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Abstract In the theory of congestion games, the Braess’ paradox shows that adding
one resource to a network may sometimes worsen, rather than improve, the overall
network performance. Here the paradox is investigated under a cooperative game-
theoretic setting, in contrast to the non-cooperative one typically adopted in the
literature. A family of cooperative games on networks is considered, whose utility
function, defined in terms of a traffic assignment problem and the associatedWardrop
equilibrium, expresses the average quality of service perceived by the network users.
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1 Introduction

In the theory of congestion games [12], Braess’ paradox [1] highlights why adding
one resource to a network may in some cases worsen, rather than improve, the
overall network performance. This phenomenon is typically explained through non-
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cooperative game theory, and is related to the concept of price of anarchy [5]: the
players (in this context, for example, the users of a road network), being driven by the
pursuit of maximizing their own individual interests, tend to reduce social welfare
(and sometimes, as an undesired consequence, they even fail to maximize their own
individual interests, when compared to the case in which they behave in a more
collaborative way). In case several resources are added to the network, however,
such a non-cooperative approach, which does not take into account every potential
interaction among the resources in all the possible contingent situations, does not
allow one to quantify the average marginal contribution (be it positive or negative)
of each resource to the overall network performance. This suggests the investigation
of a cooperative version of Braess’ paradox.

This work, which is in the same research direction as [16], studies Braess’ paradox
in the context of cooperative games with transferable utility on a graph [20], which
can model, for example, transportation networks [6, 8]. The players can be either
nodes or arcs of the graph (in this paper, they are arcs). The utility function of
each such game is defined in terms of a suitable congestion measure over subgraphs
associated with subsets of these nodes/arcs. Such a measure is computed by solving
an instance of the classical user equilibrium problem via any traffic assignment
algorithm (see, e.g., [15]). Then, the Shapley value of a node (or arc) of the network
is used as a measure of its importance, in line with [8, 11]. Differently from the
latter works, the goal here is to identify situations for which the Shapley value of a
node/arc is negative (as a consequence of the specific choice of the utility function).
In this case, the insertion of such an element to the network has a negative average
marginal value. This indicates a degradation of the average network performance
following its insertion, therefore the inopportunity of such an addition.

The work complements the analysis of [16] in several directions. A different
choice of the utility function associated with the transportation network cooperative
game is considered, which is proportional to the average quality of service perceived
by its users. Moreover, a variation of the example in [16] is adopted for illustration
purposes. An additional “fictitious” arc is included in the directed graphmodeling the
transportation network, in order to make the origin and destination nodes connected,
in all its subgraphs derived from all possible coalitions of arcs. A novel numerical
example is presented and additional computational issues are discussed.

The paper is structured as follows. Section 2 provides a background on coopera-
tive games with transferable utility, transportation networks cooperative games, and
Wardrop first principle, which is used to model the behavior of vehicles in the net-
work. Section 3 details the case of a utility function based on aWardrop equilibrium,
which is proportional to the average quality of service perceived by the network
users. Section 4 provides an application to a toy example. Finally, Section 5 is a short
discussion.
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2 Background

2.1 Cooperative games with transferable utility

A cooperative game with transferable utility (TU game, see, e.g., [20]) is a pair
(N, v), where:

• N is a set of players, and any subset S ⊆ N is called a coalition;
• v : 2N → R is the utility (characteristic) function, with v(∅) = 0; v(S) repre-

sents the utility that can be achieved jointly by all the players in S, without any
contribution from the players in N \ S.

In TU games, the utilities can be transferred from one player to another without any
loss.

The Shapley value [18] is the most important point-solution in cooperative game
theory, and corresponds to a suitable way of allocating the total utility in a “fair way”
among the players. For each player i ∈ N , it is defined as

Sh(i) =
∑
S⊆N

(|S | − 1)!(|N | − |S |)!
|N |!

[v(S) − v(S \ {i})] .

It represents the average marginal contribution of each player across all possible
coalitions, according to a suitable probability distribution (i.e., when players, starting
from the empty coalition, enter the grand coalition randomly, in such a way that all
orders are equally likely). It is worth noting that, due to the interpretation above,
the Shapley value can be applied as a measure of players’ importance not only in
classical contexts in which the players are modeled as rational decision makers,
but also in other more general situations in which this does not occur, e.g., when
players are features in supervisedmachine learning problems [2], genes inmicroarray
games [13], or joints in the analysis of motion capture datasets [10].

