
Jќіћѡ PѕD ѝџќєџюњ іћ MюѡѕђњюѡіѐѠ Mіљюћќ-Bіѐќѐѐю – Pюѣію – INёAM

Derived Invariance of Higher Direct Image
Sheaves of the Canonical Bundle

PhD Thesis

Supervisor
Prof. Luigi Lombardi

Doctoral Dissertation of
Stefano Mammola

Registration number
862925

Academic year 2021/22 – XXXV Cycle





Ad Eleonora





Contents

Introduction 5

1 Generic Vanishing and Fourier-Mukai Transform 9
1.1 Generic Vanishing . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Symmetric Fourier-Mukai Transform . . . . . . . . . . . . . . . . 12
1.3 Higher Direct Images of the Canonical Sheaf . . . . . . . . . . . 14

2 Derived Invariants of Irregular Varieties 17
2.1 The irregularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Non-vanishing Loci . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 The Albanese Map . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 The Albanese-Iitaka Fibration . . . . . . . . . . . . . . . . . . . . 24
2.5 The Relative twisted Hochschild structure . . . . . . . . . . . . . 26
2.6 The Relative Canonical Ring . . . . . . . . . . . . . . . . . . . . . 29
2.7 Irregular Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Rouquier-stable Equivalences 33
3.1 The Albanese Dimension . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Invariance of Higher Direct Images . . . . . . . . . . . . . . . . . 36
3.3 Cohomology of Higher Direct Images . . . . . . . . . . . . . . . 40
3.4 Comparison of Non-Vanishing Loci . . . . . . . . . . . . . . . . 42
3.5 Small Values of the Albanese Fiber Dimension . . . . . . . . . . 46
3.6 Hochschild Homology and Generation in Low Degrees . . . . . 48

Bibliography 51

3





Introduction

In the following, we consider a smooth projective complex variety X . We de-
note by Alb(X) the Albanese variety ofX , which is a q(X)-dimensional abelian
variety, where q(X) = h1(X,OX) is the irregularity of X . A variety X is said to
be irregular if q(X) > 0. The Albanese map of X is the morphism aX : X →
Alb(X). Denote byDb(X) = Db(Coh(X)) the bounded derived category of co-
herent sheaves on X . We call derived equivalence an exact equivalence of trian-
gulated categories Φ: Db(X) → Db(Y ). Our main interest concerns the study
of the invariance of the cohomology ranks hq(Alb(X), RpaX∗ωX) under derived
equivalence. This problem arises as a generalization of the well-known conjec-
ture, formulated by Orlov [Orlov, 2005] and by Kontsevich [Kontsevich, 1995],
about the invariance of the Hodge numbers hp,q(X), which can be stated as
follows:

Conjecture A. Let X and Y be smooth projective complex varieties such that there
exists a derived equivalence Db(X) ≃ Db(Y ). Then

hp,q(X) = hp,q(Y )

for every p, q.

This conjecture has already been proved in several cases: in dimension one
it is trivial because the only non trivial Hodge number for smooth complex pro-
jective curves is the genus, for surfaces it was proved by T. Bridgeland and A.
Maciocia in [Bridgeland and Maciocia, 2001], for threefolds by M. Popa and C.
Schnell in [Popa and Schnell, 2011], for varieties of dimension 4 by R. Abuaf
who proved that if X and Y have the same h1,1 then all their Hodge num-
bers are equals [Abuaf, 2017], for varieties of general type by Y. Kawamata in
[Kawamata, 2002], for hyperkähler varieties by L. Taelmann in [Taelman, 2019].
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Introduction

Rouquier in [Rouquier, 2011] proved that a derived equivalenceΦ: Db(X) →
Db(Y ) induces an isomorphism of algebraic groups

φ : Aut0(X)× Pic0(X)
∼−→ Aut0(Y )× Pic0(Y )

calledRouquier isomorphism. Using this result Popa and Schnell show that Pic0(X)

and Pic0(Y ) are isogenous and that if Aut0(X) is not affine, thenX and Y have
the structures of étale locally trivial fibrations over isogenous positive dimen-
sional abelian varieties (see [Popa and Schnell, 2011]). We mainly consider the
case when Aut0(X) is affine. In particular, we are interested in the case where
the Rouquier isomorphism respects the Picard factors, i.e., when it induces
an isomorphism which, by a slight abuse of notation, will also be denoted by
φ : Pic0(X)

∼−→ Pic0(Y ). If this is the case, we say that the derived equivalence
Φ is Rouquier-stable. In this seĴing, we establish the following result

Theorem B. Let Db(X) ≃ Db(Y ) be a derived equivalence. If dimX ≤ 3 then

hp(Alb(X), RqaX∗ωX) = hp(Alb(Y ), RqaY ∗ωY )

for every p, q ≥ 0.

Moreover, the same result holds true if dimX = 4 and Φ: Db(X) → Db(Y ) is a
Rouquier-stable derived equivalence.

The proof of this theorem involves another important result that we prove
about the invariance of a certain higher direct image of the canonical bundle.
Caucci, Lombardi, and Pareschi in [Caucci et al., 2022] showed the derived in-
variance of the relative canonical ring R(bX) =

⊕
m≥0 bX∗ω

⊗m
X under a mor-

phism bX fromX to the dual of a Rouquier-stable abelian subvariety of Pic0(X).
By pushing forward these techniques, we establish the invariance of the top
non-trivial higher direct image sheaf of the canonical bundle. We denote by

c(X) = dimX − dim aX(X)

the Albanese fiber dimension of X.

TheoremC. LetΦ: Db(X) → Db(Y ) be a Rouquier-stable equivalence. Then c(X) =
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Introduction

c(Y ) and the Rouquier isomorphism induces the following isomorphism of sheaves

φ̂∗Rc(X)aX∗ωX ≃ Rc(Y )aY ∗ωY

where φ̂ indicates the dual morphism of φ.

Furthermore, theworks of Lombardi andPopa [Popa, 2013, Lombardi, 2014,
Lombardi and Popa, 2015] explore the connection between the derived invari-
ance of the Hodge numbers of type h0,i(X) and the derived invariance of the
so-called cohomology support loci of the canonical bundle

V i
m(ωX) = {α ∈ Pic0(X) | hi(X,ωX ⊗ α) ≥ m}

for m ≥ 1 and i ∈ {0, . . . ,dimX}. These loci are algebraic subsets of Pic0(X).
Denote by V i

m(ωX)0 and by V i
m(ωY )0 the union of the connected components

containing the origin of Pic0(X) and Pic0(Y ), respectively. Lombardi and Popa
proved that h0,i(X) is a derived invariant if and only if the cohomology sup-
port loci V i

m(ωX)0 are derived invariants for every m ≥ 1, via the Rouquier
isomorphism.

In an analogous way we study the following loci aĴached to higher direct
images of the canonical bundle under the Albanese morphism

V q
m(R

paX∗ωX) =
{
α ∈ Pic0(X) | hq(Alb(X), RpaX∗ωX ⊗ α) ≥ m

}
with p, q ≥ 0 and m ≥ 1. We will establish a relation between the loci
V q
m(R

paX∗ωX)0 and the cohomology ranks hq(Alb(X), RpaX∗ωX). In fact, we
prove the following theorem.

Theorem D. The loci V q
m(R

paX∗ωX)0 are derived invariants for every m ≥ 1 in di-
mension n if and only if the cohomology ranks hq(Alb(X), RpaX∗ωX) are derived in-
variants in dimension n.

As an application, we study the case when c(X) = 2. We prove, using
the above results, a generic version of the invariance of the Hodge numbers
aĴached to the canonical bundle, for Rouquier-stable derived equivalences.

Theorem E. LetDb(X) ≃ Db(Y ) be a Rouquier-stable derived equivalence and sup-
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Introduction

pose c(X) = 2. Then for every i ≥ 0 we have

hi(X,ωX ⊗ α) = hi(Y, ωY ⊗ φ(α))

for a generic α ∈ Pic0(X).

Finally, we extend to higher values of c(X) a result of Caucci and Pareschi
in [Caucci and Pareschi, 2019] stating that for a variety of maximal Albanese
dimension, i.e. when c(X) = 0, the ranks hi(X,ωX) are derived invariants for
all i ≥ 0.

In the first chapter of this thesiswe introduce the background theory and set
the context of our work. We briefly review the generic vanishing theorem and
its connection with the Fourier-Mukai theory. We also recall some of Kollár’s
theorems about higher direct images of the Albanese map.

In the second chapter we build a solid background for our work. In par-
ticular we focus on the known derived invariants for irregular varieties. We
explore the relations between the different invariants and present some key
ideas and techniques that are crucial for our work.

The last Chapter is dedicated to proving the main theorems of this thesis.

Acknowledgements I wish to thank my supervisor, Professor Luigi Lom-
bardi, whose guidance and contributions have been fundamental in the real-
ization of this thesis. My gratitude extends to Professor Giuseppe Pareschi and
Professor Federico Caucci for their constructive feedback and inspiring discus-
sions. I also want to thank my tutor, Professor Lidia Stoppino, for her helpful
advice throughout this journey.

Moreover, I would like to acknowledge those who have walked this path
withme. My family, for their steadfast support and belief in me. Marco, for his
constant encouragement and presence, despite our physical distance. Davide,
for his tenacity and passion that have been a source for my motivation. Above
all, Eleonora, for choosing to love and stand by me day after day, I am deeply
grateful.
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Chapter 1

Generic Vanishing and
Fourier-Mukai Transform

LetX be a smooth projective complex variety of dimension n. One of the most
crucial tools for comprehending the geometric properties of X is the Albanese
variety, which is denoted by Alb(X). The Albanese variety is given by the fol-
lowing definition

Alb(X) =
H0(X,Ω1

X)
∗

H1(X,Z)

and it is an abelian variety with dimension equal to q(X) = h0(X,Ω1
X) =

h1(X,OX). If the condition q(X) > 0 is satisfied, then X is said to be irregu-
lar. The Albanese map of X , denoted as aX : X → Alb(X) can be described as
follows

x 7→
(
ω 7→

∫ x

x0

ω

)
where x0 is a fixed point on X . The Albanese map is characterized by a uni-
versal property, i.e. any morphism from X to an abelian variety factorizes
uniquely through Alb(X). The Albanese dimension of X is denoted by

a(X) := dim aX(X)

which is the dimension of the image of the Albanese map.

