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Abstract

This research replicates the paper “Optimal Versus Naive Diversification:
How Inefficient is the 1/N Portfolio Strategy?”, DeMiguel et al. (2009b).
Similar to the referring paper, working in the mean-variance context, we com-
pare the out-of-sample performance of the same investment strategies on the
basis of standard metrics (Sharpe ratio, certainty equivalent and turnover).
We consider proportional transaction costs and estimation rolling windows
of limited length. Our study updates the original paper for many interest-
ing aspects. First, to exclude that the empirical evidence of DeMiguel et al.
(2009b), whose data stopped in 2004, could depend on very specific market
behavior, we use an updated version of the original databases that contains
the returns of the last 20 years. Recent data are characterized by a few se-
vere systemic events, the 2008 global financial crisis and the shock related
to the pandemic, and a generally higher level of price volatility than the
previous periods. In our opinion, this variation in the market’s conditions
makes the replication very interesting. Second, we introduce the Equally Risk
Contribution (ERC) portfolio within the allocation strategies under compar-
ison. This allocation rule is strictly related to the mean-variance approach
when the variance is used as the referring risk measure and it constitutes
a very interesting alternative investment benchmark. Moreover, using real
data, we study whether a variation of the holding period or the length of the
estimation window can modify the performance of all the strategies under
comparison. Our findings confirm the results of DeMiguel et al. (2009b), i.e.
that the equally weighted portfolio still remains a challenging benchmark

Email addresses: m.gelmini1@campus.unimib.it (Matteo Gelmini),
pierpaolo.uberti@unimib.it (Pierpaolo Uberti)

1Department of Statistics and Quantitative Methods, University of Milano-Bicocca
2Corresponding author

Preprint submitted to International Economics June 18, 2024



to beat. Nevertheless, we find a few significant differences: the number of
strategies that outperform naive diversification is larger due to the increased
market volatility; limiting the impact of transaction costs by investing in a
portfolio with a stable allocation as the ERC, or modifying the lengths of
the estimation window and the holding period, is not sufficient to beat naive
diversification systematically.

Keywords: Replication Study, Portfolio Choice, Investment Decisions,
Naive Diversification, Out-of-sample Performance
JEL: G10, G11

1. Introduction

As the scientific literature grows, replication studies are necessary to con-
firm or critically discuss the results of previously published papers. This is
especially the case for real data empirical analysis.

This article replicates “Optimal Versus Naive Diversification: How Inef-
ficient is the 1/N Portfolio Strategy?”, DeMiguel et al. (2009b). This paper
was published in 2009 in the journal Review on Financial Studies and, at the
moment we are writing, it counts approximately 4100 citations on Google
Scholar. In well-defined experimental settings, the study shows that the
equally weighted portfolio is a challenging benchmark to beat for standard
mean-variance optimization-based investment strategies. The paper indi-
rectly raised a deep and shocking question: what is the utility of complex
theoretical optimization models that are difficult to formalize and to apply
if, in practice, they cannot beat the basic equally weighted portfolio sys-
tematically? The publication of this paper opened a huge debate in the
scientific community. On the one hand, some researchers focused their at-
tention on the theoretical reasons that can explain the empirical evidence,
see Malladi and Fabozzi (2017). Model uncertainty is considered the princi-
pal cause of the poor out-of-sample performance of the optimization-based
approaches, see Pflug et al. (2012). One further stream of research identifies
the numerical instability of the Markowitz model as the principal cause of
its poor out-of-sample performance, see Hirschberger et al. (2010) and Best
and Hlouskova (2008). On the opposite, many other researchers focused on
the attempt to find non-trivial portfolio allocation strategies able to beat
the equally weighted portfolio in the out-of-sample framework to justify the
proposal and the use of complex decision-making optimization-based models,
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see Kritzman et al. (2010), or to beat a challenging benchmark, see among
the others Kirby and Ostdiek (2012), Ackermann et al. (2017), Bessler et al.
(2017), Fugazza et al. (2015), Hanke et al. (2019), Jiang et al. (2019), Yuan
and Zhou (2022). The debate is still active and far to be concluded.

The well-known paper by DeMiguel et al. (2009b) compares the out-
of-sample performance of optimization-based approaches with the so-called
naive diversification, which allocates the same proportion of wealth in each
asset. In that context, the equally weighted portfolio is the benchmark.
The out-of-sample empirical results show the difficulty to beat the equally
weighted portfolio in terms of Sharpe ratio, see Sharpe (1966), certainty
equivalent and turnover, in the mean-variance context using optimization-
based approaches, when estimation windows of limited length and propor-
tional transaction costs are considered.