2.2 Transportation network cooperative games

Consider a graph G = (V, A), where

• V is the set of nodes;
• A ⊆ V × V is the set of arcs;
• W is the set of Origin-Destination pairs;
• dw is the traffic demand of the OD pair w, and d = (dw );
• Pw is the set of paths joining the elements of the OD pair w;
• xp is the flow on path p, and x = (xp);
• fa is the flow on arc a, and f = ( fa);
• ca ( f ) is the (non-negative) cost on arc a associated with the flow vector f ;
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• Cp (x) is the (non-negative) cost on path p, equal to the sum of the costs on the
arcs of the path p.

The set N of players is a given subset of arcs such that any OD pair can be served
in the subgraph (V, A \ N ). This is a subset of suitable arcs chosen a priori because
they are deemed to be important for the analysis of the specific network under
investigation. Specifically, for any OD pair w ∈ W there exists a path joining the
elements of w in the subgraph (V, A \ N ) obtained by removing all the arcs in N
from the arc set A (see Section 4 for an example).

2.3 Wardrop first principle

We consider a transportation network whose arcs model one-way traffic roads and
their weights the associated travel costs (e.g., travel times translated to monetary
costs, combined with tolls, if present), which are functions of the respective arc
flows. The number of vehicles traveling is considered so large that each vehicle
contributes with an infinitesimally small amount of flow. According toWardrop first
principle [21], a Wardrop equilibrium state is such that no vehicle can unilaterally
reduce its travel cost by shifting to another route. So, the resulting equilibrium (called
Wardrop equilibrium) models the realistic case in which all the drivers behave in a
selfish way. This equilibrium can be interpreted as a Nash equilibrium in the case of
an infinite number of infinitesimal players (the vehicles) [9].

For any coalition S ⊆ N , the subgraph associated to S is

G(S) := (V, (A \ N ) ∪ S) .

A path flow x(S) in the subgraph G(S) is feasible if for any w ∈ W the demand dw

is satisfied by using paths belonging to the set Pw (S) of paths joining the OD pair w
in G(S).

AWardrop equilibrium (or user equilibrium) in G(S) is defined as a feasible path
flow x̄(S) such that for any OD pair w ∈ W and any p ∈ Pw (S) one has

Cp ( x̄(S))



= λw (S) if x̄p (S) > 0,
≥ λw (S) if x̄p (S) = 0,

where λw (S) is the “equilibrium disutility” for the OD pair w, and x̄p (S) is the
component of x̄(S) which is associated with the path p. It follows from the definition
of Wardrop equilibrium that, for any w ∈ W , one incurs the same cost Cp ( x̄(S)) on
all the paths p ∈ Pw (S) for which x̄p (S) > 0, and such a cost is smaller than or
equal to the costs Cp ( x̄(S)) on all the other paths p ∈ Pw (S) for which x̄p (S) = 0.
The specific value of λw (S) is obtained a posteriori by imposing all the conditions
above.

It is known [4, 19] that x̄(S) is a Wardrop equilibrium if and only if it solves the
variational inequality
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〈C( x̄(S)), x(S) − x̄(S)〉 ≥ 0, for any feasible path flow x(S).

3 Utility function based on user equilibrium

Consider the following utility function:

vue (S) :=
∑
w∈W

∑
p∈Pw (S)

x̄p (S)
Cp ( x̄p (S))

−
∑
w∈W

∑
p∈Pw (∅)

x̄p (∅)
Cp ( x̄p (∅))

,

where x̄(S) and x̄(∅) are Wardrop equilibria in G(S) and G(∅), respectively. Notice
that, by the definition of theWardrop equilibrium x̄(S), one hasCp ( x̄p (S)) = λw (S)
for all the paths p ∈ Pw (S) with x̄p (S) > 0, so the denominators in the inner
summations above do not depend on p ∈ Pw (S). Such a utility function is well-
defined when the equilibrium costs of the traveled paths are unique, which occurs
when the arc costs are non-decreasing functions of the respective arc flows [3],
even under possibly non-unique equilibria (indeed, for all such equilibria, one has∑

p∈Pw (S) x̄p (S) = dw).
The utility function introduced above is inspired by a measure of network per-

formance versus efficiency for congested networks, which was considered in [14],
but not in a cooperative setting therein. Equivalently, the term x̄p (S)/Cp ( x̄p (S))
in the utility function vue (S) represents the product between the flow x̄p (S) which
is served by path p ∈ Pw (S) in the Wardrop equilibrium x̄(S), and the “quality
of service” 1/Cp ( x̄p (S)) perceived by its vehicles. In the present work the served
demand does not depend on S (indeed, even the empty coalition is able to serve it
- possibly inefficiently - by using the arcs belonging to A \ N). Hence, the utility
function vue (S) is proportional to the improvement in the average quality of service
one gets when one moves from the empty coalition to the coalition S, i.e., when the
arcs in S are included in the transportation network.

