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Abstract

The notion of external intervention is of fundamental importance within the fields of causal
inference and causal discovery from combinations of observational and experimental data.
In the former, it serves as a tool for defining, identifying, and estimating causal effects. In
the latter, it allows for a precise definition of what experimental data entail, enabling their
usage to improve the identifiability of causal structures. This thesis addresses both aspects,
investigating them within the Bayesian framework. The manuscript comprises three self-
contained chapters, with the first serving as an introduction to the general scope of the
thesis, outlining its scientific context and contribution. The main two chapters represent
two independent projects, both driven by the objective of broadening the notion of external
intervention to reflect the diverse manipulations that scientists may actually implement in
their experiments. In Chapter 2, we consider the case of joint interventions which may si-
multaneously affect several variables. In particular, we present a unified Bayesian approach
for causal discovery and causal effect estimation in the Gaussian setting. This leads to a
Bayesian model averaging strategy for estimating the joint causal effects associated with
such interventions when the causal structure of the data-generating process is unknown. In
Chapter 3, we instead consider interventions modifying the causal mechanisms of the inter-
vened variables, which we call general interventions. We thus construct a Bayesian model
for causal discovery from combinations of observational and experimental data originat-
ing from unknown general interventions. In addition, we provide definitions and graphical
characterizations of the identifiability limit of causal structures in the new setting and de-
vise a suitable MCMC scheme to sample from the joint posterior distribution over causal
structures and unknown general interventions.
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Chapter 1

Introduction

1.1 Causal inference from experimental and observational data

Many of the most critical questions of scientific and societal interest revolve around causal-
ity. For instance, in recent years, marked by the need to coexist with the COVID-19
pandemic, the ability to assess the causal effects of infection-reduction policies has been
crucial in ensuring safety and minimizing the pandemic’s social costs [Bonvini et al., 2022].
In the coming decades, addressing the challenge of climate change requires a profound un-
derstanding of its causal mechanisms. Such understanding is essential for evaluating the
most effective policies to mitigate its impact [Nowack et al., 2020].

In statistics, particularly in causal inference, distinguishing causal effects from mere
statistical associations is a fundamental challenge. Randomized Controlled Trials (RCTs)
[Fisher, 1935] provide the primary and oldest tool for this purpose. In an RCT, researchers
randomly assign a selected sample of subjects to either a control or a treatment group.
The causal effect is then defined as the difference in the observed outcome variable between
the two groups. Despite being considered the gold standard of causal inference, RCTs can
often be infeasible or unethical. For example, if we wanted to assess the effect of smoking
on the onset of respiratory issues, implementing an RCT would require randomly chosen
subjects to start smoking, which would be unethical and thus infeasible. In such cases,
the only option is to rely on observational data, which are non-experimental in nature.
Observational data are inherently less informative than experimental data because they
lack information about how the system responds to external stimuli. Consequently, causal
inference from observational data is more complex and requires stronger assumptions to
validate its conclusions.

The fields of statistics, econometrics, and computer science have developed various
conceptual frameworks for causal inference from observational data. In this thesis, we

1



Chapter 1. Introduction

adopt the do-calculus framework based on graphical models [Pearl, 2009]. This framework
requires specifying the scientific knowledge about the problem under analysis through a
causal diagram, a graphical object in which every node corresponds to a variable and every
edge to a direct causal relationship. From this causal diagram, the do-calculus provides the
functional of the observed distribution corresponding to the causal effect of interest.

Specifying a causal diagram, or even parts thereof, is difficult in many cases. Further-
more, in numerous practical contexts, the causal diagram is of scientific interest in its own
right. These considerations led to the development of another body of literature known
as causal discovery [Spirtes et al., 2001, Peters et al., 2017]. This literature primarily ad-
dresses two key aspects. First, it investigates the problem of determining how much can
be learned of a causal diagram based on weaker assumptions about the data-generating
process. Second, it develops procedures for estimating the identifiable structures. One can
then use these estimated structures to define the associated causal effects.

Learning a causal structure without any prior information is highly complicated. Even
assuming that we observe all the relevant variables for explaining a phenomenon, the num-
ber of possible identifiable structures grows super-exponentially in the number of variables
involved [Gillispie and Perlman, 2001]. Consequently, it often becomes necessary to in-
clude prior information in the learning process and to quantify the uncertainty around our
estimates. For this reason, in this thesis, we adopt a Bayesian approach

The upcoming sections formally introduce several key concepts crucial for understanding
the articles that constitute this doctoral thesis. Specifically, in Section 1.2, we introduce the
framework of Structural Causal Models (SCMs), which forms the basis of the do-calculus,
and highlight its underlying assumptions. Section 1.3 addresses the issue of causal discovery
and outlines the primary methodologies used in this context. In Section 1.4, we frame the
problem of causal discovery within the Bayesian setting. Finally, Section 1.5 briefly outlines
the two main chapters of the thesis, emphasizing their contributions.

1.2 Structural Causal Models

Let D = (V,E) be a Directed Acyclic Graph (DAG) with vertex set V = {1, . . . , q} := [q]

and edge set E ⊂ V × V . We denote by paD(j) the parent-set of node j, i.e. paD(j) =

{i ∈ V |(i, j) ∈ E}. DAGs are given a causal interpretation when considered as graphical
representations of a Structural Causal Model (SCM), each node being a variable and each
edge a direct causal relationship. An SCM consists of stable and autonomous mechanisms
of the form

Xj = fj
(
XpaD(j), ϵj

)
, ϵj ∼ pϵj j ∈ [q], (1.1)

2



1.2. Structural Causal Models

where X := {X1, . . . , Xq} is a collection of endogenous variables corresponding to the
nodes of D, {ϵj}qj=1 a collection of exogenous variables with joint distribution pϵ, and
{fj}qj=1 a set of structural assignments, i.e. functions connecting the value of each Xj to its
parents/causes XpaD(j) and to ϵj . If the exogenous variables in ϵ are independent, then the
SCM is called Markovian, and a distribution p(·) is induced over the endogenous variables
X such that

p(x) =

q∏
j=1

p
(
xj |xpaD(j)

)
, (1.2)

where by x we denote any realization of X. Through the Markovian assumption, the ex-
ogenous variables induce a set of conditional independencies that result in the factorization
(1.2). Because of the assumed stability and autonomy of the mechanisms in (1.1), it is possi-
ble to conceive external interventions that perturb only a subset of the mechanisms, leaving
the others unchanged. In particular, a hard intervention on Xi consists in fixing the value
of the intervened variable to a chosen constant value x̃i, and we denote it by do(Xi = x̃i), or
do(x̃i) for short. Accordingly, any intervention also induces a post-intervention distribution
on X. In the case of a hard intervention, it takes the form of the truncated factorization

pX (x | do (Xi = x̃i)) =
∏
j ̸=i

p
(
xj |xpaD(j)

)
1{xi = x̃i}. (1.3)

An SCM thus entails not only an observational distribution over X but also how this
distribution would change in response to hypothetical external interventions. By leveraging
the language of SCMs and the do-calculus, it is possible to define many functionals of
interest for causal inference. For instance, the causal effect of the treatment variable Xi on
an outcome variable Y ∈ X,Y ̸= Xi can be defined as

γxiy :=
∂

∂x̃i
E (Y | do (Xi = x̃i)) . (1.4)

In other words, the causal effect is the induced variation in the expected value of Y resulting
from an infinitesimal change in the value x̃i at which we fix the treatment variable Xi.
Once the causal effect is defined within the language of SCMs, the do-calculus enables us
to ascertain whether this causal effect is identifiable from observational data. If it is, the
do-calculus also identifies the corresponding functional of the distribution p(·), thus making
the estimation of causal effects from observational data possible.

Finally, it is worth noting that hard interventions do not encompass the full spectrum
of possible manipulations that can be applied to a set of variables. For instance, one may
consider and perform simultaneous interventions on a set of variables, or interventions that

3
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modify the mechanisms of the target (treatment) variables; see Korb et al. [2004] for a
discussion. Consequently, different types of manipulations require different definitions of
causal effects and, in turn, different identification and estimation strategies. For this reason,
extensions of the do-calculus, such as the σ-calculus of Correa and Bareinboim [2020], have
been developed in the literature.

1.3 Causal discovery

As anticipated, in many practical contexts, specifying a causal diagram is not feasible.
Therefore, learning such diagram from data becomes essential both for its intrinsic scientific
interest and the subsequent possibility of identifying and estimating causal effects. This
learning process relies on assumptions about the data-generating process. The question
we address in this section is the following: "How can we leverage these assumptions to
extract information about the causal diagram D given knowledge of p(·)?" In Section 1.3.1,
we elaborate on the Markovian assumption implying the factorization (1.2) and its usage
in causal discovery from observational data. In Section 1.3.2, we instead focus on the
assumption of stability and autonomy of the mechanisms of an SCM, showing how it can
be leveraged to improve DAG identifiability when experimental data are available.

1.3.1 From observational data

Every Markovian SCM admits a DAG implies the factorization (1.2), which entails a set of
conditional independence relationships among variables. It is possible to characterize the
set of all conditional independencies implied by a DAG D using a graphical criterion called
d-separation [Pearl, 2009]. Such criterion relies on the notion of a collider. Given a path
p = (p1 = i, p2, . . . , pM = j) from i to j in D, the node pm is a collider if pm−1 → pm ←
pm+1. A path p d-connects i and j given the set C ⊆ [q]\{i, j} if:

1. All non-colliders on the path do not belong to C;

2. All colliders on the path either belong to C, or have a descendant which belongs to
C.

Finally, i and j are d-connected given C if there exists any d-connecting path given C;
otherwise, they are d-separated. If i and j are d-separated by C in D, we write i ⊥⊥D j | C.
We denote with I⊥⊥(D) the set of d-separation statements implied by a DAG D; i.e.

I⊥⊥(D) = {(i, j, C) | i, j ∈ [q], C ⊆ [q]\{i, j}, i ⊥⊥D j | C} . (1.5)

4
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D1 D2 D3 D4

1

3

2

4 1

3

2
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2
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Figure 1.1: Four DAGs with the same skeleton. D1,D2 and D3 have the set of v-structures
and are thus Markov equivalent. D4 belongs to another Markov equivalence class.

Similarly, we denote with I⊥⊥(p) the set of conditional independencies in p(·), which is
defined as

I⊥⊥ (p) = {(i, j, C) | i, j ∈ [q], C ⊆ [q]\{i, j}, Xi ⊥⊥ Xj | C} . (1.6)

We say that p(·) satisfies the global Markov property of D if I⊥⊥(D) ⊆ I⊥⊥(p), i.e. if
all the d-separation statements in D imply a conditional independence relation in p [Pearl,
1988]. In addition, we say that p is faithful to D if I⊥⊥(p) = I⊥⊥(D), so that it is possible to
enumerate all and only the d-separation statements that must hold in the DAG D and that
correspond to the conditional independencies of p. However, even assuming faithfulness it
is not possible to distinguish between Markov equivalent DAGs. Two DAGs D1 and D2

are Markov equivalent if I⊥⊥(D1) = I⊥⊥(D2), i.e. they imply the same set of conditional
independencies via d-separation. We let M(D) be the Markov equivalence class of D,
that is the set of all DAGs implying the same conditional independencies as D. Markov
equivalence classes represent the identification limit when only an observational distribution
p(·) is available and the only assumption on the data-generating process is that it can be
represented through a Markovian SCM ((1.1)). Different graphical characterizations of
Markov equivalence exist. In particular, two DAGs are Markov equivalent if and only if
they have the same skeleta and the same set of v-structures [Verma and Pearl, 1990]. See
Figure 1.1 for an example.

The task of causal discovery from observational has been tackled from different method-
ological perspectives, both from a frequentist and from a Bayesian standpoint. A primary
distinction among frequentist methods is between constraint-based and score-based algo-
rithms. The former include algorithms that recover the DAG-equivalence class through
sequences of conditional independence tests. The most popular methods are the PC and
Fast Causal Inference (FCI) algorithms [Spirtes et al., 2001], together with their extensions
rankPC and rankFCI [Harris and Drton, 2013], based on more general (non-parametric)

5



Chapter 1. Introduction

conditional independence tests. Differently, score-based methods implement a suitable score
function which is maximized over the space of DAGs (or their equivalence classes) to pro-
vide a graph estimate; an example is the Greedy Equivalence Search (GES) algorithm of
Chickering [2002]. Going beyond this distinction, a variety of hybrid methods, i.e. combin-
ing features of both the two approaches, have been proposed; see for instance Tsamardinos
et al. [2006] and Shimizu et al. [2006], the latter tailored to non-Gaussian linear structural
equation models. On the Bayesian side, DAG structure learning has been traditionally
tackled as a Bayesian model selection problem. In this framework the target is represented
by the posterior distribution of causal structures which is typically approximated through
Markov Chain Monte Carlo (MCMC) methods; see Section 1.4 for details. The first work
going in this direction is Cooper and Herskovits [1992]. More recent works have focused
on sampling from spaces which are "coarser" than the one of DAG structures, such as the
space of Markov equivalence classes [Castelletti et al., 2018], the space of orderings [Fried-
man and Koller, 2003], the space of partitions [Kuipers and Moffa, 2017], or the space of
minimal I-MAPs [Agrawal et al., 2018].

For extensive reviews of causal discovery methods, the reader can refer to Heinze-Deml
et al. [2018] and Squires and Uhler [2023].

1.3.2 From experimental data

We now consider the case when we observe X in K different experimental settings, and we
denote the associated distributions as {pk(x)}Kk=1. Each experimental setting corresponds
to a specific perturbation performed by an external experimenter on a set of target variables
indexed by T (k) ⊆ [q]. In the framework of SCMs, this corresponds to an intervention that,
because of the stability and autonomy assumption, modifies the generating mechanism of
the target nodes T (k) without affecting the others and accordingly, as shown in (1.3), results
in a local change in the post-intervention distribution.

In what follows, we assume that the performed interventions are hard, but stochastic,
that is we allow for randomness in the process of fixing the values of the target nodes.
Given an observational distribution p(·), the post-intervention distribution induced in the
k-th experimental context is thus

pk(x) =
∏

j /∈T (k)

p
(
xj | xpaD(j)

) ∏
j∈T (k)

pk (xj) . (1.7)

The assumption of stable and autonomous mechanisms translates into a set of invari-
ances between the observational and the post-intervention distributions. Moreover, a hard
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Figure 1.2: Four DAGs with the same skeleton (first row) and their post-intervention
DAG after a hard intervention on node 2 (second row). Each colour corresponds to an
I-Markov equivalence class.

intervention removes the dependence between the intervened node and its parent nodes in
the DAG. This information can then be used to enhance the identifiability of the DAG,
inducing a partition of the DAG space into I-Markov equivalence classes, which is finer than
the one implied by Markov equivalence.

Figure 1.2 illustrates three Markov equivalent DAGs and their corresponding post-
intervention DAGs resulting from a hard intervention on the variable X3. Notice that,
in the post-intervention DAGs of D1 and D2, we have that X1 ⊥⊥ X3, while in the post-
intervention DAG of D3, the dependence relationship between the two variables is pre-
served. This information can be used to distinguish between D1 and D2, on one hand,
and D3, on the other. DAGs D1 and D2 entail both the same invariances and the same
conditional independences in both the observational and experimental context. Therefore,
they are I-Markov equivalent. As for the observational case, there exist graphical charac-
terizations of I-Markov equivalence for the case of hard interventions. In particular, Hauser
and Bühlmann [2012] proposed the following. For any DAG D and any collection of K

experimental settings, we denote with {D(k)}Kk=1 the collection of post-intervention DAGs.
Two DAGs D1 and D2 are I-Markov equivalent if, for any k ∈ [K], D(k)

1 and D(k)
2 have the

same skeleta and the same set of v-structures.

The first article on causal discovery from combinations of observational and experi-
mental data is Cooper and Yoo [1999], who proposed a Bayesian methodology for data
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arising from hard interventions with known targets. In the same Bayesian framework, Tian
and Pearl [2001] presented a similar methodology using a different notion of intervention
called mechanism change. Eaton and Murphy [2007] extended the previous methodologies
to the case of categorical data and of interventions with unknown targets. An objec-
tive Bayesian methodology in the Gaussian setting was then proposed by Castelletti and
Consonni [2019]. The same authors provided an extension to the unknown targets case
[Castelletti and Peluso, 2023]. On the frequentist side, Hauser and Bühlmann [2012] de-
veloped the Greedy Interventional Equivalence Search (GIES) algorithm as an extension of
GES that can handle combinations of experimental data. Recently, Gamella et al. [2022]
extended the same methodology to the case of unknown targets in the Gaussian setting.
A different score-based approach was proposed by Wang et al. [2017], who developed the
Interventional Greedy Sparsest Permutation (IGSP) method, later extended to the case
of soft interventions by Yang et al. [2018] and to the case of unknown targets by Squires
et al. [2020]. Finally, Mooij et al. [2020] developed the Joint Causal Inference framework,
which encodes unknown interventions through additional indicator variables in a pooled
dataset and establishes under which assumptions constraint-based methods conceived for
observational settings can be applied to the pooled dataset to learn the DAG when the
intervention targets are unknown.

1.4 Bayesian causal discovery

In the Bayesian setting, causal discovery can be cast as a Bayesian model selection problem.
Let X be a (n, q) matrix collecting n i.i.d. measurements of a random vector X generated
by a Markovian SCM with unknown causal diagram D. Let also Θ be the set of parameters
associated with the corresponding parametric DAG-model p(X | Θ,D). The factorization
(1.2) implies that:

p(X | Θ,D) =
n∏

i=1

q∏
j=1

p(Xij |Xi,paD(j), θj ,D) (1.8)

where θj ⊂ Θ is the subset of parameters associated with the j-th node. When coupled with
a prior distribution on the space of all DAGs p(D) and a prior on the associated DAG-model
parameters p(Θ | D), the statistical model of Equation (1.8) implies a posterior distribution
on the DAG space

p(D |X) ∝ p(X | D)p(D) (1.9)
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where p(X|D) is the marginal likelihood or Bayesian model evidence, defined as:

p(X | D) =
∫

p(X | Θ,D)p(Θ | D) dΘ. (1.10)

Although conceptually straightforward, the task of Bayesian causal discovery presents many
specific challenges. First, the number of parameters associated with each DAG-model can
be very large, and defining a posterior distribution over the space of DAGs requires to
specify a prior on the parameters of any DAG-model. Moreover, the possibility that some
of these models share parts of their structures brings forth a compatibility requirement
[Roverato and Consonni, 2003], so that for any two DAGs D1,D2

p(θj | D1) = p(θj | D2) for each j ∈ [q] | paD1
(j) = paD2

(j)

In addition to that, a further compatibility requirement emerges as a consequence of the ex-
istence of Markov equivalence classes of DAGs. In particular, for any two Markov equivalent
DAGs D1 and D2 we require

p(X | D1) = p(X | D2) (1.11)

that is, two indistinguishable models remain such even after we have specified our prior
distributions on their parameter space [Peluso and Consonni, 2020].

Despite these challenges, the Bayesian approach to causal discovery has significant ad-
vantages. First, the output of a Bayesian causal discovery procedure is a whole posterior
distribution over the model space, which is inherently much richer than a single DAG-
estimate and naturally incorporates uncertainty quantification. Second, within the same
approach one may also obtain a joint posterior distribution over DAG and DAG-parameters:

p(D,Θ |X) ∝ p(X | Θ,D)p(Θ | D)p(D) (1.12)

and sample from it using a suitable MCMC scheme. In some parametric models, the causal
effects identified by the do-calculus are in the end just functions of the parameters Θ.
Denote with γ(Θ) the causal effect of interest, as defined in (1.4). If S samples from the
posterior distribution (1.12) are available, than one may easily produce a Bayesian Model
Averaging (BMA) estimate of γ as:

γ̂BMA =
1

S

S∑
s=1

γ
(
Θ(s)

)
(1.13)

where Θ(s) is the s-th sample from the MCMC scheme used. The above estimate would

9



Chapter 1. Introduction

incorporate the uncertainty on the causal discovery procedure. More in general, one may
consider the samples γ(Θ(1)), . . . , γ(Θ(S)) as samples from the posterior distribution of the
causal effect of interest and use them to provide estimates and quantify the uncertainty
surrounding those estimates.

1.5 Outline and contribution

This manuscript is composed of three self-contained chapters, Chapter 1 being this technical
introduction to causal inference and causal discovery in the Bayesian setting.

In Chapter 2, we consider the case of joint interventions which may simultaneously
affect several variables. We thus specialize the general approach presented in Section 1.4
to the Gaussian setting and provide a Bayesian methodology for estimating causal effects
of joint interventions when the DAG is unknown. We show how the do-calculus identifies
these causal effects as DAG-specific functions of the elements of the covariance matrix
of a Gaussian DAG-model. We thus derive the joint posterior distribution over DAGs
and DAG-parameters and implement an MCMC scheme to sample from it. A posterior
distribution over DAGs and causal effects is then obtained by transforming the sampled
values of the covariance matrix. Our Bayesian model specification is based on a compatible
variation of the DAG-Wishart distribution [Ben-David et al., 2015], which assigns equal
marginal likelihood to Markov equivalent DAGs. Our proposal has the advantage, over
its frequentist counterparts, of naturally accounting for the uncertainty in learning the
DAG from data and it has been shown to outperform its competitors in simulation studies.
Chapter 2 is based on the articles "Structural learning and estimation of joint causal effects
among network-dependent variables" [Castelletti and Mascaro, 2021] and the accompanying
article "BCDAG: An R package for Bayesian structure and Causal learning of Gaussian
DAGs" [Castelletti and Mascaro, 2022], detailing a public available implementation of the
methods proposed in the package BCDAG.

