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Abstract

Given a finitely generated group G with a finite generating set Σ, we associate to
(G,Σ) a cube complex, the hypercubical complex of (G,Σ), that can be thought of as
the cubical version of a flag complex, having the Cayley graph Γ(G,Σ) as 1-skeleton.
G is hypercubical with respect to Σ if its hypercubical complex is contractible. From
this we can deduce some consequences for the group. The aim of this thesis is
to introduce the concepts of hypercubical complex of a group and hypercubical
groups, and to introduce certain families of hypercubical groups. These families
are RAAGs, oriented and twisted RAAGs (two generalizations of RAAGs), and
the Borromean cube groups (a family defined inductively, starting from the link
group of the Borromean rings). For these groups we will also use the hypercubical
complex to deduce properties of cohomological nature.
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Sommario

Dati un gruppo finitamente generatoG e un sistema finito di generatori Σ, associamo
alla coppia (G,Σ) un complesso cubico, il complesso ipercubico di (G,Σ), che
può essere visto come la versione cubica di un flag complex, avente come 1-
scheletro il grafo di Cayley Γ(G,Σ). G è ipercubico rispetto a Σ se il suo complesso
ipercubico è contraibile. Da questo possiamo dedurre alcune conseguenze per il
gruppo. Lo scopo di questa tesi è di introdurre i concetti di complesso ipercubico
di un gruppo e di gruppi ipercubici, e di introdurre alcune famiglie di gruppi
ipercubici. Queste famiglie sono quelle dei RAAG, dei RAAG twisted e orientati
(due generalizzazioni dei RAAG), e quella dei gruppi cubici di Borromeo (una
famiglia definita induttivamente, partendo dal gruppo link degli anelli borromeiani).
Utilizzeremo inoltre il complesso ipercubico di questi gruppi per dedurre proprietà
di natura coomologica per essi.
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Resumen

Dados un grupo finitamente generado G y un conjunto finito de generadores Σ,
asociamos a (G,Σ) un complejo cúbico, el complejo hipercúbico de (G,Σ), que se
puede ver como la versión cúbica de un flag complex, cuyo 1-esqueleto es el grafo
de Cayley Γ(G,Σ). G es hipercúbico con respeto a Σ si su complejo hipercúbico es
contractible. De esto deduciremos ciertas propiedades de estos grupos. El objetivo
de esta tesis es introducir los conceptos de complejo hipercúbico de un grupo y de
grupos hipercúbicos, e introducir algunas familias de grupos hipercúbicos. Estas
familias son la de los RAAGs, de lo dichos RAAGs twisted y orientados (dos
generalizaciones de los RAAGs), y la de los dichos grupos cúbicos de Borromeo
(una familia definida inductivamente, empezando por el grupo enlace de los anillos
de Borromeo). Además, usaremos el complejo hipercúbico para deducir ciertas
propiedades de caracter cohomológico de estos grupos.
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Chapter 1

Introduction

Geometry, topology and combinatorics can often be powerful instruments for
the study of infinite groups. In geometric group theory one can adopt a geometric
point of view in two different ways, either by looking at groups as geometric objects
on their own, or by studying actions of groups on suitable spaces. This second
viewpoint is the general context of this thesis. It is often useful to study actions of
groups on spaces that are endowed with a combinatorical structure, compatible
with the topology, in such a way that both the combinatorical and the topological
structure are preserved by the action. It is the case of cellular actions on CW
complexes. In particular, actions on cubical complexes can be of great interest, for
many different reasons. On one hand, it is frequently sufficient to understand the
combinatorics of a cubical complex, without having to deal explicitly with metric
and topological problems. On the other hand, when a cubical complex satisfies
certain hypotheses (for instance, being non-positively curved in some sense), many
deep results can be proven for groups acting "nicely enough" on it. Such results can
have deeply different natures: geometric, cohomological, algorithmic, dynamical
and more. This leads us to the topic of this thesis: hypercubical groups. This is
a new class of groups, defined by a property that is already known in literature
but that has not been studied on its own. A finitely generated group G is said
to be hypercubical if we can associate to it a certain cubical complex, called the
hypercubical complex of G, which is contractible. Even though the hypercubical
complex has already been used in the past literature (without this name), the
concept of hypercubical groups is new and due to the author.

The structure of the thesis is as follows. After briefly recalling, in Chapter 2, the
necessary preliminary notions and proving general results that will be needed later
on, we give the definitions and general results about hypercubical groups in Chap-
ter 3. Then in Chapter 4 we show that right-angled Artin groups are hypercubical,
in fact they are the inspiring example, and we introduce two generalizations of
RAAGs: oriented and twisted RAAGs, both of which are hypercubical. Lastly, in
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CHAPTER 1. INTRODUCTION

Chapter 5, after a brief introduction about knot and link theory, we show that the
link group of the Borromean rings is hypercubical. We then construct inductively a
family of groups, the Borromean cube groups, that are all hypercubical. Chapter 6
collects the conclusions of this thesis and lists some possible future lines of research
about hypercubical groups.
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Chapter 2

Preliminary notions

The theme of this thesis is a family of groups, the hypercubical groups, whose
definition relies on a specific type of cell complex that can be associated to a group,
and which pieces of information we are able to deduce about the group itself from
such complex. Therefore it seems appropriate to collect some preliminary notions
and facts before exploring the definitions and results about hypercubical groups.
These preliminaries are exposed briefly and usually without proof, when they are
not original results, but references are given.

2.1 CW complexes and cellular homology
Usually in Geometric Group Theory one studies how groups act on sets which

admit a topological structure preserved by the group action. Clearly not every
action is useful, nor every space. Therefore we need to restrict our attention to
specific classes of actions and spaces, one of them being that of cellular actions
on CW complexes. We begin by briefly recalling the notions we need about CW
complexes. The source for this section is [Hat01].

A CW complex (or cell complex) X is a topological space that can be constructed
inductively as follows:

• start with a discrete set X0, whose elements will be called the 0-cells or the
vertices of X;

• inductively, construct the set Xn, called the n-skeleton of X, by attaching
n-disks (called n-cells) to Xn−1 along their boundaries. The topology of Xn

is given by taking the disjoint union of Xn−1 and all the n-cells (that have
the topology of an n-disk) and giving to Xn the quotient topology;

• X = ⋃
nX

n, where the union is either finite or infinite. X is endowed with
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CHAPTER 2. PRELIMINARY NOTIONS

the weak topology: A ⊆ X is open (or closed) in X iff A ∩ Xn is open (or
closed) in Xn for every n.

The dimension of X, denoted dimX, is defined as the maximal dimension of a
cell in X, or as infinite if there is no cell of maximal dimension.

Two particular classes of CW complexes are simplicial complexes and cube
complexes.

Definition 2.1. A simplicial complex is a CW complex in which all cells are
simplices and the intersection between two simplices, if nonempty, is a face of both.

Definition 2.2. A cube complex is a CW complex in which all cells are unitary
cubes (i.e., copies of [0, 1]n for some n), glued together via isometries along faces.

It is clear from the definition that CW complexes have a remarkable property:
they have a strong combinatorial nature, which is the source of many important
results. One of the most relevant consequences of this combinatorial nature is that
the singular homology of a CW complex is much easier to compute than that of
a general topological space. For a CW complex, the singular homology coincides
indeed with the so-called cellular homology, which is constructed as follows. The
cellular chain complex of a CW complex X, denoted C•(X), has in degree n the
free Z-module over the set of cells of dimension n, while the differential sends an
n-cell to a linear combination of the (n− 1)-cells of its boundary, with coefficients
that depend on the degrees of the attaching maps. The cellular homology of X,
H•(X) is defined as the homology of the cellular chain complex of X. There is
an alternative, yet equivalent, definition of cellular homology, which consists in
defining the cellular chain complex using portions of long exact sequences for CW
pairs. It is a useful approach in order to prove some theoretical results, but it is
much more convoluted and we will not need that point of view. As we can see, the
calculations only rely on the combinatorial structure of the CW complex, which is
much more manageable than the topological one.

The most relevant results, for the purpose of our thesis, are the following (see
[Hat01]).

Proposition 2.3. Let X be a CW complex. Then:

(i) Hn(X) = 0 if X has no n-cells;

(ii) if X has k n-cells, then Hn(X) is generated by at most k elements;

(iii) if X has neither (n − 1)-cells nor (n + 1)-cells, then Hn(X) is free abelian
with basis in one-to-one correspondence with the n-cells of X;

(iv) if X is path-connected, H0(X) = Z.

4



CHAPTER 2. PRELIMINARY NOTIONS

Proposition 2.4. Let X be a CW complex. Then for n > 1 the differential of the
cellular chain complex is given by

dn(enα) =
∑
β

dαβe
n−1
β ,

where en−1
β are the (n − 1)-cells in the boundary of enα, they are finite in number

and dαβ is the degree of the map Sn−1
α → Xn−1 → Sn−1

β given by composing the
attaching map of enα with the quotient map that collapses Xn−1 \ en−1

β to a point.

Another family of groups that can be associated to a topological space, thus
to a CW complex as well, X is that of the homotopy groups πn(X, x0) of X with
basepoint x0. The case for n = 1 is the fundamental group π1(X, x0).

Definition 2.5. Given a topological space X, the n-th homotopy group πn(X, x0)
of X with respect to a chosen point x0 is the set of the homotopy classes of maps
(In, ∂In) → (X, x0), where homotopies ft satisfy ft(∂In) = x0 for any t. Here In
is the n-dimensional unit cube [0, 1]n. Equivalently, the elements of πn(X, x0) can
be thought of as homotopy classes of maps (Sn, s0) → (X, x0), which for n = 1 is
the usual definition. For n > 1 such a set is an abelian group with the following
operation, which is well-defined on homotopy classes:

(f + g)(s1, . . . , sn) :=
f(2s1, s2, . . . , sn), if s1 ∈ [0, 1/2]
g(2s1 − 1, s2, . . . , sn), if s1 ∈ [1/2, 1].

For n = 1 the same operation gives a group structure but this is not abelian in
general. Note that for X path-connected changing the basepoint will produce an
isomorphic group, therefore in such cases we will use the notation πn(X).

Proposition 2.6. Given a CW complex X, the inclusion Xn → X induces
isomorphisms on πi for i < n and a surjection on πn.

The following two results state an important connection between homotopy and
homology groups.

Theorem 2.7 (Whitehead). A weak homotopy equivalence f : X → Y between
connected CW complexes, i.e a map inducing isomorphisms f∗ : πn(X) → πn(Y )
for all n, is a homotopy equivalence. If f is the inclusion of the subcomplex X into
Y , then X is a deformation retract of Y .

Therefore a weakly contractible CW complex (i.e., a CW complex whose
homotopy groups are all trivial) is contractible.
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CHAPTER 2. PRELIMINARY NOTIONS

Theorem 2.8 (Hurewicz). For a topological space X,

H1(X) ≃ π1(X,x0)/[π1(X,x0), π1(X,x0)].

Moreover, if X is (n− 1)-connected for n ≥ 2 (i.e., πi(X, x0) = 0 for i < n), then
Hi(X) = 0 for 0 < i < n and πn(X) ≃ Hn(X).

As a consequence, it is possible to state a homological version of Whitehead’s
theorem, whose relevance lies in the fact that usually homology groups are easier
to compute than homotopy groups.

Corollary 2.9. Let f : X → Y be a map between simply-connected CW complexes
inducing isomorphisms f∗ : Hn(X) → Hn(Y ) for all n. Then f is a homotopy
equivalence.

2.2 Groups presentations, Cayley graphs and
Cayley complexes

Given a group G, it is always possible to find an epimorphism ϕ : F → G,
where F is a free group. Let N := kerϕ, so that G ≃ F/N . If F = F (X) is the
free group over X and N is the normal closure of a subset R ⊆ F , then we can
write G = ⟨X | R⟩, meaning that G is indeed isomorphic to the free group over X
modulo the normal closure of R in such free group. This is called a presentation for
G, X is a set of generators for G and the elements of R are called relators (they are
called relations if they are written in the form v = w, meaning that vw−1 is in R).
G is said to be finitely generated if it admits a presentation with a finite number
of generators, while it is called finitely presented if also the number of relators is
finite.

Definition 2.10. Let G be a group and S be a symmetric generating set (i.e.
S = S−1) not containing 1G. The Cayley graph of G with respect to S is the graph
Γ(G,S) whose vertices are the elements of G and such that two vertices g, h are
connected by an oriented edge going from g to h if h = gs for some s ∈ S, in which
case such edge is labeled s.

Note that any generating set for G can be made into a symmetric generating
set not containing the identity. Note also that this definition of the Cayley graph
produces a graph in the sense of Serre (see [Ser03]), but it can be easily adapted to
the other definitions of graphs. It is always a connected graph, because S generates
G.
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Definition 2.11. Let G = ⟨S | R⟩ be a group with a set of generators S and a finite
set of relators R. The Cayley complex of G with respect to S is the 2-dimensional
CW complex having Γ(G,S) as 1-skeleton and a 2-cell for every vertex g and every
relator r. Such 2-cell is attached to Γ(G,S) along the closed path starting at g and
reading the word r.

Note that a Cayley complex is always simply-connected.
The group G acts on every one of its Cayley graphs and Cayley complexes

with the action induced by the left regular action. Such action is always free and
transitive on the vertices. The quotient of a Cayley complex by the action of the
group is what is known as a presentation complex for G. It is a complex with
one single vertex, an edge for every generator and a 2-cell for every relation. Its
fundamental group is the group G itself, but in general the higher homotopy groups
are not trivial (in other words, it is not aspherical).

2.3 Group cohomology and finiteness conditions
In this section we will introduce group homology and cohomology and some

finiteness conditions. The source we suggest is [Bro82].

Group homology and cohomology

In topology, homology and cohomology theories are ways to associate to a
topological space a succession of groups that encode some pieces of information
about the space itself. The same idea can be applied to groups. We first need to
recall some notions of homological algebra.

Given a ring R, an R-module P is projective if for any mapping problem of the
form

P

M ′ M M ′′

ψ
ϕ

0

i j

where M,M ′,M ′′ are R-modules, jϕ = 0 and the row is exact there exists a
solution, i.e., a map ψ such that iψ = ϕ. Note that free modules are projective.

Given an R-module M , we call a projective resolution for M an exact sequence
of the form

· · · −→ P2 −→ P1 −→ P0 −→ M −→ 0,
where the Pi’s are projective R-modules. If all the Pi’s are free, we call it a free
resolution.

7



CHAPTER 2. PRELIMINARY NOTIONS

The first step to defining the homology of a group G is to take a projective
resolution

· · · −→ P2 −→ P1 −→ P0 −→ Z −→ 0,
of Z over ZG, where we see Z as a trivial ZG-module. Then we apply to each term
the coinvariants functor M → MG, where M is a G-module and MG := M /<
gm−m|m ∈ M, g ∈ G >. In other words, the coinvariants module of a G-module
M is the largest quotient of M on which G acts trivially. We obtain the chain
complex

· · · −→ (P2)G −→ (P1)G −→ (P0)G −→ 0.

Definition 2.12. The homology of G, denoted H•(G), is defined as the homology
of the above chain complex PG.

It is possible to prove that for every group the trivial module admits a projective
resolution and that the homology of the group does not depend on the specific
resolution one chooses.

There are other functors that one can apply to a projective resolution in this
context, such as the tensor product and the Hom functor.

Given two left G-modules M and N , we consider N as a right G-module by
ng := g−1n. Therefore we can define the tensor product N⊗GM , which is obtained
from N ⊗ M = N ⊗Z M by introducing the relations g−1n ⊗ m = n ⊗ gm, or
equivalently n ⊗ m = gn ⊗ gm. By fixing a G-module M and by applying the
tensor product functor _ ⊗GM to a projective resolution P• ↠ Z for G, we get
the following chain complex:

· · · −→ P2 ⊗GM −→ P1 ⊗GM −→ P0 ⊗GM −→ 0.