Finally, it is worth remarking that the chosen utility function is not generally
monotone (i.e., it is not necessarily true that v(S) ≤ v(T ) for any S ⊆ T ⊆ N).
Hence, the Shapley value of some arcs may be negative and the Braess’ paradox
can occur (see Section 4). This follows from the interpretation of the Shapley value
as average marginal contribution of a player to the utility of a randomly generated
coalition.

4 An illustrative example

Consider the following network with one OD pair w = (1, 4) with demand d.



6 Mauro Passacantando, Giorgio Gnecco, Yuval Hadas, Marcello Sanguineti

1 4

2

3

q

r

s

t

u

z

There are 4 paths connecting the OD pair:
p1 = (q, s), p2 = (r, t), p3 = (q, u, t), p4 = z.

We assume that the arc cost functions are defined as follows:

cq = 9 fq, cr = fr+50, cs = fs+50, ct = 9 f t, cu = fu+10, cz = 40d+50.

Hence, the path cost functions are:

C1(x) = 10x1 + 9x3 + 50, C2(x) = 10x2 + 9x3 + 50,
C3(x) = 9x1 + 9x2 + 19x3 + 10, C4(x) = 40d + 50.

The arc z represents an additional “fictitious” arc, not present in the topology of
the original Braess’ network, which has been included here in order to make all the
demand served, independently of the specific coalition S. Hence, we consider a TU
gamewhere the set of players is N := A\{z}. In such a way, being the demand always
served, negative Shapley values will arise only as a consequence of a deterioration
of the average quality of service perceived by the network users.

The user equilibrium x̄(S) and the disutility λ(S) for each coalition S ⊆ N have
the expressions reported in Table 1.

From the computational point of view, it can be observed that, if the flow fa
on an arc a ∈ S is equal to 0 in correspondence of the Wardrop equilibrium x̄(S)
for the subgraph G(S), then x̄(S) is a Wardrop equilibrium also for the subgraph
G(S \ {a}) obtained by removing the arc a from it. In Table 1 this occurs, e.g., for
S = {q, r, t}: indeed the arc q has 0 flow in G(S), because in that subgraph there is
no path that connects the OD pair and uses arc q. It occurs also for S = {q, r, t, u}
when d ≤ 4: the arc r is not used in such a case, because only the flow x3 on path
p3 = (q, u, t) is different from 0 in x̄(S). These arguments could help speeding up
the evaluation of the utility function (and, as a consequence, of the Shapley value)
for larger networks, and could be combined with empirical approximations of the
Shapley value based on a subset of sampled coalitions (as done in [7], for a different
and easier to compute utility function), or even based on approximate solutions of
the variational inequalities that define the Wardrop equilibrium x̄(S) for different
coalitions S.

Since there is a unique OD pair, the utility function vue has the following form:

vue (S) =
d

λ(S)
−

d
λ(∅)

.

Moreover, it follows from Table 1 that the Shapley value of arc u is given by the
following explicit formula:
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Coalition S x̄(S) λ(S)

∅ (0, 0, 0, d) 40d + 50

{q }, {r }, {s }
{t }, {u }
{q, r }, {q, t }
{q, u }, {r, s }
{r, u }, {s, t } (0, 0, 0, d) 40d + 50
{s, u }, {t, u }
{q, r, u }
{r, s, u }
{s, t, u }

{q, s }
{q, r, s }
{q, s, u } (d, 0, 0, 0) 10d + 50
{q, s, t }
{q, r, s, u }

{r, t }
{q, r, t }
{r, s, t } (0, d, 0, 0) 10d + 50
{r, t, u }
{r, s, t, u }

{q, t, u } (0, 0, d, 0) 19d + 10

{q, r, s, t } (d/2, d/2, 0, 0) 5d + 50

{q, s, t, u }



(0, 0, d, 0) if d ≤ 4

( 10d−40
11 , 0, d+40

11 , 0) if d ≥ 4




19d + 10 if d ≤ 4

109d+510
11 if d ≥ 4

{q, r, t, u }



(0, 0, d, 0) if d ≤ 4

(0, 10d−40
11 , d+40

11 , 0) if d ≥ 4




19d + 10 if d ≤ 4

109d+510
11 if d ≥ 4

{q, r, s, t, u }




(0, 0, d, 0) if d ≤ 4(
5d−20

6 , 5d−20
6 , 40−4d

6 , 0
)

if d ∈ [4, 10]

( d
2 ,

d
2 , 0, 0) if d ≥ 10




19d + 10 if d ≤ 4

7d+230
3 if d ∈ [4, 10]

5d + 50 if d ≥ 10

Table 1 User equilibrium x̄(S) and disutility λ(S) for each coalition S ⊆ N .