In Chapter 3, we shift our focus on interventions that modify the parent sets of the inter-
vened nodes in the DAG, which we call general interventions. We thus propose a Bayesian
methodology for causal discovery from experimental data arising from general interventions
with unknown targets. DAGs and unknown general interventions may be identifiable only
up to some equivalence class. We provide graphical characterizations of such equivalence
classes, and, accordingly, we devise compatible priors that guarantee score equivalence of
indistinguishable combinations. Finally, we develop a suitable MCMC scheme to sample
from the posterior distribution over DAGs and unknown interventions. We evaluate the pro-
posed methodology on both simulated and real datasets. The performance of the method is
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competitive with state-of-the-art methods both on the task of structure learning and on the
task of learning the difference between different causal structures. Chapter 3 is based on the
working paper "Bayesian causal discovery from unknown general interventions" [Castelletti
and Mascaro, 2023+].
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Chapter 2

Bayesian causal discovery and joint causal effect
estimation

2.1 Introduction

Graphical models based on Directed Acyclic Graphs are commonly used to model de-
pendence relationships among variables. When considered as graphical representations of
Markovian Structural Causal Models (SCMs), DAGs can be given a causal interpretation,
with each node corresponding to an element of the random vector X := (X1, . . . , Xq) and
each edge a direct causal influence among these. In this setting, the do-calculus [Pearl,
2009] can be used to define, identify and estimate causal effects given only observation
data. The do-operator at the base of the do-calculus, denoted as do(Xj = x̃j), represents
the action of fixing the value of the random variable Xj to x̃j . Accordingly, a causal effect
can be informally defined as the expected change in an outcome variable Y ∈ X induced
by a unit change of the value at which we fix Xj . The do-calculus consists of a set of rules
that, given a DAG, allow the identification of causal effects, even when the corresponding
experimental (post-intervention) data are not available.

We consider the problem of identifying and estimating causal effects using observational
Gaussian data when the DAG is not known. In particular, we focus on the case of causal
effects associated with joint interventions on a set of target variables I and which we
denote as do{Xj = x̃j}j∈I . Such causal effects differ from their single-variable counterpart
because of the possible interactions that may occur and that depend on the DAG structure.
Consider, for instance, the DAG reported in Figure 2.1, where each edge weight corresponds
to a randomly generated coefficient of a linear Structural Equation Model (SEM) [Bollen,
1989]. Suppose we are interested in evaluating the causal effect of X6 on X1 in i) a single
intervention on X6, and ii) a joint intervention on X6 and X4. From the DAG and associated
coefficients, one may use the path method [Wright, 1934] to identify such causal effects. In
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Figure 2.1: A DAG with q = 6 node/variables and randomly generated edge weights.

the path method, assuming unit node-variance, the first step is to identify all the possible
paths leading from node 6 to node 1. Then, a path coefficient is produced by multiplying
all the coefficients associated with each edge in the path. Finally, all the path coefficients
are summed up to compute the causal effect of interest. In our example, the path method
reflects the idea that changing the value at which we fix X6 would result in a change in
node X4 and X3 and, in turn, in node X1. In case i), by the path method, the causal
effect equals −0.3832. In case ii), instead, one has to take into account that X4 is itself a
target of intervention, and the dependence between X6 and X4 has been destroyed by such
intervention. As a consequence, the only "active" path is the one passing through X3 and
the causal effect associated with X6 in this joint intervention on X6, X4 is 0.08.

As the DAG is unknown, it must be estimated from data. When DAGs are given a
causal interpretation, the process of learning the DAG structure from data is referred to
as causal discovery [Spirtes et al., 2001, Peters et al., 2017]. Every DAG model associated
with a Markovian SCM encodes a set of conditional independencies that can be read-
off from the DAG using a criterion called d-separation [Pearl, 2009]. Under faithfulness,
these conditional independencies are exactly those entailed by the joint distribution over
X, and it is possible to use them to learn the DAG structure. However, different DAGs
may encode the same set of conditional independencies rendering them indistinguishable
when relying solely on observational data. Such DAGs are commonly referred to as Markov
equivalent [Verma and Pearl, 1990]. Correctly accounting for this identifiability limit is of
key importance in causal discovery. For instance, in the Bayesian setting, the existence
of indistinguishable structure translates into the compatibility requirement [Roverato and
Consonni, 2003] that Markov equivalent DAGs are assigned equal marginal likelihood, a
property which is referred to as score-equivalence in the literature on score-based methods
for causal discovery [Chickering, 2002].

In this chapter, we present a Bayesian methodology that combines causal discovery and
joint causal effect estimation from observational Gaussian data. In particualar, we propose
a unified approach that leads to a joint posterior distribution over DAGs, DAG-parameters
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and joint causal effects. Our model specification satisfies the compatibility requirement of
assigning equal marginal likelihood to Markov equivalent DAGs. In addition, it allows for
fast computation of the Bayes factors involved in the MCMC scheme used to sample from
the ensued joint posterior distribution.

2.1.1 Related work

The first method dealing with the identification and estimation of single-variable causal
effects when the DAG is unknown is the IDA (Identification when the DAG is Absent)
method [Maathuis et al., 2009]. IDA consists of a two-step procedure. In the first step, a
Completed Partially Directed Acyclic Graph (CPDAG) representing a Markov equivalence
class is inferred from data using any causal discovery procedure such as the PC algorithm
[Spirtes et al., 2001] or the GES algorithm [Chickering, 2002]. In the second step, all causal
effects compatible with the estimated Markov equivalence class of DAGs are enumerated
with a fast procedure that only requires local information on the CPDAG. The authors
prove that, conditionally on the true CPDAG, their method provides consistent estimates
of causal effects associated with interventions on single variables. The same method was
then extended to the case of joint interventions by Nandy et al. [2017], who also proved
the consistency of the procedure in the new setting. More recently, Perković et al. [2018]
showed how any joint causal effect of interest can be identified from a DAG, a CPDAG
or a PDAG via covariate adjustment, i.e. via a regression of the outcome node on the
treatment nodes and a valid adjustment sets. However, all these methods rely on a single
estimated Markov equivalence class of DAGs. Consequently, results are highly sensitive to
this estimate. Bayesian methods, on the other hand, rely on a unified approach which takes
fully into account both the uncertainty over the DAG structure and over the parameter
estimation. A Bayesian method combining causal discovery and single-variable causal ef-
fect estimation from observational Gaussian data was provided by Castelletti and Consonni
[2021a]. Their methodology was also extended to the case of Gaussian data with a binary
outcome variable [Castelletti and Consonni, 2021b] and to the case of heterogeneous Gaus-
sian data [Castelletti and Consonni, 2023]. Viinikka et al. [2020] also provided a similar
method but adopting a different MCMC scheme with better convergence properties.

2.1.2 Outline

In Section 2.2, we provide background and notation on Gaussian DAG models and we
show how, through the do-calculus, it is possible to identify the joint causal effects as
DAG-specific functions of the elements of a modified covariance matrix. In Section 2.3, we
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introduce our Bayesian model specification, leading to a joint posterior distribution over
DAGs, DAG-parameters and joint causal effects. We discuss in Section 2.4 computational
details leading to our MCMC scheme for posterior inference. In Section 2.5, we apply
our methodology to simulated and real data. Finally, Section 2.6 offers a brief discussion
together with possible future developments.

2.2 Preliminaries

In this section, we formally introduce the necessary background on graphical models and
causal inference. In Section 2.2.1, we provide an overview of Gaussian DAG-models. In
Section 2.2.2, we show how single-variable causal effects can be defined and identified from
Gaussian observational data using the do-operator. In Section 2.2.3, we instead focus on
the case of joint causal effects.

2.2.1 Gaussian DAG-models

We briefly introduce the graph notation hereinafter adopted. Let G = (V,E) be a graph,
where V = {1, . . . , q} := [q] is a set of nodes (or vertices) and E ⊆ V ×V a set of edges. In
what follows, if (u, v) ∈ E and (v, u) /∈ E,G contains a directed edge u → v, while if both
(u, v) ∈ E and (v, u) ∈ E, then G contains an undirected edge u − v. A graph is called
directed if contains only directed edges. Moreover, a Directed Acyclic Graph (DAG) D is
a directed graph which contains no loops, that is sequences of nodes (u1, u2, . . . , uk) with
u1 = uk, such that there exists a path u1 → u2 → · · · → uk. Moreover, if (u, v) ∈ E we say
that u is a parent of v and denote the set of all parents of v in D as paD(v). Also, if there
exists a directed path from u to v we say that v is a descendant of u and let deD(u) be the
set of all descendants of u in D. Hence, the non-descendants of u are all nodes in the set
ndD(u) = V \ deD(u).

Let X := (X1, . . . , Xq) be a random vector. DAGs are given a causal interpretation
when considered as graphical representations of a Structural Causal Model (SCM) over X,
each node being a variable and each edge a direct causal relationship. In particular, in this
chapter, we will consider linear Gaussian Structural Equation Models (SEM) of the form

X = BTX + ϵ, ϵ ∼ Nq (0,D) (2.1)

where B is a (q, q) matrix of regression coefficients with (u, v)-element Buv ̸= 0 if and only
if u ∈ paD(v), and D = diag(D11, . . . ,Dqq) is a (q, q) matrix collecting the variances of the
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q exogenous variables in ϵ. Equation (2.1) implies

X | Σ,D ∼ Nq (0,ΣD) , (2.2)

with ΣD = (I − B)−⊤D(I − B)−1, the right-hand side corresponding to the modified
Cholesky decomposition of the covariance matrix. The independence of the elements in ϵ

makes the SEM in (2.1) Markovian. As a consequence, the induced joint distribution over
X satisfies the Markov property of D, meaning that it is possible to factorize it as

p(x | ΣD,D) =
q∏

j=1

p
(
xj | xpaD(j),ΣD,D

)
, (2.3)

where we denote with x any realization of the random vector X. All the conditional
independencies implied by (2.3) can be read off from D through d-separation. In short,
we have that every node is independent of its non-descendants given its parents. When we
consider the modified Cholesky decomposition of ΣD, it is possible to further specify (2.3)
as

p(x | (B,D),D) =
q∏

j=1

dN
(
xj | xTpaD(j)BpaD(j)×j ,Djj

)
, (2.4)

where by dN (xj |µ0, σ
2
0) we denote the density corresponding to a Gaussian random variable

Xj with mean µ0 and variance σ2
0. We refer to any Gaussian model (2.2) whose covariance

matrix Σ is Markov w.r.t. a DAG D as a Gaussian DAG-model.

2.2.2 Identifying causal effects in Gaussian DAG-models

We now focus on the identification of the causal effect of a single treatment variable Xi on
an outcome variable Y := X1 in the context of Gaussian DAG-models. In the language of
the do-calculus, we can define such causal effect as:

γxiy :=
∂

∂x̃i
E (Y | do (Xi = x̃i)) . (2.5)

In other words, the causal effect is the induced variation in the expected value of Y resulting
from an infinitesimal change in the value x̃i at which we fix the treatment variable Xi. To
identify the so-defined causal effect, we first need to derive the post-intervention distribution
of Y given an intervention fixing the value of Xi. In the Gaussian case, the joint distribution
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over X\Xi becomes

p (x | do (x̃i) , (B,D),D) =
∏
j ̸=i

dN
(
xj | xTpaD(j)BpaD(j)×j ,Djj

)
1{xi = x̃i}, (2.6)

where do (x̃i) is a shorter notation for do (Xi = x̃i) that we hereinafter adopt. The marginal
distribution of Y = X1 can be obtained via marginalization. In general, if Y /∈ paD(i), we
have:

p (y | do (x̃i) ,ΣD) =

∫
p
(
y | x̃i, xpaD(i),ΣD

)
p
(
xpaD(i) | ΣD

)
dxpaD(i). (2.7)

Accordingly,

E (Y | do (x̃i) ,ΣD) =

∫
E
(
Y | x̃i, xpaD(i),ΣD

)
p
(
xpaD(i) | ΣD

)
dxpaD(i). (2.8)

By Gaussianity, E(Y | x̃i, xpaD(i),ΣD) is linear in x̃i, xpaD(i), and it can be written as

E(Y | x̃i, xpaD(i),ΣD) = γ0 + γxiyx̃i + γTpaD(i)xpaD(i), (2.9)

for some values γ0, γi ∈ R and γpaD(i) ∈ R|pai|, where |paD(i)| is the cardinality of the
parent set of Xi in D. Substituting Equation (2.9) in Equation (2.8), we thus obtain

E (Y | do (x̃i) ,ΣD) = γxiyx̃i +

∫
γTpaD(i)xpaD(i)p

(
xpaD(i) | ΣD

)
dxpaD(i), (2.10)

which is clearly linear in γxiy. By the definition given by Equation 2.5, γxiy corresponds to
the causal effect of Xi on Y . Notice that γxiy is just the regression coefficient associated
with Xi in a regression of Y on (Xi, XpaD(i)). When a causal effect is identified as a
regression coefficient in a particular regression, we say that it is identified by covariate
adjustment and (Xi, XpaD(i)) is referred to as a valid adjustment set [Perković et al., 2018].
The valid adjustment set may not be unique. As a consequence, a recent body of literature
has focused on the definition of the best valid adjustment set for a given pair of treatment
and outcome node [Henckel et al., 2022]. However, covariate adjustment is not the only
possible identification strategy. In the next section, we show an alternative strategy for the
case of joint causal effects.

22



2.2. Preliminaries

2.2.3 Identifying joint causal effects

We now consider the identification of the causal effect on an outcome variable Y of a joint
(simultaneous) intervention on more than one variable. We denote with I ⊂ {2, . . . , q}
the set of intervention targets. Similarly to to the single variable case, we may define such
causal effect using the language of the do-calculus. In particular

γI
y := (γIxhy

)Th∈I , (2.11)

where, for each h ∈ I

γIxhy
:=

∂

∂xh
E (Y | do{x̃j}j∈I) . (2.12)

In other words, the causal effect of Xh on Y in a joint intervention on {Xj}j∈I is the
induced variation in the expected value of Y resulting from an infinitesimal change in the
value x̃h at which we fix the variable Xj , keeping all the other target variables fixed. The
post joint-intervention distribution of X in the Gaussian case can be immediately written
as

p
(
x | do {x̃h}h∈I ,ΣD

)
=

∏
j /∈I

dN
(
xj | xTpaD(j)BpaD(j)×j ,Djj

)
1{xh = x̃h}h∈I . (2.13)

A hard intervention corresponds to fixing the value of the target variable to a constant
and, as a consequence, it destroys the dependence relation of the intervened node with its
parents. We thus consider the following modified SEM:

X = (BI)TX + ϵ, ϵ ∼ N (0,D) (2.14)

where BI corresponds to the matrix of regression coefficients that we would observe if we
were observing X after an intervention on XI , that is:

BI
uv =

0 if v ∈ I and v ̸= u

Buv otherwise.
(2.15)

The SEM of Equation 2.14 induces a modified Gaussian DAG-model over X,

X ∼ Nq (0,ΣDI ) , (2.16)

where ΣDI = (I−BI)−TD(I−BI)−1 and DI denotes the post-intervention DAG obtained
by removing all the edges pointing into nodes in I. The modified DAG-model (2.16) is
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related to the post-intervention distribution (2.13). In particular, as for any j /∈ I, paD(j) =
paDI (j) and BpaD(j)×j = BI

paDI (j)×j , we have

p (x | {x̃h}h∈I ,ΣDI ) =
∏
j /∈I

dN
(
xj | xTpaD(j)BpaD(j)×j ,Djj

)
1{xh = x̃h}h∈I . (2.17)

The conditional distribution of X given Xh = x̃h in the modified DAG-model thus corre-
sponds to the post-intervention distribution (2.13) of the original DAG-model. We can thus
consider (2.17) as the post-intervention distribution on which our causal effect of interest
is defined, that is

p
(
y | do {x̃h}h∈I ,ΣD

)
= p (y | {x̃h}h∈I ,ΣDI ) . (2.18)

Taking the expectation on both sides, we obtain

E
(
Y | do {x̃h}h∈I ,ΣD

)
= E (Y | {x̃h}h∈I ,ΣDI ) . (2.19)

By Gaussianity, the right-hand side of (2.19) is linear in {x̃h}h∈I and can be written as

E (Y | {Xh = x̃h}h∈I ,ΣDI ) = γ0 +
∑
h∈I

γIxhy
xh. (2.20)

The vector γI
y thus corresponds to the regression coefficients associated with the target

variables in the regression of Y on {Xh}h∈I in the modified DAG model. Such regression
coefficients can be computed directly from the modified covariance matrix:

γIxhy
=

(ΣDI )h1
(ΣDI )hh

for h ∈ I. (2.21)

It follows that the causal effect γIxhy
is a function of the covariance matrix ΣD which in

turn depends on the underlying DAG D. Therefore, inference on DAG D and its parameter
Σ will drive inference of causal effects under model uncertainty; see the next section for
details.

2.3 Bayesian inference on causal effects under model uncer-
tainty

In this section, we provide a Bayesian method to estimate γI
y when the data are generated

according to an unknown DAG-model. In Section 2.3.1, we formulate the problem in the
Bayesian setting. In Section 2.3.2 we detail the prior specification on the parameters of
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the DAG-model, illustrating the ensued marginal likelihood. Finally, in Section 2.3.3, we
illustrate our prior specification on the DAG space.

2.3.1 Model formulation

Let X be a (n, q) matrix containing i.i.d. measurements of q variables generated from an
unknown Gaussian DAG-model (2.2). Our goal is to derive a posterior distribution over the
causal effect γI

y on Y = X1 from a joint (simultaneous) intervention on I ⊂ {2, . . . , q}. As
shown in Section 2.11, in Gaussian DAG models γI

y is identified as a function of a subset of
the elements of the covariance matrix ΣD. Moreover, the covariance matrix can be written
in terms of the modified Cholesky decomposition of its inverse, the precision matrix ΩD:

ΩD = LD−1LT , (2.22)

where L = (I −B) and Lij ̸= 0 if (i, j) ∈ E or i = j. Consequently, our primary interest
is in deriving the posterior distribution over (L,D) and D

p ((L,D) ,D |X) ∝ p (X | (L,D) ,D) p ((L,D) | D) p(D), (2.23)

from which samples from the posterior distribution over γI
y can be then be obtained.

The likelihood component in (2.23) can be written as

p (X | (L,D),D) =
q∏

j=1

dNn

(
Xj | −XpaD(j)LpaD(j)×j ,DjjIn

)
, (2.24)

where XA denotes the sub-matrix of X with columns indexed by A ⊆ V . Assigning a prior
distribution on DAG D and its associated Cholesky parameters (L,D) requires particular
attention and it is the object of the next two sections.

2.3.2 Prior on DAG parameters

Conditionally on D, we assign a DAG-Wishart distribution [Ben-David et al., 2015] as a
prior on (L,D). Let Dq

+ be the set of (q, q) positive matrices with unit main diagonal and
LD the set of (q, q) matrices with unit main diagonal and whose ij-th entry is non-zero
only if (i, j) ∈ E. We call ΘD = Dq

+ ×LD the Cholesky space associated with the DAG D.
The DAG-Wishart distribution πΘD

α,U on ΘD, with rate hyperparameter U (a (q, q) s.p.d.
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matrix) and shape hyperparameter a(D) := (a1(D), . . . , aq(D)) has density

πΘD
a,U (L,D) =

1

ZD (a(D),U)
exp

{
−1

2
tr
((

LD−1L⊤
)
U
)} q∏

j=1

D
−

aj(D)

2
jj , (2.25)

for all (L,D) ∈ ΘD. ZD (a(D),U) denotes the normalizing constant, which is finite if
aj(D)− |paD(j)| > 2 for all j ∈ [q] and can be written as

ZD (a(D),U) =

q∏
j=1

Γ

(
cj(D)
2
− 1

)
2

aj
2
−1(
√
π)|paD(j)|

∣∣UpaD(j)

∣∣ cj(D)−3

2∣∣UfaD(j)

∣∣ cj(D)−2

2

, (2.26)

where cj(D) = aj(D)− |paD(j)| for all j ∈ [q].

The DAG-Wishart distribution presents many useful features, the first one being that
it induces local distributions on the non-null elements of (L,D) that are node-wise inde-
pendent and such that

Djj | D ∼ I-Ga

(
aj(D)− |paD(j)|

2
− 1,

1

2
Uj|paD(j)

)
, (2.27)

LpaD(j)×j |Djj ,D ∼ N|paD(j)|

(
−U−1

paD(j)UpaD(j)×j ,DjjU
−1
paD(j)

)
, (2.28)

where UpaD(j) := UpaD(j)×paD(j) and Uj|paD(j) := Ujj −Uj×paD(j)
U−1

paD(j)UpaD(j)×j .