Definition 2.13. The homology of G with coefficients in M is the homology of
the above chain complex. It is denoted H•(G,M).

As N ⊗GM = (N ⊗M)G, where we consider the diagonal G-action on N ⊗M
given by g(n⊗m) = gn⊗ gm, tensoring a projective resolution of Z over ZG with
Z is equivalent to applying the coinvariants functor to the projective resolution.
Therefore H•(G,Z) = H•(G).

Let now consider a G-module M and the contravariant functor HomG(_,M).
Applying it to a projective resolution P• ↠ Z of Z over ZG yields a nonnegative
cochain complex

0 −→ HomG(P0,M) −→ HomG(P1,M) −→ HomG(P2,M) −→ . . . .

Definition 2.14. The cohomology of G with coefficients in M is the cohomology
of the cochain complex above. It is denoted H•(G,M).

8
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Finiteness conditions
Definition 2.15. Given a group G, a classifying space for G is a CW complex
whose fundamental group is isomorphic to G and whose higher homotopy groups
are trivial. Equivalently, the fundamental group is isomorphic to G and its universal
cover is contractible. It is usually denoted by BG or K(G, 1), while the universal
covering is denoted EG.

Note that as a consequence of the theorems stated in section 2.1, two classifying
spaces for the same group are always homotopy equivalent. If X is a BG, then
there is a free action induced on the space EG. Equivalently, we could define EG
to be a contractible CW complex endowed with a free cellular G-action (i.e., G
acts freely on EG by homeomorphisms and every element of G sends each cell into
another cell) and define BG as the quotient EG/G. Classifying spaces provide
a useful tool as they encode different properties of the group. For example, it is
possible to prove that every group has a classifying space and that the cellular
chain complex of the universal covering of a classifying space for a group G is in
fact a free resolution of Z over ZG. The following theorem holds.

Theorem 2.16. Let G be a group, BG a classifying space for G and EG its
universal covering. Then C•(EG)G = C•(BG) and H•(G) = H•(BG).

In fact, some authors consider this as a definition for the homology of G, as the
homology of a BG only depends on G.

The geometric dimension of G, denoted gdG, is the minimal dimension of
a classifying space for G (therefore it can be infinite if there exists no finite
dimensional BG). It can also be defined as the minimal dimension for an EG.
Note that if H ≤ G, then an EG is also an EH, therefore gdH ≤ gdG. Moreover,
if Hn(G) ̸= 0, then gdG ≥ n.

We say that G has cohomological dimension ≤ n for a nonnegative integer n, if
G admits a projective resolution of length n, i.e. of the form

0 −→ Pn −→ · · · −→ P1 −→ P0 −→ Z −→ 0.

We write cdG ≤ n, where cdG denotes the cohomological dimension of G. The
cohomological dimension of G is defined as the smallest n for which cdG ≤ n. If G
does not admit any projective resolution of finite length, then we set cdG = ∞.
We now state some results about the cohomological dimension.

Theorem 2.17. Let G be a group. Then:

• cdG = inf{n | H i(G,_) = 0 ∀i > n}
= sup{n | Hn(G,M) ̸= 0 for some G-module M};

9
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• cdG ≤ gdG;

• cdG = 0 ⇐⇒ gdG = 0 ⇐⇒ G is trivial;

• cdG = 1 ⇐⇒ gdG = 1 ⇐⇒ G is free and nontrivial;

• If cdG < ∞, then cdG = sup{n | Hn(G,F ) ̸= 0 for some free G-module F};

• cdH ≤ cdG for any H ≤ G, with equality if H has finite index in G and G
is torsion-free (Serre);

• cdG < ∞ =⇒ G is torsion-free;

• G admits a free resolution of length cdG.

Theorem 2.18 (Eilenberg-Ganea). Let G be a group. Then cdG = gdG, except
possibly if cdG = 2 and gdG = 3.

The following result describes a technique that will be used for some computa-
tions later on.

Lemma 2.19. Suppose ∂• : X• −→ Z is a free resolution of ZG-modules of length
n, for a certain group G. Suppose also that the following hypotheses hold:

• Xn = ZGcn ⊕X ′
n;

• Xn−1 = ZGcn−1 ⊕X ′
n−1;

• ∂n(X ′
n) ⊆ X ′

n−1

• ∂n(cn) = gcn−1 + z, with z ∈ X ′
n−1 and g ∈ G.

Then ∂′
• : X ′

• −→ Z is a free resolution for G, where X ′
j = Xj for j ≤ n− 2 and ∂′

•
is given by properly restricting ∂• in degree n and n− 1.

Proof. We claim that Xn−1 = im∂n ⊕ X ′
n−1. Clearly the equality holds with the

sum. Take a∂n(cn) = agcn−1 + az ∈ im∂n ∩X ′
n−1. Then agcn−1 ∈ X ′

n−1, therefore
a = 0. This proves the claim.

Let now consider the complex

X ′
n

∂′
n−→ X ′

n−1
∂′

n−1−−−→ . . . −→ Z −→ 0.

• im∂′
n = ker∂′

n−1.
Indeed, let x ∈ ker∂′

n−1. Then x ∈ im∂n ∩ X ′
n−1, so we can write x = ∂n(y)

for some y ∈ Xn. Let a ∈ ZG and b ∈ X ′
n such that y = acn + b. Then

x = a∂n(cn) + ∂n(b) =⇒ x− ∂n(b) = a∂n(cn) ∈ X ′
n−1 ∩ZG∂n(cn) = 0, hence

a = 0 and x = ∂n(b) ∈ im∂′
n.

10
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• im∂′
n−1 = ker∂′

n−2.
Indeed, ker∂′

n−2 = ker∂n−2 = im∂n−1 = ∂n−1(ZG∂n(cn)⊕X ′
n−1) = ∂n−1(X ′

n−1) =
im∂′

n−1.

Remark 2.20. If in Lemma 2.19 X ′
n is trivial, then the lemma implies that cdG ≤

n− 1.

Definition 2.21. A group G is said to be of type FPn if it admits a projective
resolution P• ↠ Z where Pi is finitely generated for 0 ≤ i ≤ n. G is of type FP∞ if
it is of type FPn for every n, and of type FP if it admits a projective resolution of
finite length and all the projective modules in the resolution are finitely generated.

Definition 2.22. A group G is said to be of type Fn if it admits a classifying space
with finite n-skeleton. G is of type F∞ if it is of type Fn for every n, and of type F
if it admits a finite classifying space.

Remark 2.23. Equivalently, we could define type Fn, F∞ and F in terms of the
action of G on EG. For instance, G is of type Fn if it admits an EG with a
finite number of orbits of cells up to dimension n. Another equivalent definition is
the following: G is of type Fn if it acts cellularly, freely and cocompactly on an
(n− 1)-connected CW complex (see [Geo08, Prop. 7.2.1]).

Note that the following implications hold.

F F∞ Fn

FP FP∞ FPn

Also, Fn =⇒ Fn−1 and FPn =⇒ FPn−1 for all n. These implications are strict
in general, but it is possible to show that for finitely presented groups being of
type Fn is equivalent to being of type FPn. See for example [BB97]. Moreover,
every group is of type F0 and FP0, type F1 and type FP1 are both equivalent to
finite generation and type F2 is equivalent to finite presentability. Finite groups
are of type F∞ but not of type F .

Other relations among the finiteness conditions we have seen are summarized
in the following results.

Proposition 2.24. (1) Let G be a group and H ≤ G of finite index. Then for
0 ≤ n ≤ ∞ one has that G is of type FPn ⇐⇒ H is of type FPn.

(2) If G is of type FP∞ and Hn(G,ZG) = 0 for some n, then Hn(G,F ) = 0 for
all free ZG-modules F .

11
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(3) If G is of type FPn and M is a G-module which is finitely generated as an
abelian group, then Hi(G,M) and H i(G,M) are finitely generated abelian
groups for i ≤ n.

(4) A group G is of type FP if and only if cdG < ∞ and G is of type FP∞ (for
the "only if" part it is enough to take G of type FPn, where n = cdG).

(5) Let G be torsion-free and H ≤ G of finite index. Then G is of type FP ⇐⇒
H is of type FP .

(6) If G is of type FP , then cdG = max{n | Hn(G,ZG) ̸= 0}.

2.4 CAT(0) spaces and CAT(0) cube complexes
This section will regard the theory of CAT(0) cube complexes and CAT(0)

spaces, which will be relevant in the continuation of this thesis. For the former, a
combinatorial approach will be adopted. In order to motivate the combinatorial
approach, we will then sum up the fundamentals of the theory of CAT(κ) and
CAT(0) metric spaces.

Recall that, given a cube complex X, the link of the vertex v ∈ X0 is the CW
complex given by an (n− 1)-simplex for every n-cube having v as a vertex. It can
be seen as the intersection between X and an ε-sphere centered at v, for ε small
enough. Recall also that a simplicial complex is called a flag complex if n vertices
span an (n− 1)-simplex if and only if they are pairwise connected by an edge.

Definition 2.25. A non-positively curved cube complex X is a cube complex such
that the link of every vertex is a flag complex. A simply-connected non-positively
curved cube complex is called a CAT(0) cube complex.

The relevant characteristic, for the purposes of this thesis, of CAT(0) cube
complexes is that they are contractible. But this is not the only significant aspect
of these spaces. In fact, a byproduct of proving that a certain cube complex is
contractible by showing that it is CAT(0) is that interesting results can be proven
for groups acting "sufficiently nicely" on it. The reason why a CAT(0) cube complex
is contractible lies in the theory of CAT(κ), and more specifically CAT(0), metric
spaces. It is not a coincidence that the same name has been used, as we will see
that a CAT(0) cube complex in the sense above is also CAT(0) in the sense of
metric spaces. We refer the reader to [BH99] for more details.

Definition 2.26. Let (X, d) be a metric space. A geodesic segment between two
points a and b in X is the image of an isometric embedding [0, d(a, b)] → X. The
metric space (X, d) is said to be geodesic if any two points are connected by a

12
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geodesic segment, ρ-geodesic if any two points at distance less than ρ are connected
by a geodesic segment.

Let us consider a metric space (X, d). A geodesic triangle in X is a triangle
(i.e., the choice of three vertices and a path between any two of them) in which
any side is a geodesic segment between the two vertices of the side (note that in
general there might be many geodesic segments between the two vertices). Let M2

κ

be the unique complete simply connected surface with constant curvature κ and
let Dκ be the diameter of M2

κ , which is +∞ if κ ≤ 0 and π√
κ

if κ > 0. For example,
M2

0 is the Euclidean plane, M2
1 is the unit sphere S2 and M2

−1 is the hyperbolic
plane (actually, each M2

k can be obtained from one of these examples by scaling
the metric).

Definition 2.27. Let ∆ be a geodesic triangle in the metric space (X, d). A
comparison triangle ∆′ for ∆ in some model space M2

κ is a triangle with the sides
of the same length as the sides of ∆. We say that ∆ satisfies the CAT(κ) inequality
if there exists a comparison triangle ∆′ in the model space M2

κ such that for every
p, q ∈ ∆ the distance between p and q is less or equal than the distance between
the two corresponding points p′, q′ in ∆′.

We recall that such a comparison triangle always exists, provided that the
perimeter of ∆ is less than 2Dκ, and it is unique up to isometry.

Definition 2.28. For κ ≤ 0, a geodesic space (X, d) is called a CAT(κ) space if
every geodesic triangle satisfies the CAT(κ) inequality.
For κ > 0, a Dκ-geodesic space (X, d) is called a CAT(κ) space if all geodesic
triangles of perimeter less than 2Dκ satisfy the CAT(κ) inequality.

Definition 2.29. A metric space (X, d) is said to be of curvature ≤ κ if it is locally
a CAT(κ) space, i.e., for every x ∈ X there exists rx such that the ball B(x, rx)
with the induced metric is a CAT(κ) space. Metric spaces of curvature ≤ 0 are
called non-positively curved.

The next result is [BH99, Corollary 1.5].

Proposition 2.30. Any CAT(0) space is contractible.

Cube complexes can be endowed with a path metric as follows. A rectifiable
path in the cube complex X is a path that can be divided into subpaths, each of
which is contained in some cube and is rectifiable in the classical sense. We then
define the length of the rectifiable path as the sum of the lengths of the subpaths.
The distance between two points p, q ∈ X is then the infimum of the lengths of all
possible rectifiable paths in X with endpoints p and q. If X is finite-dimensional,
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then this path metric is indeed a metric and X is a complete, geodesic metric space
(see [BH99]; the case of infinite-dimensional locally finite complexes was treated by
Moussong in [Mou88]). A non-positively curved cube complex is locally CAT(0)
(cfr. [Gro87]). As a consequence of Cartan-Hadamard theorem, a simply-connected
non-positively curved cube complex is CAT(0) in the sense of metric spaces (see
[BH99, theorem 4.1]). In [Lea12] Ian Leary showed that this can be applied also to
infinite-dimensional complexes. However, we will only deal with finite-dimensional
cube complexes in this thesis.

In the rest of the thesis, when dealing with cube complexes, we will use the
two languages about non-positively curved and CAT(0) spaces (the combinatorial
one we used at the beginning of this section and the one coming from the general
theory of CAT(0) spaces) interchangeably. Sometimes we will call the defining
condition of non-positively curved cube complexes the Gromov’s link condition.
Note that this name is usually used, in the theory of CAT(κ) spaces, to denote
another, yet equivalent, condition.

14



Chapter 3

Hypercubical Groups

In this chapter we will see the construction of a cube complex associated to
a finitely generated group G with respect to a finite generating set Σ. Such
construction is canonical, once the generating set Σ for G is fixed.

3.1 n-cubes
Informally, an n-cube is the n-dimensional version of a cube (e.g., a point for

n = 0, a segment for n = 1, a square for n = 2 and a cube for n = 3). We consider
[0, 1]n := [0, 1] × · · · × [0, 1]︸ ︷︷ ︸

n times

as the model of an n-cube. The interior of the n-cube

is formed by all the points with all coordinates belonging to (0, 1), while if some
coordinate is either 0 or 1 the point belongs to the boundary of the n-cube.

The boundary can be seen as the union of a finite number of cubes of dimension
< n, called the faces of the n-cube.

Proposition 3.1. In an n-cube the number of m-cubes, for 0 ≤ m ≤ n, is

Em,n = 2n−m
(
n

m

)
.

In particular, for m < n the m-cubes are in the boundary.

Proof. The proof is combinatorical. For m = n there is nothing to prove, thus let
m < n. An n-cube has 2n vertices, the points whose coordinates are all either 0 or
1. For each vertex there are

(
n
m

)
ways to choose m sides of the n-cube defining an

m-cube containing it, but in this way each m-cube is counted 2m times (one for
each of its vertices).

The quantity Em,n satisfies also the following linear recurrence relation:
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Proposition 3.2.
Em,n = 2Em,n−1 + Em−1,n−1,

where E0,0 = 1 and the undefined elements (Ek,l for l < k, l < 0, k < 0) are equal
to 0.

3.2 Hypercubical complex and hypercubical
groups

Let (G,Σ) be a finitely generated group with Σ−1 = Σ and 1 /∈ Σ. We can
associate a cube complex to the Cayley graph of (G,Σ), namely Γ(G,Σ). This
cube complex can be constructed by induction. In order to do this, we first need
to define the cubicalization Q(Γ) of a graph Γ, which is a way to associate a CW
complex to Γ by only attaching cubes of different dimensions. The vertices and
edges of Γ are respectively called the 0-cells and 1-cells of Q(Γ).

Let Ck := [0, 1]k ∀k > 0, C0 = {0}.