In addition to the Albanese variety, its dual abelian variety, known as the
Picard variety, plays a significant role in the study of complex varieties. The
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Chapter 1. Generic Vanishing and Fourier-Mukai Transform

Picard variety is denoted by Pic0(X) and can be defined as follows

Pic0(X) =
H1(X,OX)

H1(X,Z)
.

The Picard variety parametrizes line bundles onX that have a trivial first Chern
class. Moreover, the pullback of theAlbanesemap a∗X : Pic0(Alb(X)) → Pic0(X)

is an isomorphism.

1.1 Generic Vanishing

We will now introduce the definition of cohomological support loci, and some
of its geometric properties.

Definition 1.1. For a coherent sheaf F on X we define its i-th cohomological
support loci as

V i
m(F) =

{
α ∈ Pic0(X) | hi(X,F ⊗ α) ≥ m

}
⊆ Pic0(X)

with i ≥ 0 andm ≥ 1.They are algebraic subvarieties of Pic0(X). For simplicity,
when m = 1, we will denote by V i(F) = V i

1 (F). The union of the components
containing the origin is denoted by V i

m(F)0.

Using the generic vanishing theory we can deduce the following codimen-
sion bound for the cohomology support loci associated to the canonical bundle

codimV i(ωX) ≥ i− dimX + a(X)

for every i ≥ 0.
By combining the work of Green, Lazarsfeld, Simpson and Pareschi we can

get a beĴer understanding of the geometry of the loci V i(ωX)with the following
linearity theorem

Theorem1.2. ([Green and Lazarsfeld, 1991, Simpson, 1993, Pareschi, 2017]). Let
W be an irreducible component of V i(ωX), then W is a linear subvariety, i.e. W =

T +αwhere T ⊆ Pic0(X) is an abelian subvariety and α ∈ Pic0(X) is a torsion point.

10



1.1 Generic Vanishing

Moreover, consider the composition h = π ◦ aX

X AlbX

T̂

aX

h

π

a. Let N be the base of the fibration part of the Stein factorization, then dimN ≤
dimX − i, with i > 0.

b. Any resolution of singularities of N has maximal Albanese dimension.

c. W ⊆ h∗(Pic0(N)) + α.

Remark 1.3. If we consider higher direct images of the canonical sheafRjaX∗ωX ,
instead of ωX , then any irreducible components of V i(RjaX∗ωX) is a linear sub-
variety of Pic0(X) by [Hacon and Pardini, 2004, Theorem 2.2 (b)].

Now, assume that X has Kodaira dimension kod(X) ≥ 0, we can describe
the loci V 0(ω⊗m

X ) using the Iitaka fibration of X. In fact, after a birational mod-
ification of X , the Iitaka fibration of X has the form of a morphism f : X → ZX

between smooth projective varieties, with dimZX = kod(X). The universal
property of the Albanese map assures the commutativity of the following dia-
gram

X Alb(X)

ZX Alb(ZX)

aX

f af

aZX

where, by [Hacon et al., 2018, Lemma 11.1 (a)], the morphism f is surjective
with connected fibers.

Combining [Hacon et al., 2018, Theorem 11.2(b), comment (2) after Lemma
11.1] with [Chen and Hacon, 2004, Lemma 2.2] we get a description of the loci
V 0(ω⊗m

X ).

Theorem1.4. The irreducible components of the locusV 0(ωX) are translates of abelian
subvarieties of âf (Pic0(ZX)) by torsion points αi ∈ Pic0(X)

V 0(ωX) ⊆
∪
i

(αi + Pic0(ZX)).
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Chapter 1. Generic Vanishing and Fourier-Mukai Transform

Moreover, for the loci V 0(ω⊗m
X ) withm ≥ 2 the above relation is an equality

V 0(ω⊗m
X ) =

∪
i

(αi + Pic0(ZX)).

1.2 Symmetric Fourier-Mukai Transform

We introduce some preliminary definitions and a result that will be used later,
for more details refer to [Schnell, 2019].

For an abelian variety A of dimension g we denote by

R∆A(−) := RHomA(−,OA[g])

the Groethendieck duality functor. Let α ∈ Pic0(A), we denote by P be a nor-
malized Poincaré bundle on A× Pic0(A), so that P|A×{α} ≃ α. We consider the
Fourier-Mukai transform

RΦA(−) := Rp2∗(p∗1(−)⊗ P)

where p1 and p2 are the projections from A× Pic0(A) onto the first and second
factor, respectively. Define the symmetric Fourier-Mukai transform as

FMA = RΦA ◦ R∆A.

Definition 1.5. We say that a coherent sheaf F on A satisfies the generic van-
ishing condition (GV condition) or simply is a GV-sheaf if it satisfies one of the
conditions stated in the next Theorem [Pareschi and Popa, 2009, Theorem 2.2],
[Pareschi and Popa, 2011, Theorem A].

Theorem 1.6. In the previous seĴing, the following conditions are equivalent

(a.) FMA(F) is a complex concentrated in degree 0,

(b.) codimPic0(A) V
i(F) ≥ i for every i ≥ 1.

GV sheaves satisfy the following properties (see [Hacon, 2004, Corollary
3.2] and [Pareschi, 2012, Lemma 1.12])

12



1.2 Symmetric Fourier-Mukai Transform

Proposition 1.7. Consider a GV-sheaf F ̸= 0 on A, then V 0(F) ̸= ∅, and

V 0(F) ⊇ V 1(F) ⊇ · · · ⊇ V g(F).

Moreover, if codimV i(F) > i for all i > 0 then

V 0(F) = Pic0(A).

We denote byHiK the i-th cohomology of the complexK, then we have the
following relation.

Lemma 1.8. For any α ∈ Â denote by jα : {α} ↪→ Â the closed embedding. Let F be
a coherent sheaf on A. Then for any α ∈ Â

H−jLj∗αFMA(F) ≃ Hj(A,F ⊗ α−1)∨.

Moreover, if ψ : F → G is a morphism of coherent sheaves on A, then the morphism

H−jLj∗αFMA(ψ) : H−jLj∗αFMA(G) → H−jLj∗αFMA(F)

is identified with the linear map

Hj(A,G ⊗ α−1)∨ → Hj(A,F ⊗ α−1)∨.

Proof. We have the following isomorphisms

H−jLj∗αFMA(F) ≃ H−jLj∗α (Rp2∗ (p∗1RHom(F ,OA[g])⊗ P)) ≃

H−jRΓ(A,RHom(F , α[g])) ≃ Hom−j

Db(A)
(F , α[g]) ≃ Hj(A,F ⊗ α−1)∨.

where we use base change and Serre duality.

We now recall the following useful formulas (see [Schnell, 2019, Proposition
4.1]).

Proposition 1.9. For a homomorphism of abelian varieties f : A → B, we have the
following isomorphisms of functors

FMB ◦ Rf∗ ≃ Lf̂ ∗ ◦ FMA FMA ◦ Lf ∗ ≃ Rf̂∗ ◦ FMB

13



Chapter 1. Generic Vanishing and Fourier-Mukai Transform

Remark 1.10. In our seĴing, we have that

FMAlb(Y ) ◦ φ̂∗ ≃ φ∗ ◦ FMAlb(X)

whereφ : Pic0(X) → Pic0(Y ) is theRouquier isomorphism induced by aRouquier-
stable equivalence.

Remark 1.11. Wewant to note that ifX has maximal Albanese dimension, then
ωX is a GV-sheaf [Ein and Lazarsfeld, 1997, Remark 1.6].

The same result holds true, unconditionally on the Albanese dimension of
X , for the higher direct images of the canonical bundle.

Theorem 1.12 ([Hacon, 2004], Corollary 4.2). LetX be a smooth projective variety
and let aX be the Albanese morphism. Then RiaX∗ωX is a GV-sheaf on Alb(X) for
every i ≥ 0.

Remark 1.13. [Hacon and Pardini, 2004, Theorem 2.2] Theorem 1.12 still holds
using ωX ⊗ α for a torsion point α ∈ Pic0(X).

1.3 Higher Direct Images of the Canonical Sheaf

We introduce some theoremsprovedbyKollár on higher direct images of canon-
ical sheaves, because they will often be used in the next chapters.

Theorem 1.14. [Kollár, 1986a, Theorem 2.1], [Kollár, 1986b, Theorem 3.1]. Let X
and Y be projective complex varieties of dimension d and d − k, with X smooth, and
let f : X → Y be a surjective morphism. Then

(i.) Rif∗ωX is torsion-free for every i ≥ 0;

(ii.) Rif∗ωX = 0 if i > k;

(iii.) Let L be an ample line bundle on Y, then

Hj(Y, L⊗Rif∗ωX) = 0

for every i ≥ 0 and j > 0;

14



1.3 Higher Direct Images of the Canonical Sheaf

(iv.) There is the following decomposition, in the derived category of Y

Rf∗ωX ≃
k⊕

i=0

Rif∗ωX [−i].

Remark 1.15. Following [Kollár, 1986b, Section §3], in the Theorem above ωX

can be replaced with ωX ⊗ β, with β a torsion point of Pic0(X).

Combining Theorem 1.14(ii.) and (iv.) and using projection formula one
can obtain the following useful relation

H i(X,ωX ⊗ a∗Xα) =

min{i,k}⊕
h=0

H i−h(A,RhaX∗ωX ⊗ α)

where α ∈ Pic0(X).

Theorem 1.16. [Kollár, 1986a, Proposition 7.6] LetX and Y be smooth projective va-
rieties and let f : X → Y be a surjective morphism with connected fibres. If dimX =

n and dimY = k. Then
Rn−kf∗ωX ≃ ωY .

Theorem 1.17. [Kollár, 1986b, Theorem 3.4] LetX be a smooth projective variety and
let f : X → Y and g : Y → Z be surjective morphisms between projective varieties.
Then

Rp(g ◦ f)∗ωX ≃
∑
j

Rjg∗R
p−jf∗ωX

15





Chapter 2

Derived Invariants of Irregular
Varieties

2.1 The irregularity

Let X and Y be two smooth complex projective irregular varieties of dimen-
sion n, such that there exists a derived equivalence Φ: Db(X) → Db(Y ), where
Db(X) and Db(Y ) denote the bounded derived categories of coherent sheaves
on X and Y , respectively. By an Orlov’s result, every such equivalence can be
represented by a unique, up to isomorphism, Fourier-Mukai functor ΦE , with
E ∈ Db(X × Y )which is called kernel, such that

ΦE(·) = RpY ∗(p
∗
X(·)⊗ E)

where pX and pY are the natural projections fromX×Y ontoX and Y , respec-
tively.