In addition, the DAG-Wishart distribution is conjugate to the Normal likelihood, mean-
ing that given a matrix X containing n i.i.d. observations from a Gaussian distribution
Markov w.r.t. a DAG D, (L,D)|D ∼ πΘD

a,U implies (L,D)|X,D ∼ πΘD
ã,Ũ

, where ã = a+ n

and Ũ = U+XTX. We thus also have a closed-form expression for the marginal likelihood
of a DAG-model:

p(X | D) = (2π)−(nq)/2ZD

(
ã(D), Ũ

)
/ZD (a(D),U) . (2.29)

Consequently, it is possible to sample from the posterior distribution over the DAG space
using a simple Metropolis-Hastings scheme. Moreover, the marginal likelihood (2.29) is
decomposable, meaning that it is a product of q terms corresponding to each parent-child
relationship in the DAG. Substituting Equation (2.26) into (2.29), it is immediate to show
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that

p(X |D) =

q∏
j=1

(2π)−n/2
Γ
(
c̃j(D)

2 − 1
)

Γ
(
cj(D)

2 − 1
) ∣∣UpaD(j)

∣∣1/2∣∣∣ŨpaD(j)

∣∣∣1/2
(
1
2Uj|paD(j)

) cj(D)

2
−1

(
1
2Ũj|paD(j)

) c̃j(D)

2
−1

, (2.30)

where c̃j = cj + n and, for each j ∈ [q], each term in the factorization (2.30) corresponds
to the conditional marginal likelihood p(Xj |XpaD(j),D). The decomposability property
dramatically reduces the computational cost of MCMC schemes that use local moves to
explore the DAG space, as the one that we detail in Section 2.4. In addition, sampling from
the posterior over DAG-parameters p ((L,D)|X,D) only requires direct sampling.

Finally, the DAG-Wishart distribution satisfies the assumptions of the DAG-parameter
prior construction procedure of Geiger and Heckerman [2002]. It is thus possible to construct
a compatible version of it that assigns equal marginal likelihood to Markov equivalent DAGs.
The compatible DAG-Wishart distribution πc,ΘD

ac(D),U , firstly derived in Peluso and Consonni
[2020], differs from its non-compatible counterpart in the choice of the rate hyperparameter,
as for each node j ∈ [q]:

ac
j(D) = a− q + 2|paD(j)|+ 3 (2.31)

As a consequence, the compatible DAG-Wishart distribution has only one free rate- hyper-
parameter a, which must satisfy a > q − 1 to guarantee that the prior is proper.

2.3.3 Prior on DAG D

To complete our Bayesian model specification, we finally assign a prior to each DAG D ∈ Sq,
the set of all DAGs on q nodes. For a given DAG D = (V,E), let SD be the adjacency matrix
of its skeleton (the underlying undirected graph obtained after removing the orientation of
all of its edges), such that for each (u, v)-element in SD, SD

u,v = 1 if and only if (u, v) ∈ E or
(v, u) ∈ E, 0 otherwise. For a given probability of edge inclusion ω ∈ (0, 1) we then assume
SD
u,v

iid∼ Ber(ω) for each u > v. Therefore,

p
(
SD) = ω|SD|(1− ω)

q(q−1)
2

−|SD|. (2.32)

where
∣∣SD∣∣ is the number of edges in D (equivalently in its skeleton) and q(q − 1)/2

corresponds to the maximum number of edges in a DAG on q nodes. Finally, we set

p(D) ∝ p
(
SD) . (2.33)
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The resulting prior thus depends on the DAG skeleton only and assigns equal prior weights
to DAGs having the same number of edges. As Markov equivalent DAGs have the same
skeleta, when combined with a compatible DAG-Wishart prior on the parameters, the prior
(2.33) implies equal posterior probability for Markov equivalent DAGs. The hyperparameter
ω can be tuned to reflect some prior knowledge on the sparsity of the unknown DAG when
this information is available.

2.4 MCMC scheme and posterior inference

In this section, we consider the problem of obtaining and using samples from the posterior
distribution (2.23). In Section 2.4.1, we detail the MCMC sampling scheme that we adopt.
In Section 2.4.2, we describe how the MCMC output can be used to provide estimates of
interest in our setting.

2.4.1 Sampling scheme

Our MCMC scheme is designed as a Partial Analytic Structure (PAS) algorithm [Godsill,
2012]. At each iteration, it proposes a new DAG D∗ by sampling it from a proposal distri-
bution q (D∗ | D) and then accepts it with probability defined by the Metropolis-Hastings
acceptance ratio

αD∗ = min

{
1,

p(X | D∗)p(D∗)q(D | D∗)

p(X | D)p(D)q(D∗ | D)

}
. (2.34)

After the first two steps, by the conjugacy of the compatible DAG-Wishart prior specified in
our model, it is possible to directly sample from the posterior distribution p ((L,D) | D,X).
Samples from the posterior distribution of γI

y can then be obtained by constructing LI and
ΣI as in Equations 2.15 and 2.16 and applying (2.21). A high-level description of the
sampler is presented in Algorithm 1

We now detail the construction of the proposal distribution q(D∗|D) and the acceptance
ratio αD∗ in our model specification.

As for the proposal distribution, we consider three types of operators: Insert(u, v),
Delete(u, v), and Reverse(u, v), corresponding respectively to the insertion, deletion, and
reversal of the edge (u, v); see Figure 2.2 for an example.

For any D ∈ Sq, we can construct the set of valid operators OD, that is operators
whose resulting graph is a DAG. Given a current DAG D we then propose D∗ by uniformly
sampling a DAG in OD. The construction of OD and the DAG proposal are summarized
in Algorithm 4. Also notice that because there is a one-to-one correspondence between
each operator and resulting DAG D∗, the probability of transition from D to D∗ (a direct
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Algorithm 1: PAS algorithm for posterior inference.

Input: Data matrix X, number of MCMC iterations S, initial DAG D0,
compatible DAG-Wishart hyperparameters (a,U), sparsity
hyperparameter ω, intervention targets I

Output: S samples from the posterior distribution p(D, (L,D),γI
y |X)

1 for s in 1:S do
2 Set D(s) = D(s−1);
3 Sample D∗ from q

(
D∗ | D(s−1)

)
;

4 Set D(s) = D∗ with probability αD∗ ;
5 Sample (L,D)(s) from the posterior distribution πc,ΘD

ãc(D),Ũ
;

6 Construct (LI)
(s) as in (2.15) and recover (ΣI)

(s) as in (2.16);
7 Obtain (γI

y )
(s) as in (2.21)

8 end
9 return {D(s), (L,D)(s), (γI

y )
(s)}Ss=1;

D D′
1 D′

2 D′
3

1 3

2 4

1

2

3

4

1

2

3

4

1 3

2 4

Figure 2.2: A DAG D and three modified graphs of the operators Insert(4, 1), Delete(1, 3),
Reverse(1, 3) respectively. Operator Insert(4, 1) is not valid since D′

1 is not acyclic.
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successor of D) is q(D∗ | D) = 1/|OD| and the proposal ratio in (2.34) is

q(D |D∗)

q(D∗ | D)
=
|OD|
|OD∗ |

. (2.35)

Algorithm 2: PAS algorithm: construction of OD

Input: A DAG D = (V,E)
Output: A set of valid operators OD

1 Set OD = ∅;
2 Construct EI = {(u, v) : (u, v) /∈ E ∧ (v, u) /∈ E};
3 Construct ED = {(u, v) : (u, v) ∈ E};
4 for e ∈ ED do
5 Add Delete(e) to OD;
6 if Reverse(e) is valid then add it to OD;
7 end
8 for e ∈ EI do
9 if Insert(e) is valid then add it to OD;

10 end
11 return OD;

Because of the structure of the proposal distribution, at each step of our MCMC algo-
rithm we need to compare two DAGs D and D∗ which differ by one edge only. Notice that
the operator Reverse(u, v) can be also brought back to the same case since is equivalent to
the consecutive application of the operators Delete(u, v) and Insert(v, u). We thus con-
sider two DAGs D and D∗ differing by one edge, so that (u, v) ∈ D and (u, v) /∈ D∗, and we
denote by (LD,DD) and (LD∗ ,DD∗) the corresponding Cholesky parameters. These differ
only for their v-th components

(
(LD)paD(v)×v, (DD)vv

)
and

(
(LD∗)paD∗ (v)×v, (DD∗)vv

)
. By

the decomposability property of the marginal likelihood in our model specification (Equa-
tion 2.30), also the marginal likelihoods of the two DAGs will differ only for their v-th
component and their ratio in (2.34) becomes

p(X | D∗)

p(X | D)
=

p(Xv |XpaD∗ (v),D∗)

p(Xv |XpaD(v),D)
. (2.36)

As a consequence, it only requires the computation of the statistics relative to the v-th
component of the two DAGs, resulting in a lower computational cost. From our DAG-prior
specification in Equations (2.32) and (2.33) it also follows that

p(D∗)

p(D)
=

ω

1− ω
, (2.37)
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which is reversed if D∗ differs from D for an edge deletion. Sampling from the compatible
DAG-Wishart distribution πc,ΘD

ãc(D),Ũ
can be achieved by resorting to the component-wise

representation of (2.28). The sample from the posterior distribution of the joint causal
effect of interest then follows by applying (2.21) to each sampled value.

2.4.2 Posterior inference

The output of Algorithm 1 consists of a collection of DAGs and Cholesky parameters{
D(s), (L,D)(s)

}S

s=1
sampled from their posterior distribution and a collection of joint

causal effects
{
γI
y

}S

s=1
for a set of input intervention targets I ⊂ [q]. From this output, the

posterior probability of a DAG D can be approximated as

p̂(D |X) ≈ 1

S

S∑
s=1

1

{
D(s) = D

}
, (2.38)

which corresponds to the DAG frequency of visits in the chain. Alternatively, approxima-
tions of posterior model probabilities can be obtained from re-normalized marginal likeli-
hoods; see also García-Donato and Martínez-Beneito [2013] for a discussion. From (2.38),
a MAP DAG estimate can be immediately recovered as

D̂MAP = argmax
D

p̂(D |X). (2.39)

Alternatively, for each pair of nodes (u, v) we can compute the (estimated) posterior prob-
ability of edge inclusion

p̂(u→ v |X) =
1

S

S∑
s=1

1

{
u→ v ∈ D(s)

}
, (2.40)

from which a Median Probability (DAG) Model D̂MPM = (V, ÊMPM) can immediately be
recovered, where

ÊMPM = {(u, v) : p̂(u→ v |X) ≥ 0.5}. (2.41)

Finally an overall summary of the posterior distribution of each causal effect coefficient
γIxhy

, h ∈ I can be computed as

γ̂I
xhy

=
1

S

S∑
s=1

(
γIxhy

)(s)
, (2.42)
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which corresponds to a Bayesian Model Averaging (BMA) estimate wherein posterior model
probabilities are approximated through their MCMC frequencies of visits. We underline
that (2.42) naturally incorporates the uncertainty around both the underlying causal DAG
model and the allied DAG-dependent parameters.

2.5 Simulations and real data analysis

In this section, we evaluate the performance of our methodology on both simulated and real
data. In Section 2.5.1, we evaluate our method on the task of causal discovery by comparing
it with the PC algorithm. In Section 2.5.2, we instead focus on the task of causal effect
estimation and provide a comparison with the IDA method. Finally, in Section 2.5.3 we
illustrate a real data application of our methodology.

2.5.1 DAG selection

We construct different simulation scenarios by varying the sample size n ∈ {50, 100, 200, 500}
and the number of nodes q ∈ {10, 20}. Under each simulation scenario by n×q we generate
N = 30 datasets, each obtained as follows. We first randomly sample a sparse DAG D by
fixing a probability of edge inclusion equal to 0.2. We then generate the corresponding (true)
Cholesky parameters (L,D) by drawing the non-zero elements of L from [−1,−0.1]∪[0.1, 1]
while fixing D = Iq. We finally construct the covariance matrix ΣD = L−TDL−1 and gen-
erate n multivariate i.i.d. observations, representing an (n, q) dataset X, from the Gaussian
DAG-model Nq(0,ΣD). For each simulated dataset we run S = 25000 iterations of Algo-
rithm 1 to approximate the posterior distribution over DAGs and Cholesky parameters.

To assess the accuracy of our method in recovering the underlying causal structure
we compare DAG point estimates that can be retrieved from our MCMC output with
the corresponding true DAGs. Similarly, we evaluate the performance of the frequentist
PC algorithm, the structural learning method underlying the IDA approach of Maathuis
et al. [2009]. Specifically, with regard to our method, we consider both D̂MPM, the Median
Probability (DAG) Model (MPM), and D̂MAP, the Maximum A Posteriori (MAP) DAG
estimates as defined in the previous section. We implement the PC algorithm at significance
level α ∈ {0.01, 0.05, 0.10}. In addition, because PC outputs a CPDAG, starting from each
of our DAG estimates (MPM and MAP) we construct the representative CPDAG, that is
the CPDAG representing the equivalence class of the estimated DAG. We compare each
CPDAG estimate with the CPDAG representing the equivalence class of the true DAG in
terms of Structural Hamming Distance (SHD). SHD corresponds to the number of edge
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insertions, deletions or flips needed to transform the estimated graph into the true graph.
Lower values of SHD correspond to better performances. Our results are summarized in the
box-plots of Figure 2.3 which report the distribution of the two indexes over the N = 30

simulations. It appears that our MPM and MAP estimates are competitive with PC for
moderate sample sizes and perform slightly better than PC as n increases in terms of SHD.

2.5.2 Causal effect estimation

We now evaluate the performance of our method in causal effect estimation. In particular,
for each of the scenarios considered in the previous section, we vary the number of intervened
nodes (size of the target) s ∈ {2, 4} and we randomly choose a target I consisting of s nodes
randomly sampled from {2, . . . , q}. We then recover the post-intervention parameters LI

using (2.15) and compute the induced ΣDI ; the true set of causal effects γI
y follows from

(2.11). We then compute the BMA estimate (2.42) for each intervened node h ∈ I. Each
estimated causal effect γ̂Ixhy

, h ∈ I, is compared with the corresponding true causal effect
γIxhy

by computing the absolute-value distance

dBMA
h =

∣∣γ̂Ixhy
− γIxhy

∣∣ . (2.43)

We include in our analysis the joint-IDA method of Nandy et al. [2017]. In particular,
for the graph selection step we implement PC algorithm at significance level α = 0.01

which has also been shown to perform better in sparse settings Kalish and Buhlmann
[2007]. Joint-IDA recovers for each intervened node h ∈ I the set of distinct causal effects
compatible with the input CPDAG. This is then summarized through the arithmetic mean
which provides an estimate of θlh,1, h ∈ I. The joint-IDA estimate is compared with the
true causal effect by computing the absolute-value distance dIDA

h following (2.43). Results
are summarized in the box-plots of Figure 2.4 which reports the distribution of dBMA

h and
dIDA
h across the 30 simulated datasets and intervened nodes, for increasing values of the

sample size n, different number of variables q and different size of the target s ∈ {2, 4}.
Clearly, lower values of the distance correspond to better performances.

It appears that both methods improve their performances as the sample size increases.
However, our BMA-based method outperforms joint-IDA under all scenarios and in partic-
ular in the setting s = 4. One possible reason is that, differently from our Bayesian method,
joint-IDA relies on a given (estimated) equivalence class of DAGs. Indeed, causal inference
results strongly depend on the input CPDAG estimate and therefore on the accuracy in the
graph selection. By contrast, our MCMC-based method relies on a posterior distribution
over a collection of DAGs some of which, although lying outside the true-DAG equivalence
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Figure 2.3: Simulation study. Distribution over N = 30 simulated datasets of the Struc-
tural Hamming Distance (SHD) between estimated and true CPDAGs. Methods under com-
parison are: our Bayesian method with output the Median Probability Model (MPM) and
Maximum A Posteriori (MAP) graph estimates and the PC algorithm implemented at sig-
nificance level α ∈ {0.01, 0.05, 0.10}, respectively PC 0.01, PC 0.05, PC 0.10.
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Figure 2.4: Simulation study. Distribution of the absolute-value distance d between estimated
and true causal effects for size of the target s ∈ {2, 4}, number of variables q ∈ {10, 20} and sample
size n ∈ {50, 100, 200, 500}. Methods under comparison are: our BMA-based approach (BMA) and
the Joint-IDA method (IDA).
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class, might be "structurally similar" to the true causal DAG and still result in a causal
effect which is close to the true one.

2.5.3 Real data analysis

In this section we apply our methodology and joint-IDA to the "Wine quality" dataset of
Cortez et al. [2009]; the dataset is publicly available at https:// archive.ics.uci.edu/.
In our analysis we include observations of seven continuous variables measuring physic-
ochemical properties of a Portoguese wine called Vinho verde, and a response variable
representing a sensory score of the wine quality (ranging in 0 − 10 ) given by n = 1593

independent assessors.

This dataset has been often used for prediction tasks, i.e. to evaluate the quality of wine
on the basis of its physicochemical properties only. However, one might be also interested
in causal questions, such as whether intervening on one (or more) physicochemical property
may change the wine sensory score. As a consequence, this can lead to identify the target
of intervention which produces the largest increase in the score.

We run Algorithm 1 to approximate the posterior distribution of DAGs, DAG-parameters
and causal effects for any variable in the system and the joint-IDA method based on a
CPDAG estimated obtained from PC algorithm. Because one can reasonably assume that
the quality score does not affect any of the physicochemical properties (but rather the
opposite is argued), we restrict the space of DAGs by imposing that node 1 (the sensory
score) cannot have descendant nodes. Such a constraint introduces prior information on
the causal structure which is suggested by the problem. In our MCMC algorithm, this is
achieved by limiting the set of valid operators of type Insert involving node 1 to those of
the form u → 1. In the PC algorithm instead, this background information is included
with the following procedure: we first estimate the skeleton between variables X1, . . . , Xq

as in the standard first step of PC. Next, we orient undirected edges between variables Y

and covariates X2, . . . , Xq as Xj → Y , while apply Meek’s orientation rules to orient the
sub-graph of X2, . . . , Xq; see also Kalish and Buhlmann [2007] for details.

We first assess the convergence of the MCMC algorithm by running two independent
chains of length S = 50000. Figure 2.5 summarizes the estimated posterior probabilities
of edge inclusion (Equation (2.40)) computed from each MCMC chain. The two resulting
heatmaps suggest a highly satisfactory agreement between the two chains.

Starting from our MCMC output we consider both the Maximum a Posteriori (MAP)
and the Median Probability Model (MPM) as DAG estimates. However, we stress that our
final BMA estimate does not rely on a single DAG but rather on a full posterior of DAGs
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Figure 2.5: Real data analysis. Heat maps with estimated posterior probabilities of edge
inclusion obtained from two independent MCMC chains

and, accordingly, a single DAG estimate is only constructed as an overall graph summary.
The two graphs are reported in Figure 2.6, together with the DAG estimate obtained from
the modified version of PC (implemented at significance level α = 0.01 ). There are only
a few differences between the three estimates, the most notable being the presence of an
additional edge from total.SO2 to quality in the PC estimate.

We now present our results on causal effect estimation. Specifically, we first consider
single-node interventions and compute the BMA and joint-IDA estimates of the causal effect
on the response for each node (physicochemical property). Moreover, for each pair of nodes,
{h, k} we obtain the corresponding BMA and joint-IDA causal effect estimates under a joint
intervention on {Xh, Xk}. Results are summarized in the left-side heatmaps of Figure 2.7
Each (h, k)-element (h ̸= k) represents the BMA (upper panel) and joint-IDA (lower panel)
causal effect estimate of Xk on Y = X1 in a joint intervention on {Xh, Xk}; main diagonal
elements correspond to the causal effects as obtained from single-node interventions. It
appears that an increase in variables alcohol and sulphates may result in an increase in
wine quality. By converse, a similar effect can be achieved by reducing the level of pH and
total.SO2 since the two covariates exhibit negative causal effects.

The right-side heatmaps of Fig. 2.7 reports for each pair (h, k) the sum of the corre-
sponding two (absolute value) BMA (upper panel) and joint-IDA (lower panel) causal effect
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Figure 2.6: Real data analysis. Comparison between estimated graphs. From left to right:
maximum a posteriori, median probability and modified-PC DAG estimates

estimates obtained under the joint intervention on {Xh, Xk}, that is
∣∣∣θ̂{h,k}h,1

∣∣∣+∣∣∣θ̂{h,k}k,1

∣∣∣. Each
of these terms provides an overall measure of the "strength" of the causal effect that a joint
intervention on the two variables might produce on the response. As a consequence, this
collection of coefficients allows to identify which pair of variables is associated to the largest
potential increase in quality sensory score. In particular, it appears that a joint interven-
tion on variables alcohol and sulphates has the largest effect on the response variable. This
result is invariant with respect to the method used, as it can be observed by comparing the
upper and lower heatmaps of Figure 2.7. Substantial differences between the two methods
appear, instead, for variable total.SO2, which under joint-IDA is associated with a (nega-
tive) causal effect on quality. In addition, joint-IDA causal effect estimates are somewhat
higher than those obtained under our BMA method. We remark that the effect of joint
interventions on more than two variables can be evaluated in a similar way. However, for
simplicity of exposition, we have limited our analysis to the case of pair-node interventions.