Definition 3.3. Set Q1 := |Γ|. Two edges e1, e2 in Q1 with a common vertex
satisfy the 2-dimensional cubical link condition if there exist other two edges e3, e4
in Q1 such that the union of these four edges is isomorphic to the boundary of C2.
We can attach a square, also called a 2-cell, to Q1 along the edges e1, . . . , e4. Such
square is defined by e1, . . . , e4. We can also say that e1, e2 define the 2-cell σ, which
means that e1, e2 satisfy the 2-dimensional cubical link condition and the square
that we attach following the procedure above is σ. By attaching all the possible
2-cell that we can get, we define the space Q2.

Suppose that for n ≥ 3 we have inductively defined the space Qn−1. Then
we say that n edges e1, . . . , en with a vertex in common satisfy the n-dimensional
cubical link condition if:

1. any n− 1 of them satisfy the (n− 1)-dimensional cubical link condition;

2. there exist edges en+1, . . . , e2n such that any n− 1 of them satisfy the (n− 1)-
dimensional cubical link condition;

3. the union of all the (n− 1)-cells resulting from the two points above (with
the appropriate identifications) is isomorphic to the boundary of Cn.

By attaching all the resulting n-cubes, also called n-cells, to Qn−1 we define the
space Qn. The definition of an n-cube defined by n edges is analogous to the one
given for n = 2. When this process stops, the resulting space Q(Γ) will be called
the cubicalization of Γ.

Remark 3.4. If Γ is a simplicial graph, then Q(Γ) is a cube complex.
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We can define the following functions ∀n, ∀i ∈ {1, . . . , n}, ∀j ∈ {0, 1}:

pi,j : Cn → Cn, pi,j(x1, . . . , xn) := (x1, . . . , j, . . . , xn)

where j is in the i-th position. This clearly is the projection on the facet { xi = j } ⊆
Cn.

ιi,j : Cn−1 → Cn, ιi,j(x1, . . . , xn−1) := (x1, . . . , j, . . . , xn−1)
where j is in the i-th position. This is the inclusion of Cn−1 in Cn as the facet
{ xi = j } ⊆ Cn.

Under the identification of each n-cell with Cn these functions induce analogous
functions on each n-cell.
Remark 3.5. For any i, j the map ιi,j is injective, so it is invertible on its image.
The maps ι−1

i,j ◦ pi,j coincide for every j, therefore the map ψi := ι−1
i,j ◦ pi,j is well

defined. It is called the i-th face map.
Remark 3.6. For any i, j the restriction of pi,j to { xi = j } is the identity, therefore
ι−1
i,j ◦ pi,j ◦ ιi,j = idCn−1 .

Definition 3.7. Given a finitely generated group G and a finite, symmetric
generating set Σ not containing 1G, the hypercubical complex of (G,Σ), also called
the hypercubical complex of G with respect to Σ, is given by C•(G,Σ) := Q(|Γ(G,Σ)|).
Cn(G,Σ) will be the set of n-cells, while the n-skeleton is denoted Cn• (G,Σ). When
either Σ or (G,Σ) are clear from the context, we shall omit them when it will not
cause any confusion.

Note that the technical definition we have given says that in order to construct
the hypercubical complex of a finitely generated group we need to attach an n-cube
whenever we see 2n (n− 1)-cubes forming the boundary of an n-cube. This can be
done also in a non-inductive way, by saying that we attach an n-cube whenever
n2n−1 edges form the 1-skeleton of an n-cube. In this sense, the hypercubical
complex can be seen as the cubical version of a flag complex.
Remark 3.8. The definition of the n-dimensional cubical link condition we have
given is useful to define the hypercubical complex in an inductive way, but it can
now be reformulated in an equivalent fashion. Indeed, n edges of the hypercubical
complex, all incident to the same vertex and pairwise adjacent sides of a square,
satisfy the n-dimensional cubical link condition if, and only if, they are edges of
an n-cube. This less technical formulation will be useful for some proofs in the
continuation of the thesis.

Proposition 3.9. The hypercubical complex of a finitely generated group G with
respect to a generating set Σ is always path-connected.
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Proof. The 1-skeleton is path-connected, being Σ a generating set, and all cells are
path-connected.
Definition 3.10. The cube number of (G,Σ) is defined as the highest dimension
of a hypercube in C•.

As the cube number is always finite (there exist at most 2n edges coming
out from each vertex of the Cayley graph, if n is the cardinality of Σ), C• is a
finite-dimensional cube complex and therefore it is complete (cfr. [BH99, p. 112]).
Remark 3.11. The maps ιi,j and pi,j are clearly continuous, as well as the maps
they induce on each cell of C•.

We can now give the definition of the object giving the title to this thesis.
Definition 3.12. Let G be a finitely generated group and Σ a finite generating
set not containing 1G (if Σ is not symmetric, we will in fact consider Σ ∪ Σ−1). We
say that (G,Σ) is hypercubical, or that G is hypercubical with respect to Σ, if the
hypercubical complex C•(G,Σ) is contractible. In many cases we simply say that a
group is hypercubical, when the generating set is clear from the context or when
we do not need to specify the generating set.

The easiest examples are given by free groups, free abelian groups and right-
angled Artin groups. The latter is the example that inspired the definition. Due
to its importance, we will now just state the results about such groups we are
interested in, and we will go back to this family of groups later on.
E.g. 3.13 (Free groups). Let Fn be the free group on n generators and let
Σ := {x1, . . . , xn} be a set of free generators. Then Γ(Fn,Σ) is a tree, which is
simply-connected. As a consequence, C•(Fn,Σ) coincides with Γ(Fn,Σ), which is
contractible. Therefore free groups are hypercubical with respect to any basis.
E.g. 3.14 (Free abelian groups). The Cayley graph of a free abelian group Zn with
respect to a basis Σ := {x1, . . . , xn} is the square unitary grid in the n-dimensional
Euclidean space. As a consequence, C•(Zn,Σ) is the subdivision of En into unitary
n-cubes and it is therefore contractible. In other words, free abelian groups are
hypercubical with respect to any basis.
E.g. 3.15 (Right-angled Artin group). Right-angled Artin groups, also known as
RAAGs, are a family of groups defined by presentations in which the relators are
only commutators among some generators. More details will be given in section 4.3.
Given a RAAG G with a set of generators Σ, it is possible to associate a cell
complex to it, namely the Salvetti complex, which is a classifying space for G. The
complex C•(G,Σ) is the universal covering of the Salvetti complex, therefore it is
contractible. This means that every right-angled Artin group is hypercubical with
respect to its standard generating set.

More examples will be given in the continuation of the thesis.
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3.3 Some general results about hypercubical
groups

As we will see, groups of very different natures can be hypercubical, which
makes it not likely to be able to prove many general results about hypercubical
groups. However, some results can in fact be proven.

Let π : F (Σ) → G be a finite presentation of a group G, and let ℓΣ : F (Σ) → Z
be the canonical length function on the finitely generated free group F (Σ), then
Σ = W (1), where for k ∈ Z, k ≥ 0, one defines

W (k) := {ω ∈ F (Σ) | ℓΣ(ω) = k}.

Definition 3.16. The finitely generated group (G,Σ) is said to be quadratic if

ker(π) = ⟨⟨W (4) ∩ ker(π)⟩⟩ ,

i.e., if it can be generated, as a normal subgroup of G, by words of length 4.

Quadratic groups can be characterized via their hypercubical complex C•, as
follows.

Proposition 3.17. A finitely generated group (G,Σ) is quadratic if, and only if,
the 2-skeleton of its hypercubical complex C• is simply-connected.

Proof. If G is quadratic, then it admits a presentation G = ⟨Σ | R⟩, with ⟨⟨R⟩⟩ =
⟨⟨W (4) ∩ ker(π)⟩⟩. Without loss of generality, one can suppose that R = W (4) ∩
ker(π). Therefore the 2-skeleton of the hypercubical complex of (G,Σ) coincides
with the Cayley complex related to the presentation G = ⟨Σ | R⟩, thus being
simply-connected.

The inverse implication holds as one has

π1(C2
• , 1) ≃ kerπ/ ⟨⟨W (4) ∩ ker(π)⟩⟩ .

Indeed, one has that π1(C1
• , 1) ↠ π1(C2

• , 1) via the cellular approximation the-
orem. Under the identification π1(C1

• , 1) ≃ kerπ, which holds as C1
• is the ge-

ometric representation of Γ(G,Σ), the kernel of the previous surjection clearly
is ⟨⟨W (4) ∩ ker(π)⟩⟩. If C2

• is simply-connected, then kerπ/ ⟨⟨W (4) ∩ ker(π)⟩⟩ is
trivial, thus yielding quadraticity for (G,Σ).

As a consequence, hypercubical groups have the following property:

Corollary 3.18. A hypercubical group (G,Σ) is quadratic.
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The left action of a group G on its Cayley graph induces a cellular left action
by isometries on the hypercubical complex having that Cayley graph as 1-skeleton.
Such action has the properties stated by the following proposition.

Proposition 3.19. Let G be a finitely generated group and Σ a finite generating
set for G. Then the G-action on C•(G,Σ) is:

(1) free and transitive on the vertices;

(2) free on the edges, assuming no generator has order 2;

(3) proper;

(4) cocompact;

(5) properly discontinuous.

Moreover the action is free if G is torsion-free. If G is hypercubical with respect to
Σ, then also the converse is true.

Proof. By restricting the action of G to the 1-skeleton, we get the G-action on the
Cayley graph. This proves (1) and (2). Suppose now that there is a cell C in C•
fixed by the group action. Let H be the cell stabilizer of C. Then the elements of
H permute the vertices of C, therefore there is a homomorphism H → Sk for a
suitable k. The kernel of this homomorphism is trivial, as it fixes every vertex and
vertex stabilizers are trivial. Therefore cell stabilizers are finite, which proves (3).
Item (4) is due to the fact that any cell is in the same orbit of a cell having 1G as
a vertex. Hence C• can be covered by translates of the finite subcomplex given by
all the cells having 1G as a vertex (what is also called the cellular link of 1G in C•).
Finally, (5) is equivalent to (3) in this context.

Suppose now that an element g ∈ G fixes a cell C. Then g permutes the vertices
of C, which implies that g has finite order, because of (1). On the other hand, if the
action is free and G is hypercubical with respect to Σ, then C•(G,Σ) is the universal
covering of a classifying space. As C• is finite-dimensional, G is torsion-free.

Two direct consequences of hypercubicality are the following ones:

Proposition 3.20. Let G be a torsion-free, hypercubical group. Then G is of type
F .

Proof. As G is torsion-free, the hypercubical complex is an EG, therefore G has a
finite classifying space.

The following is needed in the proof of Proposition 3.22.
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Theorem 3.21 ([Geo08, Theorem 7.3.1]). Suppose that, for n ≥ 1, G acts cellularly
and rigidly on an (n− 1)-connected CW complex X that has finite n-skeleton mod
G (the action is rigid if every cell stabilizer acts trivially on the cell it fixes). If
the stabilizer of each i-cell is of type Fn−i for all i ≤ n− 1, then G is of type Fn.

Proposition 3.22. Suppose G is hypercubical with respect to Σ. Then G is of type
F∞.

Proof. Using the notation of Theorem 3.21, let X be the hypercubical complex of
G with respect to Σ. Either the action of G on it is rigid, or we pass to the first
barycentric subdivision of X which is rigid (as X is a regular CW complex). The
hypercubical complex is contractible, therefore it is (n − 1)-connected for all n.
The cell stabilizers are finite (and this holds also for the barycentric subdivision),
thus of type Fk for any k. As a consequence, G is of type Fn for every n, which
proves the claim.

Proposition 3.23. If G is torsion-free and hypercubical with respect to Σ, then
cdG ≤ n, where n is the cube number of G with respect to Σ.

Proof. The cube number of (G,Σ) provides an upper bound for the geometric
dimension of G, yielding thus an upper bound for the cohomological dimension.

Remark 3.24. The definition of hypercubical complex and hypercubical groups
would work also without restricting our attention to finitely generated groups and
finite generating sets. This would allow one to include other examples in the family
of hypercubical groups (e.g., infinitely generated free groups). One could think that
a possible compromise would be to consider finitely generated group, but allowing
for infinite generating sets in the construction of the hypercubical complex. While
this seems to be enough for certain arguments, losing the local finiteness of the
hypercubical complex might be a problem for many other arguments. Moreover,
it is common in geometric group theory to work with finitely generated groups
and finite generating sets, therefore we chose to keep the restricted definition for
now. However, the next section provides a very interesting example of a finitely
generated group that has a contractible hypercubical complex, but with respect to
an infinite generating set.

3.3.1 Thompson’s group F

The group that is known as Thompson’s group F was defined by Richard
Thompson in 1965 and was later rediscovered in other areas of mathematics. Brown
and Geoghegan proved ([BG84]) that this group is of type FP∞. It was the first
example of an infinite-dimensional, torsion-free group of type FP∞. It is also an
infinitely reiterated HNN extension. We will not dwell on all the details of the
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theory of this amazing group, but we suggest the following references in case the
reader desires a more complete introduction about this group: the PhD thesis of
James Belk ([Bel]) and the introductory notes by James Cannon, William Floyd
and Walter Parry ([CFP]).

A dyadic subdivision of the interval [0, 1] is a subdivision that can be obtained
by repeatedly cutting some intervals in half, so that every subinterval is of the
form [ k2n ,

k+1
2n ] for some k, n ∈ N. Given two dyadic subdivisions D,D′ with the

same number of cuts, we can map D to D′ with a piecewise-linear homeomorphism
f : [0, 1] → [0, 1] in such a way that each subinterval of D is sent to the corresponding
subinterval of D′ linearly. This piecewise-linear homeomorphism is called a dyadic
rearrangement. A piecewise-linear homeomorphism is a dyadic rearrangement if, and
only if, all its slopes are powers of 2 and the coordinates of the breakpoints are dyadic
rational numbers (i.e., of the form k/2n for some k, n). Dyadic rearrangements
form a group under composition.

Definition 3.25. Thompson’s group F is the group of dyadic rearrangements of
[0, 1].

It can also be described in a logical language, relating it to associativity rules
(and this in fact was the first description of this group). Moreover, every element
of F can be represented by tree diagrams, that are pairs of finite binary trees
representing the domain and range dyadic subdivisions of [0, 1]. This paves the
way for a combinatorial and geometric approach to the study of this group.

It is possible to prove the following statement.

Proposition 3.26. Thompson’s group F is infinite and torsion-free.

F is finitely presented. It can be generated by the following two elements:

• x0 sends the subdivision 0 1/4 1/2 1 to 0 1/2 3/4 1 ;

• x1 sends the subdivision 0 1/2 5/8 3/4 1 to

0 1/2 3/4 7/8 1 .

A presentation for F having x0 and x1 as generators is〈
x0, x1 | (x1)x0x1 = x1(x1)x

2
0 , (x1)x

2
0x1 = x1(x1)x

3
0
〉
,

where ab := b−1ab. F can also be defined by an infinite presentation, which is in
many senses more convenient than the finite presentation above:

⟨x0, x1, · · · | xxk
n = xn+1 for 0 ≤ k < n⟩ .
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It is possible to show (by using the theory of CAT(0) cube complexes or by
using combinatorial Morse theory) that the hypercubical complex associated to this
last presentation is contractible. This is another formulation of the result proved
in [BG84]. As F is torsion-free, the hypercubical complex is the universal covering
of a classifying space, but the fact that an infinite number of generators is involved
does not allow us to directly derive the results that we stated for hypercubical
groups. Nevertheless, it is possible to prove that F is of type F∞, as it has a
classifying space with a single vertex and two cells in every positive dimension.
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Chapter 4

Twisted Right-Angled Artin
Groups

In this chapter we will first illustrate the results concerning right-angled Artin
groups. This will be the starting point to present two generalizations of right-angled
Artin groups, namely the families of oriented and twisted right-angled Artin groups,
and to show that these groups are hypercubical as well.

4.1 Right-angled Artin groups and two general-
izations

Right-angled Artin groups are a specific type of Artin groups, so we will start
by introducing Artin groups.