We first test the robustness of the findings of DeMiguel et al. (2009b)
by expanding the original databases to the last 20 years. We compare the
same strategies, maintaining all the settings of the original experiment, i.e.
the same length for the rolling windows, the same values of the parameters,
the same proportional structure and amount of the transaction costs and the
same metrics to evaluate the performance of the investment strategies. This
first experiment aims to verify if the findings of DeMiguel et al. (2009b) are
still valid. More recent data significantly differ from the ones used in the
original research for the presence of a few severe systemic crises, the 2008
global financial crisis and the shock related to the COVID-19 pandemic, and
a general increased level of volatility. Moreover, we add the equally risk
contribution (ERC) allocation strategy, see Maillard et al. (2010), to the
investment strategies under comparison. The ERC belongs to the mean-
variance framework when the variance is used as the referring risk measure.
It has been proposed to overcome some of the principal critical issues of the
Markowitz model: optimal long-only mean-variance portfolios concentrate
the allocation in a few assets and show a numerically unstable composition for
the uncertainty of the parameters. Moreover, the ERC identifies a portfolio
with an in-sample variance that is bounded between the variance of the
global minimum variance portfolio and the variance of the equally weighted
portfolio. In a further experiment, we use estimation windows whose length
grows with the length of the time series, considering all the available data
to estimate the parameters. In DeMiguel et al. (2009b) this experiment was
performed only on simulated data to test the impact of the length of the
estimation window on the out-of-sample returns of the strategies. In the
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last experiment we increased the holding period from 1 month to 12 months,
following the idea proposed by Chan et al. (1999) and Jagannathan and Ma
(2003); this last exercise is totally new.

2. Empirical Experiment

In this section, we report our experiment. First we describe the experi-
ment and introduce the notation. Then we enumerate the datasets, the allo-
cation strategies and the metrics used for the comparison. We do not provide
a detailed mathematical formalization of the single investment strategies and
the metrics used for their evaluation; we refer to the original papers through
bibliographic references.

2.1. Description of the experiment and notation

The referring experiment is performed in a standard rolling window frame-
work. The length of the estimation window is calledW whileN is the number
of assets. The first W × N entries of the matrix of returns are used to es-
timate the optimal allocation for one model. Then, given the length of the
holding period H, the performance of the strategy is computed considering
the returns from W + 1 to W + H. To maintain the length W of the es-
timation, the described calculation is repeated after shifting the estimation
window H periods ahead, thus containing the returns from H +1 to W +H.
The turnover (TO) of one strategy is computed as the absolute difference
between the allocation at the end of one holding period and the optimal al-
location at the beginning of the subsequent period. Let us underline that
the allocation at the end of one holding period is different from the optimal
allocation at the beginning of the same period due to the variation of the
prices. This explains why the equally weighted portfolio has a small but
positive turnover. The transaction costs are finally calculated proportionally
to the TO; the coefficient is fifty basis points as in DeMiguel et al. (2009b).
The effective returns of a strategy are then obtained subtracting the trans-
action costs for its implementation from the gross return. This procedure is
repeated for each database and strategy under comparison, see section 2.2.

The strict replication exercise is limited to the first two experiments per-
formed for W = 120 and H = 1, see section 2.3 and, W = 60 and H = 1,
see section 2.4. The parameter W plays a fundamental role in the appli-
cation. On one hand, a short estimation window considers only the most

4



recent data, which are usually the most important to obtain a good predic-
tive performance of the model; it is then intuitively useless to estimate the
parameters based on the old data that do not reflect actual market condi-
tions. Conversely, in the mean-variance framework, the covariance must be
estimated using adequate length time series. The length of the estimation
windows primarily depends on the portfolio’s size N ; a sufficient length of the
time series is needed to obtain a meaningful, in terms of statistical content,
estimation of the entries of the covariance matrix. The minimal technical
requirement is W ≥ N , which ensures the covariance matrix is a full-rank
invertible matrix. The literature on the topic is wide; we cite, among the
others, Bickel and Levina (2008) and Ledoit and Wolf (2003). W = 60 is
a relatively short window strongly restricting the size of the portfolios we
can build. Nevertheless, with monthly observations, W = 60 is equivalent to
considering the data of the last 5 years, thus using relatively old information
for the estimation of the covariance matrix. One last consideration regarding
parameter W is that it strongly affects the stability of the allocation, with
direct consequences on the turnover. When W is short, one observation sig-
nificantly impacts the estimation of the covariance matrix. Then the optimal
allocation significantly changes from one investing period to the next one. In
the original paper, this aspect was studied through an exercise based on sim-
ulated data. It showed that the optimization-based strategies become stable
and very competitive if the estimation windows are long enough. In section
2.5, we will investigate this aspect in more detail with a dedicated real data
experiment.