Rouquier in [Rouquier, 2011, Théoréme 4.18] proved that Φ induces an iso-
morphism of algebraic groups

φ : Aut0(X)× Pic0(X)
∼−→ Aut0(Y )× Pic0(Y ) (2.1)

called Rouquier isomorphism (for more details see [Popa and Schnell, 2011, foot-
note p. 531]).

Rouquier’s result show that if (f, α) ∈ Aut0(X) × Pic0(X) then φ(f, α) is

17



Chapter 2. Derived Invariants of Irregular Varieties

again of the form (g, β) for a unique pair (g, β) ∈ Aut0(Y )×Pic0(Y ). In fact, we
can associate (f, α) with the autoequivalence of Db(X) defined by f∗(α ⊗ (·)),
with kernel of the form (id, f)∗ α ∈ Db(X × Y ), where (id, f) : X → X × X is
the graph immersion x 7→ (x, f(x)). Rouquier proved that if (f, α) ∈ Aut0(X)×
Pic0(X) then the following composition is again an autoequivalence with the
same form

ΦE ◦ Φ(id,f)∗α ◦ Φ−1
E ≃ Φ(id,g)∗β (2.2)

for a unique pair (g, β) ∈ Aut0(Y )× Pic0(Y ).

We can provide a direct description of the Rouquier isomorphism in terms
of the kernel E : with the previous notation, φ(f, α) = (g, β) if and only if

p∗Xα⊗ (f × idY )
∗E ≃ p∗Y β ⊗ (idX ×g)∗E

(refer to [Orlov, 2003, Corollary 5.1.10] and [Popa and Schnell, 2011, Lemma
3.1]).

The map φ has the property that its differential at the origin corresponds to
the linear map

dφ0 : H
0(X,TX)⊕H1(X,OX) → H0(Y, TY )⊕H1(Y,OY ) (2.3)

which is the map between the first Hochschild cohomology groups HH1(X)

and HH1(Y ). These groups can be described in the following way.

Definition 2.1. Let δX : X → X ×X be the diagonal embedding ofX , then the
Hochschild homology of X is

HH∗(X) :=
⊕
i

ExtiX×X(δX∗OX , δX∗ωX)

which is a graded module over the Hochschild cohomology of X

HH∗(X) :=
⊕
i

ExtiX×X(δX∗OX , δX∗OX).

Remark 2.2. Anyderived equivalenceDb(X) ≃ Db(Y ), induces an isomorphism
so that the Hochschild homology and cohomology are derived invariants (see
[Orlov, 2003, Theorem 2.1.8] and [Căldăraru, 2003a, Theorem 8.1]).

18



2.1 The irregularity

Theorem 2.3. Let Φ: Db(X) → Db(Y ) be an exact equivalence. Then Φ induces the
following isomorphisms

a. ΦHH∗
: HH∗(X) → HH∗(Y ) as graded rings

b. ΦHH∗ : HH∗(X) → HH∗(Y ) as graded modules.

In order to beĴer understand these isomorphismswewill follow [Swan, 1996,
Kontsevich, 2003] and [Hochschild et al., 1962] . We use the fact that the local-
to-global spectral sequence for Ext

Ep,q
2 = Hp(X ×X, Extq(δX∗OX , δX∗OX)) ⇒ Extp+q(δX∗OX , δX∗OX)

degenerates al the page E2. We recall that Extq(δX∗OX , δX∗OX) ≃
∧q TX , then

we have

HH i(X) = Exti(δX∗OX , δX∗OX) ≃
⊕
p+q=i

Hp(X,

q∧
TX)

and
HHi(X) = Exti(δX∗OX , δX∗ωX) ≃

⊕
p−q=i−n

Hp(X,Ωq
X).

In particular, combining the previous results we obtain the derived invari-
ance of the (i− n)-th column of the Hodge diamond

Corollary 2.4. A derived equivalence induces the following vector spaces isomor-
phisms ⊕

p−q=i−n

Hp(X,Ωq
X) ≃

⊕
p−q=i−n

Hp(Y,Ωq
Y ).

Remark 2.5. From the isomorphismΦHH1
: HH1(X)

∼−→ HH1(Y )we obtain the
following decomposition

ΦHH1

: H0(X,TX)⊕H1(X,OX)
∼−→ H0(Y, TY )⊕H1(Y,OY ).

which is the same isomorphism described in (2.3).

Focusing on the dimensions, the invariance of the first Hochschild coho-
mology implies that the following sum is also invariant

h0(X,TX) + h1(X,OX) = h0(Y, TY ) + h1(Y,OY ).

19



Chapter 2. Derived Invariants of Irregular Varieties

Popa and Schnell further developed this result proving that, actually, each term
of the previous sum is invariant.

Theorem 2.6. [Popa and Schnell, 2011, Theorem A] Let Db(X) → Db(Y ) be a
derived equivalence. Then

a. Pic0(X) and Pic0(Y ) are isogenous.

b. Pic0(X) and Pic0(Y ) are isomorphic unless X and Y are étale locally trivial
fibrations over isogenous positive dimensional abelian varieties, and χ(OX) =

χ(OY ) = 0.

The proof of Theorem 2.6 relies on a careful analysis of the Rouquier iso-
morphism.

As consequences of the last theorem we have the following results.

Theorem 2.7. Let Φ: Db(X)
∼−→ Db(Y ) an exact equivalence. Then

h0(X,TX) = h0(Y, TY ) and h1(X,OX) = h1(Y,OY ).

This result, in particular, establishes the derived invariance of the so-called
irregularity of X , denoted by

q(X) := h1(X,OX) = h0(X,Ω1
X),

which is the dimension of the varieties Pic0(X) and Alb(X).
In particular, this implies that if dimX ≤ 3, then all the Hodge numbers

are derived invariants, refer to [Popa and Schnell, 2011, Corollary C].

Theorem 2.8. Suppose X and Y are two derived equivalent smooth projective vari-
eties, with dimX ≤ 3. Then

hp,q(X) = hp,q(Y )

for every p and q.
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2.2 Non-vanishing Loci

2.2 Non-vanishing Loci

Our primary interest lies in the case when the Rouquier isomorphism (2.1) re-
spects the factors, in other words, when there exists an isomorphism, whichwe
will also denote with φ, between Pic0(X) and Pic0(Y ).

Definition 2.9. A closed point α ∈ Pic0(X) is said to be Rouquier-stable if

φ(idX , α) = (idY , β)

for some β ∈ Pic0(Y ). In this case, we denote β = φ(α).We say that an abelian
subvarietyB ⊆ Pic0(X) isRouquier-stable if every point ofB is Rouquier-stable.
Furthermore, we say that a derived equivalenceΦ isRouquier-stable ifφ({idX}×
Pic0(X)) = {idY }×Pic0(Y ) (or equivalently,H1(X,OX) ≃ H1(Y,OY ) via dφ0).

We study a particular case of the Conjecture A about the invariance of the
Hodge numbers.

Conjecture 2.10. If X and Y are two derived equivalent smooth projective complex
varieties, then

h0,j(X) = h0,j(Y )

for every j ≥ 0.

There is another conjecture related to the derived invariance ofHodge num-
bers, formulated by Lombardi and Popa in [Lombardi and Popa, 2015], which
concerns the cohomology support loci of the canonical sheaf of a smooth pro-
jective varietyX . They conjectured the invariance of V i

m(ωX)0 for everym ≥ 1.

Conjecture 2.11. Let X and Y two smooth projective complex varieties with equiva-
lent derived categories. Then

φ
(
{idX} × V i(ωX)0

)
= {idY } × V i(ωY )0

for every i ≥ 0.Moreover, if α ∈ V i(ωX)0 is a Rouquier-stable line bundle, then there
are the following equalities

hi(X,ωX ⊗ α) = hi(Y, ωY ⊗ φ(α))

for every i ≥ 0.
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Chapter 2. Derived Invariants of Irregular Varieties

This problemwas further studied in [Lombardi, 2014, Lombardi and Popa, 2015]
by Lombardi and Popa, who proved that the two previous conjectures are re-
lated in the following sense.

Theorem2.12. [Lombardi and Popa, 2015, Theorem12]. Conjecture 2.10 is equiv-
alent to Conjecture 2.11. In fact, if Conjecture 2.10 is true for dimX − j then

φ
(
idX , V

j
m(ωX)0

)
=

(
idY , V

j
m(ωY )0

)
for everym ≥ 1.

As a consequence they prove Conjecture 2.11 in the following cases:

Corollary 2.13. Suppose Db(X) ≃ Db(Y ). Then

a. V i(ωX)0 ≃ V i(ωY )0 for i = 0, 1,dimX − 1,dimX ,

b. the same result holds for every i in dimension up to 3, and for fourfolds with
maximal Albanese dimension.

2.3 The Albanese Map

Let aX : X → Alb(X) be the Albanese map of X . Denote by a(X) = dim aX(X),
then X is said to have maximal Albanese dimension if

a(X) = dimX.

Caucci and Pareschi, building on the work of Lombardi and Popa, showed
that the above Conjecture 2.10 is true for every i ≥ 0 ifX hasmaximal Albanese
dimension, as a consequence of the following theorem. We identify Pic0(X) ≃
Pic0(Alb(X)).

Theorem 2.14. [Caucci and Pareschi, 2019, Theorem 1.1] Let X be a smooth pro-
jective complex variety. Suppose α ∈ Pic0(X) is a Rouquier-stable line bundle, then

hi(Alb(X), aX∗ωX ⊗ α) = hi(Alb(Y ), aY ∗ωY ⊗ φ(α))

for every i ∈ N.
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2.3 The Albanese Map

In particular, Theorem 2.14 implies that the cohomology support loci as-
sociated to the pushforward of the Albanese map of the canonical bundle are
derived invariant, too.