Artin groups, also known as Artin-Tits groups, are defined by a presentation of
the form 〈

v1, . . . , vn | vivjvi . . .︸ ︷︷ ︸
mij

= vjvivj . . .︸ ︷︷ ︸
mij

∀i, j
〉
,

where mij ∈ {2, . . . ,∞} is the length of the word on both sides of the relation and
mij = ∞ means that there is no relation between vi and vj. Such a presentation
can be thought of as induced by a labeled, finite, simplicial graph Γ whose vertices
are v1, . . . , vn and whose edges are labeled by integers ≥ 2. In this case, the
presentation has the vertices of the graph as generators and a relation for every
edge, said relation being vivjvi . . .︸ ︷︷ ︸

mij

= vjvivj . . .︸ ︷︷ ︸
mij

if the edge between vi and vj has

label mij. Relations with mij = ∞ are not written and correspond to the missing
edges in the graph Γ. One can associate a Coxeter group to every Artin group
by simply specifying that every generator has order 2. This leads to the main
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distinction among Artin groups: on one hand the so-called spherical Artin groups,
whose associated Coxeter groups are finite, and on the other hand the Artin groups
of infinite type, whose associated Coxeter groups are infinite. These two types of
groups are dealt with using different techniques and many results are known for
spherical Artin groups but still only conjectured for Artin groups of infinite type.

A particular subfamily of Artin groups is that of the so-called right-angled Artin
groups, sometimes also known as partially commutative groups or graph groups.

Definition 4.1. Let Γ be a finite, simplicial graph (i.e., a graph with no loops nor
multiple edges), with vertex set V Γ and edge set EΓ = P2(V Γ) := {subsets of V Γ
of cardinality 2}. The right-angled Artin group, RAAG for the sake of brevity, AΓ

associated to Γ is the group defined by the presentation

AΓ := ⟨V Γ | [vi, vj] ∀{vi, vj} ∈ EΓ⟩ .

There is a large number of significant results concerning right-angled Artin
groups. This is often due to the fact that these groups have a strong combinatorial
and geometric nature. In particular, many properties of a RAAG AΓ can be
determined in terms of the graph Γ, in other words they can be expressed in a
graph-theoretical language.

Theorem 4.2 ([Dro87a]). Let AΓ and AΛ be two RAAGs. Then AΓ ≃ AΛ if, and
only if, Γ ≃ Λ.

Theorem 4.3 ([Dro87b]). Let AΓ be a RAAG. Then every finitely generated
subgroup of AΓ is still a RAAG if, and only if, Γ does not contain either the square

nor the line on 4 vertices as induced subgraphs.

Right-angled Artin groups are groups of type F , therefore they are torsion-free
and have finite cohomological dimension. In particular, for a RAAG AΓ, one has
that cdAΓ is equal to the clique number of Γ, which is defined as the maximal
number of vertices of a clique (i.e., a complete subgraph) in Γ. This will be a
consequence of Theorem 4.17.

We can now define two generalizations of right-angled Artin groups, namely
twisted and oriented RAAGs (respectively TRAAGs and ORAAGs, for the sake of
brevity). Oriented RAAGs are a subfamily of twisted RAAGs, but we will start by
defining TRAAGs. We refer the reader to [Fon22] for the definitions that follow.

Definition 4.4. A mixed graph Γ is a simplicial graph together with a set −→
EΓ ⊆ EΓ

of oriented edges and two maps o, t : −→
EΓ → V Γ such that if an edge e has endpoints

v, w then {o(e), t(e)} = {v, w}. Graphically, an oriented edge e will be represented
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by an arrow going from o(e) to t(e). We will say that such e goes from o(e) to t(e).
If Γ is a mixed graph, we can associate a finite simplicial graph Γ̈ to it, called the
naïve graph associated to Γ, which is given by considering oriented edges of Γ as
not oriented.

Definition 4.5. Let Γ be a mixed graph. The twisted right-angled Artin group AΓ
associated to Γ is the group defined by the following presentation:

AΓ :=
〈
V Γ | [v, w] ∀{v, w} ∈ EΓ \

−→
EΓ, [v, w⟩ ∀e ∈

−→
EΓ s.t. v = o(e), w = t(e)

〉
,

where [v, w] = vwv−1w−1 and [v, w⟩ := vwv−1w.

Remark 4.6. Note that if the relation [v, w⟩ holds, then also the relations [v−1, w⟩,
[v, w−1⟩, [v−1, w−1⟩ hold.

E.g. 4.7. Here we list two basic examples of twisted right-angled Artin groups.

• Every RAAG is trivially a twisted RAAG, where the subset −→
EΓ is empty.

• Let Γ be the graph a b , then AΓ = ⟨a, b | aba−1b⟩ = Z ⋊ Z is the
fundamental group of the Klein’s bottle.

As we will see, in the class of TRAAGs new phenomena show up, that did not
show up for RAAGs. In order to better control their behavior and to establish
connections with other theories, we might want to focus our attention on a subclass
of twisted right-angled Artin groups, that of oriented RAAGs. In order to define
them, we first need to note that the edges of a mixed graph Γ = (V,E) can be
divided into two disjoint subsets: that of special edges, denoted Es and consisting
of the oriented edges of Γ, and that of ordinary edges, denoted Eo and containing
the non-oriented edges. We can partition also the set of vertices into two subsets Vo
and Vs. For non-isolated vertices, the set Vs of special vertices contains the origins
of all special edges, while the set Vo of ordinary vertices contains the remaining
ones. Every isolated vertex can be either ordinary or special (therefore in general
this partition is not canonical).

Definition 4.8. Let Γ = (V,E) be a mixed graph. We say that Γ is specially
oriented or special if the endpoints of every ordinary edge are ordinary vertices and
t(e) is ordinary ∀e ∈ Es. The TRAAG AΓ is then called an oriented right-angled
Artin group.
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4.2 Some results about twisted and oriented
RAAGs

There are some results regarding twisted and oriented RAAGs that show how
part of the theory of right-angled Artin groups can be extended, but at the same
time new phenomena arise. The first main difference is the fact that there are
examples of isomorphic TRAAGs defined by non-isomorphic mixed graphs. The
following example is taken from [Blu20] (but note that the convention for the
orientation of oriented edges is the opposite one compared to the one used here).

E.g. 4.9. Let Γ = a b c and Λ = x y z . Then the two homomor-
phisms

ϕ :


a 7→ x

b 7→ y

c 7→ xz

, ψ :


x 7→ a

y 7→ b

z 7→ a−1c

are well defined and one the inverse of the other, therefore they are isomorphisms
between AΓ and AΛ. Note that the two graphs of this example are special, so
Theorem 4.2 cannot be extended to TRAAGs nor to ORAAGs.

Lemma 4.10 ([Fon22]). Let Γ be a mixed graph and Vt := t(−→EΓ). Then Aab
Γ =

Z|V Γ\Vt| × (Z/2Z)|Vt|.

Proposition 4.11 ([Fon22]). If two mixed graphs Γ and Λ have either a different
number of vertices or a different number of termini of oriented edges, then AΓ ̸≃ AΛ.

As we said in section 4.1, RAAGs are torsion-free. However, this is not always
true for TRAAGs, as the following theorem shows. Note that the definitions of
clique, induced subgraph and so on extend to the case of mixed graphs: a subgraph
of a mixed graph is a clique if it is a clique as a naïve graph.

Theorem 4.12 ([Fon22]). Let Γ be a mixed graph. Then AΓ has torsion if, and
only if, Γ contains a clique whose vertices form an oriented cycle.

Proof. See [Fon22].

Corollary 4.13. Oriented RAAGs are torsion-free

Proof. It is straightforward.

More results about twisted right-angled Artin groups, concerning for instance
their normal form and their growth, can be found in [Fon22]. We now state some
results about ORAAGs that will appear in a future work in collaboration with S.
Blumer, I. Foniqi, C. Quadrelli and T. Weigel ([Blu+ar]). We first need to give
two definitions.
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Definition 4.14. A special graph Γ is said to be of elementary type if it can be
constructed starting from a finite number of mixed graphs each consisting of a
single vertex and iterating the following two elementary operations:

• disjoint union of graphs: for two disjoint special graphs Λ1 = (V1, E1),Λ2 =
(V2, E2), their disjoint union is

Λ1 ⊔ Λ2 = (V1 ⊔ V2, E1 ⊔ E2);

• cone: for a special graph Λ = (V,E), the cone on Λ is

∇Λ = (V ⊔ {w}, E ⊔ E∇),

where w is a new ordinary vertex and

E∇ := E1 ⊔ E2,

where E1 = { {v, w} | v ∈ Vo } is made of non-oriented edges and E2 =
{ e = {v, w} | v ∈ Vs } is made of oriented edges going from the special vertices
of Λ to w.

Sometimes it is not easy to prove that a graph is, or is not, of elementary type.
Luckily, there is an easier characterization of special graphs of elementary type.

Proposition 4.15 ([Blu+ar]). A special graph Γ is of elementary type if, and only
if, it does not contain an induced subraph Λ such that:

• either Λ =

• or the naïve graph Λ̈ associated to Λ is either the square or the line
on 4 vertices .

What follows is the oriented version of Theorem 4.3.

Theorem 4.16 ([Blu+ar]). Let Γ be a special graph. Then every finitely generated
subgroup of AΓ is an ORAAG if, and only if, Γ is of elementary type.

4.3 Hypercubicality of RAAGs
As we saw in Example 3.15, right-angled Artin groups are hypercubical. In fact,

they are the family of groups that inspired the definition of hypercubicality. The
reason for this lies in the geometry of right-angled Artin groups. To any RAAG AΓ
one can associate a cell complex called the Salvetti complex S(Γ). It is constructed
as follows. Note that by n-torus, for n ≥ 1, we mean [0, 1]n with identified opposite
faces.
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1. Start with a single vertex x0. This is S(Γ)0;

2. For any vertex v of Γ, attach to S(Γ)0 an oriented loop labeled v. This will
produce a bouquet of loops, whose fundamental group is the free group on
the vertices of Γ. Denote this bouquet of loops S(Γ)1;

3. For any edge {v, w} of Γ, attach to S(Γ)1 a square, whose boundary is labeled
vwv−1w−1, along the corresponding loops. This will produce a cube complex
consisting in a 2-torus for every edge of Γ and whose fundamental group is
AΓ. Call this cube complex S(Γ)2;

4. For any triangle of vertices u, v, w in Γ, attach to S(Γ)2 a 3-torus, whose
2-faces correspond to the 3 edges of the triangle, by attaching each face to
the corresponding 2-torus in S(Γ)2. This defines S(Γ)3;

5. For any clique of Γ on n vertices, attach to S(Γ)n−1 an n-torus as above.
This produces S(Γ)n;

6. In the end, the resulting cube complex is the Salvetti complex of AΓ.

The following fact is well known in literature, see [CD].

Theorem 4.17. The Salvetti complex S(Γ) of a right-angled Artin group AΓ is a
classifying space for AΓ.

Corollary 4.18. Right-angled Artin groups are of type F , hence torsion-free.
Moreover, cdAΓ coincides with the clique number of Γ.

Proof. The only thing to prove is the statement about the cohomological dimension.
On one hand, each clique having as many vertices as the clique number n of Γ
produces a subgroup which is isomorphic to Zn, which has cd = n. On the other
hand, dimS(Γ) = n.

There are different descriptions of the universal covering of the Salvetti complex.
We will show that the hypercubical complex is indeed a model for S̃(Γ), which will
imply hypercubicality. We call V Γ the standard generating set of AΓ.

Theorem 4.19. RAAGs are hypercubical with respect to their standard generating
sets.

Proof. Let AΓ be the RAAG associated to the finite, simplicial graph Γ and let Bn

be the set of n-cells of C• having a vertex in 1 and that are spanned by edges of the
form (1, vi), where the vi’s are the vertices of an n-clique of Γ. Then Cn = AΓBn.
One inclusion is obvious, the other one is due to the fact that every n-cube in
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C• can be described as the n-cube spanned by the edges (g, gxi1), . . . , (g, gxin) for
some g ∈ AΓ and xi1 , . . . , xin ∈ V Γ vertices of an n-clique. Such cube is in the same
orbit of a cube of Bn. C•/AΓ is the union of a certain number of tori, one for each
clique of Γ. Moreover any two tori intersect according to how the corresponding
cliques intersect in Γ. This proves that C•/AΓ = S(Γ).

As the action of AΓ on C• is clearly free and properly discontinuous, the map
C• → C•/AΓ is a covering map. As AΓ is quadratic, C• is simply-connected, thus
being the universal covering of S(Γ). As a consequence, C• is contractible and AΓ
is hypercubical.

As we will see in the next section, the hypercubical complex of a TRAAG
(hence of a RAAG) is always a CAT(0) cube complex, which gives another proof for
the following result, which is classical in the theory of right-angled Artin groups.

Proposition 4.20. Every RAAG AΓ acts cellularly, freely, properly discontinuously,
cocompactly and by isometries on a CAT(0) cube complex of finite type and of
dimension equal to the clique number of Γ.

4.4 Hypercubicality of TRAAGs
The aim of this section is to state and prove the following theorem, and to show

some consequences.

Theorem 4.21. Let Γ be a mixed graph. Then C•(AΓ, V Γ) is CAT(0). As a
consequence, AΓ is hypercubical with respect to V Γ.

In order to prove this, we need the following:

Definition 4.22. We say that a finitely generated group (G,Σ) satisfies the cubical
link condition if for n ≥ 3 every n edges of C•(g,Σ), all having a vertex in common
and being pairwise adjacent in a square, satisfy the n-dimensional cubical link
condition.

Lemma 4.23. The cubical link condition implies Gromov’s link condition.

Proof. Let (G,Σ) be a finitely generated group and C• be the associated hypercu-
bical complex. Suppose that (G,Σ) satisfies the cubical link condition and suppose
that in the link of a vertex v there are n vertices pairwise adjacent. This means
that in C• there are n edges incident to v pairwise adjacent in a square. Then
these n edges define an n-cell, that corresponds to the desired simplex in the link.
Therefore each link is a flag complex.

Lemma 4.24. TRAAGs have the cubical link condition with respect to the standard
generators.
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Proof. Let Γ be a mixed graph and AΓ be the associated TRAAG. Suppose there
are n edges e1, . . . , en in the hypercubical complex that are all incident to the
same vertex and that are pairwise adjacent sides of a square. Without loss of
generality, suppose that the common vertex of these edges is 1. We need to show
that there is an n-cube having e1, . . . , en as sides. As inverting an edge means
inverting a generator, we can fix an orientation for e1, . . . , en and just work with
generators and inverses. For instance, suppose that all these edges have origin in 1.
As e1, . . . , en pairwise belong to a square, they must be of the form ei = (1, xi) for
xi ∈ {vi, v−1

i }, where the vi’s are vertices of an n-clique in Γ. So we only have to
prove that an n-clique in Γ of vertices v1, . . . , vn corresponds to an n-cube in the
hypercubical complex for every choice of xi ∈ {vi, v−1

i }. Suppose then that Λ is
such an n-clique and that a choice for the xi’s has been made. Consider a cube
[0, 1]n such that for each i all the sides parallel to direction i are labeled xi or x−1

i ,
where the exponent is 1 if the side has a vertex in 0 and is yet to be determined
otherwise. We think of the sides of the cube as being oriented according to the
increasing of the coordinates. Define ki :=< w, zi >, where w is the vector of the
coordinates of a vertex of the cube and (zi)j = 1 if there is an oriented edge going
from vj to vi and 0 otherwise. Therefore ki is the number of components of w that
are = 1 and at the same time correspond to origins of oriented edges of Λ having
terminus in vi. Note that if w is a vertex of the cube which is the origin of an edge
with direction i, then wi = 0. Fix w and a side with origin in w and direction
i. If wj = 1, along every geodesic edge-path in the cube from 0 to w there is a
side parallel to the j’th direction. Then ki is the number of such sides that change
the sign of the exponent of xi. As this does not depend on the specific geodesic
edge-path we choose, the exponent of xi on the fixed side is given by (−1)ki . This
defines the exponent of the label xi of every side of the cube. Let us now consider a
square inside such cube, of vertices w,w + ui,w + uj,w + ui + uj, where {ui}1≤i≤n
is the canonical basis of Rn (see fig. 4.1). We need to show that the sides of this
square actually represent a relation. If [vi, vj] = 1, then < uj, zi >=< ui, zj >= 0,
so that every two parallel sides of the square have the same label. This corresponds
to one of the commutators between one of {vi, v−1

i } and one of {vj, v−1
j }, which

all hold in our TRAAG. If [vi, vj⟩ = 0, then < uj, zi >= 0, < ui, zj >= 1, so that
the two sides parallel to direction i have the same label, while the other two sides
have opposite labels. This corresponds to one of the relations of Remark 4.6. The
argument for [vj, vi⟩ is analogous.