Sh(u) =




d
3(19d+10) −

d
30(40d+50) −

d
10(10d+50) −

d
5(5d+50) if d ≤ 4,

d
30(19d+10) +

11d
10(109d+510) +

3d
5(7d+230)

− d
30(40d+50) −

d
10(10d+50) −

d
5(5d+50) if d ∈ [4, 10],

d
30(19d+10) +

11d
10(109d+510) −

d
30(40d+50) −

d
10(10d+50) if d ≥ 10.
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The Shapley value of arc u is negative (i.e., a sort of cooperative version of Braess’
paradox occurs) for d ∈ (3.57, 7.67). This conclusion is similar to the one obtained
in [16], where a different utility function - still based on Wardrop equilibria - was
considered in the analysis. The Shapley values of the other arcs are positive for any
d > 0 and, because of the symmetry of the arc cost functions, arcs q and t have
the same Shapley value for any demand, and the same fact holds for arcs r and s.
Figure 1 shows the Shapley value of each arc as a function of the traffic demand.
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Fig. 1 Shapley value of each arc as a function of the traffic demand.

However, it can be verified (using similar expressions for the user equilibria and
disutilies for each coalition as the ones reported in Table 1) that no negative Shapley
value occurs if the arc cost function of arc u is modified to cu = 10 fu + 50 (as a
consequence, e.g., of the introduction of a suitable congestion pricing scheme).

It is also worth noting that, likewise in [16], no negative Shapley value is ob-
tained if, in the definition of the utility associated with each coalition S, the
Wardrop equilibrium x̄(S) is replaced by a flow vector x̂(S) maximizing the
expression

∑
w∈W

∑
p∈Pw (S)

x(S)
Cp (x(S)) over all flow vectors x(S) that are feasi-

ble in G(S), and x̄(∅) is replaced by a vector x̂(∅) maximizing the expression∑
w∈W

∑
p∈Pw (∅)

x(∅)
Cp (x(∅)) over all flow vectors x(∅) that are feasible in G(∅). In this

case, indeed, the resulting system optimum utility function

vso (S) :=
∑
w∈W

∑
p∈Pw (S)

x̂p (S)
Cp ( x̂p (S))

−
∑
w∈W

∑
p∈Pw (∅)

x̂p (∅)
Cp ( x̂p (∅))

is monotone, so no negative Shapley value can occur, being the Shapley value
the average marginal utility of a player when it is inserted in a suitably randomly
generated coalition.
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5 Discussion

A first future research direction of the work is aimed at further investigating the use
of congestion pricing as a way to deal with negative Shapley values. For instance, in
the case of the occurrence of negative Shapley values, one could be interested in find-
ing the minimal amount of change in the arc cost functions (induced by congestion
pricing) able to make all Shapley values non-negative. A second possible extension
consists in reducing the computational effort in the evaluation of the Shapley values,
making it possible to analyze realistic networks characterized by a large number of
arcs and various traffic demands. Indeed, in such cases, closed forms expressions of
the Shapley values could be not available, or their exact evaluation could be compu-
tationally expensive. However, even a sufficiently accurate approximate evaluation of
the Shapley values would be enough to achieve the final goal of detecting arcs with
negative such values. A promising approach in this direction appears to be the ap-
plication of supervised machine learning techniques [17] which, based on a suitable
set of supervised training pairs - e.g., depending on the context, input/output pairs of
the form (input vector of arc cost functions ca ( f ), output vector of Shapley values
Sh(i)) or (input vector of traffic demands d, output vector of Shapley values Sh(i))
- could allow one to predict the output vectors of Shapley values associated with
test examples (not used in the training phase), starting from the corresponding input
vectors. Moreover, the possibility of guaranteeing a good generalization capability
of the resulting trained machines could be investigated via a sensitivity analysis of
Wardrop equilibria with respect to a change in the vector of arc cost functions.
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