Corollary 2.15. Given two derived equivalent varieties X and Y , there is an isomor-
phism

V i
m(aX∗ωX) ≃ V i

m(aY ∗ωY )

for every i ≥ 0 andm ≥ 1.

Using Kollár’s Theorem 1.14 on the degeneration of the Leray spectral se-
quence, one can verify that if X has maximal Albanese dimension, then
V i(aX∗ωX) ≃ V i(ωX), which by Corollary 2.15 implies that V i(ωX) ≃ V i(ωY ),
and this proves the Lombardi and Popa’s conjecture in the maximal Albanese
dimension case.

Furthermore, if X has maximal Albanese dimension, as a consequence of
Theorem 2.14 one can obtain the derived invariance of the Hodge numbers. In
fact, using Theorem 1.14, we deduce that hi(X,ωX) = hi(Alb(X), aX∗ωX) and
therefore the following Corollary.

Corollary 2.16. LetX andY be smooth projective complex varieties such thatDb(X) ≃
Db(Y ). If X has maximal Albanese dimension, then

h0,j(X) = h0,j(Y )

for every j ≥ 0.

The proof of Theorem 2.14 uses a result by Lombardi about the invariance
of the twisted Hochschild homology.

Definition 2.17. Let δX : X → X×X be the diagonalmorphismofX and letα ∈
Pic0(X) be a Rouquier-stable line bundle. Then, following [Lombardi, 2014]we
can define the twisted Hochschild homology, form ∈ Z, as follows

HHm
∗ (X,α) =

⊕
k

ExtkOX×X
(δX∗OX , δX∗(ω

⊗m
X ⊗ α)), (2.4)

which is a graded module over the Hochschild cohomology

HH∗(X) :=
⊕
i

ExtiX×X(δ∗OX , δ∗OX).
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Chapter 2. Derived Invariants of Irregular Varieties

Lombardi proved a more general theorem than the one we are going to
recall ([Lombardi, 2014, Theorem 1.1]), in our case it corresponds to the invari-
ance of HHm

∗ (X,α).

Theorem 2.18. LetΦ: Db(X) ≃ Db(Y ) be a derived equivalence and letm ∈ Z, then
Φ induces an isomorphism of graded modules

HHm
∗ (X,α) ≃ HHm

∗ (Y, φ(α))

where α ∈ Pic0(X) is a Rouquier-stable line bundle and φ denotes the Rouquier iso-
morphism.

An important consequence of the last theorem is that the Rouquier isomor-
phism φ induces an isomorphism between V 0(ω⊗m

X ) and V 0(ω⊗m
Y ), in the fol-

lowing way.

Proposition 2.19. Let Db(X) ≃ Db(Y ) be a derived equivalence between smooth
projective varieties and let m ∈ Z and r ≥ 1. If α ∈ V 0

r (ω
⊗m
X ) then φ(idX , α) =

(idY , β) with β ∈ V 0
r (ω

⊗m
Y ). Moreover the Rouquier isomorphism acts as follows

φ
(
{idX} × V 0

r (ω
⊗m
X )

)
= {idY } × V 0

r (ω
⊗m
Y ).

2.4 The Albanese-Iitaka Fibration

We now introduce the more general definition of the Albanese-Iitaka mor-
phism for a variety X with kodX ≥ 0.

Definition 2.20. We consider a smooth birational modification X̃ → X such
that the Iitaka fibration of X can be represented as the morphism f̃ : X̃ → ZX

between smooth algebraic varieties. Denote with aX and aZX
the Albanese

morphisms of X and ZX , respectively. We have the following commutative
diagram

X̃ X Alb(X)

ZX Alb(ZX)
f̃

aX

cX
pX

aZX

(2.5)
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2.4 The Albanese-Iitaka Fibration

where pX is a surjective morphism with connected fibers between abelian
varieties induced by f̃ (see [Hacon et al., 2018, Lemma 11.1]). We define the
Albanese-Iitaka morphism of X as the composition cX = pX ◦ aX

cX : X → Alb(ZX).

Remark 2.21. We recall that an abelian variety B ⊆ Pic0(X) is called Rouquier-
stable if φ(idX , α) = (idY , β) for every point α ∈ B and for some β ∈ Pic0(Y )

(see Definition 2.9). As a consequence of [Caucci and Pareschi, 2019, Lemma
3.4] we have that the abelian variety Pic0ZX , seen as subvariety of Pic0X is
Rouquier-stable. In fact, the Rouquier isomorphism induces an isomorphism

φ
(
Pic0(ZX)

)
≃ Pic0(ZY ). (2.6)

Recall that given a morphism f : A → B of abelian varieties, the dual mor-
phism is denoted by f̂ : Pic0(B) → Pic0(A). In our case, we consider the dual
morphism of (2.6) denoted by φ̂ from Alb(ZY ) to Alb(ZX). Then the Stein fac-
torization of the Albanese-Iitaka morphism is a derived invariant by the fol-
lowing theorem ([Caucci et al., 2022, Theorem 3.0.1]).

Theorem 2.22. Let Db(X) ≃ Db(Y ) be an exact equivalence, we consider the Stein
factorizations of the Albanese-Iitaka morphisms cX and cY

X Alb(X) Y Alb(Y )

X ′ Alb(ZX) Y ′ Alb(ZY ).

cX
pX cY

pY

c′X c′Y

Then there is an isomorphism Y ′ ≃ X ′ such that the following diagram

X ′ Y ′

Alb(ZX) Alb(ZY )

cX′

≃

cY ′

φ̂

is commutative.
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Chapter 2. Derived Invariants of Irregular Varieties

2.5 The Relative twisted Hochschild structure

We start by recalling a result by Orlov [Orlov, 2003, Proposition 2.1.7]. Denote
with δX and δY the diagonal embeddings of X and Y , respectively.

Proposition 2.23. If we denote by pij the projections from X × X × Y × Y to the
(i, j)-th factor, then a derived equivalence ΦE : Db(X) → Db(Y ) induces another
equivalence ΦE⊠E∗ : Db(X ×X) → Db(Y × Y ), with E ⊠ E∗ = p∗13E ⊗ p∗24E∗, such
that for everym ∈ Z we have

ΦE⊠E∗(δX∗ω
⊗m
X ) ≃ δY ∗ω

⊗m
Y (2.7)

where E∗ = E∨ ⊗ p∗X ωX [n] ≃ p∗Y ωY [n] and E∨ = RHom(E ,OX×Y ).

The result in (2.7)was generalized byLombardi, see [Lombardi, 2014, Lemma
2.1].

Lemma 2.24. Consider the automorphisms f ∈ Aut0(X) and g ∈ Aut0(Y ) and the
embeddings (idX , f) : X → X × X and (idY , g) : Y → Y × Y defined by x 7→
(x, f(x)) and y 7→ (y, g(y)), respectively. If φ(f, α) = (g, β), with α ∈ Pic0(X) and
β ∈ Pic0(Y ), then

ΦE⊠E∗
(
(idX , f)∗(ω

⊗m
X ⊗ α)

)
≃ (idY , g)∗(ω

⊗m
Y ⊗ β)

for allm ∈ Z.

In particular, if α is a Rouquier-stable line bundle, i.e. φ(α) = β for some
β ∈ Pic0(Y ) (see Definition 2.9), then the last isomorphism can be wriĴen in the
following way

ΦE⊠E∗
(
δX∗(ω

⊗m
X ⊗ α)

)
≃ δY ∗(ω

⊗m
Y ⊗ φ(α)). (2.8)

Now, following [Caucci et al., 2022, Section §4.2], let e be the identity of
Alb(ZX), we consider a normalized Poincaré line bundle PZ on Alb(ZX) ×
Pic0(ZX) such that (PZ) |{e}×Pic0(ZX) is trivial. In the same way, we choose the
Poincaré bundle QZ on Alb(ZY ) × Pic0(ZY ). Recall that by Remark 2.6, there
is an isomorphism φ : Pic0(ZX) → Pic0(ZY ). The line bundles PZ and QZ are
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2.5 The Relative twisted Hochschild structure

connected by the relation

(φ̂−1 × φ)∗QZ ≃ PZ ,

which follows from the universal property of the Poincaré bundle. Using the
notation of Theorem 2.22, we define the induced Poincaré line bundle on X ×
Pic0(ZX) as follows

PZ,X := (cX × id)∗PZ ,

in an analogous way we define

QZ,Y := (cY × id)∗QZ ,

on Y × Pic0(ZY ). We denote by

δ̃X : X × Pic0(ZX) → X ×X × Pic0(ZX)

the relative diagonal embedding defined by (x, α) 7→ (x, x, α), and similarly δ̃Y for
Y . Through a process of globalization of the isomorphisms (2.8), Caucci, Lom-
bardi andPareschi proved the following theorem ([Caucci et al., 2022, Theorem
4.3.1]).

Theorem2.25. LetΦ: Db(X) → Db(Y ) be a derived equivalence and letφ : Pic0(ZX) →
Pic0(ZY ) be the isomorphism (2.6) induced by the Rouquier isomorphism. We con-
sider ΦE⊠E∗ ⊠φ∗ which is a derived equivalence betweenDb(X ×X ×Pic0(ZX)) and
Db(Y × Y × Pic0(ZY )). Then for everym ∈ Z there are isomorphisms

(ΦE⊠E∗ ⊠ φ∗)(δ̃X∗(p
∗
Xω

⊗m
X ⊗ PZ,X)) ≃ δ̃Y ∗(p

∗
Y ω

⊗m
Y ⊗QZ,Y )

where pX and pY denote the natural projectionsX×Pic0(ZX) → X andY×Pic0(ZY ) →
Y , respectively.

Remark 2.26. The result in Theorem 2.25 still holds if we replaceω⊗m
X withω⊗m

X ⊗
α, for a Rouquier-stable line bundle α ∈ Pic0(X)

(ΦE⊠E∗ ⊠ φ∗)(δ̃X∗(p
∗
X(ω

⊗m
X ⊗ α)⊗ PZ,X)) ≃ δ̃Y ∗(p

∗
Y (ω

⊗m
Y ⊗ φ(α))⊗QZ,Y ).