We are now ready to prove Theorem 4.21.

Proof of Theorem 4.21. Let Γ be a mixed graph and AΓ be the associated TRAAG.
Let C• be the hypercubical complex with respect to the standard generating set of
AΓ. Then, by Lemma 4.24, C• is non-positively curved. As AΓ is quadratic, C• is
also CAT(0), which proves both claims.
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w w + ui

w + ui + ujw + uj

x
(−1)<w,zj>

j x
(−1)<w+ui,zj>

j

x
(−1)<w,zi>

i

x
(−1)<w+uj,zi>

i

Figure 4.1: The square considered in the proof of Lemma 4.24

Corollary 4.25. Let Γ be a special graph, AΓ the associated ORAAG and C• the
hypercubical complex with respect to the standard generating set of AΓ. Then C•(AΓ)
is a cubical AΓ-complex of finite type of dimension equal to the clique number of
Γ and it admits a CAT(0) metric. Therefore it is a cubical model for the Borel
construction EAΓ. As a consequence, AΓ is of type F , thus FP , and cdAΓ is equal
to the clique number of Γ

Proof. The only part that is missing is the result about the cohomological dimension.
An upper bound is given by the cube number of AΓ, which is equal to the clique
number of Γ. The clique number of Γ is also a lower bound, as Γ being special
implies that a clique corresponds to a subgroup isomorphic either to Zr or to
Z ⋉ Zr−1, where the action is by inversion and r is the number of vertices of the
clique.
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Chapter 5

Borromean Groups

The beginning of this chapter will be dedicated to the proof of the hypercubicality
of a group having a totally different origin, the link group of the Borromean
rings. This will start with a brief introduction about knot and link theory and
the Borromean rings. Then, we will introduce a new family of groups, called the
Borromean groups, defined via presentations. Such presentations can be constructed
by a certain duplication process that we will explain in detail. Then we will show
that every Borromean group is hypercubical and provide some consequences of this
fact.

5.1 Knot and link theory
The sources followed for this introduction are [Lic97] and [BZ03].
A knot, for example in S3, can be defined as an embedding of S1 into S3.

However, as we will work with tame knots, that are equivalent via an ambient
isotopy to simple closed polygons in S3, it seems easier to restrict the discussion to
the piecewise linear case.

Definition 5.1. A link L of m components (see for example fig. 5.1) is a subset of
S3 or R3 consisting in m disjoint, piecewise linear, simple closed curves. A link of
one component is called a knot.

A link can be considered to be either inside R3 or inside S3. This seems somehow
just a technical detail and it does not affect the intuitive understanding of what
a link is, as one can see S3 as R3 ⊔ {∞}. The compactness of S3 however can be
useful in many different arguments. The request of piecewise linearity means that
each curve composing L is made up of a finite number of straight line segments
placed end to end, where "straight" is to be intended either in the linear structure
of R3 or in the structure of one of the 3-simplices of a triangulation of S3. When
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Figure 5.1: An example of a class of links knowns as Brunnian links.

we draw the diagram of a link or a knot we implicitely assume that these straight
segments are so many and so small to give the impression of roundedness of the
curves. The reason why we require having a finite number of straight segments
only is to avoid pathological behaviours, like having infinitely many kinks getting
smaller and smaller while converging to a point (those links are called wild). There
are other ways to avoid this wildness, but they seem to be more technical and less
manageable, although giving rise to an equivalent theory.

Definition 5.2. Two links L1 and L2 are equivalent (see for instance fig. 5.2) if
there is an orientation preserving piecewise linear homeomorphism h : S3 → S3

such that h(L1) = L2.

Figure 5.2: Two equivalent unknots.

In this case the piecewise linear condition means that, if we consider the
two copies of S3 triangulated, then, up to subdivisions of the simplices of these
triangulations into possibly very many smaller simplices, h maps simplices in
simplices in a linear way. If the links are oriented (i.e., every curve of the links
has a fixed orientation) or the components are ordered, h is asked to preserve such
attributes. A basic theorem of piecewise linear topology states what follows.

Proposition 5.3. Under these hypotheses, h is isotopic to the identity. In other
words, there exist ht : S3 → S3 for every t ∈ [0, 1] such that
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(i) h0 = idS3;

(ii) h1 = h;

(iii) (x, t) 7→ (ht(x), t) is a piecewise linear homeomorphism of S3 × [0, 1] to itself.

The reason why this definition is stated in these terms is that defining equivalence
simply in terms of continuously distorting L1 into L2 could permit knots to be
pulled tighter and tighter in order to make any complication disappear at a single
point.

A link L can always be represented by a diagram in R2. Up to equivalence, we
can consider L to be in general position with respect to the standard projection
R3 → R2. This means that:

• each line segment of L projects to a line segment in R2;

• the projections of two line segments intersect in at most one point and this
point is not an endpoint if the two segments are disjoint;

• no points belong to the projection of three segments.

For every crossing (i.e, a point in which the projections of two disjoint segments
intersect) one needs to specify some "under and over" information, referring to the
relative heights above R2 of the two preimages of the crossing. The image of the
link L together with this "under and over" information at the crossings (graphically
represented by breaks in the under-passing segments) is known as a link diagram
of L (see fig. 5.3).

Figure 5.3: An example of a link diagram.

One of the most important themes in knot theory is the classification of knots
and links. Sometimes it is easy to directly understand whether two links or knots
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are equivalent, but usually this is not the case. Many different tools have been
developed in order to determine whether two links or knots are equivalent. The
main one is the so called link group GL of a link L, namely the fundamental group
π1(S3 \ L) of its complement S3 \ L. The noticeable fact about this group is that
two equivalent knots have homeomorphic complements in S3, therefore the link
group is invariant under equivalence of the links.

Given a link L, its link group GL has a presentation which can be easily
computed starting from a diagram of L, the so-called Wirtinger presentation. The
procedure is the following one:

1. Select an orientation for L;

2. Take a group generator gi for each segment of the diagram (i.e., each longest
possible "over-passing" section of the link traversing some number of under-
passes);

3. For each crossing take a relation as follows: suppose gi is the under-passing
arc approaching the crossing, gj is the under-passing arc leaving the crossing,
gk is the over-passing arc. If for the over-passing arc pointing upward the
under-passing arc points right, the relation is gjgk = gkgi, otherwise it is
gkgj = gigk, as the following picture shows.

The symbol gi represents a loop that starts from a base point above the diagram
(for example, the eye of the reader), goes straight to the ith arc, encircles it according
to the right-hand rule (that is, going down on the right-hand side and coming back
up from the left-hand side of the arc, if the arc points upwards) and goes back
straight to the base point (see fig. 5.4). Therefore the relation given by a crossing
can be easily deduced by this remark.

E.g. 5.4. Let us consider the following knot K, known as the trefoil knot. The
generators of the knot group GK are a, b, c and the relations are bc = ab from the
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Figure 5.4: Loops in the Wirtinger presentation.

top-left crossing, ca = ab from the top-right crossing and bc = ca from the bottom
crossing. Therefore one has the following Wirtinger presentation:

GK =< a, b, c | ab = bc, bc = ca >,

as we can omit one of the relations being direct consequence of the other two. Note
that this group cannot be hypercubical, as the squares given by the three relations
ab = bc, bc = ca, ca = ab form a 2-sphere in the Cayley complex that is not the
boundary of a 3-cube (see fig. 5.5), therefore it results in a nontrivial element in
the second homotopy group of the associated hypercubical complex.

Figure 5.5: A part of the Cayley graph of GK
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5.2 The Borromean rings and the group G3

The Borromean rings (see fig. 5.6) are a 3-components link in which the removal
of every component leaves the other two unlinked. This is a characteristic of a
more general class of links, called Brunnian links (see fig. 5.1).

The name of the Borromean rings comes from the fact that they were used
on the coat of arms of the aristocratic Borromeo family in Northern Italy, but
the link itself is much older, dating back to the 7th century in the form of the
valknut (a symbol made of three interlocking triangles with the same property as
the Borromean rings) on Norse image stones. They have been used to represent
many different things, for example in religion or in art, usually related to the idea
of strength in unity.

Figure 5.6: A representation of the Borromean rings B.

The Wirtinger presentation of the link group G3 (this notation will make sense
later on) of the Borromean rings can be easily calculated from the following diagram.

The generators are a, b, c, d, e, f and the relations coming from the crossings
are ae = eb, af = fb, da = ac, db = bc, fc = ce, fd = de, therefore the Wirtinger
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representation for G3 is

G3 =< a, b, c, d, e, f | ae = eb, af = fb, da = ac, db = bc, fc = ce, fd = de > .

It is possible to graphically represent this presentation with an oriented labeled
graph of the 1-skeleton of a 3-cube as in fig. 5.7, where the labels of the edges
correspond to the generators and on each 2-face of the cube we can read a relation.

Figure 5.7: The presentation of G3 on a 3-cube.

Lemma 5.5. The link complement S3 \B of the Borromean rings B is a classifi-
cation space BG3 for G3

Proof. Being a classification space for G3 is equivalent to being aspherical with
fundamental group the link group G3 of B, and this last request is clearly obviously
verified by definition of G3. The asphericity is a consequence of the fact that S3 \B
admits a complete hyperbolic metric of finite volume, as stated for example in
[GLO15].

Lemma 5.6. In the hypercubical complex C• of G3 with respect to the Wirtinger
presentation the 2-cells are translates of the squares defined by the relations in the
Wirtinger presentation (up to cyclic conjugates and inverses).

Proof. The generators and relations carry certain combinatorics, as we will see.
Note, indeed, that the generators a, b, c, d, e, f can be divided into three subsets
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S1 := {a, b}, S2 := {c, d}, S3 := {e, f} such that every relation can be written as
xy = yz, where {x, z} is one of the three subsets above and y belongs to another
subset. We will say that y transforms x into z (or that y transforms z into x, or
also that y transforms x). Note that for i ̸= j, every element of Si produces the
same effect on the two elements of Sj, either it transforms them or not (in fact, in
the first case, each element of Si transforms the elements of Sj into each other).
In particular, S1 transforms S2, S2 transforms S3 and S3 transforms S1. We can
represent each Si as a midline in each square representing a relation involving some
elements of Si, such midline being perpendicular to the sides labeled by elements of
Si. We say that the midline representing Si has type i. For instance, the midlines
of the square representing the relation af = fb is

a

f

f

b

,

where the horizontal dashed line is a midline of type 1 and the vertical dotted line
is a midline of type 3.

Consider now a relation of length 4, draw a Van Kampen diagram for it and
draw the midlines corresponding to the four sides of the boundary of the diagram.
The midline of the top side will end in one of the other sides of the boundary and
the other midline will connect the other two sides. Call these two midlines the
principal midlines of the diagram and note that each of them is the midline of a
strip. Note also that every other midline in the diagram is a closed simple curve.
As Möbius strips cannot be embedded in the plane, the orientation of the sides
crossing a midline must be preserved along the midline. Therefore, up to rotations
and reflections of the diagram, we are reduced to one of the following two cases:

1. each of the two principal midlines connects the opposite sides of the diagram.
In this case there is a vertical midline, connecting the top and the bottom
sides, and a horizontal midline, connecting the left and the right sides;

2. each of the two principal midlines connects a side of the diagram with an
adjacent side. In this case, the midline relative to the top side ends either
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in the left or in the right side of the boundary of the diagram and the other
midline connects the remaining sides.

Let us begin with case 1. Observe that the type of the components of a midline is
constant and also that crossings only happen between midlines of different types.
Suppose that the horizontal midline is of type 1 and the vertical midline is of type
2, the other cases being analogous. Note that the previous remarks imply that the
principal midlines must have different types, since they cross. Let us consider the
first crossing, along the horizontal midline and going from left to right, of the two
principal midlines. Let us call it the distinguished crossing. This crossing represents
a relation which is either da = ac or db = bc. Moreover, it divides each of the
two midlines into two branches. We want to study how the midlines (principal
and non-principal) of the diagram cross the principal ones. We need to divide the
analysis into three cases, according to the type of midline crossing the principal
midlines:

Type 1: A non-principal midline of type 1 is a closed simple curve and the distinguished
crossing is necessarily contained in the exterior of the curve (as the extremities
of a principal midline are contained in the exterior of the curve and each
branch of a principal midline is a path from the distinguished crossing to
one of the extremities of a principal midline). As a consequence, the number
of crossings of a non-principal midline of type 1 with each branch of the
principal midlines is even. The right-hand branch of the principal midline of
type 1 can cross both branches of the vertical midline, but always an even
amount of times.

Type 2: For a non-principal midline of type 2, an argument analogous to the one
above holds, resulting in an even number of crossings on each branch of the
principal midlines. Both branches of the principal midline of type 2 can only
cross the right-hand branch of the horizontal midline, but always an even
amount of times.

Type 3: A midline of type 3 is always non-principal, therefore it is a closed simple
curve. Either the distinguished crossing lies in the interior of the curve or
it lies in the exterior. If it lies in the exterior, then the midline crosses each
branch of the principal midlines an even amount of time. If it lies in the
interior, then the midline crosses each of the four branches of the principal
midlines an odd number of times.
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On the top and the bottom branches of the vertical midline we have an even
number of crossings with a midline of type 1 and a certain number of crossings
with midlines of type 3. In both cases, the top side of the boundary of the diagram
has the same label as the top side of the relation represented by the distinguished
crossing. On the left-hand and right-hand branches of the horizontal midline we
have an even number of crossings with a midline of type 2 and a certain number of
crossings with midlines of type 3, but the parity of the number of crossings with
a midline of type 3 is the same on the two branches. Therefore the label of the
left-hand side of the boundary of the diagram changes, with respect to the label on
the left-hand side of the relation represented by the distinguished crossing, if and
only if the same happens on the right-hand side. Consequently, the relation on the
boundary of the diagram is one of the relations in the presentation.

Let us approach now case 2. In this case the two principal midlines always cross
an even number of times and on every principal midline there is an even number
of crossings with every non-principal midline of the other two types. Therefore
the boundary relation is a trivial relation that does not identify a square in the
hypercubical complex.

Theorem 5.7. The link group G3 of the Borromean rings described above is
hypercubical.

Proof. Lemma 5.5 shows that the universal covering of S3 \ B is contractible.
Therefore we only need to show that the hypercubical complex of G3 with respect
to the generators of the Wirtinger presentation is a model for the universal covering
of S3 \B. Let us denote the hypercubical complex by C•.

