8 - Unskilled professions

9 - Armed forces

---

Figure 12.3 Alluvial diagram that depicts the mapping from CP (left-side) to ESCO occupation pillar (right-side)
for first levels
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13
Conclusion

In this doctoral thesis, we have integrated lexical taxonomies and word embeddings to develop

innovative methodologies for improving Natural Language Processing representations. This

research has encompassed two primary directions.

Firstly, our work has focused on the intrinsic evaluation of word embeddings, and two

novel methods have been designed and developed. The first method, known as TaxoVec,

involves a framework for selecting taxonomy-aware word embeddings, utilising a measure of

taxonomic semantic similarity that we named HSS. The second method, vec2best, provides

a comprehensive evaluation framework for word embeddings, introducing a novel evaluation

metric termed PCE (Principal Component Evaluation). vec2best was developed after

TaxoVec, reflecting on the fact that it is not always the case that there is a taxonomy

relevant to the topic considered. On the other hand, vec2best focuses on intrinsic methods

of evaluation, and if the embedding models are used only on a specific task, it could be

appropriate to evaluate it on that extrinsic task.

Secondly, we have developed two methodologies to enhance and align lexical taxonomies

using word embeddings. NEE facilitates taxonomy enrichment by estimating the conformity of

data to a given taxonomy, thereby identifying previously unrecognised relationships between
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Table 13.1 The strengths and weaknesses of the methodologies proposed in this work.

Method Strengths Weaknesses

TaxoVec
[68]

It leverages taxonomic semantic sim-
ilarity to evaluate word embedding
models. It is implemented as a
Python package.

It needs a taxonomy to be applied.

vec2best
[11]

It evaluates word embeddings over
different tasks, merging the results
through a final metric (PCE ). It is
implemented as a Python package.

It can be applied only to static word
embedding models. It does not in-
clude extrinsic evaluations.

NEE [69] It leverages word embeddings to
identify new entities and concepts
to add to a taxonomy from a corpus
of texts.

It is reliant on the quality of the cor-
pus of texts.

WETA [67] It is domain-independent and
merges a hierarchical method and
a classification task for automatic
taxonomy alignment.

It is reliant on the quality of the tax-
onomies (e.g. the quality of the de-
scriptions of the concepts).

entities and concepts. WETA represents a domain-independent technique for automatic

taxonomy alignment, amalgamating hierarchical similarity and classification tasks into

a unified scoring function. These two methodologies have the drawback of being reliant

on the data considered, both the taxonomies and the text datasets. For example, WETA’s

word embeddings are trained on the labels and descriptions of the concepts and words in the

taxonomies, and if those were poorly constructed that could affect the performance of the

alignment.

In Table 13.1 we summarised the main strengths and weaknesses of these methodologies.

In the final part of this thesis, we have exemplified some practical applications of these

methodologies within the context of Labour Market Intelligence. These applications were

developed as part of (i) the research activity of an ongoing EU grant aimed at realising the

first EU real-time labour market monitoring system [53], and (ii) an EU grant aiming at

bridging the national taxonomies of EU countries towards the European Skills, Competences,

Qualifications and Occupations taxonomy (ESCO)1.

1A Data Driven Bridge Towards ESCO using AI Algorithms, granted by EURES (call EaSI-EURES
VP/2019/010)
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13.1 Future Works

Moving forward, our research activities will be focused on two key areas. Firstly, we are

committed to expanding vec2best, incorporating additional intrinsic evaluation methods

such as synonym detection and incorporating other relevant benchmarks for the tasks already

included. Furthermore, we are working to include the evaluation method proposed in

TaxoVec in the vec2best framework. We also aim to find a way to include the evaluation

of contextual word embeddings, considering tasks that are specific for the evaluation of these

types of word embedding models.

Secondly, we are actively exploring the application of the approaches developed in NEE

and WETA to domains distinct from those presented in the concluding section of this thesis.
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Acronyms

BiLSTM Bidirectional Long Short-Term Memory

CBOW Continuous Bag of Word

COS Corridor of Stability

DL Deep Learning

DSWE Domain-Specific Word Embedding

DAG Directed Acyclic Graph

ESCO European Skills, Competences, Qualifications, and Occupations

HSS Hierarchical Semantic Similarity

ICT Information and Communication Technology

IWE Impact of Word Embedding

k-NN k-Nearest Neighbours

LMI Labour Market Intelligence

LSTM Long Short-Term Memory

ML Machine Learning

MTC Medical Text Classification

NER Named Entity Recognition
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NL Natural Language

NLP Natural Language Processing

OJA Online Job Advertisement

PC Principal Component

PCA Principal Component Analysis

PCE Principal Component Evaluation

POS Point of Stability

RS Recommendation System

SA Sentiment Analysis

SG Skip-Gram

SVM Support Vector Machine

TC Text Classification

TM Topic Modelling

UMAP Uniform Manifold Approximation and Projection

WE Word Embedding
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