The following theorem ([Caucci et al., 2022, Theorem 4.4.1]) is one of the
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Chapter 2. Derived Invariants of Irregular Varieties

key ingredients to prove the derived invariance of the relative twistedHochschild
structure (see below) and the relative canonical ring (section §2.6).

Theorem 2.27. There is an isomorphism of functors

RcY ∗ ◦ Lδ∗Y ≃ φ̂∗ ◦ RcX∗ ◦ Lδ∗X ◦ ΦE⊠E∗

where ΦE⊠E∗ is taken in the reverse direction than before, fromDb(Y ×Y ) toDb(X ×
X), and φ̂ denotes the dual of the Rouquier isomorphism.

We want to recall the Hochschild-Konstant-Rosemberg (HKR) isomorphism

Lδ∗X(δX∗ω
⊗m
X ) ≃

dimX⊕
i=0

Ωi
X ⊗ ω⊗m

X [i]. (2.9)

Definition 2.28. The relative twisted Hochschild structure of a smooth projective
complex varietyX with respect to the Albanese-Iitaka morphism cX is defined
as

HH(cX) :=
⊕
m,p

RcX∗(Ω
p
X ⊗ ω⊗m

X )[p].

Theorem 2.27 implies the derived invariance of relative twisted Hochschild
structure of X , the proof involves the isomorphism in (2.7) and the HKR iso-
morphism (see [Caucci et al., 2022, Corollary 4.5.1]).

Corollary 2.29. There are the following isomorphisms⊕
p−q=i

RpcY ∗(Ω
q
Y ⊗ ω⊗m

Y ) ≃
⊕
p−q=i

φ̂∗ (RpcX∗(Ω
q
X ⊗ ω⊗m

X )
)
.

for everym, i ∈ Z. As a consequence we obtain the following isomorphisms

cY ∗ω
⊗m
Y ≃ φ̂∗(cX∗ω

⊗m
X )

for everym.

Remark 2.30. Corollary 2.29 still holds if we replace Ωp
X ⊗ωm

X with Ωp
X ⊗ωm

X ⊗α,
for any Rouquier-stable line bundle α ∈ Pic0(X)⊕

p−q=i

RpcY ∗(Ω
q
Y ⊗ ωm

Y ⊗ φ(α)) ≃
⊕
p−q=i

φ̂∗ (RpcX∗(Ω
q
X ⊗ ωm

X ⊗ α)) .
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In particular, we have the following isomorphisms

cY ∗(ω
⊗m
Y ⊗ φ(α)) ≃ φ̂∗(cX∗(ω

⊗m
X ⊗ α))

for everym.

2.6 The Relative Canonical Ring

We first introduce the following definition.

Definition 2.31. The relative canonical ring of X with respect to the Albanese-
Iitaka morphism is

R(cX) =
⊕
m≥0

cX∗ω
⊗m
X .

Combining the result in Corollary 2.29 with the generic vanishing theory,
Caucci, Lombardi and Pareschi, in [Caucci et al., 2022, Theorem 4.6.1] proved
the derived invariance of the relative canonical ring.

Theorem 2.32. Let Db(X) ≃ Db(Y ) be a derived equivalence. Then there exists an
isomorphism of OAlb(ZY )-algebras

φ̂∗(R(cX)) ≃ R(cY ).

In [Caucci et al., 2022] the last statement was generalized in the following
way. Let B̂X ⊆ Pic0(X) be a Rouquier-stable abelian subvariety, then by defi-
nition there exists an abelian subvariety B̂Y of Pic0(Y ) such that φ(idX, B̂X) =

(idY, B̂Y ). This means that the Rouquier isomorphism induces an isomorphism

φ : B̂X
∼−→ B̂Y .

In an analogous situation of Theorem 2.22, we can consider the morphisms
bX = pX◦aX and bY = pY ◦aY , where pX is the dualmorphism of B̂X ↪→ Pic0(X)

and pY is the dual of B̂Y ↪→ Pic0(Y ). Consider the Stein factorizations of bX and
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Chapter 2. Derived Invariants of Irregular Varieties

bY , then we get the following commutative diagrams

X Alb(X) Y Alb(Y )

X ′ BX Y ′ BY .

aX

bX
pX

aY

bY
pY

b′X b′Y

In this way, Caucci, Lombardi and Pareschi proved the following generaliza-
tion of Theorem 2.22.

Theorem 2.33. [Caucci et al., 2022, Theorem 8.1.1]With the above notation, there
exists an isomorphism Y ′ ≃ X ′ such that the following diagram is commutative

X ′ Y ′

BX BY .

b′X

≃

b′Y

φ̂

With the same arguments they generalize Theorem 2.32. Let

R(bX) =
⊕
m≥0

bX∗ω
⊗m
X

be the relative canonical ring of bX .

Theorem 2.34. [Caucci et al., 2022, Theorem 8.1.2] Let bX : X → BX be a mor-
phism where BX is the dual of a Rouquier-stable abelian subvariety of Pic0X . Then
there is an isomorphism of OAlb(ZY )-algebras

φ̂∗(R(bX)) ≃ R(bY ).

2.7 Irregular Fibrations

LetX be a smooth projective variety. We recall that a fibration of X is an alge-
braic fibre space π : X → S, with S a positive-dimensional normal variety.

One can be define a Rouquier-stable abelian subvariety related to any fi-
bration onto a normal projective variety in the following way. Let π : X → S
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2.7 Irregular Fibrations

be a fibration and consider a non-singular representative of π, which is a fibra-
tion π̃ : X̃ → S̃ onto a smooth projective variety S̃, together with a birational
morphisms g : X̃ → X and h : S̃ → S such that the following

X̃ X

S̃ S

g

π̃ π

h

is commutative. Then, independently on the choice of the non-singular repre-
sentative of π, we can define the abelian subvariety B̂S as

B̂S := g∗π̃
∗Pic0S̃ ⊂ Pic0(X).

It turns out that if S is of general type, then B̂S is Rouquier-stable (refer to
[Caucci and Lombardi, 2022, Lemma 4.0.2] for more details). This result was
very useful in the proof of the theorem below. First, we need to introduce the
definition of irregular fibration.

Definition 2.35. In the above seĴing, we say that a fibration is irregular if a non-
singular model of S, therefore any of them, has maximal Albanese dimension.
Two irregular fibrations of X , π1 : X → S1 and π2 : X → S2, are said to be
equivalent if there exists a birationalmorphism f : S1 99K S2 such that π2 = f◦π1.
We call irregular k-fibration, with k ∈ {0, . . . ,dimX}, an irregular fibrationX →
S with dimS = k.We define the sets

GX,k := {equivalence classes of irregular k-fibration π : X → S, with S of general type} .

Caucci andLombardi obtained the following generalization of [Lombardi, 2022,
Theorem 1].

Theorem 2.36. [Caucci and Lombardi, 2022, Theorem 4.4.1] Let X and Y be de-
rived equivalent varieties. Then there exists a base-preserving bijection ν between the
sets GX,k and GY,k. Moreover, suppose that ν(πX : X → S) = (πY : Y → T ), then S
and T are birational and there is a derived equivalence between the generic fibres of πX
and πY .

In the same article, they also proved the following theorem.
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Chapter 2. Derived Invariants of Irregular Varieties

Theorem 2.37. [Caucci and Lombardi, 2022, Theorem 4.0.1] LetX and Y be two
smooth projective derived equivalent varieties. In the previous seĴing, suppose that B̂S

is a Rouquier-stable subvariety. Then Y admits an irregular fibration θ : Y → T , such
that T is birational to S. Moreover, the general fibers of π and θ are derived equivalent.
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Chapter 3

Rouquier-stable Equivalences

In this chapter we investigate the derived invariance of the cohomology ranks
and the non-vanishing loci of higher direct images of the canonical bundle un-
der the Albanese map of a smooth projective complex variety X . We prove
the derived invariance of the top non-trivial higher direct image of the canoni-
cal bundle under the Albanese map. We first denote by c(X) the general fiber
dimension of the Albanese map aX : X → Alb(X)

c(X) = dimX − dim aX(X).

The main result is the following

Theorem Let Φ: Db(X) → Db(Y ) be a Rouquier-stable equivalence. Then c(X) =

c(Y ) and the Rouquier isomorphism induces the following isomorphism of sheaves

Rc(Y )aY ∗ωY ≃ φ̂∗Rc(X)aX∗ωX .

Moreover, we prove the other results stated in the introduction.

3.1 The Albanese Dimension

Let X be a smooth projective complex variety of dimension n. Let aX : X →
Alb(X) be the Albanese map of X and a(X) = dim aX(X).
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We first recall a result of Lombardi ([Lombardi, 2014, Theorem 1.6])

Theorem 3.1. Let X and Y be two smooth projective derived equivalent varieties. If
dimX ≤ 3 or if dimX ≥ 4 and kod(X) ≥ 0 then

a(X) = a(Y ).

In this section we extend this invariance to further cases. The following is a
preliminary lemma.

Lemma 3.2. If X has maximal Albanese dimension then kodX ≥ 0.

Proof. As shown in Theorem 1.12, ωX is a GV-sheaf when X has maximal Al-
banese dimension. Then V 0(X,ωX) ̸= ∅ and so there is a non-trivial torsion
point α ∈ Pic0(X) of order r ≥ 1 such that H0(X,ωX ⊗ α) ̸= 0. Let s ∈
H0(X,ωX ⊗ α) be a non-zero section, then sr ̸= 0 and

sr ∈ H0(X,ω⊗r
X ⊗ α⊗r) = H0(X,ω⊗r

X ).

Clearly, kod(X) ≥ 0.

With the following proposition we establish a correspondence between the
Albanese fibre dimension of X and Y .

Proposition 3.3. If X and Y are derived equivalent, then a(X) = 0, 1, n if and only
if a(Y ) = 0, 1, n respectively.

Proof. We start with the case a(X) = 0. In this case, aX is constant, then q(X) =

0 and Alb(X) = {eX} . Since the irregularity is a derived invariant by Theorem
2.6, q(Y ) = q(X) = 0 and we have a(Y ) = 0.

Suppose a(X) = n. In this case X has maximal Albanese dimension then,
by Lemma 3.2, X satisfies kod(X) ≥ 0 . We can conclude by Theorem 3.1 that
a(X) = a(Y ) = n.