The last two experiments, see sections 2.5 and 2.6, are totally new. They
show that the poor performance of the optimization-based active investment
strategies does not depend exclusively on the on the impact of the transaction
costs. Indeed, a longer estimation windows reduce the turnover and the costs
of the active strategies but the improvement is not enough to identify one
strategy that systematically outperforms the 1/N .

2.2. Data, strategies, metrics

The datasets used to implement the present replication experiment are
the same as those used in the original paper, except that they have been
updated with recent data. In our opinion, one ex-post major critical aspect
of the original research is that it was performed on data with a significantly
lower level of volatility for the data of the last 20 years. The principal
motivation of this research is to test the robustness of the findings of the
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original paper, as the most recent data are characterized by a significantly
higher volatility. Table 1 provides the enumeration and a brief qualitative
description of the databases used in the application.

Table 1: Datasets used in the application.
Name N Time Period Frequency Description

S&P Sectors “S&P” 11 07/2002 - 07/2023 Monthly Ten sector portfolios of
the S&P 500 and the US
equity market portfolio

Industry “Ind” 11 07/1982 - 06/2023 Monthly 10 Ten industry portfolios and
the US equity market portfolio

International “Int” 9 04/1992 - 04/2023 Monthly Eight country indexes and
the World Index

MKT/SMB/HML “MSH” 3 06/1982 - 06/2023 Monthly SMB and HML portfolios and
the US equity market portfolio

FF 1-factor “FF1” 21 06/1982 - 06/2023 Monthly Twenty size- and book-to-
market portfolios and
the US equity MKT

FF 4-factor “FF4” 24 06/1982 - 06/2023 Monthly Twenty size- and book-to-
market portfolios and
the MKT, SMB, HML
and UMD portfolios

For a detailed description of the database’s assets see DeMiguel et al.
(2009b). Except for the data in “S&P” and in “Int” that have been down-
loaded from FactSet, the other databases under analysis can be downloaded
for free at the following website:
http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html.

We have re-implemented the totality of the investing strategies that were
compared in the original paper. We added the equally risk contribution
(ERC) within the strategies under comparison, see Maillard et al. (2010).
This strategy was not considered in the referring paper probably because it
was proposed in the literature almost simultaneously. Even if it is not strictly
an optimization-based strategy in the mean-variance framework, i.e. when
the variance is used as the referring risk measure, is of great interest for the
present experiment. It is characterized by a variance that is bounded between
the ones of the minimum variance portfolio and of the equally weighted port-
folio. We do not describe the allocation strategies in detail, but we simply
enumerate, by referring to the original papers for the respective formaliza-
tions.

• “1/N”, with re-balancing (benchmark strategy).
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• “BS”, Bayes-Stein Model, see James and Stein (1992) and Stein (1956).

• “DM”, Data-and-Model Approach3, see Pástor (2000) and Pástor and
Stambaugh (2000).

• “MIN”, Minimum-variance (this is the global minimum variance port-
folio), see Markowitz (1952).

• “VW”, The value-weighted market portfolio4 with respect to CAPM,
see Sharpe (1964), Lintner (1965), Mossin (1966).

• “MP”, Portfolio implied by a asset pricing models with missing (unob-
servable) factors, see Craig MacKinlay and Pástor (2000).

• “MV-C”, mean-variance portfolio with restrictions on short selling, see
Jagannathan and Ma (2003).

• “BS-C”, Bayes-Stein portfolio with restrictions on short selling, see
James and Stein (1992) and Stein (1956).

• “MIN-C”, global minimum-variance portfolio with restrictions on short
selling, see Markowitz (1952).

• “G-MIN-C”, minimum-variance portfolio with generalized restrictions,
see DeMiguel et al. (2009a).

• “ERC-C”, equally risk contribution portfolio with restrictions on short
selling, see Maillard et al. (2010) and Roncalli and Weisang (2016).

• “MV-MIN”, three funds model, see Kan and Zhou (2007).

• “EW-MIN”, mixture of minimum variance and 1/N, see Kan and Zhou
(2007) and Garlappi et al. (2007).