Lemma 5.6 shows that the only squares that we see in C• are those coming from
the relations in the presentation. We claim that in the Cayley graph of G3 one finds
only one orbit of 3-cubes and no n-cubes for n ≥ 4. More precisely, by focusing
the attention on the subcomplex having 1 as a vertex, we will check that one has
that the only 3-cubes obtained are the ones given by the 8 copies of the cube in
fig. 5.7, each one having 1 in a different vertex. Clearly the same holds for every
vertex in the Cayley graph. To prove this, consider a cube with a vertex in one.
Then we can suppose, without loss of generality, that one of the three 2-faces of the
cube intersecting in 1 is the one corresponding to a cyclic conjugate of the relator
afb−1f−1. By looking for the possible combination of 3 edges compatible with this
condition, one sees that there is only one possible cube, if we fix the vertex of the
relator above corresponding to 1. These eight cubes are adjacent only by either a
single vertex or a single edge. They lay in the same orbit, as they can be translated
one into the other via multiplication by suitable elements of the group. Moreover,
no cube of higher dimension can be obtained. Indeed, if one had a 4-cube in the
hypercubical complex, then there would be two 3-cubes with a square in common,
which is not possible.
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As the action of G3 on C• satisfies the hypotheses of [Hat01, Prop. 1.40], the
projection is a covering. The hypercubical complex C• actually is the universal
covering of the link complement (as the link complement can easily be seen as the
quotient of the cube in figure fig. 5.7 under the action of G3): indeed it is simply
connected, as its 2-skeleton coincides with the Cayley complex of the link group.
Moreover it is weakly contractible, because of the previous lemma and [Hat01,
Prop 4.1], and thus contractible, having the homotopy type of a CW complex. This
leads to the thesis.

5.3 The Borromean cube groups Gn

In this section we are going to define a family of groups generalizing the link
group of the Borromean rings. This will be done by producing a presentation for
each of them in an inductive way.

As we have seen, the Wirtinger presentation for the link group of the Borromean
rings can be represented on an oriented cubical graph, in which one vertex is the
source or expander and the opposite one is the attractor. The orientation is given
by orienting all possible paths of length 3 from the source to the attractor. See
fig. 5.7. Call such cube the defining cube for G3.

We can notice two things. First of all, a 4-cube can be obtained by a 3 cube
via a duplication process consisting in taking two copies of a 3-cube and joining
every vertex in one of them to the corresponding vertex in the other cube by an
edge. Second, every edge of the cube is paired to a parallel edge and two paired
edges have the same label and the same orientation. We see also that no two faces
of the defining cube have the same boundary labels.

The third remark will be useful later on. On the other hand, the first two
remarks suggest a possible way to define a family of groups that will probably be
hypercubical. The approach is inductive, being G3 the base case.

Definition 5.8. Given the definitions of the link group of the Borromean rings, we
can define inductively a family of finitely presented groups called the Borromean
cube groups, denoted Gn for n ≥ 3. The first step of this induction is the link group
of the Borromean rings, which is the Borromean 3-cube group G3. The Borromean
(n + 1)-cube group will be defined by a defining (n + 1)-cube, representing its
generators and relators, and such (n + 1)-cube is constructed from the defining
n-cube as follows:

1. Suppose the defining n-cube is labeled with small letters. Then, duplicate it
and label the edges with the same letters, but capital. Call the first cube the
small or the inside n-cube and the latter the capital or the outside n-cube.
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2. Draw the diagonal edges in such a way that every edge goes from a vertex
of the outside n-cube to the corresponding vertex in the inside n-cube. In
this way, all the n-cubes inside the (n+ 1)-cube are isomorphic as oriented
graphs. The n-expander of the outside n-cube becomes the (n+ 1)-expander,
or global expander, and the n-attractor of the inside n-cube becomes the
(n+ 1)-attractor, or global attractor.

3. Consider [0, 1]n+1 with the coordinates written in reverse order (i.e., if the
coordinate are z1, . . . , zn+1, we write them as (zn+1, . . . , z1)). Identify the
(n+ 1)-cube with [0, 1]n+1 in such a way that

• the coordinate zn+1 is 0 on the outside n-cube and 1 on the inside n-cube,
• the (n + 1)-expander corresponds to 0, while the (n + 1)-attractor

corresponds to 1 (therefore the n-attractor of the outside n-cube will be
(0, 1, . . . , 1) and the n-expander of the inside n-cube will be (1, 0, . . . , 0)).

Under such identification, two diagonal edges will be paired, and thus labeled
with the same letter, if their origins are represented by two consecutive binary
numbers the smallest of which is even. See fig. 5.8 for the case n = 3.

Therefore Gn+1 is generated by the labels of the edges, subject to the relations
defined by the squares in the defining (n+ 1)-cube. We call this presentation the
borromic presentation of Gn+1.

Short exact sequences
For every n ≥ 4 there are also other two groups that we can define:

• Ĝn is the group obtained by applying to Gn−1 the same duplication procedure
as above, but giving all different labels to the diagonal edges.

• G̃n is the group obtained by applying to Gn−1 the same duplication process,
but giving to all the diagonal edges the same label. It is clearly the free
product Z ∗ Gn−1, and also an HNN-extension of Gn−1 ∗ Gn−1 (where the
stable letter conjugates every generator of one of the two factors to the
corresponding generator of the other factor).

The groups Gn−1, G̃n and Ĝn are involved in short exact sequences arising from
the following composition of surjections:

Ĝn ↠ Gn ↠ G̃n ↠ Gn−1.

The kernels of this maps are given by respectively pairing the diagonal generators in
the proper way, sending all the diagonal generators to the only diagonal generator
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of G̃n and quotienting out the single diagonal generator. By composing some of
the surjections above, we get other short exact sequences.

Proposition 5.9. The Borromean cube groups are all distinct.

Proof. From the composition of surjections above, we can write the following chain
of surjective homomorphisms:

· · · ↠ G̃4 ↠ G4 ↠ G̃3 ↠ G3 ↠ 0.

By passing to the abelianizations, the induced homomorphisms are onto and every
G̃n has abelianization of rank given by 1 + rkGab

n , so at each step rkGab
n+1 ≥

rk G̃n

ab
> rkGab

n .

5.4 The case of G4

Let us now focus our attention on G4, the first of these groups generalizing the
link group of the Borromean rings.

The borromic presentation of the Borromean 4-cube group is the one given by
the defining 4-cube represented in fig. 5.8. It is given by two copies of the defining
3-cube, namely the exterior and interior 3-cubes, which are isomorphic as labeled
oriented graphs. Note that in fig. 5.8 the exterior 3-cube is the one on the left
and the interior one is that on the right. Every vertex of the exterior 3-cube is
connected to the corresponding vertex of the interior cube by an oriented edge
going from outside to inside. In this way, the expander of the cube on the outside
becomes the global expander, while the attractor of the cube on the inside becomes
the global attractor. Certain diagonal edges are paired according to Definition 5.8.
Note that both the interior and the exterior 3-cubes are isomorphic to the defining
3-cube of the Borromean link group.
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Figure 5.8: The presentation of G4 on a 4-cube.

Explicitly, the presentation is the following one:

• Generators

– Small generators: a, b, c, d, e, f (they generate a copy of G3);
– Capital generators: A,B,C,D,E, F (they generate a copy of G3);
– Diagonal generators: P,Q,R, S.

• Relations:

– Relations among small generators: ae = eb, af = fb, da = ac, db =
bc, fc = ce, fd = de;

– Relations among capital generatos: AE = EB, AF = FB, DA =
AC, DB = BC, FC = CE, FD = DE;

– Relations of conjugation between a small and a capital generator: AS =
Sa, AR = Ra, BP = Pb, BQ = Qb;

– Other relations among small and capital generators: CR = Sc, CP =
Qc, DR = Sd, DP = Qd, EP = Re, FQ = Sf .

As we will see, G4 is hypercubical with respect to the standard generators. In
order to prove this, we need some results first.
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5.4.1 Useful homomorphisms
In this section we list some homomorphisms that will be used to prove that G4

is hypercubical. The first homomorphism we define is

ψ : G4 → G3

which sends the diagonal generators P,Q,R, S to 1, fixes the small generators
a, b, c, d, e, f and sends each capital generator A,B,C,D,E, F to its corresponding
small generator.

We now introduce a family of homomorphisms. Let ϕ : G4 → Z be a homomor-
phism. For such a homomorphism to be defined, it needs to satisfy:

ϕ(a) = ϕ(b) = ϕ(A) = ϕ(B), ϕ(c) = ϕ(d), ϕ(e) = ϕ(f), ϕ(C) = ϕ(D), ϕ(E) = ϕ(F ).

We also note that

ϕ(P ) = ϕ(R) ⇐⇒ ϕ(e) = ϕ(E) = ϕ(F ) = ϕ(f) ⇐⇒ ϕ(S) = ϕ(Q)

and

ϕ(P ) = ϕ(Q) ⇐⇒ ϕ(c) = ϕ(C) = ϕ(D) = ϕ(d) ⇐⇒ ϕ(R) = ϕ(S).

As every morphism of groups is completely determined by the images of the
generators, we will list some homomorphisms. They are classified by the images of
the diagonal generators, fixing which there are infinite possibilities for the images
of the other generators. So the homomorphisms that we list are to be meant as
examples of subfamilies of morphisms G4 → Z.

• ϕ0(P ) = ϕ0(Q) = ϕ0(R) = ϕ0(S) = 0 and all the other generators are sent to
1;

• ϕ1(P ) = ϕ1(Q) = ϕ1(R) = ϕ1(S) = 1 and all the other generators are sent to
0;

• ϕPQ(P ) = ϕPQ(Q) = 1, ϕPQ(R) = ϕPQ(S) = 0. In this case, ϕPQ(c) =
ϕPQ(C) and ϕPQ(e) = 1 + ϕPQ(E). For the remaining generators, e, f are
sent to 1, all the others to 0;

• ϕPR(P ) = ϕPR(R) = 1, ϕPR(Q) = ϕPR(S) = 0. In this case, ϕPR(e) =
ϕPR(E), ϕPR(c) = 1 + ϕPR(C). For the remaining generators, c, d are sent to
1, all the others to 0;

• ϕQS(Q) = ϕQS(S) = 1, ϕQS(P ) = ϕQS(R) = 0. In this case, ϕQS(e) =
ϕQS(E), ϕQS(C) = 1 + ϕQS(c). For the remaining generators, C,D are sent
to 1, all the others to 0;
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• ϕRS(R) = ϕRS(S) = 1, ϕRS(P ) = ϕRS(Q) = 0. In this case, ϕRS(c) =
ϕRS(C), ϕRS(E) = 1 + ϕRS(e). For the remaining generators, E,F are sent
to 1, all the others to 0.

• The augmentation map ε : G4 → Z, sending all generators to 1.

The last homomorphism that we need to define is the following. Let Γ be the
segment graph of vertices x, y and the edge labelled 3. Let AΓ be the associated
Artin group, i.e., AΓ =< x, y|xyx = yxy >. It is straightforward that the following
homomorphism is well defined:

ρ : G4 −→ AΓ

a, . . . , f 7→ x

A, . . . , F 7→ y

P,Q,R, S 7→ xy.

5.4.2 Generators of G4

The following result is an easy application of the homomorphisms of the previous
section.

Proposition 5.10. The generators of the borromic presentation of G4 and their
inverses are all different and they all have infinite order.

Proof. The maps ψ, ϕPQ, ϕQS, ϕPR, ϕRS allow us to deduce that:

• all generators have infinite order;

• {P±1, Q±1, R±1, S±1} ∩ {a±1, . . . , f±1, A±1, . . . , F±1} = ∅;

• P±1, Q±1, R±1, S±1,c±1, d±1, e±1, f±1,C±1, D±1, E±1, F±1 are all distinct;

• {a±1, b±1, A±1, B±1} are distinct from all the other generators;

• {a±1, A±1} ∩ {b±1, B±1} = ∅.

By using ρ one also sees that A ̸= a and B ̸= b. Moreover, if A = a−1, then
∀ϕ : G4 → Z ϕ(a) = ϕ(A) = −ϕ(a), so ϕ(a) = 0, which is not true (take for
example the augmentation map). Analogously, B ̸= b−1.

Corollary 5.11. G4 is not the trivial group. The only words of length 2 which are
=1 in G4 are free cancellations, so there is no non-trivial loop of length 2 in the
Cayley graph of G4.
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5.4.3 Hypercubicality
Lemma 5.12 is a particular case of Lemma 5.25. We state it here as we need it

to prove that G4 is hypercubical, but we refer the reader to the general case for
the proof.

Lemma 5.12. The only non-trivial relations of length 4 in G4 are those of the
borromic presentation (up to inversion and cyclic conjugation).

Lemma 5.13. dim C•(G4) = 4.

Proof. As the defining 4-cube appears in the Cayley graph of G4, the hypercubical
complex has dimension at least 4. Suppose there is a 5-cube C in C• and fix a
vertex of C. Then either all the 5 edges incident to the fixed vertex are either
all small or all capital generators (or inverses), or there is exactly one diagonal
generator. To see this, note that by Lemma 5.12 there are no relators of length 4
with a subword xy, where x is capital and y small (or the other way around) or
where both are diagonal. By eventually restricting our attention to the subcube
spanned by non-diagonal edges, this will produce either a 4-cube or a 5-cube in the
hypercubical complex for G3, which is not possible.

Lemma 5.14. The map ψ : G4 → G3 extends to a cellular map ψ : C•(G4) →
C•(G3).

Proof. Let C be either a 3-cube or a 4-cube in C•(G4). If it contains a diagonal
generator, Lemma 5.12 implies that the sides labeled by diagonal generators must
be perpendicular to the subcubes labeled by small and capital generators. By
definition, ψ collapses the sides labeled by diagonal generators and identifies the
subcube labeled by small generators with the subcube labeled by capital generators.
Therefore ψ(C) is either a 2-cube or a 3-cube.

Theorem 5.15. The group G4 satisfies the following two properties:

(i) the combinatorial link of 1 (i.e., the subcomplex made of all the cubes having
a vertex in 1) consists of 16 copies of the defining 4-cube, each one obtained
by putting 1 in a different vertex of the defining cube;

(ii) any two such 4-cubes in the combinatorial link of 1 intersect in a subcube of
codimension at least 2.

As a consequence, G4 is hypercubical.

Proof. By Lemma 5.12, all loops in the Cayley graph of G4 are made of squares
and all such squares come from the relations that are already written in the
presentation. Let C be an m-cube, with m ∈ {3, 4}. We will see that C is always
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contained in a copy of the defining 4-cube. Suppose first of all that m = 3. Then
ψ(C) is either a cube or a square. In the first case, C is made either only of
small or only of capital generators (as there is no length 4 relation mixing them
without diagonal generators) and therefore C is a copy of the defining cube for
G3 contained in a copy of the defining 4-cube. If ψ(C) is a square, it is a copy
of a face of the defining cube for G3 and there is a face in C mapping onto ψ(C)
with either all small or all capital generators. Fix a vertex in C. Up to inversion,
the three edges incident to it are exactly one diagonal generator and either two
small or two capital generators. Suppose they are small generators and without
loss of generality suppose that they have positive exponent when pointing away
from the fixed vertex. This implies that the diagonal generator has a positive
exponent when pointing towards the fixed vertex. We first need to look for couple
of small generators x, y such that there exist a diagonal generator T so that Tx, Ty
are subwords of some of the relations and such that x, y are involved in some
nontrivial relation among small generators of the form xz1 = yz2. By looking for
such couples x, y and for the diagonal generators T for each couple, one sees that
the only possibilities are {a, e, R}, {a, f, S}, {a, d, S}, {b, d,Q}, {c, f, S}, {d, f, S}
(where the small generators are pointing away from the fixed vertex and the
diagonal generator is pointing towards it). In all these cases there is only one
possibility to complete the obtained configuration to a 3-cube, all of them being
contained in a copy of the defining 4-cube. The case of two capital and one diagonal
generators is analogous. Therefore every 3-cube in C•(G4) is contained in a copy
of the defining 4-cube. Suppose now that m = 4. In this case, ψ(C) is a 3-cube
and C contains a subcube mapping isomorphically onto ψ(C) made either of only
capital or only small generators, being therefore a copy of the defining 3-cube of
G3. Therefore at every vertex in C there are one diagonal and three non-diagonal
generators incident to it, the non-diagonals being either all small or all capital.
Fix a vertex of C and suppose that the incident edges are labeled by a diagonal
generator (with positive exponent when pointing toward the fixed vertex) and
three small generators (with positive exponents when pointing away from the fixed
vertex). Then by an argument analogous to that of the 3-dimensional case, the
only possible combination is for the three small generators to be a, d, f and the
diagonal generator to be S. In this case as well there is only one possibility of
completing it to a 4-cube, resulting thus in a copy of the defining 4-cube. The case
with the capital generators is analogous. This proves (i).