The remaining case is a(X) = 1, when the image of the Albanese map is a
curve C with genus g(C) = q(X), and we discuss this in two sub-cases: q(X) =

1 and q(X) ≥ 2. First, suppose q(X) = 1, so C is an elliptic curve, then C =

Alb(X) and aX is surjective. Since q(Y ) = 1, as before by Theorem 2.6, the map
aY is surjective, which implies that a(Y ) = 1.
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Finally, the case a(X) = 1 and q(X) ≥ 2. The image of the Albanese map
is a curve C such that q(X) = g(C) ≥ 2.We claim that V 0(C, ωC) = Pic0C. For
OC ̸= α ∈ Pic0C

χ(ωC ⊗ α) = χ(ωC) = h0(C, ωC ⊗ α)− h1(C, ωC ⊗ α). (3.1)

We have χ(ωC ⊗α) > 0, since g(C) ≥ 2, and h1(C, ωC ⊗α) = 0 by Serre duality.
Then from equation (3.1) we get that h0(C, ωC ⊗ α) > 0 for every non-trivial
α ∈ Pic0C. If α = OC , then h0(C, ωC) = g(C) ≥ 2 and the claim is proved.

Now we consider the Stein factorization of the Albanese map aX , we have
the following diagram

X Alb(X)

C

aX

f (3.2)

such that f has connected fibres and

f ∗Pic0C = f ∗V 0(C, ωC) ⊆ V n−1(X,ωX)0 ⊆ Pic0(X).

These are, in fact, equalities, since dim f ∗V 0(C, ωC) = q(X) = dimPic0(X).

There is an isomorphismsV n−1(X,ωX)0 ≃ V n−1(Y, ωY )0 byCorollary 2.13. There
exists a component T ⊆ V n−1(Y, ωY )0 and a surjective morphism with con-
nected fibres h : Y → D such that D is a smooth projective curve with T =

h∗Pic0D ([Beauville, 1992, Corollaire 2.3]). Then we have a similar diagram as
(3.2) for Y , then a(Y ) = 1.

Proposition 3.4. If Φ: Db(X) → Db(Y ) is a Rouquier-stable equivalence, then

a(X) = a(Y ) and c(X) = c(Y ).

Proof. By Theorem 2.22 the Stein factorization X ′ and Y ′ are isomorphic and
a(X) = dimX ′ = dimY ′ = a(Y ).
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3.2 Invariance of Higher Direct Images

Let Φ: Db(X) → Db(Y ) be a Rouquier-stable derived equivalence and let

φ : Aut0(X)× Pic0(X) → Aut0(Y )× Pic0(Y )

be the induced Rouquier isomorphism. We denote by δX : X ↪→ X × X and
δY : Y ↪→ Y × Y the diagonal embeddings of X and Y, respectively. We recall
the Hochschild-Kostant-Rosenberg isomorphism (cf. [Căldăraru, 2003b])

Lδ∗XδX∗OX ≃
n⊕

k=0

Ωk
X [k].

Combining this result with Corollary 2.29 we get that there is an isomorphism
for every j ≥ 0 ⊕

q−p=n−j

φ̂∗RpaX∗Ω
q
X ≃

⊕
q−p=n−j

RpaY ∗Ω
q
Y . (3.3)

We consider the following isomorphisms

wα : H
0(Alb(X), RjaX∗ωX ⊗ α)⊕

⊕
0<k≤j

H0(Alb(X), Rj−kaX∗Ω
n−k
X ⊗ α) →

H0(Alb(Y ), RjaY ∗ωY ⊗ β)⊕
⊕
0<k≤j

H0(Alb(Y ), Rj−kaY ∗Ω
n−k
Y ⊗ β)

where α ∈ Pic0(X) and β = φ(α).

Theorem 3.5. Let Φ: Db(X) → Db(Y ) be a Rouquier-stable derived equivalence. If

wα(H
0(Alb(X), RkaX∗ωX ⊗α)) = H0(Alb(Y ), RkaY ∗ωY ⊗φ(α)) ∀α ∈ Pic0(X)

(3.4)
then there is an isomorphism of sheaves RkaY ∗ωY ≃ φ̂∗RkaX∗ωX .

In particular, this theorem implies that

H i(Alb(X), RkaX∗ωX) ≃ H i(Alb(Y ), RkaY ∗ωY )

for every i ≥ 0.
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3.2 Invariance of Higher Direct Images

Proof. The sheavesFMAlb(X)(R
iaX∗ωX) andFMAlb(Y )(R

iaY ∗ωY ) are concentrated
in degree zero, as RiaX∗ωX and RiaY ∗ωY are GV-sheaves by Theorem 1.12.
Their fibres are identified with

FMAlb(X)(R
iaX∗ωX)⊗ C(α) ≃ H0(Alb(X), RiaX∗ωX ⊗ α−1)∨

and similarly for Y

FMAlb(Y )(R
iaY ∗ωY )⊗ C(β) ≃ H0(Alb(Y ), RiaY ∗ωY ⊗ β−1)∨.

Let β = φ(α) ∈ Pic0(Y ) and let jβ : {β} → Pic0(Y ) be the closed embedding.
Starting from the isomorphism (3.3) and using the formula of Remark 1.10 we
have the following isomorphism⊕
j−i=n−k

H0Lj∗βFMAlb(Y )(R
iaY ∗Ω

j
Y ) →

⊕
j−i=n−k

H0Lj∗βφ∗FMAlb(X)(R
iaX∗Ω

j
X) (3.5)

for every k ≥ 0. By Lemma 1.8, the isomorphism (3.5) is identified with the
isomorphism (wα−1)∨⊕
j−i=n−k

H0(Alb(Y ), RiaY ∗Ω
j
Y⊗φ(α

−1))∨ →
⊕

j−i=n−k

H0(Alb(X), RiaX∗Ω
j
X⊗α

−1)∨.

By hypothesis (3.4) we have that the isomorphism⊕
j−i=n−k

FMAlb(Y )(R
iaY ∗Ω

j
Y )

≃−→
⊕

j−i=n−k

φ∗FMAlb(X)(R
iaX∗Ω

j
X)

induces a morphism

f1 : FMAlb(Y )(R
kaY ∗ωY ) → φ∗FMAlb(X)(R

kaX∗ωX)

which is surjective because it is so at the level of fibers. If f1 is an isomor-
phism then the proof is complete. By repeating the same argument with a
quasi-inverse of Φ, we can get a surjective morphism

f2 : φ∗FMAlb(X)(R
kaX∗ωX) → FMAlb(Y )(R

kaY ∗ωY )
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such that f2◦f1 is the identity at the level of the fibers. Then f2◦f1 is an isomor-
phism of sheaves. Therefore f1 is also injective and then an isomorphism.

We verify that the equivalence (3.4) is satisfied when k = c(X). This yields
the following Corollary.

Corollary 3.6. Let Φ: Db(X) → Db(Y ) a Rouquier-stable derived equivalence, then
Φ induces an isomorphism of sheaves

Rc(Y )aY ∗ωY ≃ φ̂∗Rc(X)aX∗ωX .

Proof. Consider the Stein factorizations of the Albanese maps aX and aY

X Alb(X) Y Alb(Y )

S T

aX

f

aY

gs t

with S and T normal varieties, f and g are surjective morphisms with con-
nected fibers and s and t are finite morphisms onto their images. Moreover,
dimS = a(X) and dimT = a(Y ). Hence by Proposition 3.4, a(X) = a(Y ) and
so

c(X) = c(Y ).

We consider a non-singular representative of f , i.e. a smooth birational
modification π : X̃ → X and a fibration f̃ : X̃ → S̃ between smooth algebraic
varieties. Let θ : S̃ → S be a birational morphism such that the following dia-
gram

X̃ X Alb(X)

S̃ S

π

f̃

aX

f

θ

s (3.6)

is commutative. ByKollár’s Theorem 1.17we have the following isomorphisms

Rc(X)aX∗ωX ≃ Rc(X)(s ◦ f)∗ωX ≃ s∗R
c(X)f∗ωX .
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3.2 Invariance of Higher Direct Images

Then for any α ∈ Pic0(X)we have

H0(Alb(X), Rc(X)aX∗ωX ⊗ α) ≃ H0(S,Rc(X)f∗ωX ⊗ s∗α)

≃ H0(S,Rc(X)(f ◦ π)∗ωX̃ ⊗ s∗α)

≃ H0(S,Rc(X)(θ ◦ f̃)∗ωX̃ ⊗ s∗α)

≃ H0(S, θ∗R
c(X)f̃∗ωX̃ ⊗ s∗α)

≃ H0(S, θ∗ωS̃ ⊗ s∗α)

where we use the commutative of the diagram (3.6) above, the fact that π∗ωX̃ ≃
ωX , because π is birational; Theorem 1.17 and in the last isomorphism that
Rc(X)f̃∗ωX̃ ≃ ωS̃ by Theorem 1.16.

By Theorem 2.27 there is an isomorphism ψ : T
∼−→ S such that

s ◦ ψ = φ̂ ◦ t.

Now, we construct a specific non-singular representative of g. Set T̃ = S̃ and
consider the birationalmorphism θ2 : S̃ → S → T defined by θ2 = (ψ−1◦θ), and
consider the fiber productZ = S̃×T Y. Then a resolution Ỹ of the normalization
of the main component of Z is such that the natural projection g̃ : Ỹ → S̃ is a
non-singular representative of g.We do the same calculations as above and we
get the isomorphism

H0(Alb(Y ), Rc(Y )aY ∗ωY ⊗ φ(α)) ≃ H0(T, θ2∗ωS̃ ⊗ t∗φ(α)).

We have

H0(S, θ∗ωS̃ ⊗ s∗α) ≃ H0(T, ψ∗θ∗ωS̃ ⊗ ψ∗s∗α)

≃ H0(T, θ2∗ωS̃ ⊗ t∗φ(α)).

Sowα sendsH0(Alb(X), Rc(X)aX∗ωX⊗α) toH0(Alb(Y ), Rc(Y )aY ∗ωY ⊗φ(α)). By
using Theorem 3.5, we get

Rc(Y )aY ∗ωY ≃ φ̂∗Rc(X)aX∗ωX

and the proof is complete.
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Chapter 3. Rouquier-stable Equivalences

3.3 Cohomology of Higher Direct Images

We recall the following conjecture, which comes from a more general conjec-
ture of Orlov on the derived invariance of motives.