3In this strategy the investment portfolio depends on one parameter (σα that we set
equal to 1% as in DeMiguel et al. (2009b)).

4This strategy requires to buy the market portfolio at the beginning of the investment
period and hold it. This strategy is strictly passive and it is characterized by a null
turnover by construction.
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As in DeMiguel et al. (2009b), we compare the out-of-sample performance
of the investment strategies based on three main metrics: Sharpe ratio (SR),
certainty equivalent (CE), turnover(TO). The SR, see Sharpe (1966), is the
well-known risk adjusted performance measure. It is defined as the ratio
between the excess return with respect to the risk-free rate and the standard
deviation of the returns. The CE, see DeMiguel et al. (2009b), is a real-valued
function of the returns and their variance that depends on one parameter5.
Both the SR and CE are calculated on the net returns obtained subtracting
the transaction costs from the gross returns as described in section 2.1.

2.3. The referring case: W = 120, H = 1

Tables 2, 3 and 4 in this section collect the Sharpe ratios, the certainty
equivalent, and the turnover of the strategies under comparison when the
estimation window is W = 120 and the holding period is H = 1. This exper-
iment can be considered the referring one and will be used as the benchmark
for the comparative comments when the parameters vary. Tables 2 and 3
also report the p-values (the numbers within brackets) of the statistical test,
see Jobson and Korkie (1981), which permits the discussion of whether the
performance measure relative to one strategy is statistically significantly dif-
ferent from the one of 1/N. To make the tables more immediate to interpret
at first sight, we highlight in bold the cases in which one strategy outperforms
the benchmark for a given database, denoting with ∗, ∗∗ and ∗∗∗ respectively,
the significance levels 10%, 5% and 1%. We do not differentiate the remain-
ing cases, i.e. when the benchmark and the single strategy do not show
statistically significant differences concerning one metric and when the single
strategy significantly under-performs the benchmark.

Globally looking at tables 2, 3 and 4, there is no bold line in the tables, so
there is no investment strategy that significantly outperforms the benchmark
for each database and performance metric.

If we focus on the Sharpe ratio, see Table 2, the strategy that more often
significantly beats the 1/N is the ERC. This fact is not surprising if we con-
sider that the ERC is an intuitive generalization of the 1/N strategy, since it
provides an equally weighted allocation for the risk undertaken. Moreover,
we underline how the results of the 1/N and the ERC strategies are very
similar; this could depend on the fact that, in this experiment, the asset

5As in DeMiguel et al. (2009b) we set the value of this parameter equal to 1.
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Table 2: Sharpe ratios of the out-of-sample returns, W = 120, H = 1.

Strategy S&P Ind Int MSH FF1 FF4

1/N 0.2186 0.2205 0.0924 0.1517 0.1893 0.1942

MV (in sample) 0.4857 0.5472 0.2728 0.1707 0.4788 0.6945

MV 0.1401 0.0647 0.0443 0.1244 0.2632 0.4215***

(0.179) (0.017) (0.290) (0.357) (0.141) (0.001)
BS 0.1604 0.0663 0.0573 0.1351 0.2931* 0.4578***

(0.223) (0.018) (0.336) (0.412) (0.059) (0.000)
DM 0.2359 0.3368*** 0.0893 -0.0443 0.2106 -0.0093

(0.159) (0.007) (0.481) (0.003) (0.327) (0.002)
MIN 0.1837 0.2135 0.1484* 0.0672 0.2993*** -0.3344

(0.296) (0.434) (0.079) (0.001) (0.009) (0.000)
VW 0.2426* 0.1619 0.1139* 0.1619 0.1619 0.1619

(0.069) (0.000) (0.064) (0.386) (0.111) (0.089)
MP 0.2170 0.1875 0.0745 0.0258 0.1794 0.1780

(0.438) (0.083) (0.266) (0.009) (0.002) (0.000)
MV-C 0.2475 0.1379 0.1341* 0.1628 0.2189* 0.2165

(0.282) (0.017) (0.085) (0.397) (0.088) (0.152)
BS-C 0.2395 0.1446 0.1246 0.1671 0.2186* 0.2138

(0.334) (0.024) (0.130) (0.354) (0.086) (0.191)
MIN-C 0.1909 0.2392 0.1250** 0.0728 0.2204* 0.1428

(0.300) (0.267) (0.044) (0.002) (0.059) (0.141)
G-MIN-C 0.2123 0.2391 0.1005 0.1109 0.2085** 0.2428**

(0.423) (0.180) (0.233) (0.023) (0.048) (0.049)
MV-MIN 0.1635 0.0655 0.0637 0.1378 0.3012** 0.4673***

(0.228) (0.018) (0.354) (0.426) (0.043) (0.000)
EW-MIN 0.1999 0.2291 0.1485** 0.0832 0.2863*** -0.3274

(0.345) (0.392) (0.041) (0.001) (0.002) (0.000)
ERC-C 0.2191 0.2312** 0.0962 0.1254 0.1963*** 0.2371**

(0.483) (0.027) (0.086) (0.039) (0.003) (0.048)