2.6 Discussion

In this chapter, we present a Bayesian methodology for causal structure learning and causal
effect estimation. We assume that multivariate observational data have been generated by
an unknown Gaussian DAG model. Of special interest is the causal effect of a specific
variable on a response arising from a joint intervention on several variables in the system.
The latter depends on the underlying causal structure which therefore needs to be estimated.
Accordingly, our method combines DAG structural learning and causal effect estimation,
leading to a posterior distribution over the space of DAGs, DAG parameters and causal
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Figure 2.7: Real data analysis. Left panel: BMA (top) and joint-IDA (bottom) estimates
of the causal effect of Xk on Y in a joint intervention on {Xh, Xk}. Right panel: sum of
absolute-value BMA (top) and joint-IDA (bottom) estimates obtained from joint interven-
tions on {Xh, Xk}.
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effects. Simulation results show that our method outperforms the frequentist benchmark
joint-IDA and leads to improved estimates of joint causal effects, especially in scenarios
characterized by a moderate sample size. On the other hand, our methodology requires
an approximated posterior distribution over the space of DAGs and parameters, which
might become computationally expensive as the number of variables increases. Differently,
joint-IDA has been specifically developed for high dimensional settings and therefore can
efficiently perform even when thousands of variables are involved. However, its output relies
on a single estimated equivalence class of DAGs whose identification may affect the causal
estimation results.

2.6.1 Future developments

Joint interventions lead to causal effects that can significantly deviate from their single-node
counterparts. Accordingly, a desired effect on the response can be obtained through a unique
intervention involving several variables simultaneously, rather than a sequence of single-
node interventions. Since the number of possible joint interventions grows exponentially in
the number of variables, the investigation of an optimization strategy which identifies the
optimal intervention targets producing the desired level of response could be of interest.

In addition, in this chapter we considered causal effect estimation from joint hard inter-
ventions. A more general framework, named soft interventions, assumes that parent-child
dependencies are "modified" but yet preserved after intervention. In this setting, Correa
and Bareinboim [2020] introduce a set of rules (named σ-calculus) for the identifiability of
causal effects arising from soft interventions. They then show how these rules can be ap-
plied to identify the causal effect of interventions from a combination of observational and
experimental data. A Bayesian framework for the estimation of causal effect arising from
soft interventions is, to our knowledge, still lacking and is currently under investigation by
the authors.

Finally, a DAG cannot be uniquely identified from observational data and accordingly
a possibly large collection of causal effects is estimated. Randomized intervention experi-
ments producing interventional data can be used to improve the identifiability of the data-
generating model which consequently reduces the uncertainty around the causal effect es-
timate; see also Castelletti et al. [2018]. In principle, one could then perform sequential
simultaneous intervention leading to the identification of the true causal effect. This issue
can be tackled from an optimal design of experiment perspective implementing an objec-
tive function whose optimization reduces the uncertainty related to each BMA causal effect
estimate of interest.
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Chapter 3

Bayesian causal discovery from unknown general
interventions

3.1 Introduction

Directed Acyclic Graphs (DAGs) are widely used to represent causal relationships between
variables. In this setting, learning the DAG structure from data is referred to as causal
discovery. If only observational data are available, a DAG is in general identifiable only up
to its Markov equivalence class, which includes all DAGs that imply the same conditional
independencies [Verma and Pearl, 1990]. However, if in addition one collects interventional
(experimental) data, then it is possible to identify smaller sub-classes of DAGs, known as
Interventional-Markov Equivalence Classes (I-MECs) [Hauser and Bühlmann, 2012].

Current methods for causal discovery leveraging experimental data typically assume
either hard or soft interventions. In essence, a hard intervention consists of fixing the values
of certain target variables and graphically corresponds to removing all those edges pointing
towards the intervened nodes. On the other hand, a soft intervention, or mechanism change
[Tian and Pearl, 2001], modifies the relationship between each intervened node and its
parents without completely destroying it. However, these two types of interventions do
not encompass the full spectrum of manipulations that an experimenter can in practice
implement or achieve.

Consider the example in Figure 3.1. DAG a) represents a causal structure involving
four variables: weekly traffic level (TRt), weekly average air quality level (AQt), weekly
initial air quality level (AQ0), and weekly count of individuals reporting respiratory health
issues (RHt) in a specific urban area. In this context, a hard intervention could consist
in prohibiting car access to the area, therefore setting TRt = 0 for the subsequent weeks.
A different policy might impose specific restrictions to vehicles entering the area, such as
the adoption of particulate filters. This action would simultaneously reduce traffic levels
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Figure 3.1: Three DAGs resulting from different types of interventions: a) a hard inter-
vention on TRt; b) simultaneous hard (on TRt) and soft (on AQt) interventions; c) a
general intervention on TRt. Target nodes are depicted in blue, while structural modifica-
tions induced by the interventions are colored in red.

and alter the relationship between traffic and air quality, thus resulting in both a hard
intervention on TRt and a soft intervention on AQt. Another possible policy could regulate
the number of car accesses on the basis of the initial air quality AQ0. The resulting post-
intervention graph is illustrated in panel c) of Figure 3.1, where AQ0 is now a parent of
TRt. This last type of intervention is commonly referred to in the literature as dynamic plan
[Pearl and Robins, 1995], although sometimes still labeled as soft intervention [Correa and
Bareinboim, 2020]. Throughout the chapter, we use the term general for those interventions
that modify the parent sets of the target nodes, to emphasize their ability to represent both
hard and soft interventions as special cases.

Including general interventions in a causal discovery framework becomes essential in
cases where the effect of an intervention is unknown. For instance, in neuroimaging, and
specifically in the field of effective connectivity analysis, the objective is to understand how
the brain-connectivity network changes in response to external stimuli [Friston, 2011]. In
biology, discerning key differences between gene regulatory networks may provide insights
into mechanisms of initiation and progression of specific diseases across different groups of
patients [Shojaie, 2021].

In this chapter, we develop a Bayesian methodology for causal discovery from unknown
general interventions. We set this problem in a Bayesian model selection framework, under
which priors on DAG models and associated parameters are combined with a parametric
likelihood to obtain a posterior distribution on DAGs and unknown general interventions.
This task presents many challenges, primarily the development of compatible parameter
priors [Roverato and Consonni, 2003] leading to closed-form DAG marginal likelihoods
and guaranteeing score equivalence of I-Markov equivalent DAGs. We thus provide defini-
tions and graphical characterizations of equivalence classes of DAGs and unknown general
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interventions. We then develop a Bayesian framework for data collected under different
experimental settings, which applies to parametric models satisfying a set of general as-
sumptions; under the same assumptions, we develop an effective procedure for parameter-
prior elicitation which guarantees desirable properties in terms of marginal likelihoods, and
in particular score equivalence. Finally, we devise a Markov Chain Monte Carlo (MCMC)
scheme to sample from the target distribution, thus allowing for posterior inference of DAG
structures and unknown general interventions.

3.1.1 Related work

The first historical work on causal discovery from mixtures of observational and experimen-
tal data dates back to Cooper and Yoo [1999], who proposed a Bayesian methodology for
data arising from hard interventions with known targets. Issues related to DAG identifiabil-
ity in this setting were first investigated by Hauser and Bühlmann [2012], who introduced
the notion of I-Markov equivalence, provided related graphical characterizations, and devel-
oped the Greedy Interventional Equivalence Search (GIES) algorithm for structure learning.
Consistency of the underlying BIC score were also established by Hauser and Bühlmann
[2015]. An objective Bayesian methodology working on the space of I-Markov equivalence
classes in the Gaussian setting was then developed by Castelletti and Consonni [2019]. In
the same setting, Wang et al. [2017] developed the Interventional Greedy Sparsest Permu-
tation (IGSP) method, later extended to the case of soft interventions by Yang et al. [2018],
who also generalized the identifiability results of Hauser and Bühlmann [2012]. An early
methodology dealing with soft interventions was already proposed by Tian and Pearl [2001]
who also provided graphical characterizations for Markov equivalence.

The first approach for causal discovery under uncertain intervention targets is rep-
resented by Eaton and Murphy [2007]. The authors adopted a Bayesian framework for
categorical data and allowed the interventions to be soft and unknown, though without ad-
dressing identifiability issues. A more recent Bayesian methodology for Gaussian data and
accounting for I-Markov equivalence, assuming hard interventions, was instead introduced
by Castelletti and Peluso [2023a]. Squires et al. [2020] proposed an extension of IGSP that
allows for uncertainty on the targets of intervention and proved its consistency. More re-
cently, Gamella et al. [2022] focused on the case of experimental Gaussian data generated
from unknown noise-interventions, providing identifiability results for both DAGs and inter-
vention targets. Similar results, in a non-parametric setting, were provided by Jaber et al.
[2020], assuming soft interventions and allowing for the presence of hidden confounders.
Finally, Mooij et al. [2020] developed the Joint Causal Inference framework, which encodes
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unknown interventions through additional indicator variables in a pooled dataset; they also
established under which assumptions constraint-based methods conceived for observational
settings can be applied to the pooled dataset to learn the intervention targets.

Learning the effects of unknown general interventions is equivalent to learning structural
differences between post-intervention DAGs. Under this perspective, our framework relates
to other bodies of literature such as inference of multiple DAGs [Castelletti et al., 2020] as
well as to methodologies aiming at directly estimating the structural differences between
causal DAGs [Wang et al., 2018].

3.1.2 Outline

In Section 3.2 we introduce the basic notation and background on Structural Causal Models
(SCMs) and present our results relative to identifiability of DAGs and general interventions
from mixtures of observational and interventional data. In Section 3.3 we develop a Bayesian
methodology for causal discovery in this newly defined context, leveraging the results of
Section 3.2 in order to provide guidance on model construction and prior elicitation. In
Section 3.4, we focus on the construction of a Markov Chain Monte Carlo (MCMC) algo-
rithm for sampling from the posterior distribution over DAGs and interventions. Finally,
in Section 3.5, we apply our developed methodology to the Gaussian case and empirically
assess the performance of our implementations using both simulated and real-world data.
Section 3.6 summarizes our conclusions. All proofs of our main results are provided in the
appendix to this chapter.

3.2 Identifiability under general interventions

In this section we discuss identifiability of DAGs and unknown general interventions and
provide graphical characterizations of I-Markov equivalence. In Section 3.2.1 we provide
some background material on DAGs and Structural Causal Models (SCMs) and we formalize
the notion of general intervention. In Section 3.2.2 we define an I-Markov property for this
new setting and present our main results on the identifiability of DAGs when interventions
are known. Section 3.2.3 extends the results to the case of unknown interventions.

3.2.1 Preliminaries

A Directed Acyclic Graph (DAG) D = (V,E) with vertex set V = [q] := {1, . . . , q}, and
edge set E ⊂ V × V is a directed graph with no cycles, i.e. no directed paths starting and
ending at the same node. A DAG D can be represented by a (q, q) adjacency matrix A,
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3.2. Identifiability under general interventions

such that Aij = 1 if (i, j) ∈ E and 0 otherwise. We let paD(j) be the set of parents of node
j, that is paD(j) = {i ⊂ V |Aij = 1}, and faD(j) = j ∪ paD(j) be the family of j in D.
Moreover, an edge i→ j is covered in D if i∪ paD(i) = paD(j). We refer to the undirected
graph obtained by removing edge directions from a DAG as the skeleton of the DAG. Any
induced subgraph of the form i→ j ← k, with no edges between i and k, is instead called
a v-structure. Finally, we say that D is complete if it has no missing edges.

Under the framework of SCMs, DAGs can be given a causal interpretation by considering
each node j as an observable (endogenous) variable Xj and each parent-child relation as a
stable and autonomous mechanism of the form

Xj = fj(XpaD(j), εj), j ∈ [q], (3.1)

where XpaD(j) = {Xi, i ∈ paD(j)}, fj is a deterministic function linking Xj to XpaD(j) and
to an unobserved (exogenous) random variable εj [Pearl, 2000]. If ε1, . . . , εq are mutually
independent, then the set of structural equations in (3.1) defines a Markovian SCM, and
the induced joint density p(·) on (X1, . . . , Xq) obeys the Markov property of D, meaning
that it factorizes as

p(x) =

q∏
j=1

p(xj |xpaD(j)), (3.2)

where x denotes a realization of the random vector X. The conditional independencies
implied by (3.2) can be read-off from the DAG using the notion of d-separation [Pearl,
2000]. Let nowM(D) be the set of all positive densities p(x) obeying the Markov property
of D. Two DAGs, D1 and D2, are called Markov equivalent ifM(D1) =M(D2). DAGs can
be partitioned into Markov equivalence classes, each collecting all DAGs that are Markov
equivalent. Without specific parametric assumptions, and even under common families of
distributions, DAGs can be identified only up to Markov equivalence classes [Pearl, 1988].
The following results provide graphical characterizations of Markov equivalence.

Theorem 1 (Verma and Pearl [1990]). Two DAGs D1 and D2 are Markov equivalent if
and only if they have the same skeleta and the same set of v-structures.

Theorem 2 (Chickering [1995]). Two DAGs D1 and D2 are Markov equivalent if and only
if there exists a sequence of edge reversals modifying D1 and such that:

1. Each edge reversed is covered;

2. After each reversal, D1,D2 belong to the same Markov equivalence class;

3. After all reversals D1 = D2.
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Theorem 1 provides a criterion for assessing whether two DAGs belong to the same
Markov equivalence class. Theorem 2, instead, is a technical result of great importance to
prove score equivalence in score-based causal discovery methods.

The mechanisms in Equation (3.1) are stable and autonomous in the sense that it is
possible to conceive an external intervention modifying one of the mechanisms (and the
corresponding local distribution) without affecting the others. One can envisage different
types of external interventions [Correa and Bareinboim, 2020]. For any set of target variables
T ⊂ [q] and multi-set of induced parent sets P = {P1, . . . , P|T |}, with Pj ⊂ [q], we consider
interventions producing a mechanism change of the form

Xj = f̃j(XPj , εj), ∀ j ∈ T. (3.3)

We refer to this type of intervention as general intervention and, following Correa and
Bareinboim [2020], we denote the corresponding operator as σT,P . Such intervention induces
a new SCM, thus implying a new graphical object.

Definition 3 (Post-intervention graph). Let D be a DAG and (T, P ) be a pair of interven-
tion targets and induced parent sets defining a general intervention. The post-intervention
graph of D is the graph DT,P obtained by replacing for each j ∈ T the new parents Pj

induced by the intervention.

See also Figure 3.2 for an example of DAG and implied intervention graph. Notice that
a post-intervention graph need not be a DAG in general. Throughout this chapter we make
the following assumption, that we name validity.

Definition 4 (Validity). Let D be a DAG and (T, P ) be a pair of intervention targets and
induced parent sets defining a general intervention. The general intervention is valid if the
post-intervention graph DT,P is a DAG.

As a general intervention produces a new Markovian SCM, it also induces a post-
intervention distribution through the Markov property of DT,P which can be written as

p(x |σT,P ) =
q∏

j=1

p̃(xj |xpaDT,P
(j))

=
∏
j /∈T

p(xj |xpaD(j))
∏
j∈T

p̃(xj |xpaDT,P
(j)), (3.4)

where the p̃(xj | ·)’s denote the new local distributions induced by the intervention. For any
j /∈ T , we then have p̃(xj |xpaDT,P

(j)) = p(xj |xpaD(j)), so that the local densities of non-
intervened nodes are invariant (stable) across pre- and post-intervention distributions. In
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3.2. Identifiability under general interventions

the following section we show how these invariances can be leveraged to identify DAGs up to
a subset of the original Markov equivalence class (named I-Markov equivalence class) and,
in the same spirit of Theorem 1 and Theorem 2, we provide a graphical characterization of
DAGs belonging to the same I-Markov equivalence class.

3.2.2 DAG identifiability from known general interventions

We consider collections of K experimental settings, or environments, each defined by a gen-
eral intervention with targets and induced parent sets T (k), P (k). Let also T = {T (k)}Kk=1,
P = {P (k)}Kk=1 and I = (T ,P). Each collection of experimental settings entails a family
of post-intervention distributions

{
p(· |σk)

}K

k=1
, where to simplify the notation we write

σk ≡ σT (k),P (k) for k ∈ [K]. We assume throughout the chapter that T (1) = P (1) = ∅,
i.e. k = 1 corresponds to the observational setting where no intervention has been per-
formed, and p(· |σ1) = p(·) reduces to the pre-intervention distribution (3.2). Furthermore,
we always assume that I is a collection of targets and induced parent sets defining a valid
general intervention.

More formally, we can define the possible tuples of joint densities corresponding to K

different experimental settings as follows.

Definition 5. Let D be a DAG and I a collection of targets and induced parent sets. Then,

MI(D) =
{
{pk(x)}Kk=1 | ∀ k, l ∈ [K] : p(x |σk) ∈M(Dk) and

∀ j /∈ T (k) ∪ T (l), pk(xj |xpaDk
(j)) = pl(xj |xpaDl

(j))
}
,

where we let for simplicity pk(x) = p(x |σk) and Dk = DT (k),P (k) . The first condition
reflects the fact that, for each experimental setting, the post-intervention distribution
obeys the Markov property of the induced post-intervention DAG Dk. The second con-
dition corresponds instead to the local invariances across post-intervention distributions
of different experimental settings. Notice that, because of the assumption T (1) = ∅,
p1(x) = p(x), the observational distribution, and the condition implies that ∀ j /∈ T (k),
pk(xj |xpaDk

(j)) = p(xj |xpaD(j)). By analogy with the observational case, different DAGs
may still imply the same family of pre- and post-intervention distributions, leading to the
notion of I-Markov equivalent DAGs.

Definition 6 (I-Markov equivalence). Let D1 and D2 be two DAGs and I a collection of
targets and induced parent sets defining a valid general intervention for both D1 and D2. D1

and D2 are I-Markov equivalent (i.e. they belong to the same I-Markov equivalence class) if
MI(D1) =MI(D2).
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As mentioned, our aim is to develop graphical criteria to establish I-Markov equivalence
between DAGs. To this end, we need: i) a graphical object that uniquely represents the
DAG D and the modifications by the valid general interventions; ii) an I-Markov property
to read-off the set of conditional independencies and invariances from the graphical object.
For the first purpose, we introduce the following construction.

Definition 7. Let D be a DAG and I a collection of targets and induced parents sets. The
collection of augmented intervention DAGs (I-DAGs) {DI

k}Kk=1 is constructed by augment-
ing each post-intervention DAG Dk with an I-vertex ζk and I-edges {ζk → j, j ∈ T (k)}.

We provide an example of a collection of I-DAGs in Figure 3.3. The following definition
extends the notion of covered edge, originally introduced by Chickering [1995, Definition
2], to our newly defined graphical object.

Definition 8. Let D be a DAG and I a collection of targets and induced parent sets implying
a collection of I-DAGs {DI

k}Kk=1. An edge i→ j in D is simultaneously covered if:

1. i→ j is covered in D;

2. For any k ∈ [K], k ̸= 1, i→ j is either covered in DI
k , or {i, j} ⊆ T (k);

For the second purpose instead, we introduce the following definition of I-Markov prop-
erty.

Definition 9 (I-Markov property). Let D be a DAG and I a collection of targets and in-
duced parent sets. Let {pk(x)}Kk=1 be a family of strictly positive probability distributions over
(X1, . . . , Xq). Then, {pk(x)}Kk=1 satisfies the I-Markov property with respect to {DI

k}Kk=1 if:

1. pk(xA |xB, xC) = pk(xA |xC) for any k ∈ [K] and any disjoint sets A,B,C ⊂ [q] such
that C d-separates A and B in Dk;

2. pk(xA |xC) = p1(xA |xC) for any k ∈ [K] and any disjoint sets A,C such that C

d-separates A from ζk in DI
k .

Point 1. applies the usual Markov property to the pre- and post-intervention graphs Dk,
k ∈ [K]. Notice that, because general interventions may induce new parent sets, the set
of implied conditional independencies may also change across experimental settings. Point
2. instead imposes a local invariance whenever a d-separation statement involving I-vertices
holds in the augmented intervention DAGs. If a tuple of post-intervention distributions
{p(· |σk)}Kk=1 is I-Markov w.r.t {DI

k}Kk=1, then any d-separation statement in {DI
k}Kk=1

will imply either a conditional independence relationship or an invariance in {p(· |σk)}Kk=1.
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3.2. Identifiability under general interventions

Figure 3.2: A DAG D and the post-intervention DAG DT,P for intervention target T =
{3} and induced parent set P = {2}.
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Figure 3.3: A collection of I-DAGs for DAG D and a collection of targets and induced
parent sets such that T (2) = {3}, P (2) = {1, 2} and T (3) = {4}, P (3) = {1, 2, 3}. Blue nodes
represent the intervention targets, while red edges correspond to the induced parent sets.
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Throughout the chapter, we also assume the converse, so that any invariance and any
conditional independence relationship in the tuple of distributions implies a d-separation
in {DI

k}Kk=1. Following Squires et al. [2020], we call this assumption I-faithfulness.