To prove (ii), observe first that each cube with a vertex in 1 corresponds to
translating the defining 4-cube by a certain element. Two such cubes intersect
in a subcube C if and only if there are two identical copies of C in the defining
4-cube. As only the faces corresponding to the relations EP = Re and FQ = Sf
appear twice in the defining 4-cube, no 3-subcube of the defining 4-cube appears
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twice. This means that two copies of the defining 4-cube intersect in a subcube of
codimension at least 2.

For what concerns the last part of the statement, G4 is quadratic, so that
C• is simply-connected by Proposition 3.17. Moreover the two conditions above
imply Gromov’s link condition (see Definition 2.25), therefore C• is a CAT(0) cube
complex, hence the claim.

5.4.4 The action on the hypercubical complex
The action of G4 on its hypercubical complex satisfies the following conditions.

Proposition 5.16. The action of G4 on its hypercubical complex is free.

Proof. Suppose that there is g ∈ G4\{1} that fixes a point of a cell C. As the action
on the vertices of the hypercubical complex is free, we must have that dimC ≥ 1.
Moreover the action is cellular, so C is globally fixed by g and g permutes the
vertices of C. Therefore g has finite order. The cell C must be a translation of the
defining 4-cube or of one of its subcubes, so choosing the expander vertex we see
that there must be a vertex h of C such that every other vertex can be written
as hw, for w a positive word. Then h−1C is a cell with a vertex in 1 and such
that all the vertices are described by positive words. The element ḡ := gh fixes
h−1C and ḡ = ḡ1 = w, where w is the positive word describing one of the vertices
of h−1C. As for all positive words u either ϕ0(u) ≥ 1 or ϕ1(u) ≥ 1, one between
ϕ0(ḡ) = ϕ0(w) and ϕ1(ḡ) = ϕ1(w) is not 0. Therefore ḡ has infinite order and so
has g, thus producing a contradiction.

Proposition 5.17. C•(G4) is the universal covering of a classifying space for G4.
As a consequence, G4 is torsion-free.

Proof. C•(G4) is CAT(0) and therefore contractible, moreover G4 acts cellularly
and freely on it.

The following corollary is a direct yet important consequence of the two propo-
sitions above.

Corollary 5.18. G4 is cocompactly cubulated (or, in other words, it is a CAT(0)
cubical group), meaning that it acts properly, cocompactly and by isometries on a
CAT(0) cube complex.

5.4.5 Cohomology
In this section we will describe the cellular chain complex associated to C•(G4)

and we will use it for some computations in homology and cohomology. The main
result is the computation of the cohomological dimension of G4.
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Lemma 5.19. 2 ≤ cd(G4) ≤ 4.

Proof. G3 has cohomological dimension 2 and G3 ≤ G4. Moreover G4 has a
classifying space of dimension 4.

In order to apply Lemma 2.19 and Remark 2.20, we need a free resolution of
Z over ZG4. The hypercubical complex C•(G4) provides such free resolution, as
implied by [Bro82, Prop 4.1]. We now give a detailed description of the modules
and differentials of the complex.

The augmented cellular chain complex of C•(G4) is

0 −→ X4
∂4−→ X3

∂3−→ . . .
∂1−→ X0

ε−→ Z −→ 0,

where:

• X0 = ZG4x0 is a single orbit of vertices,

• X1 = ⊕ZG4σx for x ∈ {a, . . . , f, A, . . . , F, P,Q,R, S} has rank 16,

• X2 = ⊕6
i=1 ZG4ri ⊕⊕6

j=1 ZG4r̄j ⊕⊕10
l=1 ZG4sl has rank 22,

• X3 = ⊕8
i=1 ZG4Ci has rank 8,

• X4 = ZG4K is the single orbit of 4-cubes.

The generators of the module X2 are in bijective correspondence with the
squares in the defining 4-cube of G4, such correspondence will be made explicit
when describing the differentials of the chain complex. The same will happen for
the generators of X3, that corresponds to the eight 3-subcubes of the defining
4-cube.

For what concerns the differentials, they are defined as follows:

• εx0 = 1

• ∂1σx = (x− 1)x0

• ∂2r1 = σa + aσe − eσb − σe
∂2r2 = σa + aσf − fσb − σf
∂2r3 = σd + dσa − aσc − σa
∂2r4 = σd + dσb − bσc − σb
∂2r5 = σf + fσc − cσe − σc
∂2r6 = σf + fσd − dσe − σd
∂2r̄1 = σA + AσE − EσB − σE
∂2r̄2 = σA + AσF − FσB − σF
∂2r̄3 = σD +DσA − AσC − σA
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∂2r̄4 = σD +DσB −BσC − σB
∂2r̄5 = σF + FσC − CσE − σC
∂2r̄6 = σF + FσD −DσE − σD
∂2s1 = σA + AσS − Sσa − σS
∂2s2 = σA + AσR −Rσa − σR
∂2s3 = σB +BσP − Pσb − σP
∂2s4 = σB +BσQ −Qσb − σQ
∂2s5 = σC + CσR − Sσc − σS
∂2s6 = σC + CσP −Qσc − σQ
∂2s7 = σD +DσR − Sσd − σS
∂2s8 = σD +DσP −Qσd − σQ
∂2s9 = σE + EσP −Rσe − σR
∂2s10 = σF + FσQ − Sσf − σS

• ∂3C1 = dr1 − r2 − r3 + fr4 + ar5 − r6
∂3C2 = Dr̄1 − r̄2 − r̄3 + F r̄4 + Ar̄5 − r̄6
∂3C3 = −Sr3 + r̄3 + s1 −Ds2 + As5 − s7
∂3C4 = −Qr4 + r̄4 −Ds3 + s4 +Bs6 − s8
∂3C5 = Sr6 − r̄6 − s7 + Fs8 −Ds9 + s10
∂3C6 = Sr5 − r̄5 − s5 + Fs6 − Cs9 + s10
∂3C7 = −Rr1 + r̄1 − s2 + Es3 + (1 − A)s9
∂3C8 = −Sr2 + r̄2 − s1 + Fs4 + (1 − A)s10

• ∂4K = −SC1 + C2 + C3 − FC4 − C5 + AC6 −DC7 + C8

Lemma 5.20. cd(G4) ≤ 3.

Proof. Apply Lemma 2.19 and Remark 2.20 with cn−1 = C8 andX ′
n−1 = ⊕7

i=1 ZG4Ci.

Theorem 5.21. cd(G4) = 2. In particular, H1(G4) = Z6 and H2(G4) = Z5.

Proof. Thanks to Lemma 5.19, we only need to prove that cdG4 ≤ 2. In order to
do so, we will produce a free resolution of length 2. It suffices to repeatedly apply
Lemma 2.19 to the free resolution

0 −→ X ′
3 −→ · · · −→ X0 −→ Z −→ 0,

where X ′
3 = ⊕7

i=1 ZG4Ci, in order to get the free resolution

0 −→ X ′
2 −→ · · · −→ X0 −→ Z −→ 0,

where X ′
2 = ⊕5

i=1 ZG4ri⊕
⊕5

j=1 ZG4r̄j ⊕ZG4s3 ⊕ZG4s4 ⊕ZG4s6 ⊕ZG4s9 ⊕ZG4s10
(the last step involves the application of Remark 2.20). The explicit calculations
are as follows.
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(1) s2 = −Rr1 + r̄1 + Es3 + (1 − A)s9 − ∂3C7, which yields

0 −→
6⊕
i=1

ZG4Ci −→
6⊕
i=1

ZG4ri⊕
6⊕
i=1

ZG4r̄i⊕ZG4s1⊕
10⊕
i=3

ZG4si −→ X1 −→ . . .

(2) s5 = Sr5 − r̄5 + Fs6 − Cs9 + s10 − ∂3C6, which yields

0 −→
5⊕
i=1

ZG4Ci −→
6⊕
i=1

ZG4ri ⊕
6⊕
i=1

ZG4r̄i ⊕
10⊕
i=1
i ̸=2,5

ZG4si −→ X1 −→ . . .

(3) s7 = Sr6 − r̄6 + Fs8 −Ds9 + s10 − ∂3C5, which yields

0 −→
4⊕
i=1

ZG4Ci −→
6⊕
i=1

ZG4ri ⊕
6⊕
i=1

ZG4r̄i ⊕
10⊕
i=1

i ̸=2,5,7

ZG4si −→ X1 −→ . . .

(4) s8 = −Qr4 + r̄4 −Ds3 + s4 +Bs6 − ∂3C4, which yields

0 −→
3⊕
i=1

ZG4Ci −→
6⊕
i=1

ZG4ri ⊕
6⊕
i=1

ZG4r̄i ⊕
10⊕
i=1

i ̸=2,5,7,8

ZG4si −→ X1 −→ . . .

(5) r6 = dr1 − r2 − r3 + fr4 + ar5 − ∂3C1, which yields

0 −→
3⊕
i=2

ZG4Ci −→
5⊕
i=1

ZG4ri ⊕
6⊕
i=1

ZG4r̄i ⊕
10⊕
i=1

i ̸=2,5,7,8

ZG4si −→ X1 −→ . . .

(6) r̄6 = Dr̄1 − r̄2 − r̄3 + F r̄4 + Ar̄5 − ∂3C2, which yields

0 −→ ZG4C3 −→
5⊕
i=1

ZG4ri ⊕
5⊕
i=1

ZG4r̄i ⊕
10⊕
i=1

i ̸=2,5,7,8

ZG4si −→ X1 −→ . . .

(7) s1 = −Sr2 +Fs4 +(1−A)s10 −S∂3C1 +∂3C2 +∂3C3 −∂3C5 +A∂3C6 −D∂3C7,
so that we can apply Remark 2.20 and get the following free resolution of
length 2:

0 −→
5⊕
i=1

ZG4ri ⊕
5⊕
i=1

ZG4r̄i ⊕
10⊕
i=3

i ̸=5,7,8

ZG4si −→ X1 −→ ZG4x0 −→ Z −→ 0.
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In order to compute the homology, it suffices to apply the coinvariant functor
to the resolution of length 2 that we have just obtained, and write the differential
∂2 as a matrix. By using the SAGE command elementary_divisors(), one gets
that the Smith normal form of the matrix representing ∂2 is:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

From this one can deduce that the second homology group is the desired one, while
H1 is isomorphic to the abelianization of G4, which can be seen to be Z6 by direct
computations.

5.5 The general case
In this section we prove that Gn is hypercubical for any n ≥ 3 and deduce some

results about these groups. The first step will be to describe certain combinatorics
of the generators and relations of Gn.

First of all, note that we can divide the set of generators into equivalence classes
given by the parallelism relation in the defining n-cube. The class of generators
labeling edges parallel to the i-th axis is called of type i. Given a square of the
defining n-cube, the opposite sides belong to the same class by definition. If two
opposite sides of a square belong to the class of type i, the segment connecting their
midpoints is called a midline of type i. Note that every square has two crossing
midlines of different types and that for any i the midline of type i is given by
the intersection of the square with the hyperplane consisting of the points with
i-th coordinate equal to 1/2, i.e., {zi = 1/2} (here zi is the i-th coordinate, as in
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Figure 5.9: The defining 3-cube and a hyperplane

Definition 5.8). To see this, consider the square

x

y

z

w

, where x,w are of type
i and z, y are of type j (which means that the dashed horizontal midline is of type
i and the dotted vertical midline is of type j). For every point in the square the
other coordinates are fixed, while the i-th and the j-th can vary between 0 and
1. In particular, the horizontal midline corresponds to the points with zi = 1/2,
analogously for the vertical midline. If we walk along one of the two midlines, say
the horizontal one, from one side to the other of the square (for example if we
move from the left to the right), we start from an edge labeled x and we end up
in an edge labeled w. The generators x,w are in the same parallelism class and
this holds for every square in the defining n-cube (as we are crossing a square from
one side to the opposite one, which is clearly parallel to the first). This implies
that if we fix a type, say type i, then every time a midline of type j ̸= i crosses
a midline of type i the generators of the class of type i are permuted (but they
are not mixed with generators of other types). As every midline of type j is given
by the intersection between a square in the defining n-cube and the hyperplane of
equation zj = 1/2, on each square of the defining n-cube with two opposite sides
of type j the permutation described above coincides with the one induced by the
reflection across the hyperplane {zj = 1/2} on the labels of the edges of type ̸= j
of the square.

For instance, consider the case n = 3. In fig. 5.9, the edges labeled {a, b} have
direction z1, those labeled {c, d} have direction z2 and those labeled {e, f} have
direction z3. Therefore the generators of type 1 are {a, b}, those of type 2 are {c, d}
and those of type 3 are {e, f}. In gray is represented the intersection between the
hyperplane {z1 = 2} and the defining 3-cube. Consider for example the parallelism
class {e, f}. On this parallelism class, crossing a midline of type 1 induces the
trivial permutation, while crossing a midline of type 2 induces the permutation
that swaps e and f .
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Lemma 5.22. For each n, i, the reflection across the hyperplane {zi = 1/2} induces
a well defined permutation σ of the labels of the edges of the defining n-cube so that,
for each subsquare of types i, j, σ corresponds to the action of the i-midline on the
j-generators.

Proof. It is enough to prove that the reflection across {zi = 1/2} sends edges with
the same label to edges with the same label. We proceed by induction, n = 3
being the base case. For n = 3 the claim can be verified directly. Suppose the
claim holds for Gn−1 and fix i ∈ {1, . . . , n}. If i = n, then the reflection across
{zn = 1/2} swaps every edge of the outside (n− 1)-cube with the corresponding
edge of the inside (n − 1)-cube. As the two (n − 1)-cubes are isomorphic, σ is
well defined. Suppose now that i ̸= n. Every vertex of the defining n-cube can
be represented by a binary sequence εω, where ε = 0 on the outside (n− 1)-cube
and ε = 1 on the inside one, as in Definition 5.8. Note that the reflection across
{zi = 1/2} sends each εω to εω̄, where ω̄ differs from ω only in position i. By
inductive hypothesis, the restriction of such reflection to the outside (n− 1)-cube
induces a well defined permutation on the set of capital generators, analogously
for the set of small generators. For what concerns diagonal edges, if two of them
have the same label then by definition they issue from vertices described by two
binary sequences 0ω0 and 0ω1 for some ω. The reflection across {zi = 1/2} either
sends these two vertices to 0ω̄0 and 0ω̄1, if i ̸= 1, or swaps them for i = 1. In both
cases, the diagonal edges issuing from these vertices have the same label, hence the
claim.

Remark 5.23. For each i, let σi be the permutation induced by the reflection
{zi = 1/2} as in Lemma 5.22. Then σi has order 2 and the orbits of the action of
⟨σi⟩ on the set of generators of type ̸= i have length at most 2.
Remark 5.24. For each i, let τi denote the reflection across zi = 1/2. Then the
Coxeter group generated by τ1, . . . , τn is (Z/2)n. As a consequence, for any i, j, k
pairwise distinct, the permutations induced by the midlines of type i and j on the
set of generators of type k commute.

Lemma 5.25. The only non-trivial relations of length 4 in Gn are those of the
borromic presentation (up to inversion and cyclic conjugation).

Proof. Consider a relation of length 4, draw a Van Kampen diagram K for it and
draw the midlines corresponding to the four sides of the boundary . Call them the
principal midlines of the diagram. Note that, as Möbius strips cannot be embedded
in the plane, the orientation of the edges crossed by a midline has to be preserved
along the midline. Therefore, up to rotations and reflections of the Van Kampen
diagram K, we are reduced to consider 4 cases:
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(1)

(2)

Case (2) is easily ruled out, as all the other midlines have to cross the principal
ones an even number of times and also the principal ones have to cross each other
an even number of times. Taking into account that the permutations induced
by the crossings commute with each other and have order 2 (by Remarks 5.23
and 5.24), we deduce that the boundary relation has form xy = xy, x−1y = x−1y
or x−1x = y−1y, which do not identify squares in the hypercubical complex.