classes composing the investment portfolios are portfolios themselves, thus
mitigating the differences in risk between the portfolio’s constituents. Con-
sequently, the allocation of the ERC portfolio is very similar to the one of
the 1/N. The similarity of the allocation between the two strategies is also
confirmed by the closeness of the values of the metrics for each experiment,
see subsections 2.4, 2.5, and 2.6.

Another interesting fact is that, compared to the original study, the num-
ber of strategies that beat the 1/N is greater. Excluding the ERC to restrict
to the same strategies, the number of scenarios in which one alternative
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Table 3: Certainty equivalent of the out-of-sample returns, W = 120, H = 1.

Strategy S&P Ind Int MSH FF1 FF4

1/N 0.0081 0.0084 0.0033 0.0030 0.0087 0.0080

MV (in sample) 0.0313 0.0481 0.0132 0.0047 0.0287 -0.0038

MV 0.0065 -1.4183 -0.0124 -0.6566 0.0275*** 0.0034
(0.359) (0.000) (0.121) (0.000) (0.007) (0.027)

BS 0.0064 -0.9526 0.0002 -0.1059 0.0252 0.0029
(0.309) (0.000) (0.333) (0.001) (0.002) (0.018)

DM 0.0088 0.0153*** 0.0036 -0.0206 0.0090 -0.9343
(0.135) (0.001) (0.474) (0.003) (0.456) (0.000)

MIN 0.0062 0.0068 0.0047 0.0011 0.0113 -0.0014
(0.224) (0.166) (0.222) (0.000) (0.121) (0.000)

VW 0.0092** 0.0062 0.0041 0.0062 0.0062 0.0062
(0.042) (0.000) (0.123) (0.023) (0.016) (0.045)

MP 0.0085 0.0076 0.0025 -0.0001 0.0084 0.0083
(0.170) (0.233) (0.284) (0.113) (0.041) (0.284)

MV-C 0.0112* 0.0066 0.0057* 0.0053** 0.0103* 0.0100**

(0.091) (0.216) (0.062) (0.049) (0.087) (0.039)
BS-C 0.0107 0.0069 0.0052 0.0053** 0.0102* 0.0097*

(0.124) (0.237) (0.101) (0.041) (0.087) (0.068)
MIN-C 0.0061 0.0076 0.0043 0.0012 0.0088 0.0021

(0.161) (0.260) (0.161) (0.001) (0.457) (0.002)
G-MIN-C 0.0069 0.0080 0.0035 0.0019 0.0089 0.0055

(0.185) (0.324) (0.395) (0.007) (0.399) (0.049)
MV-MIN 0.0062 -0.9491 0.0019 -0.0889 0.0239*** 0.0028

(0.270) (0.000) (0.392) (0.002) (0.001) (0.016)
EW-MIN 0.0067 0.0072 0.0049 0.0014 0.0107 -0.0013

(0.219) (0.177) (0.154) (0.000) (0.116) (0.000)
ERC-C 0.0076 0.0083 0.0034 0.0022 0.0089* 0.0056

(0.181) (0.374) (0.275) (0.009) (0.066) (0.045)

strategy significantly beats the benchmark for the Sharpe ratio in our exper-
iment is 19 against the 5 times of the original paper. The same happens to
the certainty equivalent: we observe 12 cases of statistically significant over-
performance against the 2 cases of the referring paper. An explanation of
this evidence was given by the authors themselves when they conjectured that
the number of strategies outperforming the benchmark could depend on the
volatility of the prices, “all else being equal, the performance of the sample-
based mean-variance (and that of the optimizing policies in general) would
improve relative to that of the 1/N policy if the idiosyncratic asset volatility
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was much higher than 20% (...). A second reason for the optimizing policies
to perform relatively better is that with higher idiosyncratic volatility the
covariance matrix of returns is less likely to be singular, and hence, easier
to invert”, see DeMiguel et al. (2009b). This confirms the common experi-
ence of traders and investors that it is easier to implement profitable active
investment strategies in periods of high market turbulence.