Definition 10 (I-Faithfulness). Let D be a DAG and a I a collection of targets and in-
duced parent sets. Let {pk(x)}Kk=1 be a set of strictly positive probability distributions over
(X1, . . . , Xq). Then, {pk(x)}Kk=1 is said to be I-faithful with respect to {DI

k}Kk=1 if:

1. For any k ∈ [K] and any disjoint sets A,B,C ⊂ [q], pk(xA |xB, xC) = pk(xA |xC) if
and only if C d-separates A and B in Dk;

2. For any k ∈ [K] and any disjoint sets A,C, pk(xA |xC) = p1(xA |xC) if and only if
C d-separates A from ζk in DI

k .

Using the I-Markov property, it is possible to characterize the newly defined I-Markov
equivalence class of families of distributions through the I-DAGs, as stated in the following
proposition.

Proposition 11. Let D be a DAG and I a collection of targets and induced parent sets.
Then {pk(·)}Kk=1 ∈ MI(D) if and only if {pk(·)}Kk=1 satisfies the I-Markov property with
respect to {DI

k}Kk=1.

We are finally able to characterize I-Markov equivalence by means of graphical criteria.

Theorem 12. Let D1,D2 be two DAGs and I a collection of targets and induced parent
sets defining a valid general intervention for both D1,D2. D1 and D2 belong to the same I-
Markov equivalence class if and only if DI

1,k and DI
2,k have the same skeleta and v-structures

for all k ∈ [K].
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Theorem 13. Let D1,D2 be two DAGs and I a collection of targets and induced parent
sets defining a valid general intervention for both D1 and D2. D1 and D2 belong to the same
I-Markov equivalence class if and only if there exists a sequence of edge reversals modifying
D1 and such that:

1. Each edge reversed is simultaneously covered;

2. After each reversal, {DI
1,k}Kk=1 are DAGs and D1,D2 belong to the same I-Markov

equivalence class;

3. After all reversals D1 = D2.

Theorems 12 and 13 resemble Theorems 1 and 2 for the observational case. While Theo-
rem 12 provides a direct graphical tool to assess whether two DAGs are I-Markov equivalent,
Theorem 13 is a technical result of key importance for proving score-equivalence of DAGs.
Moreover, Theorem 12 does not provide a characterization of I-Markov equivalence classes
through a single representative graph, as Hauser and Bühlmann [2012] do for the case of
hard interventions. Nevertheless, our graphical characterization is similar to the one of per-
fect I-Markov equivalence offered in the same paper (Theorem 10), and which is based on
sequences of post-intervention DAGs. It is thus immediate to prove the following corollary:

Corollary 14. Let D1 and D2 be two DAGs and I a collection of targets and induced parent
sets. If D1 and D2 are I-Markov equivalent, then they are perfect I-Markov equivalent.

Because of our validity assumption, for a given (known) I, some DAGs may be excluded
from the DAG space. We illustrate this point with an example in Figure 3.4. In such case,
the general intervention defined by T (2) = 3, P (2) = 2 is valid for D1 and D2, but not for
D3, as it would induce a cycle. Accordingly, if we consider the equivalence class defined by
this intervention and assume its validity, then node 2 can not be a descendant of node 3.
This implies that DAGs for which 2 is instead a descendant of 3 must be excluded from the
original DAG space. While this implication may appear undesirable, it is worth noting that
it only occurs when the intervention targets are known, and the intervention includes the
addition of a new parent node. In the next section we instead consider the case of unknown
interventions, thus avoiding the assumption of known targets and induced parent sets.

3.2.3 DAG identifiability from unknown general interventions

In the previous section we introduced I-Markov equivalence as a limit to DAG identifiability
from a collection of experimental settings characterized by known targets and induced
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Figure 3.4: Three Markov equivalent DAGs and their post-intervention graphs after a
general intervention with T (2) = {3}, P (2) = {2}. The intervention is not valid for D3.
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parent-sets (T ,P). In this section, we consider the problem of jointly identifying the the
pair (D, I) from a family of pre- and post-intervention distributions {p(· |σk)}Kk=1. The
same problem has been previously investigated by Squires et al. [2020] in the context of soft
interventions. The authors showed that, assuming I-faithfulness, the DAG identifiability
limit remains the same even when the targets of intervention are unknown and must be
learnt from the data. Their results partially extend to our general intervention setting, but
further considerations are required.

We first consider the problem of learning a general intervention from a known DAG D
and a given family of distributions {pk(·)}Kk=1. Any general intervention induces a collection
of I-DAGs that, through the I-Markov property of Definition 9, implies a set of conditional
independencies and invariances. We thus investigate the limits in the identifiability of
(T ,P), that is whether different general interventions may imply the same set of conditional
independencies and invariances given a DAG D. With a slight abuse of terminology, we
will refer to indistinguishable general interventions as I-Markov equivalent.

Definition 15. Let D be a DAG and I1, I2 two collections of targets and induced parent sets.
I1, I2 are I-Markov equivalent (or, equivalently, belong to the same I-Markov equivalence
class) if MI1(D) =MI2(D).

Consider for instance the two general interventions depicted in Figure 3.5, where we
have T

(2)
1 = T

(2)
2 = {1, 3}, P (2)

1 = {{3}, ∅} and P
(2)
2 = {∅, {1}}. In both cases, the pre-
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Figure 3.5: Two unidintifiable combinations of DAGs and general interventions.
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and post-intervention DAGs have the same skeleta and the same set of v-structures, thus
implying the same d-separation statements. As a consequence, also the conditional indepen-
dencies and invariances are the same and the two general interventions are indistinguishable
given data alone, differently from what occurs in the soft-intervention case of Squires et al.
[2020]. We then provide the following characterizations of I-Markov equivalence of general
interventions.

Theorem 16. Let D be a DAG and I1, I2 two collections of targets and induced parent
sets. Then, I1, I2 belong to the same I-Markov equivalence class if and only if DI1

k ,DI2
k

have the same skeleta and v-structures for all k ∈ [K].

Theorem 17. Let D be a DAG and I1, I2 two collection of targets and induced parent sets.
Then, I1, I2 belong to the same I-Markov equivalence class if and only if for each I-DAG
DI1

k there exists a sequence of edge reversals modyfing DI1
k and such that:

1. Each edge reversed is covered;

2. After each reversal, DI1
k is a DAG and I1, I2 belong to the same I-Markov equivalence

class;

3. After all reversals DI1
k = DI2

k .

I-Markov equivalent general interventions thus imply the same skeleta in {DI
k}Kk=1, and
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in particular, the same sets of I-edges in the augmented DAGs. This implies that the
intervention targets are identifiable.

We now consider the problem of jointly identifying (D, I), that is the DAG and the
collection of targets and induced parent sets. As before, we will use the term I-Markov
equivalent to refer to indistinguishable pairs (D1, I1) and (D2, I2).

Definition 18. Let D1,D2 be two DAG and I1, I2 two collections of targets and induced
parent sets defining a valid general intervention for D1,D2 respectively. (D1, I1), (D2, I2)
are I-Markov equivalent (or, equivalently, belong to the same I-Markov equivalence class) if
MI1(D1) =MI2(D2).

As before, we can provide graphical characterizations of I-Markov equivalence for (D, I).

Theorem 19. Let D1,D2 be two DAGs and I1, I2 two collections of targets and induced
parent sets defining a valid general intervention for D1,D2 respectively. (D1, I1), (D2, I2)
belong to the same I-Markov equivalence class if and only if DI1

1,k,D
I2
2,k have the same skeleta

and v-structures for all k ∈ [K].

Theorem 20. Let D1,D2 be two DAGs and I1, I2 two collections of targets and induced
parent sets defining a valid general intervention for both D1,D2. (D1, I1), (D2, I2) belong to
the same I-Markov equivalence class if and only if there exists a sequence of edge reversals
modifying the collection of I-DAGs {DI1

k }
K
k=1 and such that:

1. Each edge reversed in D1 is simultaneously covered;

2. Each edge reverse in DI1
1,k, for k ̸= 1, is covered;

3. After each reversal, {DI1
1,k}

K
k=1 are DAGs and (D1, I1), (D2, I2) belong to the same

I-Markov equivalence class;

4. After all reversals DI1
1,k = DI2

2,k for each k ∈ [K].

As before, by Theorem 19, two distinct I-Markov equivalence pairs (D1, I1), (D2, I2)
have the same set of I-edges, meaning that T1 = T2 and the targets are identifiable from
the data. I1, I2 thus differ for their induced parent sets, and in particular for the reversal
of covered edges connecting two target nodes. Note in addition that the graphical crite-
rion of Theorem 19 is equivalent to the one of Theorem 12. As a consequence, any two
unidentifiable pairs (D1, I1), (D2, I2) imply the same set of conditional independencies and
invariances via the I-Markov property and in particular the same as if the general inter-
vention were known. The DAG-identifiability thus remains the same as for the known
intervention case.
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3.3 Bayesian causal discovery

In this section we introduce a parametric Bayesian framework for the analysis of data
collected under general unknown interventions. In Section 3.3.1 we frame the related causal
discovery problem under the Bayesian perspective, and specify a likelihood function that
integrates data from distinct interventional contexts. In Section 3.3.2 we then introduce a
prior elicitation procedure for the collection of model parameters. Finally, in Section 3.3.3
we assign prior distributions to DAGs, intervention targets and parent sets, whose posterior
inference represents the ultimate goal of our Bayesian methodology.

3.3.1 Model formulation

Let X =
(
X(1), . . . ,X(K)

)⊤ be the (n, q) data matrix, where X(k) is the (nk, q) dataset
containing samples collected under the k -th experimental setting. As in the previous sec-
tions, we assume X(1) being an observational dataset, so that T (1) = P (1) = ∅ and D1 = D.
Under the Bayesian setting, learning the pair (D, I) can be framed as a model selection
problem which requires the computation of the posterior distribution

p (D, I |X) ∝ p (X | D, I) p(D, I). (3.5)

We refer to p(D, I) as the model prior and to p(X | D, I) as the model evidence or marginal
likelihood. Assuming a parametric family of distributions for the observables, we can write
the marginal likelihood as

p
(
X | D, I

)
=

∫
p
(
X |Θ(K),D, I

)
p
(
Θ(K) | D, I

)
dΘ(K), (3.6)

where Θ(K) = {Θ(1), . . . ,Θ(K)} is the multi-set of parameters associated with the pre-
and post-intervention distributions implied by the pair (D, I). Conditionally on Θ(K), the
observations in X are independent and, within each block X(k), identically distributed, so
that the likelihood function can be written as

p
(
X |Θ(K),D, I

)
=

K∏
k=1

p
(
X(k) |Θ(k),D, I(k)

)
, (3.7)

where I(k) = (T (k), P (k)) and Θ(k) is the set of parameters of the distribution of the k-
th experimental setting. From Definition 9, the I-Markov property implies that: i) the
sampling distribution of the i-th observation in the k-th block factorises according to the
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post-intervention DAG Dk; ii) a set of invariances hold, such that the post-intervention
local parameters indexing the non-intervened nodes are equal to the corresponding pre-
intervention parameters. From these considerations, it follows that

p
(
X |Θ(K),D, I

)
=

q∏
j=1

{
p
(
X

A(j)
·j |XA(j)

·paD(j),Θ
(1)
j ,D

)
∏

k:j∈T (k)

p
(
X

(k)
·j |X

(k)
·paDk

(j),Θ
(k)
j ,Dk

)}
,

(3.8)

where Θ(k)
j is the j-th element of Θ(k), and we used the equivalent representation of (D, I(k))

in terms of modified DAG Dk. Moreover, A(j) := {k : j /∈ T (k)} is the collection of
interventional settings under which node j has not been intervened upon, and X

A(j)
.B is the

sub-matrix of X with columns indexed by B ⊂ [q] and blocks corresponding to A(j) ⊂ [K].
To obtain (3.5) we thus need to specify:

1. A statistical model p
(
X |Θ(K),D, I

)
, in the form of a distribution for the data in

Equation 3.8;

2. A model prior p(D, I), describing our prior knowledge on DAG D and on the effects
that the interventions imply on its structure;

3. A parameter prior p(Θ(K) | D, I) leading, once combined with the likelihood (3.8), to
the marginal likelihood (3.6).

The joint specification of a statistical model and associated parameter prior deserves par-
ticular attention and is the main subject of the next section.

3.3.2 Parameter prior elicitation

Under common distributional assumptions (e.g. Gaussian), it is not possible to distinguish
between DAGs belonging to the same I-Markov equivalence class [Hauser and Bühlmann,
2012]. In a Bayesian model-selection framework, this feature translates into the compatibil-
ity requirement that I-Markov equivalent DAGs are assigned equal marginal likelihoods, a
property usually referred to as score equivalence. In this section we show how the procedure
proposed by Geiger and Heckerman [2002] for DAG model selection from observational data
can be extended to our interventional setting. Their methodology relies on a set of assump-
tions (Assumptions 1-5 in the original paper) that translate into our setting as follows:
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A1 (Complete model equivalence and regularity): Let C be the collection of complete
DAGs on the set of nodes V , each implying a statistical model p(x |ΘC , C), for
C ∈ C. For any two complete DAGs Ci, Cj ∈ C, i ̸= j, we have that p(x |ΘCi , Ci) =

p(x |ΘCj , Cj). Moreover, there exists a one-to-one mapping κi,j between the DAG-
parameters ΘCi ,ΘCj such that ΘCj = κi,j(ΘCi) and the Jacobian |∂ΘCi/∂ΘCj | exists
and is nonzero for all values of ΘCi ;

A2 (Likelihood and prior modularity): For any two DAGs Di,Dj and any node l ∈ V

such that paDi
(l) = paDj

(l), we have that, for any collection of targets and induced
parent sets I,

p
(
x
(k)
l |x

(k)
paDi,k

(l),Θ
(k)
l ,Di,k

)
= p

(
x
(k)
l |x

(k)
paDj,k(l)

,Θ
(k)
l ,Dj,k

)
,

p
(
Θ

(k)
l | Di,k

)
= p

(
Θ

(k)
l | Dj,k

)
;

A3 (Global parameter independence): For every DAG D and any collection of targets and
induced parent sets I,

p
(
Θ(K) | D, I

)
=

q∏
j=1

p
(
Θ

(1)
j | D

) K∏
k:j∈I(k)

p
(
Θ

(k)
j | Dk

) .

We refer the reader to Geiger and Heckerman [2002] for a detailed discussion of these as-
sumptions in the observational setting. Most importantly for our purposes, given Assump-
tion A3, we can specify priors for the parameters indexing each term in (3.8) independently.
The following procedure is therefore applied to each node j ∈ V and experimental context
k ∈ [K]:

(i) Identify a complete DAG Cj,k such that paCj,k
(j) = paDk

(j);

(ii) Assign a prior to ΘCj,k
, the parameter of the selected complete DAG model Cj,k;

(iii) Assign to Θ
(k)
j the same prior assigned to Θj,Cj,k

in step (ii), where Θj,Cj,k
∈ ΘCj,k

is
the parameter indexing the j-th node.

Accordingly, because of Assumption A1, the proposed procedure allows to specify a pa-
rameter prior for any pair (D, I) from a single parameter prior on a complete DAG model
C. Therefore, the marginal likelihood p (X | D, I) can be computed as in the following
proposition.
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Proposition 21. Given any complete DAG C and a data matrix X collecting observations
from K different experimental settings, for any valid pair (D, I) Assumptions A1-A3 imply

p (X | D, I) =
q∏

j=1


p
(
X

A(j)
·faD(j) |C

)
p
(
X

A(j)
·paD(j) |C

) ∏
k:j∈I(k)

p
(
X

(k)
·faDk

(j) |C
)

p
(
X

(k)
·paDk

(j) |C
)
 , (3.9)

where p
(
X

A(j)
·B |C

)
is the marginal data distribution computed under any complete DAG C.

Notice that the resulting marginal likelihood provides a decomposable score for the
pair (D, I), since it corresponds to a product of q terms each involving a node j and its
parents paDk

(j) in each DAG Dk only. Importantly, it also guarantees score equivalence
for I-Markov equivalent pairs (D, I).

Theorem 22 (Score equivalence). Let D1,D2 be two DAGs and I1, I2 two collections of
targets and induced parent sets defining a valid general intervention for D1,D2 respectively.
If (D1, I1) and (D2, I2) are I-Markov equivalent, then Assumptions A1-A3 imply

p(X | D1, I1) = p(X | D2, I2). (3.10)

3.3.3 Prior on (D, I)

Recall that I = (T ,P), where T = {T (k)}Kk=1 and P = {P (k)}Kk=1. For convenience, we
represent the (possibly) different parent sets induced by the K experimental settings, P,
through K (q, q) matrices P (1), . . . ,P (K) such that for any (l, j)-element P

(k)
lj we have

P
(k)
lj = 1 if l → j ∈ Dk and j ∈ T (k), 0 otherwise. Conditionally on DAG D and target

T (k), we assume independently across k ∈ {2, . . . ,K},

p
(
P (k) |ϕ(k), T (k),D

)
=


q∏

j=1

∏
j∈T (k)

pBern
(
P

(k)
lj |ϕ

(k)
j

)1 {Dk is a DAG}

ϕ
(k)
j

iid∼ Beta
(
aϕ, bϕ

)
, j ∈ T (k),

(3.11)

where ϕ(k) =
{
ϕ
(k)
j

}
j∈T (k) . The hierarchical prior (3.11) leads to the marginal (integrated

w.r.t. ϕ(k)) prior on P (k)

p
(
P (k) |T (k),D

)
=

 ∏
j∈T (k)

B
(
aϕ + |P (k)

.j |, bϕ + q − |P (k)
.j |

)
B
(
aϕ, bϕ

)
1 {Dk is a DAG} ,
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where |P (k)
.j | =

∑q
l=1P

(k)
lj and B(·) denotes the Beta function.

Now consider T (k), the intervention target associated with the experimental setting k. We
represent T (k) ⊆ [q] through a (q, 1) vector hk whose j-th element hk(j) is equal to 1 if
j ∈ T (k), 0 otherwise. We assume, independently across k ∈ {2, . . . ,K},

p (hk | ηk) =

q∏
j=1

pBern (hk(j) | ηk)

ηk ∼ Beta (aη, bη) .

(3.12)

Equation (3.12) leads to the integrated prior on T (k)

p
(
T (k)

)
= p(hk) =

B
(
aη + |T (k)|, bη + q − |T (k)|

)
B
(
aη, bη

) ,

where |T (k)| =
∑q

j=1 hk(j) is the number of intervened nodes in context k.
Finally, let Sq be the set of all DAGs with q nodes. We assign a prior to D ∈ Sq through
a Beta-Binomial distribution on the number of edges in the graph. Specifically, let SD be
the adjacency matrix of the skeleton of D, and SD

lj its (l, j)-element. We assign

p
(
SD |ω

)
=

∏
l<j

pBern
(
SD
lj |ω

)
ω ∼ Beta(aD, bD),

(3.13)

leading to

p(SD) =
B
(
aD + |SD|, bD + q(q − 1)/2− |SD|

)
B
(
aD, bD

) ,

where |SD| is the number of edges in D (equivalently in its skeleton) and q(q − 1)/2 is the
maximum number of edges in a DAG on q nodes. Finally, we set p(D) ∝ p(SD) for each
D ∈ Sq.

3.4 MCMC scheme and posterior inference

In this section we describe the Markov Chain Monte Carlo (MCMC) strategy that we adopt
to approximate the posterior distribution (3.5). Specifically, Section 3.4.1 introduces the
random scan Metropolis-Hastings algorithm which is at the basis of our sampler, while
Section 3.4.2 illustrates how the MCMC output can be used to provide estimates of the

63



Chapter 3. Bayesian causal discovery from unknown general
interventions

underlying causal DAG structure and the effects of the general interventions.

3.4.1 Sampling scheme

Our MCMC algorithm has the structure of a random-scan component-wise Metropolis-
Hastings [Brooks et al., 2011, Chapter 1], in which the parameter of interest is partitioned
into K components, each indexing one of the K experimental settings. Specifically, the
first component corresponds to the DAG D, while the remaining ones to the collection of
unknown targets and induced parent sets I(k) = (T (k), P (k)) for k ∈ {2, . . . ,K}. Sampling
from each component occurs in a random order through standard proposal and accep-
tance/rejection steps as in a Metropolis-Hastings sampler. A high-level illustration of the
scheme is provided in Algorithm 3.5.

Our main algorithm adopts the equivalent representation of (D, I) in terms of I-DAGs
{DI

k}Kk=1. In this way, it is possible to explore the space of possible pairs (D, I) using a set of
simple operators inducing local modifications on DAGs. Specifically, we consider three types
of operators: Insert(u, v), Delete(u, v), and Reverse(u, v), corresponding respectively to
the insertion, deletion, and reversal of the edge (u, v). Also notice that the modified graph
obtained by applying any of these operators may not be a DAG. Accordingly, we impose
to the operators above the following validity requirement (vr).