Conjecture 3.7. Let X and Y be smooth complex projective derived equivalent vari-
eties, then hi(X,ωX) = hi(Y, ωY ) for all i ≥ 0.

We focus on a slightly stronger question and study its validity in some cases.

Question 3.8. LetX and Y be smooth complex projective derived equivalent varieties.
Do we have the following equalities

hq(Alb(X), RpaX∗ωX) = hq(Alb(Y ), RpaY ∗ωY )

for all p, q ≥ 0?

Remark 3.9. Question 3.8 has a positive answer for all q when X has maxi-
mal Albanese dimension, that is a(X) = dimX . In fact, if X has maximal
Albanese dimension, by the Grauert-Riemenschneider vanishing theorem, we
have RpaX∗ωX = 0 and RpaY ∗ωY = 0 for p > 0. By Corollary 2.16, when p = 0

we have
hq(Alb(X), aX∗ωX) = hq(Alb(Y ), aY ∗ωY )

for every q ∈ N. Moreover, recall thatAbuaf proved that if dimX ≤ 4hi(X,ωX) =

hi(Y, ωY ) for all i ≥ 0 [Abuaf, 2017].

Our result is the following.

Theorem 3.10. Question 3.8 has a positive answer if dimX ≤ 3 or if dimX = 4

and Φ: Db(X) → Db(Y ) is a Rouquier-stable derived equivalence.

Proof. If dimX = 1 there are two cases: a(X) can be either 0 or 1. If a(X) = 1

we can conclude by Remark 3.9. Otherwise a(X) = 0, in this case both aX

is constant and Alb(X) is trivial. Then hq(Alb(X), RpaX∗ωX) = 0 for every
q > 0. By Proposition 3.3 also a(Y ) = 0 and so hq(Alb(Y ), RpaY ∗ωY ) = 0 for
every q > 0. When q = 0 we have h0(Alb(X), RpaX∗ωX) = hp(X,ωX) and
h0(Alb(Y ), RpaY ∗ωY ) = hp(Y, ωY ). Since Conjecture 3.7 holds true in dimension
1 we can conclude.
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3.3 Cohomology of Higher Direct Images

In the following proof, the cases a(X) = 0 and a(X) = dimX , which is the
maximal Albanese dimension case, can be proved with similar calculations.

Suppose that dimX = 2 and a(X) = 1. By Theorem 1.14 and using the
Leray spectral sequence we get that

h1(X,ωX) = h0(Alb(X), R1aX∗ωX) + h1(Alb(X), aX∗ωX) (3.7)

Here h1(X,ωX) and h1(Alb(X), aX∗ωX) are invariants by Remark 3.9 and The-
orem 2.14. Then h0(Alb(X), R1aX∗ωX) is invariant, too.

Noitce that with a similar argument once can prove the case of dimX = 3

and a(X) = 2.

If dimX = 3 and a(X) = 1, then the image of aX is a smooth curveC. Using
the Leray spectral sequence as before we have

h1(X,ωX) = h0(Alb(X), R1aX∗ωX) + h1(Alb(X), aX∗ωX)

and
h2(X,ωX) = h0(Alb(X), R2aX∗ωX) + h1(Alb(X), R1aX∗ωX). (3.8)

From the first equation we can use the same argument as in (3.7) to prove that
h0(Alb(X), R1aX∗ωX) is invariant. By Theorem 1.16 we have the following iso-
morphism

R2aX∗ωX ≃ ωC .

Then the equation (3.8) becomes

h2(X,ωX) = h0(C, ωC) + h1(Alb(X), R1aX∗ωX).

Since h0(C, ωC) = g(C) = q(X), in the previous equation both h2(X,ωX) and
h0(C, ωC) are invariants. So we obtain the invariance of h1(Alb(X), R1aX∗ωX),
which completes the proof of this case.

Now we study the last case: suppose dimX = 4 and the equivalence Φ

is Rouquier-stable. First note that if a(X) ∈ {0, 1, 3, 4} the proof can be done
in a similar way as above. We are going to discuss the case a(X) = 2. Using
the Leray spectral sequence and Kollár’s Theorem 1.14 we get the following
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equations

h1(ωX) = h0(R1aX∗ωX) + h1(aX∗ωX)

h2(ωX) = h0(R2aX∗ωX) + h1(R1aX∗ωX) + h2(aX∗ωX)

h3(ωX) = h1(R2aX∗ωX) + h2(R1aX∗ωX)

By the previous arguments, we only need to verify the invariance ofhi(R2aX∗ωX)

for i = 0, 1 to complete the proof. Since in this case c(X) = 2, by Corollary
3.6 we have that hi(R2aX∗ωX) = hi(R2aY ∗ωY ) for i = 0, 1. This implies that
hi(R1aX∗ωX) = hi(R1aY ∗ωY ) for i = 1, 2 and the proof is completed.

3.4 Comparison of Non-Vanishing Loci

Following [Lombardi and Popa, 2015], the Conjecture 3.7 is related to another
problem regarding the invariance of the non-vanishing loci V i

m(ωX)0, as shown
in Theorem 2.12

We consider a slightly more general problem.

Question 3.11. LetΦ: Db(X) → Db(Y ) be a derived equivalence. Does the Rouquier
isomorphism act as follow

φ ({idX} × V q
m(R

paX∗ωX)0) = {idY } × V q
m(R

paY ∗ωY )0

for all p, q ≥ 0 andm ≥ 1?

By Theorem 3.10 we get the following result.

Theorem 3.12. Question 3.8 has a positive answer in dimension n for a given pair of
integer (p, q) if and only if Question 3.11 has a positive answer in dimension n for the
same pair of integer (p, q).

Proof. We recall that every irreducible component Z of V q(RpaX∗ωX) is a tor-
sion translate τZ + AZ of an abelian variety by Remark 1.3. Moreover, using
the Leray spectral sequence and the fact that any line bundle in V i(ωX)0 is
Rouquier-stable for all i ≥ 0, we note that also any line bundleα ∈ V q(RpaX∗ωX)0

is Rouquier-stable.
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Let Z ⊂ V q
m(R

paX∗ωX)0 be an irreducible component. Let S be the set of
prime numbers that do not divide the order of any τZ and let α ∈ Z be an ele-
ment of prime order P ∈ S.We claim that if β = φ(α), then β ∈ V q

m(R
paY ∗ωY )0.

Denote by πα : Xα → X and πβ : Yβ → Y the étale covers associated to α and β
respectively. There are the following isomorphisms (see, e.g., [Huybrechts, 2006,
Section 7.3])

πα∗OXα ≃
P−1⊕
j=0

α⊗(−j) and πβ∗OYβ
≃

P−1⊕
j=0

β⊗(−j).

We have the following commutative diagrams

Xα Alb(Xα) Yβ Alb(Yβ)

X Alb(X) Y Alb(Y ).

πα

aXα

ρα πβ

aYβ

ρβ

aX aY

By [Lombardi and Popa, 2015, Theorem 10] the equivalence Φ can be extended
to a derived equivalence Φ′ : Db(Xα) → Db(Yβ). By hypothesis we have

hq(Alb(Xα), R
paXα∗ωXα) = hq(Alb(Yβ), RpaYβ∗ωYβ

).

Since the morphism ρα and πα are finite, we have the following isomorphisms

ρα∗R
paXα∗ωXα ≃ RpaX∗πα∗ωXα ≃

P−1⊕
j=0

RpaX∗
(
ωX ⊗ α⊗(−j)

)
and similarly for Y

ρβ∗R
paYβ∗ωYβ

≃ RpaY ∗πβ∗ωYβ
≃

P−1⊕
j=0

RpaY ∗
(
ωY ⊗ β⊗(−j)

)
.
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These lead to the following equalities

hq(Alb(Xα), R
paXα∗ωXα) = hq(Alb(X), ρα∗R

paXα∗ωXα)

=
P−1∑
j=0

hq(Alb(X), RpaX∗(ωX ⊗ α⊗(−j)))

and

hq(Alb(Yβ), RpaYβ∗ωYβ
) =

P−1∑
j=0

hq(Alb(Y ), RpaY ∗(ωY ⊗ β⊗(−j))).

Since α ∈ Z belongs to an abelian variety, then all its powers α⊗j belongs to Z.
Moreover

hq(Alb(X), RpaX∗ωX) = hq(Alb(Y ), RpaY ∗ωY )

and there exists 0 < k ≤ P−1 such that hq(Alb(Y ), RpaY ∗ωY ⊗β⊗k) ≥ m.Hence
β⊗k ∈ V q

m(R
paY ∗ωY ).With the same argument of [Lombardi and Popa, 2015, p.

302] and the fact that torsion points of prime order form a Zariski dense subset,
we can prove that β⊗k ∈ V q

m(R
paY ∗ωY )0 and therefore β ∈ V q

m(R
paY ∗ωY )0. This

proves thatφ(Z) ⊂ V q
m(R

paY ∗ωY )0 and thatφ(V q
m(R

paX∗ωX)0) ⊂ V q
m(R

paY ∗ωY )0.

By repeating the same argument with a quasi-inverse of Φwe complete the
proof.

Corollary 3.13. Question 3.11 has a positive answer in dimension 3. Moreover it
holds in dimension 4 if the equivalence Φ is Rouquier-stable.

Finally, we study the case (p, q) = (1, 0).

Proposition 3.14. Let Φ: Db(X) → Db(Y ) be a derived equivalence.

1. Then
h0(Alb(X), R1aX∗ωX) = h0(Alb(Y ), R1aY ∗ωY )

and
V 0
m(R

1aX∗ωX)0 ≃ V 0
m(R

1aY ∗ωY )0

for everym ≥ 1.

2. If the equivalence is Rouquier-stable, then

V 0
m(R

1aX∗ωX) ≃ V 0
m(R

1aY ∗ωY )
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for everym ≥ 1 and χ(R1aX∗ωX) = χ(R1aY ∗ωY ).