Concerning the CE, see Table 3, the strategy that more often beats the
1/N is the MV-C. Again, there is no evidence of one systematically better
strategy than the benchmark. Moreover, the fact that for different metrics,
we identify different strategies as the best alternative to the equally weighted
portfolio is a further and very strong argument that supports the evidence
that it does not exist a strategy that systematically outperforms the bench-
mark for all the datasets, the metrics and the values of the parameters.

Table 4: Absolute turnovers of the out-of-sample strategies, W = 120, H = 1.

S&P Ind Int MSH FF1 FF4

1/N 0.0219 0.0233 0.0175 0.0222 0.0170 0.0206
MV (in sample) – – – – – –

MV 2.8799 154.3392 787.4477 12.9836 4.9110 7.1502
BS 1.8709 120.8384 19.5333 7.4242 3.0461 6.4800

DM (σα = 1.0%) 0.2345 5.3886 4.0160 1.5111 2.7047 25.4996
MIN 0.4639 0.3644 0.4034 0.0261 0.7047 0.1269
VW 0 0 0 0 0 0

MP 0.0235 0.0412 0.0421 0.3859 0.0186 0.0206
MV-C 0.2241 0.1883 0.1046 0.0681 0.2330 0.2367
BS-C 0.2426 0.1895 0.0994 0.0685 0.2226 0.2347
MIN-C 0.0575 0.0576 0.0466 0.0249 0.0448 0.0311

G-MIN-C 0.0428 0.0403 0.0393 0.0244 0.0248 0.0335
MV-MIN 1.7764 123.0834 10.0334 9.0736 2.6325 6.2566
EW-MIN 0.3429 0.2752 0.3224 0.0261 0.5207 0.1264
ERC-C 0.0242 0.0243 0.0181 0.0229 0.0170 0.0330

Table 4 reports the absolute turnovers of the single strategies for the
benchmark strategy. One specific preliminary comment is needed for the
turnover. As expected, except for the VW strategy, which is a buy-and-hold
strategy with null turnover, there is no less costly strategy with respect to
the 1/N. The turnover, quantitatively measuring the level of re-balancing
needed to implement a strategy, is a good approximation of the impact of
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the transaction costs on implementing the investment in practice. Neverthe-
less, we do not necessarily look for an investment strategy that is less costly
than the 1/N since transaction costs are already considered in calculating
the returns used to compute the out-of-sample SR and CE. The discussion
on the level of turnover of different investment strategies hides a very impor-
tant question when choosing which strategy to implement in practice: is it
preferable to an active investment strategy characterized by high transaction
costs or a passive investment strategy where re-balancing is so rare that the
costs are not relevant? Considering the importance of the transactions costs
in the monthly allocation problem of the present application, one can easily
imagine their impact in the framework of high-frequency trading.
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2.4. The second case: W = 60, H = 1

The second experiment, whose results are collected in tables 5, 6, and 7 of
the present section, differs from the referring experiment only for the length
of the estimation window.

Table 5: Sharpe ratios of the out-of-sample returns, W = 60, H = 1.

Strategy S&P Ind Int MSH FF1 FF4

1/N 0.1404 0.2163 0.0937 0.1399 0.1832 0.1879

MV (in sample) 0.3868 0.5677 0.2729 0.1624 0.4852 0.7256

MV 0.1763 0.1931 0.0183 0.0456 -0.0226 0.1949
(0.334) (0.369) (0.184) (0.080) (0.002) (0.458)