Definition 23. Let {DI
k}Kk=1 be a sequence of I-DAGs. An operator inducing a sequence

of modified I-DAGs {D̃I
k}Kk=1 is valid if every graph in {D̃I

k}Kk=1 is a DAG.

Let now OD be the set of all valid operators on DAG D. Our proposal distribution
draws randomly an operator in OD, and then apply it to D to obtain D̃. Accordingly, the
(proposal) probability of a transition from D to D̃ is q(D̃ | D) = 1/|OD|, where |OD| is the
number of elements in OD. We use the same proposal scheme for the update of DI

k . Notice
however that the same operator may imply different modifications when applied to the
observational DAG D or to an I-DAG DI

k . In the former case, the implied modification also
affects all the I-DAGs; in the latter case, the effect is local and refers corresponding to the I-
DAG indexing the k-th experimental setting. Accordingly, we need a different construction
for the set of operators relative to the observational and experimental components. For
the former case, Algorithm 4 constructs the set OD simply by considering all possible valid
insertions, deletions, and reversals of the edges of the observational DAG. Differently, for
the latter case, Algorithm 5 includes in ODI

k
all the operators implying: i) the insertion of

an intervention target, ii) the modification of the parent sets of a target node and iii) the
deletion of an intervention target (provided that the parents of the target in the DAG and
in the I-DAG are the same).
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Algorithm 3: Random-scan MH for posterior inference

Input: Data matrix X, number of MCMC iterations S, initial values for DAG,
targets and induced parent sets D0, T 0,P0

Output: S samples from p(D, T ,P |X)

1 Construct
{
D0

k
I}K

k=1
;

2 Set I0 =
(
T 0,P0

)
;

3 for s in 1:S do
4 Sample π, a permutation vector of length K;
5 Set {Ds, Is} = {Ds−1, Is−1};
6 for k in 1:K do
7 if πk = 1 then
8 Construct ODs using Algorithm 4;
9 Propose D̃ by sampling uniformly at random from ODs ;

10 Set Ds = D̃ with probability

αD̃ = min

{
1;

p
(
X | D̃, {I(j)s }j ̸=πk

)
p
(
X | Ds, {I(j)s }j ̸=πk

) · p(D̃)
p(Ds)

· q(D
s | D̃)

q(D̃ | Ds)

}

11 end
12 else
13 Construct ODsI

πk
using Algorithm 5;

14 Propose D̃I
πk

by sampling uniformly at random from ODsI
πk

;

15 Recover Ĩ(πk) = (T̃ (πk), P̃ (πk)) from (D̃I
πk
,Ds);

16 Set I
(πk)
s = Ĩ(πk) with probability

αẽπk
= min

{
1;
p
(
X | Ds, {I(j)s }j ̸=πk

, Ĩ(πk)
)

p
(
X | Ds, {I(j)s }j ̸=πk

, I
(πk)
s

) · p(Ĩ(πk)
)

p
(
I
(πk)
s

) · q(Ds
k
I | D̃I

k

)
q
(
D̃I

k | Ds
k
I)

}

17 end
18 end
19 end
20 Recover {T s,Ps}Ss=1 from {Is}Ss=1;
21 return {Ds, T s,Ps}Ss=1;
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Algorithm 4: Random-scan MH: Construction of OD

Input: A collection of I-DAGs {DI
k}Kk=1

Output: A set of valid operators OD
1 Set OD = ∅;
2 Construct EI = {(u, v) :uv=vu= 0};
3 Construct ED = {(u, v) :uv= 1};
4 for e ∈ ED do
5 Add Delete(e) to OD;
6 if Reverse(e) satisfies vr then add it to OD;
7 end
8 for e ∈ EI do
9 if Insert(e) satisfies vr then add it to OD;

10 end
11 return OD;

Algorithm 5: Random-scan MH: Construction of ODI
k

Input: A collection of I-DAGs {DI
k}Kk=1

Output: A set of valid operators ODI
k

1 Set ODI
k
= ∅;

2 Recover (T (k), P (k)) from (D,DI
k );

3 for v /∈ T (k) do
4 Add Insert(ζk, v) to ODI

k
;

5 end
6 for v ∈ T (k) do
7 for u ∈ ndDk

(v) do
8 if u ∈ paDk

(v) then
9 Add Delete(u, v) to ODI

k
;

10 if Reverse(u, v) satisfies vr and u ∈ T (k) then
11 Add Reverse(u, v) to ODI

k
;

12 end
13 end
14 else
15 Add Insert(u, v) to ODI

k
;

16 end
17 if paDk

(v) = paD(v) then add Delete(ζk, v) to ODI
k
;

18 end
19 end
20 return ODI

k
;
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The proposal distributions defined above are of key importance to ensure that the
Markov chain implied by the Metropolis-Hastings is reversible, aperiodic and irreducible,
so that the MCMC scheme provides an approximation of the posterior distribution, as
stated in the following proposition.

Proposition 24. The finite Markov chain defined by Algorithm 3, 4, and 5 is reversible,
aperiodic, and irreducible. Accordingly, it has p(D, T ,P |X) as its unique stationary dis-
tribution.

3.4.2 Posterior inference

Output of Algorithm 3 consists of a sample of size S from the posterior distribution
p(D, T ,P |X). This MCMC output can be used to obtain summaries of specific features of
the posterior distribution, such as DAG structures, both corresponding to the observational
distribution of the variables, or a post-intervention distribution (represented by a modified
DAG), as well as identifying the targets and parent sets induced by the interventions.

Point estimates of a DAG structure can be recovered through a Maximum A Posteriori
(MAP) DAG estimate, corresponding to the DAG with the highest posterior probability, or
based on the so-called Median Probability Model (MPM) originally introduced by Barbieri
and Berger [2004] in the linear regression setting. To obtain an MPM-based estimate of
a DAG we need to compute first a collection of marginal Posterior Probabilities of edge
Inclusion (PPIs) for each possible directed link (u, v) in any DAG Dk. Each corresponds to
the (u, v)-element of a (q, q) matrix J (k),

J (k)
uv = p̂(u→ v ∈ Dk |X) =

1

S

S∑
s=1

1{u→ v ∈ Ds
k}, (3.14)

where Ds
k is the modified DAG of context k visited at iteration s. When k = 1 the above

matrix collects the PPIs relative to D, the DAG indexing the observational distribution
of the q variables. An MPM DAG estimate, D̂k, for each k = [K], is finally obtained by
including those edges whose PPIs is greater than 0.5.

Now consider the intervention targets T (1), . . . , T (K). We can recover a marginal poste-
rior probability of inclusion for a node j ∈ [q] in the target T (k), k ∈ {2, . . . ,K}, as

T
(k)
j = p̂(j ∈ T (k)) =

1

S

S∑
s=1

1{j ∈ T (k)
s }, (3.15)

while by definition T
(1)
j = 0 for each j. The resulting collection of probabilities is organized
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in a (q,K) matrix T with (k, j)-element corresponding to T
(k)
j . As a point summary of the

posterior distribution of T (k), we again consider a median-probability based estimate T̂ (k)

such that, for each j ∈ [q], T̂ (k) = 1 if T (k)
j ≥ 0.5, 0 otherwise.

A useful feature of our method is that it can be adopted to detect differences between
experimental contexts that are reflected into modifications of the DAG structure, as induced
by the interventions. These can be represented by means of a difference-graph [Wang
et al., 2018] which is constructed as follows. Consider the two DAGs D1 and Dk, for
k ∈ {2, . . . ,K} Let also T (k) be the intervention target associated with Dk. The difference-
graph of (D1,Dk), denoted as G(k), is the graph whose adjacency matrix G(k) has (u, v)-
element

G(k)
uv =

{
1 if v ∈ T (k) and u ∈ {paD1

(v) ∪ paDk
(v)},

0 otherwise.

}

In other terms, an edge u→ v is included in G(k) whenever v is an intervention target and
u is a parent of v in at least on of the two DAGs, implying that the local distribution of
node v has been modified as the effect of a (soft or general) intervention. For any G(k) we
can provide an MCMC-based estimate, Ĝ(k) by following the same rationale leading to the
MPM DAG and based on the collection of estimated PPIs.

3.5 Simulations and real data analysis

In this section we apply our methodology for structure learning under general interventions
to simulated and real data. To this end, in Section 3.5.1 we first specialize our framework
to Gaussian DAG models. In Section 3.5.2 we thus evaluate its performance on simulated
Gaussian data and compare it with alternative benchmark approaches. Finally, in Section
3.5.3 we present an application to biological protein expression data.

3.5.1 Gaussian DAGs

For the random vector X = (X1, . . . , Xq)
⊤, we consider a linear Gaussian Structural Equa-

tion Model (SEM) of the form

X = B⊤X + ε, ε ∼ Nq(0,D), (3.16)

where B is a (q, q) matrix of regression coefficients with (l, j)-element Blj ̸= 0 if and only
if l ∈ paD(j), and D = diag(D11, . . . ,Dqq) is a (q, q) matrix collecting the conditional
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variances of the q variables. Equivalently, we can write for each j ∈ [q]

Xj =
∑

l∈paD(j)

BljXl + εj , εj ∼ N (0,Djj). (3.17)

Equation (3.16) implies X |Σ,D ∼ Nq(0,Σ) with Σ = (I −B)−⊤D(I −B)−1, the right-
hand side corresponding to the modified Cholesky decomposition of the covariance matrix.
Consider now a family of experimental settings with intervention targets T (1), . . . , T (K) and
implied modified DAGs D1, . . . ,DK . For each k = [K] we have

Xj =
∑

l∈paDk
(j)

B
(k)
lj Xl + ε

(k)
j , ε

(k)
j ∼ N

(
0,D

(k)
jj

)
, j ∈ T (k), (3.18)

where (B(k),D(k)) are the DAG-parameters induced by the general intervention. Notice
that all the (l, j)-elements of (B(k),D(k)) not involved in (3.18) are exactly those in (B,D)

because of the assumed invariances between pre- and post-intervention distributions (see
Equations (3.4) and (3.8)). For each experimental setting k ∈ [K], the post-intervention
joint distribution of X is then X |Σk,Dk ∼ Nq

(
0,Σk

)
, where Σk =

(
I−B(k)

)−⊤
D(k)

(
I−

B(k)
)−1. Because of the prior elicitation procedure introduced in Section 3.3.2, to compute

the DAG marginal likelihood (3.9) we only need to specify a prior on the parameter of a
complete (unconstrained) Gaussian DAG model. It is immediate to show that assumptions
A1-A3 of Section 3.3.2 are satisfied in the Gaussian setting by Ω ∼ Wq(a,U), namely
a Wishart distribution on Ω = Σ−1 having expectation aU−1 with a > q − 1 and U a
(q, q) s.p.d. matrix. By combining such prior with the likelihood of n i.i.d. samples from
Nq(0,Σ), we obtain the following formula for the marginal data distribution relative to any
subset of the q variables B ⊂ [q]:

p(X.B) = π−n|B|
2
|UBB|

a−|B̄|
2

|ŨBB|
a−|B̄|+n

2

Γ|B|

(
a−|B̄|+n

2

)
Γ|B|

(
a−|B̄|

2

) , (3.19)

where B̄ = [q]\B and Ũ = U + X⊤X; see for instance Press [2012]. This formula,
implemented in Equation (3.9) for suitable elements (rows and columns) of the data matrix
X =

(
X(1), . . . ,X(K)

)⊤, specializes the DAG marginal likelihood to the Gaussian setting.
Note that the resulting marginal likelihood provides an adaptation to our interventional
setting of the popular Bayesian Gaussian equivalent (BGe) score, originally introduced by
Heckerman and Geiger [1995] for the case of i.i.d. observational data; see also Geiger and
Heckerman [2002]. When coupled with the model prior introduced in Section 3.3.3, this
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result fully specializes our general methodology to the Gaussian setting.

3.5.2 Simulation studies

We evaluate the performance of our method under several simulated scenarios where we vary
i) the number of experimental settings K ∈ {2, 4}, ii) the number of variables q ∈ {10, 20}
and iii) the sample size nk ∈ {100, 500, 1000} that we assume equal across k ∈ [K].

For each combination of K and q, 40 true DAGs, intervention targets and induced
parent sets are generated as follows. We first draw a sparse DAG D with a probability
of edge inclusion 3/(2q − 2), so that the expected number of edges in the DAG grows
linearly with the number of variables [Peters and Bühlmann, 2014]. Each target T (k),
k ∈ {2, . . . ,K}, is then generated by randomly including each node j ∈ [q] in T (k) with
probability θk = 0.2. For each node j ∈ T (k), consider now matrix P (k) which represents
the (possibly different) parent sets induced by the intervention; the latter is constructed
by randomly generating a new DAG with same topological ordering as D, and replacing
the original parent set of j with that of the new DAG. Finally, conditionally on DAG D
and the so-obtained modified DAGs D2, . . . ,DK , we draw the set of distinct parameters
B

(k)
lj uniformly in [−1,−0.1] ∪ [0.1, 1], while we fix D

(k)
jj = 1 for each j ∈ [q] and k ∈ [K].

Finally, by recovering Σk from
(
B(k),D(k)

)
, nk observations are generated from Nq

(
0,Σk

)
,

for k ∈ [K]. Output is finally a collection of simulated datasets X(1), . . . ,X(K).

We implement our method by running Algorithm 3 for number of MCMC iterations
S = 3000q, discarding the initial 1000q draws that are used as a burn-in period. We set
aϕ = bϕ = 1, aη = bη = 1 and aD = aD = 1 in the hierarchical model priors of Section 3.3.3.
These specific choices result in uniform priors for the inclusion of a node in an intervention
target (3.12), as a new parent (3.11) as well as for the probability of edge inclusion in D
(3.13). Finally, we set a = q and U = Iq in the Wishart prior on Ω, leading to a weakly
informative prior whose weight corresponds to a sample of size one.

We evaluate the performance of our method in the tasks of DAG learning and tar-
get identification. To this end, we consider as point estimates of DAGs and targets the
Median Probability DAG model and Median Probability Targets as introduced in Sec-
tion 3.4.2. Since there are no existing methods for causal discovery that align precisely
with our framework of general interventions, providing a fully equitable comparison is not
straightforward. To address this issue, we benchmark our approach against alternative
methodologies designed for slightly different contexts. Specifically, we consider three meth-
ods: GIES [Hauser and Bühlmann, 2012], its recent extension GnIES [Gamella et al., 2022],
and UT-IGSP [Squires et al., 2020].
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GIES, which requires exact knowledge of the intervention targets, serves as a reference
for the DAG structure learning task. In contrast, both GnIES and UT-IGSP learn the
intervention targets from the data, but assume slightly different definitions of interven-
tions. Specifically, GniES considers noise-interventions, which only modify the error-term
distribution of the interventioned nodes in (3.1). Differently, UT-IGSP works under the
framework of soft interventions.

Although the interventions considered by the methods above produce different post-
intervention distributions, the implied invariances coincide, thus making our comparison
sensible. In addition, all benchmarks provide an I-Essential Graph (I-EG) estimate which
represents an I-Markov equivalence class of DAGs. We therefore adapt the MPM DAG
estimate provided by our method by constructing the representative I-EG. Figure 3.6 sum-
marizes the Structural Hamming Distance (SHD) between each I-EG estimate and true
I-EG, for all methods under comparison; SHD is defined as the number of insertions, dele-
tions or reversals needed to transform the estimated graph into the true DAG; accordingly
lower values of SHD imply better performances.

Figure 3.7 instead reports the number of errors (both false positives and false nega-
tives) relative to target identification for our method, GnIES and UT-IGSP. Our method
exhibits a superior performance in comparison with the benchmarks, as also expected be-
cause of deviations of the simulated data from the assumptions underlying their methods.
Therefore, the two benchmarks reveal difficulties in recovering a causal DAG structure from
interventional data whose generating mechanism is consistent with a broader framework of
interventions.

As described in Section 3.4.2, the output provided by our method can be also adapted to
learn differences between DAGs corresponding to different experimental settings. For this
specific goal, Wang et al. [2018] developed the Difference Causal Inference (DCI) algorithm.
To assess the performance of our method in this context and compare it with DCI, we
consider the same simulation scenarios for K = 2 defined before. With regard to DCI,
we consider two implementations. In the first one, following [Belyaeva et al., 2021], we
set αug = 0.001, αsk = 0.5 and αdd = 0.001 as confidence levels for the tests used in the
first, second and third step of the algorithm, respectively. In the second one, we use DCI
with stability selection and we consider the grid of possible parameterizations constructed
by considering αug ∈ {0.001, 0.01}, αsk ∈ {0.1, 0.5} and αdd ∈ {0.001, 0.01}. Figure 3.8
summarizes the sum of falsely identified and non-identified edges in the estimated difference-
graph of (D1,D2). Both methods improve their ability in recovering structural differences
between the two DAGs as the sample size increases. Moreover, the performance of our
method is slightly better than DCI, expecially under the q = 20 scenario.
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Figure 3.6: Simulations. Distribution (across 40 simulations) of the Structural Hamming
Distance (SHD) between true DAG and graph estimate, under scenarios q ∈ {10, 20} (num-
ber of variables), K ∈ {2, 4} (number of experimental contexts), and for increasing samples
sizes nk ∈ {100, 500, 1000}. Methods under comparison are: GIES and GnIES (dark and
light blue), UT-IGSP (yellow) and our Bayesian approach (red).
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Figure 3.7: Simulations. Distribution (across 40 simulations) of the number of false pos-
itives and false negatives (# of errors) between true and estimated targets, under scenarios
q ∈ {10, 20} (number of variables), K ∈ {2, 4} (number of experimental contexts), and for
increasing samples sizes nk ∈ {100, 500, 1000}. Methods under comparison are: GnIES
(light blue), UT-IGSP (yellow) and our Bayesian approach (red).
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Figure 3.8: Simulations. Distribution (across 40 simulations) of the sum of falsely iden-
tified and non-identified varying edges between context k = 1 and k = 2, under scenarios
q ∈ {10, 20} (number of variables) and for increasing samples sizes nk ∈ {100, 500, 1000}.
Method under comparison are: DCI and DCI with stability selection (dark and light blue)
and our Bayesian approach (red).

3.5.3 Real data analysis

We apply our methodology to a dataset of protein expression measurements from patients
affected by Acute Myeloid Leukemia (AML). Subjects are classified into groups correspond-
ing to distinct AML subtypes which were identified according to the French-American-
British (FAB) system based on morphological features, cytogenetics, and assessment of
recurrent molecular abnormalities. The complete dataset is provided as a supplement to
Kornblau et al. [2009] and was previously analyzed from a multiple graphical modelling
perspective by Peterson et al. [2015] and Castelletti et al. [2020]. Specifically, the authors
developed Bayesian methodologies to infer a distinct graphical structure for each group
(subtype), and simultaneously allowing for similar features across groups through a hierar-
chical prior on graphs favoring network relatedness. Given the distinct prognosis associated
with each AML subtype, it is reasonable to expect variations in protein interactions among
groups, as revealed by the analysis of Castelletti et al. [2020]. The investigation of such
variations is of great interest from a therapeutic perspective, since it can provide valu-
able insights on the efficacy of a treatment capable of protein regulation depending on the
specific patient’s subtype; see also Castelletti and Consonni [2023].

Similarly to Peterson et al. [2015], we consider the level of q = 18 proteins and phospho-
proteins involved in apoptosis and cell cycle regulation according to the KEGG database,
relative to n = 178 diagnosed AML patients corresponding to the following K = 4 subtypes:
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Figure 3.9: AML data. Estimated marginal posterior probabilities of target inclusion,
computed for each node v ∈ [q] across AML subtypes, each corresponding to an experimental
context k. Subtype M2 corresponds to the reference (observational) context.

M0 (17 subjects), M1 (34 subjects), M2 (68 subjects) and M4 (59 subjects). We designate
the largest group, M2, as the observational reference group, and attribute differences among
subtypes to unspecified general interventions that may have altered the reference network
structure. We implement our methodology by running Algorithm 3 for a number of MCMC
iterations S = 250000, and discarding the initial 50000 draws which are used as a burn-in
period. We consider for all priors the same weakly informative hyperparameter choices
employed in the simulation study of Section 3.5.2.

As a summary of the MCMC output we first compute the marginal probability of target
inclusion according to Equation (3.15) for each node v ∈ [q] and AML subtype (experimental
context k). The resulting collection of probabilities is summarized in the heat map of Figure
3.9. Results show that a few proteins are with high probability targeted as the result of
unknown interventions that affect the network of protein interactions under any of the
subtypes. Specifically, only four proteins, namely BCL2 and CCND1 under Subtype M1
and GSK3 and XIAP under Subtype M4, are identified as intervention targets with a
posterior probability exceeding 0.5. Differences in the implied set of parent-child relations
involving such nodes are therefore expected in the implied post-intervention graphs. By
converse, there are no proteins whose probabilities of intervention are higher than the 0.5
threshold under Subtype M0.