Proof. 1. Supposeα ∈ Pic0(X) is a Rouquier-stable line bundle, by theHochschild-
Kostant-Rosenberg isomorphism (2.9) we have the following direct sum
decomposition of the first Hochschild homology

HH1(X,α) ≃ H1(X,ωX ⊗ α)⊕H0(X,Ωn−1
X ⊗ α)

and there is a similar decomposition for Y

HH1(Y, φ(α)) ≃ H1(Y, ωY ⊗ φ(α))⊕H0(Y,Ωn−1
Y ⊗ φ(α)).

Note that h1(X,ωX ⊗ α) = h0(X,Ωn−1
X ⊗ α), and similarly for Y. Since

the first Hochschild homology is a derived invariant, i.e. HH1(X,α) ≃
HH1(Y, φ(α)), then

h1(X,ωX ⊗ α) = h1(Y, ωY ⊗ φ(α)).

By the Leray spectral sequence there are the following equalities

h1(X,ωX ⊗ α) = h0(Alb(X), R1aX∗ωX ⊗ α) + h1(Alb(X), aX∗ωX ⊗ α)

and

h1(Y, ωY⊗φ(α)) = h0(Alb(Y ), R1aY ∗ωY⊗φ(α))+h1(Alb(Y ), aY ∗ωY⊗φ(α)).

Now, since h1(X,ωX⊗α) = h1(Y, ωY ⊗φ(α)) and h1(Alb(X), aX∗ωX⊗α) =
h1(Alb(Y ), aY ∗ωY ⊗ φ(α)) because they are derived invariants, then we
also have

h0(Alb(X), R1aX∗ωX ⊗ α) = h0(Alb(Y ), R1aY ∗ωY ⊗ φ(α)). (3.9)

Since the structure sheaf is Rouquier-stable, we can take α = OX in the
equation (3.9) and thenwe conclude the first part of the proof by Theorem
3.12.

2. For the secondpoint of the proposition, suppose the equivalence is Rouquier-
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stable. By the equation (3.9) we have that V 0
m(R

1aX∗ωX) ≃ V 0
m(R

1aY ∗ωY )

form ≥ 1. By Theorem 1.12 both R1aX∗ωX and R1aY ∗ωY are GV-sheaves,
then for general α ∈ Pic0(X) and β ∈ Pic0(Y ) the sheaves R1aX∗ωX ⊗ α

and R1aY ∗ωY ⊗ β have no higher cohomology. In particular, when β =

φ(α) there are the following equalities

hj(Alb(X), R1aX∗ωX ⊗ α) = hj(Alb(Y ), R1aY ∗ωY ⊗ φ(α)) = 0

for every j > 0. Then we have that

χ(R1aX∗ωX) = χ(R1aX∗ωX ⊗ α) = h0(Alb(X), R1aX∗ωX ⊗ α)

and

χ(R1aY ∗ωY ) = χ(R1aY ∗ωY ⊗ φ(α)) = h0(Alb(Y ), R1aY ∗ωY ⊗ φ(α))

which concludes the proof.

3.5 Small Values of the Albanese Fiber Dimension

In this section we study Question 3.8 for small values of c(X).When c(X) = 1

we have the following result.

Theorem 3.15. Let Φ: Db(X) → Db(Y ) be a derived equivalence and let c(X) = 1.

1. If Φ is Rouquier-stable, then X and Y are birational and Question 3.8 holds.

2. If kod(X) ≥ 0, then χ(R1aX∗ωX) = χ(R1aY ∗ωY ).

Proof. 1. By Proposition 3.4 c(Y ) = 1, too. Denote by f : X → X ′ and
g : Y → Y ′ the fibration parts of the Stein factorization of aX and aY , re-
spectively. By Theorem 2.22 we have thatX ′ ≃ Y ′. Moreover, Φ induces,
by Theorem 2.37, a derived equivalence between the general fibers of f
and g. Since these fibers are curves they are isomorphic [Huybrechts, 2006,
Corollary 5.46]. ThenX and Y are birational and the statement follows 1.

1I thank Federico Caucci for sharing this proof with me.
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2. By [Caucci and Lombardi, 2022, §2.1.3], if Aut0(X) is affine, then Pic0(X)

is Rouquier-stable and the previous point applies. If Aut0(X) is not affine,
then there exists a positive dimensional abelian variety acting on X. By
Theorem 2.6, wemust have χ(ωX) = 0.We also have χ(ωX) = χ(aX∗ωX)−
χ(R1aX∗ωX) and therefore χ(aX∗ωX) = χ(R1aX∗ωX). On Y we have an
analogous situation, then there exists a positive dimensional abelian va-
riety acting on Y and χ(ωY ) = 0 as well. Since kod(Y ) ≥ 0, the Al-
banese dimension of Y is dimY − 1 and χ(aY ∗ωY ) = χ(R1aY ∗ωY ). Since
χ(aX∗ωX) = χ(aY ∗ωY ) by Theorem 2.14, then χ(R1aX∗ωX) = χ(R1aY ∗ωY ).

When c(X) = 2 we provide a generic version of Question 3.8.

Theorem 3.16. Let Φ: Db(X) → Db(Y ) be a Rouquier-stable derived equivalence
with dimX ≥ 3 and c(X) = 2. Then for a generic α ∈ Pic0(X) there are equalities

hq(X,ωX ⊗ α) = hq(Y, ωY ⊗ φ(α))

for every q ≥ 0.Moreover, we have the following equalitiesχ(RpaX∗ωX) = χ(RpaY ∗ωY )

for p ≥ 0 and χ(ωX) = χ(ωY ).

Proof. Recall that the sheaves RiaX∗ωX and RiaY ∗ωY are GV-sheaves for every
i ≥ 0 by Theorem 1.12 and, since c(X) = 2, also RiaX∗ωX = RiaY ∗ωY = 0 for
i ≥ 3 Hence for a generic α ∈ Pic0(X) and for all j > 0 and i ≥ 0,we have

hj(Alb(X), RiaX∗ωX ⊗ α) = hj(Alb(Y ), RiaY ∗ωY ⊗ φ(α)) = 0. (3.10)

Recall that when q = 0, 1, 2, respectively, the loci V 0
m(R

qaX∗ωX) are derived
invariants via the Rouquier isomorphism for all m ≥ 1 (cfr. Corollary 2.15,
Proposition 3.14 and Corollary 3.6, respectively). So for a generic α ∈ Pic0(X),
as above, we have the equality

h0(Alb(X), RqaX∗ωX ⊗ α) = h0(Alb(Y ), RqaY ∗ωY ⊗ φ(α))

for q = 0, 1, 2. By the equations (3.10) and using the Leray spectral sequence we
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get the following

hq(X,ωX ⊗ α) = h0(Alb(X), RqaX∗ωX ⊗ α)

hq(Y, ωY ⊗ φ(α)) = h0(Alb(Y ), RqaY ∗ωY ⊗ φ(α))

for q = 0, 1, 2. This proves the theorem.

3.6 Hochschild Homology and Generation in Low
Degrees

Let Φ: Db(X) → Db(Y ) be a derived equivalence and supposeX is of maximal
Albanese dimension, or equivalently with Albanese fiber dimension c(X) = 0.

Caucci and Pareschi’s Theorem 2.14 shows that the map induced by Φ on the
Hochschild homology induces the isomorphisms

Hj(X,ωX ⊗ α) ≃ Hj(Y, ωY ⊗ φ(α))

for any Rouquier-stable line bundle α ∈ Pic0(X) and for every j ≥ 0. Our aim,
in this section, is to extend their result to other values of c(X).

Recall that, from the invariance of the twisted Hochschild homology (see
(2.4)), Φ induces the following isomorphisms

ΦHHj ,α : HHj(X,α) → HHj(Y, φ(α))

ΦHHj ,α : HHj(X,α) → HHj(Y, φ(α))

for anyRouquier-stableα ∈ Pic0(X).Using theHochschild-Kostant-Rosenberg
isomorphism (2.9) we get the following decomposition

HHj(X,α) ≃
⊕
p−q=j

Hq(X,Ωp
X ⊗ α).

Note that
Hj(X,ωX ⊗ α) ⊂ HHn−j(X,α)

for every j ≥ 0.
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Theorem 3.17. Let Φ: Db(X) → Db(Y ) be a derived equivalence. Suppose that
kod(X) ≥ 0 and that α ∈ Pic0(X) is a Rouquier-stable line bundle. If

ΦHHn−j ,α

(
Hj(X,ωX ⊗ α)

)
= Hj(Y, ωY ⊗ φ(α)) for 0 ≤ j ≤ c(X) (3.11)

then
ΦHHn−j ,α

(
Hj(X,ωX ⊗ α)

)
= Hj(Y, ωY ⊗ φ(α))

for j > c(X) .

Proof. Consider the graded rings

EX =
∗∧
H1(X,OX) and EY =

∗∧
H1(Y,OY ).

Now consider the graded EX-module

QX = H∗(X,ωX ⊗ α) =
⊕
i

H i(X,ωX ⊗ α).

By convention both the graded pieces ∧iH1(X,OX) and H i(X,ωX ⊗ α) of EX

and QX , respectively, live in degree −i. Moreover QX is c(X)-regular over
EX , by [Lazarsfeld and Popa, 2010, Theorem B], and therefore generated in
degrees 0,−1, . . . ,−c(X). The group HH∗(X,α) =

⊕
iHHi(X,α) admits a

natural structure of EX-module. Let W̃∗(X) be the graded EX-submodule of
HH∗(X,α) generated by Hj(X,ωX ⊗ α) for j = 0, . . . , c(X) so that W̃∗(X) =

QX . Now W̃∗(Y ) := ΦHH∗

(
W̃∗X

)
is generated by Hj(Y, ωY ⊗ φ(α)) for j =

0, . . . , c(X) because ΦHH∗ is compatible with the isomorphism EX ≃ EY (as
proved in [Caucci and Pareschi, 2019]). Since c(X) = c(Y ) then

QY =
⊕
i

H i(Y, ωY ⊗ φ(α))

is generated in degrees 0,−1, . . . ,−c(X) as EY -module. Hence W̃∗(Y ) = QY

and the statement follows.

Remark 3.18. In the result of Caucci and Pareschi, corresponding to the case
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c(X) = c(Y ) = 0, the condition

ΦHH0,α

(
H0(X,ωX ⊗ α)

)
= H0(Y, ωY ⊗ φ(α))

is automatically satisfied by Theorem 2.18.
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