BS 0.1896 0.1931 0.0070 0.0478 -0.0185 0.2808*

(0.256) (0.369) (0.152) (0.083) (0.002) (0.082)
DM -0.0684 0.2731 -0.0066 0.0512 0.1386 -0.0461

(0.022) (0.142) (0.066) (0.060) (0.204) (0.000)
MIN 0.1667 0.2403 0.1114 0.0713 0.2255 -0.4895

(0.332) (0.296) (0.346) (0.008) (0.178) (0.000)
VW 0.1486 0.1498 0.1104 0.1498 0.1498 0.1498

(0.223) (0.000) (0.102) (0.380) (0.048) (0.037)
MP 0.0298 0.1703 -0.0259 0.0399 0.1562 0.1547

(0.035) (0.040) (0.008) (0.035) (0.083) (0.043)
MV-C 0.1830 0.1739 0.1343* 0.1272 0.1956 0.1509

(0.172) (0.119) (0.068) (0.376) (0.262) (0.138)
BS-C 0.1823 0.1833 0.1323* 0.1395 0.2039 0.1511

(0.177) (0.170) (0.070) (0.496) (0.134) (0.142)
MIN-C 0.1587 0.2375 0.1139 0.0833 0.2210** 0.1521

(0.321) (0.220) (0.163) (0.018) (0.019) (0.228)
G-MIN-C 0.1576 0.2304 0.1025 0.1101 0.2075*** 0.2259*

(0.229) (0.217) (0.242) (0.086) (0.009) (0.094)
MV-MIN 0.1844 0.1924 -0.0177 -0.0164 -0.0135 0.3755***

(0.265) (0.365) (0.095) (0.009) (0.002) (0.003)
EW-MIN 0.1562 0.2386 0.1093 0.0970 0.2180* -0.4680

(0.325) (0.201) (0.301) (0.017) (0.067) (0.000)
ERC-C 0.1443 0.2270** 0.0970 0.1203 0.1907*** 0.2258*

(0.310) (0.019) (0.117) (0.111) (0.002) (0.084)

Concerning the referring experiment, a few interesting qualitative differ-
ences are clear. Regarding the out-of-sample Sharpe ratios, see Table 5, we
note that the number of strategies that outperform the 1/N is smaller; the
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Table 6: Certainty equivalent of the out-of-sample returns, W = 60, H = 1.

Strategy S&P Ind Int MSH FF1 FF4

1/N 0.0053 0.0084 0.0034 0.0027 0.0084 0.0078

MV (in sample) 0.0268 0.0525 0.0183 0.0045 0.0316 -0.0040

MV 0.0108 -1.2058 -4.7540 -2.2794 -2.0335 0.0032
(0.161) (0.000) (0.000) (0.000) (0.000) (0.024)

BS 0.0089 -1.0578 -1.6090 -0.1427 -0.6893 0.0029
(0.171) (0.000) (0.000) (0.000) (0.000) (0.016)

DM -1.1734 0.0178*** -0.0025 0.0013 0.0081 -0.4297
(0.000) (0.003) (0.063) (0.285) (0.461) (0.000)

MIN 0.0056 0.0082 0.0035 0.0011 0.0088 -0.0019
(0.458) (0.447) (0.474) (0.003) (0.442) (0.000)

VW 0.0058 0.0058 0.0040 0.0058** 0.0058 0.0058
(0.157) (0.000) (0.167) (0.023) (0.006) (0.019)

MP 0.0003 0.0070 -0.0026 0.0006 0.0072 0.0071
(0.039) (0.116) (0.008) (0.218) (0.116) (0.256)

MV-C 0.0084* 0.0089 0.0058** 0.0042 0.0090 0.0066
(0.086) (0.409) (0.042) (0.144) (0.304) (0.247)

BS-C 0.0083* 0.0091 0.0057** 0.0045* 0.0093 0.0063
(0.096) (0.352) (0.045) (0.082) (0.194) (0.177)

MIN-C 0.0050 0.0077 0.0038 0.0014 0.0089 0.0021
(0.434) (0.254) (0.318) (0.006) (0.308) (0.002)

G-MIN-C 0.0053 0.0078 0.0036 0.0019 0.0089 0.0051
(0.495) (0.219) (0.382) (0.031) (0.230) (0.033)

MV-MIN 0.0076 -1.0746 -1.0242 -0.0664 -0.2738 0.0028
(0.240) (0.000) (0.000) (0.000) (0.000) (0.014)

EW-MIN 0.0052 0.0080 0.0035 0.0016 0.0085 -0.0019
(0.472) (0.373) (0.456) (0.005) (0.480) (0.000)

ERC-C 0.0052 0.0083 0.0035 0.0021 0.0087* 0.0051
(0.373) (0.398) (0.294) (0.031) (0.052) (0.032)

best strategy within the others is again the ERC that significantly beats the
benchmark in three cases.

If we focus on the certainty equivalent, see Table 6, the number of sce-
narios in which some alternative strategy beats the benchmark becomes very
small. BS-C is the strategy that often beats the 1/N in this framework,.

Looking at the turnovers (see Table 7), we note that they are generally
higher than the ones of the referring experiment; this result is not surprising
since it is a direct consequence of the increased instability of the allocation
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due to the reduction of W .