According to Equation (3.14), we then compute the Posterior Probability of Inclusion
(PPI) for each possible directed edge (u, v) and each group-specific post-intervention DAG,
corresponding to one of the four subtypes. Results for each subtype M0, M1, M2, M4
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are reported in the (q, q) heat maps of Figure 3.10, where any (u, v)-element in the plots
corresponds to the marginal probability of inclusion of u→ v in one of the four DAGs.

Finally, as single graphs summarizing the entire MCMC output, we provide a collection
of context-specific MPM DAG estimates, D̂k, k = 1, . . . , 4. These are reported in Figure
3.11, where for ease of interpretation the graph indexing the observational context (Subtype
M2) corresponds to the I-EG representing the equivalence class of the estimated DAG.
As expected from the previous results, the four graphs exhibit several similarities. An
instance is the path involving the PTEN, PTEN.p and BAD.p136, BAD.p155 proteins.
Such associations are consistent with findings in Peterson et al. [2015] who also identified
(undirected) links between these proteins under all groups. In addition, our method detects
a direct effect of BAD.p136 on PTEN.p, as well as of PTEN on BAD.p155 for all leukemia
patients. A notable difference across groups is instead represented by the absence of the
directed link AKT → GSK3 in group M4 as the effect of a (hard) intervention targeting
GSK3 and which removes its parents. Notably, the correlation of GSK3 with a number of
proteins involved in AML, and primarly AKT, was established in the medical literature; see
for instance Ruvolo et al. [2015] and Ricciardi et al. [2017]. In particular, the AKT/GSK3
path was shown to represent a critical axis in AML, which may be a therapeutic target
in AML patients with intermediate cytogenetics (M2 subtype). Out results show that an
intervention on AKT aimed at regulating the GSK3 protein may be beneficial for patients
characterized by AML subtypes M0, M1, M2, while uneffective whenever applied to M4
patients since there are no paths from AKT downstreaming to GSK3.

3.6 Discussion

In this chapter we introduce a statistical framework for causal discovery from multivariate
interventional data. The notion of general intervention that we implement allows for struc-
tural modifications in the parent-child relations involving the intervened nodes, where the
latter can be both known in advance or completely uncertain. Under both contexts, we first
establish DAG identifiability and provide graphical criteria to characterize interventional
Markov equivalence of DAGs. We then develop a Bayesian methodology for structure learn-
ing, by introducing an effective procedure which dramatically simplifies parameter prior
elicitation. In addition, it provides a closed-form expression for the DAG marginal likeli-
hood which guarantees score equivalence among I-Markov equivalent DAGs. We complete
our Bayesian model formulation by assigning priors to model parameters corresponding to
DAGs, intervention targets, and modified parent sets. Finally, to approximate the corre-
sponding posterior distribution, we develop a Markov Chain Monte Carlo (MCMC) sampler
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Figure 3.10: AML data. Estimated marginal posterior probabilities of edge inclusion,
computed for each possible directed edge (u, v), u, v ∈ [q] and group-specific post-intervention
DAG, each corresponding to one of the four AML subtypes.
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Figure 3.11: AML data. Median Probability graph Model (MPM) estimates obtained
under each AML subtype. Graph corresponding to Subtype M2 is the representative I-EG.
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based on a random scan Metropolis Hastings scheme.

3.6.1 Future developments

Our Bayesian framework for causal discovery relies on a set of general assumptions on
the likelihood and prior that are satisfied under various parametric families, and notably
zero-mean Gaussian models, when equipped with a Wishart prior on the precision matrix.
Within such context, the full development of a methodology for structure learning and
target identification is possible, and asymptotic properties relative to posterior ratio consis-
tency could be established along the lines of Castelletti and Peluso [2023b] and Castelletti
and Peluso [2023a] for the case of known and unknown hard interventions respectively.
Similarly, our framework can be implemented for the analysis of categorical DAGs, under a
multinomial-Dirichlet model. The resulting method would extend the original methodology
of Heckerman et al. [1995], developed for i.i.d. observational samples and leading to their
BDeu score, to an experimental setting of general (unknown) interventions.

Our approach for causal discovery is based on the assumption that the data are gener-
ated according to a Markovian Structural Causal Model (SCM) with no cycles, and which
can be thus represented by a Directed Acyclic Graph. Besides the absence of cycles, our
SCM representation assumes that there are no latent (unmeasured) confounders. Recently,
Bongers et al. [2021] proposed a general theory for causal discovery which allows for the
presence of both latent confounders and cycles, establishing identifiability conditions of
SCMs as well as several statistical properties of their methodology. An extension of our
method for causal discovery under general interventions towards this direction can be also
of interest.
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Appendix A: Proofs of Section 3.2

This section contains all the proofs of the main results presented in Sections 3.2.2 and 3.2.3
of the manuscript. The numbering of such propositions and theorems in this section is the
same as in the main text. Additional auxiliary lemmas and propositions that are newly
introduced within this appendix follow instead the sequential numbering in line with the
main text.

A.1 Proofs of Section 3.2.2

The definition of the I-Markov property and the subsequent graphical characterization of
I-Markov equivalence in terms of skeleta and v-structures that we propose in Section 3.2.2
is similar to the one provided by Yang et al. [2018] for the case of soft interventions. As a
consequence, our approach to proving Proposition 11 and Theorem 12 closely aligns with
their strategy.

We first characterize I-Markov equivalence in our setting in terms of the ensued factor-
ization:

Lemma 25. {pk(·)}Kk=1 ∈ MI(D) if and only if there exists p(·) ∈ M(D) such that, for
each k ∈ [K], pk(·) factorizes as

∏
j /∈T (k) p(xj |xpaD(j))

∏
j∈T (k) pk(xj |xpaDk

(j)).

Proof. If - Suppose there exists p(·) ∈M(D) such that the factorization above holds. The
first condition from the definition of the I-Markov equivalence class, namely that pk(x) ∈
M(Dk) is trivially satisfied for all k ∈ [K]. As for the second condition, note that for all
j /∈ T (k) we have pk(xj |xpaDk

(j)) = pk(xj |xpaD(j)) = p(xj |xpaD(j)). As a consequence,

pk(xj |xpaDk
(j)) = p(xj |xpaD(j)) = pk′(xj |xpaDk′

(j)), ∀ j /∈ T (k) ∪ T (k′) and T (k), T (k′) ∈ T .

Hence {pk(x)}Kk=1 ∈MI(D).
Only if - Suppose that {pk(x)}Kk=1 ∈MI(D). To prove that there exists p(x) ∈M(D)

such that the factorization in the lemma holds, take any p(x) ∈ M(D). By definition, it
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holds that pk(x) =
∏q

j=1 pk(xj |xpaDk
(j)). From the second condition, we have that for any

k ∈ [K] and j /∈ T (k), pk(xj |xpaDk
(j)) = p(xj |xpaD(j)), where p(xj |xpaD(j)) is an arbitrary

strictly positive density, so that the factorization in the lemma holds for all T ∈ T .

Proposition 11. Let D be a DAG and I a collection of targets and induced parent sets.
Then {pk(·)}Kk=1 ∈ MI(D) if and only if {pk(·)}Kk=1 satisfies the I-Markov property with
respect to {DI

k}Kk=1.

Proof. If - Choose any k ∈ [K] and use the chain rule to factorize pk(·) according to the
topological ordering of Dk, so that

pk(x) =

q∏
j=1

pk(xj |xaj(πDk
)),

where aj(πDk
) represents all the nodes that precede j in the topological ordering implied

by Dk. As each node is d-separated from its non-descendants given its parents, from the
first condition of the general I-Markov property we obtain

pk(x) =

q∏
j=1

pk(xj |xpaDk
(j)).

Moreover, each node j /∈ T (k) is d-separated from ζk given its parents inDI
k . Hence, from the

second condition of the general I-Markov property we have pk(xj |xpaDk
(j)) = p(xj |xpaD(j)),

so that
pk(x) =

∏
j /∈T (k)

p(xj |xpaD(j))
∏

j∈T (k)

pk(xj |xpaDk
(j)).

Hence the result follows from the Lemma above.
Only if - We want to prove that if pk(·) factorizes according to

pk(x) =
∏

j /∈T (k)

p(xj |xpaD(j))
∏

j∈T (k)

p̃(xj |xpaDk
(j))

for all k ∈ [K], then the general I-Markov property holds, namely the collection of I-DAGs
{DI

k}Kk=1 can be used to recover all the conditional independencies and invariances through
d-separation criteria.

As for the conditional independencies, note that by Lemma 25 we have that pk(·) fac-
torizes according to Dk for all k ∈ [K]. Hence, for each k ∈ [K] the Markov property
defined on d-separation criteria must hold with respect to Dk. Hence the first condition of
the I-Markov property must hold.
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For the second condition, instead, we want to show that the invariant components of
the distribution are exactly those whose nodes j’s are d-separated from ζI given a set C in
DI

k , for all k ∈ [K]. Consider any two disjoint sets A,C ⊂ [q] and k ∈ [K] and suppose
that C d-separates A from ζk in DI

k . Now, let VAn be the ancestral set of A and C in Dk.
Denote with B′ ⊂ VAn those nodes that are also d-connected to ζk in DI

k given C and with
A′ = VAn\{B′∪C} the sets of ancestors of A and C that are not d-connected to ζk and that
are not in the conditioning set C. Note that VAn = A′ ∪ B′ ∪ C. From the factorization,
we have that

pk(x) = pk(xA′ , xB′ , xC , xV \VAn
)

=
∏
j∈A′

pk(xj |xpaDk
(j))

∏
j∈B′

pk(xj |xpaDk
(j))∏

j∈C
pk(xj |xpaDk

(j))
∏

j∈V \VAn

pk(xj |xpaDk
(j))

=
∏
j∈A′

pk(xj |xpaDk
(j))

∏
j∈B′

pk(xj |xpaDk
(j))

∏
j∈C,paDk

(j)∩A′=∅

pk(xj |xpaDk
(j))

∏
j∈C,paDk

(j)∩A′ ̸=∅

pk(xj |xpaDk
(j))

∏
j∈V \VAn

pk(xj |xpaDk
(j))

=
∏
j∈A′

p(xj |xpaD(j))
∏
j∈B′

pk(xj |xpaDk
(j))

∏
j∈C,paDk

(j)∩A′=∅

pk(xj |xpaDk
(j))

∏
j∈C,paDk

(j)∩A′ ̸=∅

p(xj |xpaD(j))
∏

j∈V \VAn

pk(xj |xpaDk
(j)),

where the last equality follows from the fact that

· if j ∈ A′, then j is d-separated from ζk in DI
k given C and thus j can not be a child

of ζk;

· if j ∈ C and there exists at least one h ∈ paDk
(j) such that h ∈ A′, then j can not

be a child of ζk: if it were, then conditioning on j its parents would be d-connected
to ζk given C;

and recalling that j ∈ chζk(DI
k ) if and only if j ∈ T (k). Similarly, the (union of) parents of

nodes in A′ and {j ∈ C | paDk
(j) ∩ A′ ̸= ∅} are subsets of A′ ∪ C, while the parents of B′

and {j ∈ C | paDk
(j) ∩A′ = ∅} are subsets of B′ ∪ C. We can thus write

pk(x) = g(xA′ , xC)gk(xB′ , xC)gk(xV \VAn
),
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to highlight the observational and interventional blocks in the factorization above and their
arguments. We can thus marginalize out A′\A, B′ and V \VAn, thus obtaining

pk(xA, xC) =

∫
X(A′\A)∪B′∪(V \VAn)

g(xA′ , xC)gk(xB′ , xC)gk(xV \VAn
)

=

∫
X(A′\A)∪B′

g(xA′ , xC)gk(xB′ , xC)

=

∫
X(A′\A)

g(xA′ , xC)

∫
XB′

gk(xB′ , xC)

= g̃(xA, xC)g̃k(xC).

Using the latter expression we can write

pk(xA |xC) =
pk(xA, xC)

pk(xC)
=

g̃(xA, xC)g̃k(xC)∫
XA

g̃(xA, xC)g̃k(xC)

=
g̃(xA, xC)g̃k(xC)

g̃k(xC)
∫
XA

g̃(xA, xC)

=
g̃(xA, xC)∫

XA
g̃(xA, xC)

,

which does not depend on T (k) and is thus invariant as required by the Markov property.

Theorem 12. Let D1,D2 be two DAGs and I a collection of targets and induced parent
sets defining a valid general intervention for both D1 and D2. D1 and D2 belong to the
same I-Markov equivalence class if and only if DI

1,k and DI
2,k have the same skeleta and

v-structures for all k ∈ [K].

Proof. If : Because DI
1,k and DI

2,k have the same sleketon and set of v-structures for each
k ∈ [K], the two collections of I-DAGs {DI

1,k}Kk=1, {DI
2,k}Kk=1 satisfy the same d-separation

statements, thus implying the same sets of conditional independencies and invariances
through the I-Markov property, so thatMI(D1) =MI(D2).

Only if : Suppose there exists a k∗ ∈ [K] such that DI
1,k∗ and DI

2,k∗ do not have the
same skeleton and set of v-structures. Denote with D1,k∗ ,D2,k∗ the post intervention DAGs
corresponding to the k∗th experimental setting. Note that D1,k∗ ,D2,k∗ have the same
skeleta and sets of v-structures, otherwise D1,k∗ ,D2,k∗ wouldn’t be Markov equivalent and
consequently (D1,D2) wouldn’t be I-Markov equivalent given I. Moreover, DI

1,k∗ and DI
2,k∗
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have the same I-edges, as these are determined by T (k∗). They thus differ for the sets of
v-structures involving I-edges. Suppose that ζk∗ → v ← w is a v-structure in DI

1,k∗ which

is not present in DI
2,k∗ , meaning that w /∈ T (k∗) and w ∈ P

(k∗)
v . As the modified DAGs

D1,k∗ ,D2,k∗ have the same skeleton, then ζk∗ → v → w ∈ DI
2,k∗ . As the parent set of v is

fixed by the intervention, we would have that both v ← w ∈ DI
2,k and v → w ∈ DI

2,k, which
implies a cycle and thus a contradiction with the validity assumption.

We now shift our focus on the transformational characterization of Theorem 13

Lemma 26. Let D1 be a DAG containing the edge u→ v and I a collection of targets and
induced parent sets defining a general intervention. Let D2 be a graph identical to D1 except
for the reversal of u→ v. D1 and D2 belong to the same I-Markov Equivalence class if and
only if u→ v is simultaneously covered;

Proof. If: Suppose u→ v is simultaneously covered. Then, u→ v is covered in D1 and, for
any k ̸= 1, u → v is either (i) covered in DI

1,k or (ii) {u, v} ⊆ T (k). In case (i), we cannot
have u ∈ T (k) and v /∈ T (k) (or viceversa) by the definition of covered edge in the I-DAG.
The parent sets of the two nodes in the I-DAGs are thus the same as in the observational
DAG D and the proof follows from Chickering [1995, Lemma 1]. In case (ii), both u and
v are targets of intervention and reversing u → v in D1 does not cause any change in the
parent sets of the nodes in the I-DAGs. u → v thus has to be covered only in D and the
proof follows again from Chickering [1995, Lemma 1].

Only if: Suppose that u → v is not simultaneously covered. Then, at least one of
the following statements is true: (i) u → v is not covered in D1; (ii) there exists k∗ ∈
[K] such that u → v is not covered in DI

1,k∗ and {u, v} ̸⊆ T (k∗). In case (i) the proof
follows from Chickering [1995, Lemma 1]. In case (ii), we have that, by the definition of
a covered edge, paDI

1,k∗
(u) ∪ u ̸= paDI

1,k∗
(v). In particular, either there exists at least one

z such that z ∈ paDI
1,k∗

(u), z /∈ paDI
1,k∗

(v), or there exists at least one node w such that
w ∈ paDI

1,k∗
(v), w /∈ paDI

1,k∗
(u). Consider the first case. Then, either (a) z = ζk∗ or (b)

z ̸= ζk∗ . In case (a), note that v /∈ T (k∗), by definition of z, so that u → v ∈ DI
1,k∗ . As

the intervention is defining the parent set of node u, we have that paDI
1,k∗

(u) = paDI
2,k∗

(u).
Moreover, the intervention is supposed to be valid, so that v /∈ paDI

1,k∗
(u). We thus have

that u → v ∈ DI
1,k∗ , while both u → v, v → u /∈ DI

2,k∗ . As DI
1,k∗ ,DI

2,k∗ differ for their
skeleta, they can not be I-Markov equivalent. In case (b), instead, by the definition of a
not simultaneously-covered edge, we have that ζk∗ does not belong to the common parents
of {u, v}. Hence, {u, v} ̸⊆ T (k) and u→ v is covered in DI

1,k∗ if and only if it is covered in
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D1 (and the same holds for D2). The proof thus follows from Chickering [1995, Lemma 1].
The proof for case w ∈ paDI

1,k∗
(v), w /∈ paDI

1,k∗
(u) follows by a similar reasoning.

Let ∆(D1,D2) denote the set of edges in D1 that have opposite orientation in D2 and
Ψv = {u |u → v ∈ ∆(D1,D2)}, the set of nodes that are parents of v in D1 and children
of v in D2. Algorithm 6 was first presented in Chickering [1995] to find a covered edge
belonging to ∆(D1,D2) for two Markov Equivalent DAGs and it can be also adopted in our
setting.

Algorithm 6: Find-Edge (Chickering, 1995)

Input: DAGs D1,D2

Output: Edge from ∆(D1,D2)
1 Perform a topological sort on the nodes in D1;
2 Let v be the minimal node with respect to the sort for which Ψv ̸= ∅;
3 Let u be the maximal node with respect to the sort for which u ∈ Ψv;
4 return u→ v

Lemma 27. Let D1,D2 be two I-Markov equivalent DAGs for I, a collection of targets and
induced parent sets defining a valid general intervention for both D1,D2. The edge u → v

output from Algorithm 6 with input two D1,D2 is simultaneously covered.

Proof. We know from Lemma 2 in Chickering [1995] that u→ v is covered in D1. Suppose
now that u→ v is not simultaneously covered. Hence, there must exist at least one k∗ ̸= 1

such that u → v is not covered in DI
1,k∗ and {u, v} ̸⊆ T (k∗). In particular, either (i)

u ∈ T (k∗), v /∈ T (k∗) or (ii) v ∈ T (k∗), u /∈ T (k∗). Suppose (i). Note that v /∈ paDI
1,k∗

(u) as

the intervention is supposed to be valid. Hence, we have that ζk∗ → u → v in DI
1,k∗ and

ζk∗ → u ̸← v in DI
2,k∗ . Because D1,D2 now differ for their skeleton in one of the I-DAGs,

they can not be I-Markov equivalent. Suppose (ii). In this case, we have that either (a)
u /∈ paDI

1,k∗
(v) or (b) u ∈ paDI

1,k∗
(v). In case (a), we have that u ̸→ v ← ζk∗ in DI

1,k∗ and

u ← v ← ζk in DI
2,k∗ , as the parents of v remain invariant between D2 and DI

2,k∗ . The
difference in skeleton implies that D1,D2 are not I-Markov equivalent, a contradiction. In
case (b), for the same reason we would have u → v ← ζk∗ in DI

1,k∗ and u ↔ v ← ζk∗ in
DI

2,k∗ thus contradicting the fact that I is a valid collection of targets and induced parent
sets.

Theorem 13. Let D1,D2 be two DAGs and I a collection of targets and induced parent
sets defining a valid general intervention for both D1 and D2. D1 and D2 belong to the same
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I-Markov equivalence class if and only if there exists a sequence of edge reversals modifying
D1 and such that:

1. Each edge reversed is simultaneously covered;

2. After each reversal, {DI
1,k}Kk=1 are DAGs and D1,D2 belong to the same I-Markov

equivalence class;

3. After all reversals D1 = D2.

Proof. If: The proof follows immediately from the definition of the sequence.
Only if: We show that all the conditions are satisfied if we apply the procedure Find-Edge
to D1,D2 to identify the next edge to reverse in D1. We know that u → v, the output of
Find-Edge, is a simultaneously covered edge (Lemma 27). As it is simultaneously covered,
the DAG obtained by reversing the edge still belongs to the same I-Markov equivalence
class by Lemma 26. Moreover, |∆(D,D′)| decreases by one at each step. All the three
conditions are thus satisfied.

A.2 Proofs of Section 3.2.3

We here report the proofs of the results presented in Section 3.2.3, concerning the identifia-
bility of i) unknown general interventions and ii) unknown DAGs and general interventions.

Theorem 16. Let D be a DAG and I1, I2 two collections of targets and induced parent
sets defining a general intervention. Then, I1, I2 belong to the same I-Markov equivalence
class if and only if DI1

k ,DI2
k have the same skeleta and v-structures for all k ∈ [K].