For what concerns case (1), suppose that the horizontal midline has type i and
the vertical one has type j. Consider the first crossing, along the horizontal midline
and going from left to right, of the two principal midlines. This distinguished
crossing corresponds to a relation of the presentation and it divides every principal
midline into two branches. Except for the distinguished crossing, the two principal
midlines have to cross each other an even number of times on every branch. Non-
principal midlines of type i can cross the principal midline of type j an even number
of times on each branch, same for non-principal midlines of type j and the principal
midline of type i. Non-principal midlines of type k ̸= i, j can cross each branch
of the principal midlines either an even number of times (if the distinguished
crossings is contained in the exterior of the curve) or an odd number of times (if
the distinguished vertex lies in the interior of the curve), and the parity is the same
on the four branches. By Remarks 5.23 and 5.24, an even number of crossings of a
principal midline with a midline of a fixed type does not produce any change in
the relation and the order is not relevant. Therefore we only need to focus on the
crossings with midlines of type k ̸= i, j that are closed simple curves whose interior
contains the distinguished crossing. Note that, for every such midline, the parity
of the number of crossings on each of the four branches is always odd and, as the
associated permutations have order two, we may assume that this number is always
one. Moreover, the order of the crossings on the branches of the principal midlines
is not relevant, therefore we can suppose that the order is the same on each branch,
so that the effect of the crossings is as in fig. 5.10 (note that the X in the middle
indicates the distinguished crossing and the colored closed simple curves around it
are non-principal midlines that actually produce an effect on the relation associated
to the distinguished crossing). As this means that we are applying reflections to the
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Figure 5.10: Representing the effect of the crossings in the proof of Lemma 5.25

square of the defining n-cube lying around the distinguished crossing with respect
to hyperplanes not intersecting it, the image will always be another square of the
defining n-cube. That image is precisely the boundary of the Van Kampen diagram
K, therefore the boundary relation is a relation we already see in the presentation
of Gn.

The following generalizes Proposition 5.10. Note that the homomorphisms
defined in section 5.4.1 for G4 can be defined analogously for Gn for any n ≥ 4.

Lemma 5.26. All the generators of Gn and their inverses are pairwise distinct.

Proof. We have to check that there is no length 2 relation. Assume there is and
consider a Van Kampen diagram K for it. As we noted at the beginning of the
proof of Lemma 5.25, the orientation of the edges at the extremities of the principal
midline of K has to be the same and the generators associated to them have to be
in the same parallelism class. Therefore, the K will have the following form:

x

y

The generators x, y belong to the same parallelism class. All the other midlines
of the diagram are non-principal, therefore they are closed simple curves and they
cross the principal midline an even number of times. As this crossings commute
with each other and en even number of crossings with a midline of the same type
does not produce any effect (by Remarks 5.23 and 5.24), x = y and the relation is
trivial.

Lemma 5.27. dim C•(Gn) = n.
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Proof. The proof is by induction, n = 4 being the base case. Suppose the claim
holds for Gn−1. The same argument used to show that dim C•(G4) = 4 (see
Lemma 5.13) can be applied to prove the induction.

Lemma 5.28. The homomorphism ψ : Gn → Gn−1 extends to a cellular map
ψ : C•(Gn) → C•(Gn−1).

Proof. The proof is by induction, n = 4 being the base case, and it mimics the
proof of Lemma 5.14.

Theorem 5.29. Suppose that for n ≥ 4 the group Gn−1 satisfies the following two
properties:

A(n-1): the combinatorial link of 1 (i.e., the subcomplex made of all the cubes having
a vertex in 1) consists of 2n−1 copies of the defining (n− 1)-cube, each one
obtained by putting 1 in a different vertex of the defining cube;

B(n-1): any two such (n−1)-cubes in the combinatorial link of 1 intersect in a subcube
of codimension at least 2.

Then Gn satisfies A(n) and B(n). As a consequence, Gn is hypercubical.

Proof. As Gn is quadratic, and by Lemma 5.25, all loops in its Cayley graph are
made of squares and all such squares come from the relations that are already
written in the presentation. Let C be an m-cube with a vertex in 1, with m ≤ n.
The sides of C having a vertex in 1 are either all capital or all small, or there is
exactly one diagonal generator. If there is a diagonal generator, then ψ(C) is an
(m − 1)-subcube of the defining (n − 1)-cube by hypothesis. Then there is only
one way to complete such (m− 1)-cube to an m-cube by using diagonal generators,
therefore C is contained in the defining n-cube. If C does not contain any diagonal
generator, then ψ(C) is a copy of C in C•(Gn−1), therefore by hypothesis it is a
subcube of the defining (n− 1)-cube, thus of the defining n-cube. This proves A(n).
To prove B(n), suppose there exist two copies C1 and C2 of the defining n-cube in
C•(Gn) such that C1 ∩ C2 has codimension 1. If C1 ∩ C2 contains diagonal edges,
then ψ(C1 ∩ C2) is a codimension 1 subcube of both ψ(C1) and ψ(C2), both of
them being copies of the defining (n− 1)-cube. This produces a contradiction. If
C1 ∩ C2 does not contain any diagonal edge, then ψ(C1 ∩ C2) = ψ(C1) = ψ(C2).
This means that we can find two copies of C1 ∩ C2 in the defining n-cube that can
be completed to the defining n-cube in two different ways. The two copies must be
either both the capital (n− 1)-cube or the small one, but there is only a way to
complete them to the defining n-cube. In both cases, we get to a contradiction

For what concerns the last part of the statement, Gn is quadratic and the two
conditions above imply Gromov’s link condition.
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Corollary 5.30. Gn is hypercubical, for every n ≥ 3, with respect to the generators
of the borromic presentation.

Proof. The statement is already known for n = 3 and n = 4. For the general case,
proceed by induction on n, n = 4 being the base case.

Propositions 5.16 and 5.17 and Corollary 5.18 can be generalized to the whole
family of Borromean cube groups, as the arguments proceed verbatim. This proves
the following.

Proposition 5.31. For any n ≥ 3, the group Gn acts freely on its hypercubical
complex, is torsion free and cocompactly cubulated.

Lemma 5.32. For any n ≥ 4, 2 ≤ cdGn ≤ n− 1.

Proof. G3 is a subgroup of Gn for any n and cdG3 = 2. Moreover C•(Gn) is an
EGn of dimension n, therefore cdGn ≤ n. In the augmented cellular chain complex,
the module in dimension n is a free module of rank 1, generated say by cn. Then
either ∂ncn = 0, which implies that we can reduce the length of the chain complex
by 1, or in the expression of ∂ncn there is at least a summand of the form gcn−1
with g ∈ Gn. We can now apply Lemma 2.19 to get that cdGn ≤ n− 1.

Corollary 5.33. Gn is torsion-free for any n ≥ 3.
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Conclusions

Conclusions
Hypercubical groups are a class of groups defined by the property that their

hypercubical complex is contractible, for some fixed finite generating set. The
results contained in this thesis are mainly of two types. One the one hand, we have
proven that RAAGs, oriented and twisted RAAGs, and Borromean cube groups are
hypercubical, and we have also proven some results about these families of groups.
On the other hand, we have stated and proven general results about hypercubical
groups, such as the fact that they are either of type F∞ or F , properties of the action
on the hypercubical complex and an upper bound on the cohomological dimension
in the torsion-free case. In addition to these results, the main contribution of
this thesis is to have given a unified context to study groups whose hypercubical
complex is contractible (as some sporadic examples were already known in literature,
even though it was not stated in these terms). This is interesting in that these
groups have a rich geometric nature and the hypercubical complex can be used for
homological and cohomological computations as well.

Geometric group theory has a wide variety of connections with other branches
of mathematics, and there are numerous open questions that can be approached
for hypercubical groups. Some of them are listed below.

(Q.1) Is the hypercubical complex of a hypercubical group always CAT(0)?

(Q.2) Some techniques would allow one to prove general results about hypercubical
groups also when the generating set used in the construction of the hyper-
cubical complex is infinite, therefore it might be significant to extend the
definition to this case.

(Q.3) More geometric aspects about the hypercubical complex of a hypercubical
group and the hypercubical group itself can be studied, for instance the
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topology of the boundary (at least when the hypercubical complex is CAT(0)).

(Q.4) The properties of the hypercubical complex of a group strongly depend on the
specific generating set one chooses. How are different hypercubical complexes
for the same group related?

(Q.5) The definition of Borromean cube groups depends on the specific pattern
used for the labeling of the defining cubes. It would be interesting to study
more general patterns, either on n-cubes or on other graphs (as long as the
resulting presentation is quadratic).

(Q.6) One could use the hypercubical complex to show cohomological properties
for other classes of hypercubical groups.

(Q.7) Is it possible to produce answers to algorithmic problems by using the
hypercubical complex of a group?

(Q.8) What can we say about the nature of the group Aut(C•(G,Σ)) for some group
G and generating set Σ? What is the relation with G?

(Q.9) One could study the BNSR-invariants for some families of hypercubical
groups.

(Q.10) Is it possible to find relations between (certain subfamilies of) hypercubical
groups and other important families of groups often studied in geometric
group theory?

Conclusioni
I gruppi ipercubici sono una classe di gruppi definiti dalla proprietà che il loro

complesso ipercubico è contraibile, per un qualche sistema finito di generatori
fissato. I risultati contenuti in questa tesi si dividono principalmente in due
categorie. Da una parte, abbiamo provato che i RAAG, i RAAG twisted e orientati
e i gruppi borromeiani cubici sono ipercubici. Dall’altra parte, abbiamo enunciato
e dimostrato risultati generali riguardo ai gruppi ipercubici, quali ad esempio il
fatto che sono di tipo F∞ o F , alcune proprietà dell’azione sul complesso ipercubico
e un limite superiore della dimensione coomologica. In aggiunta a questi risultati,
il contributo principale di questa tesi è di aver introdotto un contesto unificato per
lo studio dei gruppi il cui complesso ipercubico è contraibile (esempi sporadici di
gruppi con questa proprietà erano già noti in letteratura, anche se non in questi
termini). L’interesse di ciò risiede nel fatto che questi gruppi hanno una ricca
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natura geometrica e che è possibile utilizzare il complesso ipercubico di questi
gruppi anche per calcoli di tipo omologico e coomologico.

La teoria geometrica dei gruppi ha una grande varietà di connessioni con altri
rami della matematica, pertanto anche le domande aperte che si possono affrontare
per i gruppi ipercubici sono numerose. Alcune di queste sono elencate qui di seguito.

(Q.1) Dato un gruppo ipercubico, il suo complesso ipercubico è sempre CAT(0)?

(Q.2) Alcune tecniche permettono di dimostrare risultati generali sui gruppi iper-
cubici anche nel caso in cui il sistema di generatori usato nella costruzione
del complesso ipercubico sia infinito, sarebbe quindi significativo estendere la
definizione a questo caso.

(Q.3) Aspetti più geometrici del complesso ipercubico di un gruppo ipercubico, e
del gruppo ipercubico stesso, potrebbero essere di interesse, quali ad esempio
la topologia della sua frontiera (almeno nel caso in cui il complesso ipercubico
sia CAT(0)).

(Q.4) Le proprietà del complesso ipercubico di un gruppo dipendono strettamente
dal sistema di generatori considerato. Che relazione c’è tra differenti complessi
ipercubici dello stesso gruppo?

(Q.5) La definizione di gruppi borromeiani cubici è legata allo specifico pattern
utilizzato per etichettare i cubi di definizione. Sarebbe interessante studiare
pattern più generali, su n-cubi o su altri grafi (sempre che la presentazione
risultante sia quadratica).

(Q.6) Si potrebbe usare il complesso ipercubico per dimostrare proprietà coomolo-
giche per altre classi di gruppi ipercubici.

(Q.7) É possibile rispondere a problemi di tipo algoritmico usando il complesso
ipercubico di un gruppo?

(Q.8) Che cosa possiamo dire sulla natura del gruppo Aut(C•(G,Σ)) per un gruppo
G e un sistema di generatori Σ? Che relazione sussiste con G?

(Q.9) Si potrebbero studiare gli invarianti BNSR per alcune famiglie di gruppi
ipercubici.

(Q.10) É possibile trovare relazioni tra (certe sottofamiglie di) gruppi ipercubici e
altre importanti famiglie di gruppi studiate nell’ambito della teoria geometrica
dei gruppi?
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Conclusiones
Los grupos hipercúbicos son una clase de grupos definidos por la propiedad de

que su complejo hipercúbico es contractible para algún conjunto finito de generado-
res fijado. Los resultados contenidos en esta tesis son principalmente de dos tipos.
Por un lado, hemos demostrado que los RAAGs, los RAAGs orientados y twisted y
los grupos cúbicos de Borromeo son hipercúbicos. Por otro lado hemos demostrado
también resultados generales sobre los grupos hipercúbicos, por ejemplo que los
grupos hipercúbicos son de tipo F∞ o de tipo F , unas propiedades de la acción
sobre el complejo hipercúbico y una cota para la dimensión cohomológica. Además
de estos resultados, la contribución principal de esta tesis es haber proporcionado
un contexto unificado para el estudio de los grupos cuyo complejo hipercúbico es
contractible (algunos ejemplos esporádicos ya se conocían en la literatura, aunque
no en estos términos). Lo interesante de esto es que estos grupos tienen una rica
naturaleza geométrica y el complejo hipercúbico también se puede utilizar para
cálculos homológicos y cohomológicos.

La teoría geométrica de grupos tiene una amplia variedad de conexiones con
otras ramas de las matemáticas, por lo tanto, hay numerosas preguntas abiertas
que se pueden abordar para los grupos hipercúbicos. Algunas de ellas se enumeran
a continuación.

(Q.1) ¿Es el complejo hipercúbico de un grupo hipercúbico siempre CAT(0)?

(Q.2) Algunas técnicas permiten demostrar resultados generales sobre los grupos
hipercúbicos también cuando el conjunto de generadores usato en la construc-
ción del complejo hipercúbico es infinito, por lo tanto, podría ser significativo
extender la definición a este caso.

(Q.3) Se pueden estudiar aspectos más geométricos sobre el complejo hipercúbico
de un grupo hipercúbico y sobre el grupo hipercúbico mismo, por ejemplo
la topología de su frontera (al menos cuando el complejo hipercúbico es
CAT(0)).

(Q.4) Las propiedades del complejo hipercúbico de un grupo dependen fuertemente
del conjunto de generador específico que se elija. ¿Cómo están relacionados
distintos complejos hipercúbicos para el mismo grupo?

(Q.5) La definición de grupos cúbicos de Borromeo dependen del patrón específico
usado para el etiquetado de los cubos definitorios. Sería interesante estudiar
patrones más generales, ya sea en n-cubos o en otros grafos (siempre que la
presentación resultante sea cuadrática).
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(Q.6) Se podría usar el complejo hipercúbico para mostrar propiedades cohomológi-
cas para otras clases de grupos hipercúbicos.

(Q.7) ¿Se puede usar el complejo hipercúbico de un grupo para solucionar problemas
algorítmicos?

(Q.8) ¿Qué podemos decir sobre la naturaleza del grupo Aut(C•(G,Σ)) para algún
grupo G y conjunto de generadores Σ? ¿Qué relación tiene con G?

(Q.9) Se podrían estudiar los invariantes BNSR de algunas familias de grupos
hipercúbicos.

(Q.10) ¿Se pueden encontrar relaciones entre (ciertas familias de) grupos hipercúbicos
y otras familias importantes de grupos estudiados en teoría geométrica de
grupos?
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