Proof. If: As DI1
k and DI2

k have the same skeleton and same set of v-structures for all
k ∈ [K], they imply the same d-separation statements, thus implying the same sets
of conditional independencies and invariances through the I-Markov property, so that
MI1(D) =MI2(D).
Only if: Suppose there exists a k∗ ∈ [K] such that DI1

k∗ and DI2
k∗ do not have the same

skeleton and set of v-structures. Denote with D1,k∗ ,D2,k∗ the post intervention DAGs cor-
responding to the k∗th experimental setting. Note that D1,k∗ ,D2,k∗ have the same skeleta
and sets of v-structures, otherwise D1,k∗ ,D2,k∗ wouldn’t be Markov equivalent and conse-
quently (I1,P1), (I2,P2) wouldn’t be I-Markov equivalent. DI1

k∗ and DI2
k∗ thus differ for

their sets of I-edges and for v-structures involving the I-edges. In case of a difference in
skeleton, suppose without loss of generality that DI1

k∗ has an additional I-edge ζk∗ → v

which is not in DI2
k∗ . Then, we have that pk∗(xv |xpaD1,k∗

(v)) ̸= p1(xv |xpaD1,k∗
(v)), while
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pk∗(xv |xpaD2,k∗
(v)) = p1(xv |xpaD1,k∗

(v)) and I1, I2 can’t be I-Markov equivalent. In case

of a difference in the sets of v-structures, suppose that ζk∗ → v ← w is a v-structure in DI1
k∗

which is not present in DI2
k∗ . Accordingly w /∈ T

(k∗)
1 . As the modified DAGs D1,k∗ ,D2,k∗

have the same skeleton, then ζk∗ → v → w ∈ DI2
k∗ . However, because the parent set of

w is changing between the two DAGs and w /∈ T
(k∗)
1 , it means that w ∈ T

(k∗)
2 , so that

ζk∗ → w ∈ DI2
k∗ , inducing a difference in skeleton.

We now shift our focus on the transformational characterization of Theorem 17.

Lemma 28. Let D be a DAG and I1, I2 be two collections of targets and induced parent
sets defining general interventions and such that, for some k ∈ [K], DI1

k ,DI2
k differ only for

the reversal of u→ v ∈ DI1
k becoming v → u ∈ DI2

k . I1 and I2 belong to the same I-Markov
equivalence class if and only if u→ v is covered in DI1

k .

Proof. If : The proof is identical to Chickering [1995, Lemma 1].
Only if : Notice that, by construction, DI1

k ,DI2
k have the same skeleta and the same

I-edges in particular, so that T
(k)
1 = T

(k)
2 . Suppose now that u→ v is not covered in DI1

k .
Then paDI1

k

(u)∪u ̸= paDI1
k

(v). In particular, either (i) there exists some z ∈ paDI1
k

(u), z /∈
paDI1

k

(v) or (ii) there exists some w ∈ paDI1
k

(v), w /∈ paDI1
k

(u). In case (i), suppose that

z = ζk. In this case, u ∈ T
(k)
1 and v /∈ T

(k)
1 , so that paDI1

k

(v) = paD(v). Because of the

edge reversal, paDI1
k

(v) ̸= paDI2
k

(v), implying that paDI2
k

(v) ̸= paD(v) and v ∈ T
(k)
2 , which

is a contradiction as T (k)
1 = T

(k)
2 by construction. Hence, z ̸= ζk and the proof follows from

Chickering [1995, Lemma 1]. The proof for case (ii) follows by a similar reasoning.

Lemma 29. Let D be a DAG and I1, I2 be two collections of targets and induced parent
sets defining a general intervention and belonging to the same I-Markov equivalence class.
The edge u→ v output from Algorithm 6 with input DI1

k ,DI2
k is covered.

Proof. The proof is identical to the one of Lemma 2 in Chickering [1995].

Theorem 17. Let D be a DAG and I1, I2 two collections of targets and induced parent
sets. Then, I1, I2 belong to the same I-Markov equivalence class if and only if for each
I-DAG DI1

k there exists a sequence of edge reversals modifying DI1
k and such that:

1. Each edge reversed is covered;

2. After each reversal, DI1
k is a DAG and I1, I2 belong to the same I-Markov equivalence

class;
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3. After all reversals DI1
k = DI2

k .

Proof. If: It follows immediately from the definition of the sequence.
Only if: We show that all the conditions are satisfied if we apply the procedure Find-Edge
with input DI1

k and DI2
k , for all k ̸= 1. We know that u → v, output of Find-Edge is

covered (Lemma 29) and that the I-DAG obtained by reversing u → v corresponds to a
collection of targets and induced parent sets which is I-Markov equivalent to the initial one
(Lemma 28). At each step, ∆(DI1

k ,DI2
k ) decreases by one. All the three conditions are thus

satisfied.

We now consider the set of results concerning the joint identifiability of a pair (D, I).

Theorem 19. Let D1,D2 be two DAGs and I1, I2 two collections of targets and induced
parent sets defining a valid general intervention for D1,D2 respectively. (D1, I1), (D2, I2)
belong to the same I-Markov equivalence class if and only if DI1

1,k,D
I2
2,k have the same skeleta

and v-structures for all k ∈ [K].

Proof. If: As DI1
k and DI2

k have the same skeleta and set of v-structures for all k ∈ [K],
they imply the same d-separation statements, thus implying the same sets of conditional
independencies and invariances through the I-Markov property, so thatMI1(D) =MI2(D).
Only if: Suppose there exists a k∗ ∈ [K] such that DI1

1,k∗ and DI2
2,k∗ do not have the same

skeleton and set of v-structures. Denote with D1,k∗ ,D2,k∗ the post intervention DAGs
corresponding to the k∗th experimental setting. Note that D1,k∗ ,D2,k∗ have the same
skeleta and sets of v-structures, otherwise D1,k∗ ,D2,k∗ would not be Markov equivalent and
consequently (D1, I1), (D2, I2) wouldn’t be I-Markov equivalent. DI1

1,k∗ and DI2
2,k∗ thus differ

for their sets of I-edges or for v-structures involving the I-edges. In case of a difference
in the I-edges, suppose without loss of generality that DI1

1,k∗ has an additional I-edge
ζk∗ → v which is not in DI2

2,k∗ . Then, we have that pk∗(xv |xpaD1,k∗
(v)) ̸= p1(xv |xpaD1,k∗

(v)),
while pk∗(xv |xpaD2,k∗

(v)) = p1(xv |xpaD1,k∗
(v)) and (D1, I1), (D2, I2) can not be I-Markov

equivalent. In case of a difference in the sets of v-structures, suppose that ζk∗ → v ← w is a
v-structure in DI1

1,k∗ which is not present in DI2
2,k∗ . As the modified DAGs D1,k∗ ,D2,k∗ have

the same skeleton, then ζk∗ → v → w ∈ DI2
2,k∗ . We thus have that w is d-separated from

ζk∗ in DI1
1,k, but not in DI2

2,k. By the I-Markov property, it follows that pk∗(xw) = p1(xw),
while pk∗(xw) ̸= p1(xw) and (D1, I1), (D2, I2) can not be I-Markov equivalent.

Lemma 30. Let D1,D2 be two DAGs and I1, I2 two collections of targets and induced
parent sets defining a valid general intervention for both D1,D2. Suppose in addition that
(D1, I1), (D2, I2) differ only for the reversal of u → v ∈ D1 becoming v → u ∈ D2.
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(D1, I1), (D2, I2) belong to the same I-Markov equivalence class if and only if u → v is
simultaneously covered in D1.

Proof. By construction, we have that I1 = I2. Consequently, the proof is identical to the
one of Lemma 26.

Lemma 31. Let D1,D2 be two DAGs and I1, I2 two collections of targets and induced
parent sets defining a valid general intervention for both D1,D2. Suppose in addition that
(D1, I1), (D2, I2) differ only for the reversal of u→ v ∈ DI1

1,k∗ becoming v → u ∈ DI2
2,k∗ , for

some k∗ ̸= 1. (D1, I1), (D2, I2) belong to the same I-Markov equivalence class if and only
if u→ v is covered in DI1

1,k.

Proof. By construction, D1 = D2. Consequently, the proof is identical to the one of Lemma
28.

Theorem 20. Let D1,D2 be two DAGs and I1, I2 two collections of targets and induced
parent sets defining a valid general intervention for both D1,D2. (D1, I1), (D2, I2) belong to
the same I-Markov equivalence class if and only if there exists a sequence of edge reversals
modifying the collection of I-DAGs {DI1

k }
K
k=1 and such that:

1. Each edge reversed in D1 is simultaneously covered;

2. Each edge reverse in DI1
1,k, for k ̸= 1, is covered;

3. After each reversal, {DI1
1,k}

K
k=1 are DAGs and (D1, I1), (D2, I2) belong to the same

I-Markov equivalence class;

4. After all reversals DI1
1,k = DI2

2,k for each k ∈ [K].

Proof. One can construct a sequence of edge reversals satisfying all the conditions by first
using Algorithm 6 with inputs DI1

1,k,D
I2
1,k for k ∈ [K], k ̸= 1, and then using the same

Algorithm with inputs D1,D2. For each of these two steps, the proofs follow the ones of
the corresponding Theorems 13 and 17.

Appendix B: Proofs of Section 3.3

This section contains the proofs of the main results presented in Section 3.3 of the manuscript.
The numbering of such propositions and theorems in this section is the same as in the main
text.
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Proposition 21. Given any complete DAG C and a data matrix X collecting observations
from K different experimental settings, for any valid pair (D, I) Assumptions A1-A3 imply

p (X | D, I) =
q∏

j=1


p
(
X

A(j)
·faD(j) |C

)
p
(
X

A(j)
·paD(j) |C

) ∏
k:j∈T (k)

p
(
X

(k)
·faDk

(j) |C
)

p
(
X

(k)
·paDk

(j) |C
)
 ,

where p
(
X

A(j)
·B |C

)
is the marginal data distribution computed under any complete DAG C.

Proof. Using Equations (3.6) and (3.8), together with Assumption A3, we can write

p
(
X | D, I

)
=

∫
p
(
X |Θ(K),D, I

)
p
(
Θ(K) | D, I

)
dΘ(K)

=

∫ q∏
j=1

{
p
(
X

A(j)
·j |XA(j)

·paD(j),Θ
(1)
j ,D

) ∏
k:j∈T (k)

p
(
X

(k)
·j |X

(k)
·paDk

(j),Θ
(k)
j ,Dk

)

p
(
Θ

(1)
j | D

) ∏
k:j∈T (k)

p
(
Θ

(k)
j | Dk

)}
dΘ(K)

=

q∏
j=1

{∫
p
(
X

A(j)
·j |XA(j)

·paD(j),Θ
(1)
j ,D

)
p
(
Θ

(1)
j | D

)
dΘ

(1)
j

∏
k:j∈T (k)

∫
p
(
X

(k)
·j |X

(k)
·paDk

(j),Θ
(k)
j ,Dk

)
p
(
Θ

(k)
j | Dk

)
dΘ(K)

}
.

By Assumption A2 (likelihood and prior modularity), it follows that

p
(
X | D, I

)
=

q∏
j=1

{∫
p

(
X

A(j)
·j |XA(j)

·paCj
(j),Θ

(1)
j , Cj

)
p
(
Θ

(1)
j |Cj

)
dΘ(1)

∏
k:j∈T (k)

∫
p

(
X

(k)
·j |X

(k)
·paCj,k

(j),Θ
(k)
j , Cj,k

)
p
(
Θ

(k)
j |Cj,k

)
dΘ(k)

}

=

q∏
j=1

{
p

(
X

A(j)
·j |XA(j)

·paCj
(j), Cj

) ∏
k:j∈T (k)

p

(
X

(k)
·j |X

(k)
·paCj,k

(j), Cj,k

)}
.

Now by Assumption A1 (complete model equivalence) and recalling that paCj
(j) = paD(j)

91



Chapter 3. Bayesian causal discovery from unknown general
interventions

and paCj,k
(j) = paDk

(j), we obtain

p
(
X | D, I

)
=

q∏
j=1

{
p
(
X

A(j)
·j |XA(j)

·paD(j), C
) ∏

k:j∈T (k)

p
(
X

(k)
·j |X

(k)
·paDk

(j), C
)}

=

q∏
j=1


p
(
X

A(j)
·faD(j) |C

)
p
(
X

A(j)
·paD(j) |C

) ∏
k:j∈T (k)

p
(
X

(k)
·faDk

(j) |C
)

p
(
X

(k)
·paDk

(j) |C
)
 ,

which completes the proof.

Theorem 22 (Score equivalence). Let D1,D2 be two DAGs and I1, I2 two collections of
targets and induced parent sets defining a valid general intervention for D1,D2 respectively.
If (D1, I1) and (D2, I2) are I-Markov equivalent, then Assumptions A1-A3 imply

p(X | D1, I1) = p(X | D2, I2).

Proof. By Theorem 20, there exists a sequence of edge reversals applied to either D1 or
DI

1,k, k ̸= 1 and such that, at the end of the sequence (D1, I1) = (D2, I2). Let for simplicity
(D, I) be the pair of DAG and collection of targets and induced parent sets obtained at a
given step of the sequence. We can consider the Bayes factor between (D, I) and (D̃, Ĩ),
the corresponding pair obtained at the subsequent step. These two pairs differ for either
(i) a simultaneously covered edge reversal or (ii) a covered edge reversal in one of the I-
DAGs DI

k , k ̸= 1. In case (i), suppose that D, D̃ differ for the simultaneously covered edge
u→ v ∈ D, which is reversed in D̃, while I = Ĩ. Then

p
(
X | D, I

)
p
(
X | D̃, Ĩ

) =

 q∏
j=1


p
(
X

A(j)
·faD(j) |C

)
p
(
X

A(j)
·paD(j) |C

) ∏
k:j∈T (k)

p
(
X

(k)
·faD1,k

(j) |C
)

p
(
X

(k)
·paD1,k

(j) |C
)

 ·

·

 q∏
j=1


p
(
X

A(j)
·faD̃(j) |C

)
p
(
X

A(j)
·paD̃(j) |C

) ∏
k:j∈T̃ (k)

p
(
X

(k)
·faD̃k

(j) |C
)

p
(
X

(k)
·paD̃k

(j) |C
)



−1

=

 q∏
j=1

p
(
X

A(j)
·faD(j) |C

)
p
(
X

A(j)
·paD(j) |C

)
 ·

 q∏
j=1

p
(
X

A(j)
·faD̃(j) |C

)
p
(
X

A(j)
·paD̃(j) |C

)
−1

=

 p
(
X

A(u)
·faD(u) |C

)
p
(
X

A(u)
·paD(u) |C

) p
(
X

A(v)
·faD(v) |C

)
p
(
X

A(v)
·paD(v) |C

)
 ·

 p
(
X

A(v)
·faD̃(u) |C

)
p
(
X

A(v)
·paD̃(u) |C

) p
(
X

A(v)
·faD̃(v) |C

)
p
(
X

A(v)
·paD̃(v) |C

)
−1

.
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Because D and D̃ differ for the reversal of the simultaneously covered edge u→ v, then the
following equalities holds:

paD(u) = paD̃(v), faD(v) = faD̃(u), faD(u) = paD(v), faD̃(v) = paD̃(u). (3.20)

Therefore, the ratio simplifies to 1 if A(u) = A(v). To prove this, notice that for any j ∈ [q]

A(j) :=
{
k ∈ [K] : j /∈ T (k)

}
=
{
k ∈ [K] : ζk /∈ paDI

k
(j)

}
.

Suppose now A(u) ̸= A(v). As a consequence, there exists k ∈ [K] such that ζk ∈ paDI
k
(u),

while ζk /∈ paDI
k
(v), or viceversa. In both cases, this however would imply that u → v is

not simultaneously covered, which is a contradiction, and therefore A(u) = A(v). In case
(ii), suppose that, for some k ∈ [K], DI

k , D̃I
k differ for the covered edge u→ v ∈ DI

k , which
is reversed in D̃I

k . Then D = D̃ and

p
(
X | D, I

)
p
(
X | D̃, Ĩ

) =

 q∏
j=1


p
(
X

A(j)
·faD(j) |C

)
p
(
X

A(j)
·paD(j) |C

) ∏
k:j∈T (k)

p
(
X

(k)
·faDk

(j) |C
)

p
(
X

(k)
·paDk

(j) |C
)

 ·

·

 q∏
j=1


p
(
X

A(j)
·faD̃(j) |C

)
p
(
X

A(j)
·paD̃(j) |C

) ∏
k:j∈T̃ (k)

p
(
X

(k)
·faD̃k

(j) |C
)

p
(
X

(k)
·paD̃k

(j) |C
)



−1

=

 p
(
X

(k)
·faDk

(u) |C
)

p
(
X

(k)
·paDk

(u) |C
) p

(
X

(k)
·faDk

(v) |C
)

p
(
X

(k)
·paDk

(v) |C
)
 ·

 p
(
X

(k)
·faD̃k

(u) |C
)

p
(
X

(k)
·paD̃k

(u) |C
) p

(
X

(k)
·faD̃k

(v) |C
)

p
(
X

(k)
·paD̃k

(v) |C
)


−1

,

where the second equality follows from the fact that by the I-Markov equivalence of I and
Ĩ, T = T̃ . Since u → v is covered in the two DAGs, the equalities in (3.20) still hold and
the ratio simplifies to 1.

Appendix C: Proofs of Section 3.4

This section contains the proof of Proposition 24 which establishes the convergence of
Algorithms 3 to the posterior distribution p(D, T ,P |X).

Proposition 24. The finite Markov chain defined by Algorithm 3, 4, and 5 is reversible,
aperiodic, and irreducible. Accordingly, it has p(D, T ,P |X) as its unique stationary dis-
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tribution.

Proof. The reversibility and aperiodicity of Algorithm 3 follows immediately from the prop-
erties of the Metropolis-Hastings algorithm [Craiu and Rosenthal, 2014]. To prove irre-
ducibility, notice that if, at each step of the Markov chain, both (i) p(D̃, I |X) and (ii) the
proposal ratio are strictly greater than zero, then evaluating the irreducibility of Algorithm
1 reduces to evaluating the irreducibility of the Markov chain defined by the proposal dis-
tribution, illustrated in Algorithm 7. Requirement (i) is trivially satisfied in the case of

Algorithm 7: Markov chain defined by the proposal distribution of Algorithm 3

Input: Number of iterations S, initial values for DAG, targets and induced parent
sets D0, T 0,P0

Output: A sample from a Markov chain over (D, T ,P)
1 Construct

{
Ds

k
I}K

k=1
;

2 Set I0 = (T 0,P0);
3 for s in 1:S do
4 Sample π, a permutation vector of length K;
5 Set {Ds, Is} = {Ds−1, Is−1};
6 for k in 1:K do
7 if πk = 1 then
8 Construct ODs using Algorithm 4;
9 Sample D̃ uniformly at random from ODs ;

10 Set Ds = D̃
11 end
12 end
13 else
14 Construct ODsI

πk
using Algorithm 5;

15 Sample D̃I
πk

uniformly at random from ODsI
πk

;

16 Recover Ĩ(πk) = (T̃ (πk), P̃ (πk)) from (D̃I
πk
,Ds);

17 Set I
(πk)
s = Ĩ(πk)

18 end
19 end
20 Recover {T s,Ps}Ss=1 from {Is}Ss=1;
21 return {Ds, T s,Ps}Ss=1;

priors on (D, I) with full support, as both the proposal distributions defined by Algorithm
4 and 5 explicitly take into account the validity requirement while defining the set of pos-
sible operators. Condition (ii) is satisfied if each move in the Markov chain is invertible,
that is q(D̃ | D) > 0 if and only if q(D | D̃) > 0. Because of the structure of our proposal
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distributions in Algorithms 4 (5) this is equivalent to establish for each type of operator
the existence of an inverse operator; specifically, we need to prove that if an operator be-
longs to OD (ODI

k
), then its inverse operator belongs to OD̃ (OD̃I

k
) too. For OD, whose

construction is based on operators Insert(u, v), Delete(u, v) and Reverse(u, v) applied to
u, v ∈ [q], u ̸= v, the proof is immediate: Insert(u, v) is the inverse operator of Delete(u, v)

and viceversa, while Reverse(u, v) is the inverse operator of Reverse(v, u). The same holds
when the three operators are applied to u, v ∈ [q] for the construction of ODI

k
. In addition,

when operators Insert and Delete involve ζk, we have Insert(ζk, v) as the inverse operator
of Delete(ζk, v) and viceversa.

We can thus prove the irreducibility of the chain defined by Algorithm 3 by proving the
irreducibility of the Markov chain defined by Algorithm 7. At each step s of the algorithm,
the proposed value is accepted and the new sequence of I-DAGs {DI

s,k}Kk=1 is obtained by
sequentially updating each I-DAG in a random order defined by the random permutation
πs. Notice that each component-wise update is reversible as shown before. Moreover,
any permutation vector π admits an inverse permutation vector. Therefore, to prove the
irreducibility of 7, it is sufficient to note that starting from any DAG {D̃I

k}, it is always
possible to reach the sequence of empty I-DAGs {D̄I

k}Kk=1 by repeated edge deletions. By
reversibility, this implies that it is always possible to reach any DAG starting from any
other DAG. As the irreducibility of 7 implies the irreducibility of 3, the result follows.
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