Table 7: Absolute turnovers of the out-of-sample strategies, W = 60, H = 1.

S&P Ind Int MSH FF1 FF4

1/N 0.0232 0.0229 0.0187 0.0222 0.0166 0.0202
MV (in sample) – – – – – –

MV 10.7800 127.3911 165.2349 13.1624 69.3177 8.5157
BS 6.2632 119.9690 85.0147 6.6851 48.5469 7.1016

DM (σα = 1.0%) 83.7853 17.8607 4.7192 1.2386 44.0289 15.7804
MIN 1.3284 1.0366 0.8827 0.0358 1.5229 0.1904
VW 0 0 0 0 0 0

MP 0.1623 0.0837 0.3142 0.8700 0.0381 0.0411
MV-C 0.2327 0.2547 0.1684 0.1080 0.3284 0.3451
BS-C 0.1919 0.2640 0.1666 0.1091 0.2845 0.3280
MIN-C 0.1025 0.1101 0.0851 0.0338 0.0903 0.0427

G-MIN-C 0.0669 0.0621 0.0610 0.0319 0.0394 0.0423
MV-MIN 5.7163 117.6299 50.5379 7.8344 23.4477 6.4694
EW-MIN 0.6786 0.5605 0.6014 0.0346 0.8173 0.1889
ERC-C 0.0294 0.0272 0.0222 0.0260 0.0183 0.0403

2.5. Experiment: increasing W and H = 1

Since the results of the application, as underlined by the authors of the
original paper, can depend on the fact that the length of the rolling esti-
mation window is short and fixed, we implement an experiment in which
the estimation window grows by simply adding the newly available data to
the old ones. Starting from W = 120, we calculate the optimal allocation
for each strategy. At the end of the first holding period the length of the
estimation window becomes W + H = 121. We keep adding new returns
to the estimation window such that the last allocation is finally calculated
using all the available data except for the last observation. We are conscious
that this choice could have positive and negative consequences on the empir-
ical results. On the one hand, increasing the length of W produces optimal
portfolios with a more stable allocation in time. Then these portfolios are
less affected by the impact of the transaction costs on their implementation.
On the opposite, this approach gives the same weight to all the observations
in the database. Consequently, very old data have the same importance
as the more recent observations, negatively impacting on the capacity of the
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model’s parameters to reflect the actual market conditions significantly. This
is a standard trade-off between a stable long-run passive investment alloca-
tion and an aggressive short-term investment strategy that tries to make
money efficiently by timing the market and needs to bear a large transaction
cost.

Table 8: Sharpe ratios of the out-of-sample returns, increasing W , H = 1.

Strategy S&P Ind Int MSH FF1 FF4

1/N 0.2186 0.2205 0.0924 0.1517 0.1893 0.1942

MV (in sample) 0.4857 0.5472 0.2728 0.1707 0.4788 0.6945

MV 0.1241 0.3945*** 0.1491 0.1480 0.3742*** 0.4812***

(0.122) (0.008) (0.128) (0.449) (0.002) (0.000)
BS 0.1665 0.3960*** 0.1322* 0.1289 0.3958*** 0.4845***

(0.228) (0.007) (0.083) (0.166) (0.000) (0.000)
DM 0.2368 0.4099*** 0.1204** 0.1630 0.2786*** 0.2931*

(0.122) (0.000) (0.040) (0.348) (0.000) (0.067)
MIN 0.2028 0.2357 0.1168 0.1088 0.2841** -0.2816

(0.404) (0.349) (0.165) (0.032) (0.021) (0.000)
VW 0.2426* 0.1619 0.1139* 0.1619 0.1619 0.1619

(0.069) (0.000) (0.064) (0.386) (0.111) (0.089)
MP 0.2177 0.2132 0.0889 0.1250 0.1829 0.1819

(0.451) (0.057) (0.075) (0.261) (0.003) (0.001)
MV-C 0.2582 0.1851 0.1161 0.1601 0.1681 0.1688

(0.226) (0.144) (0.182) (0.406) (0.167) (0.120)
BS-C 0.2356 0.1884 0.1326** 0.1449 0.1739 0.1731

(0.346) (0.165) (0.026) (0.423) (0.223) (0.149)
MIN-C 0.2032 0.2269 0.1252** 0.1088 0.2176* 0.1654

(0.390) (0.422) (0.017) (0.032) (0.052) (0.263)
G-MIN-C 0.2173 0.2404 0.1111** 0.1122 0.2090** 0.2184

(0.482) (0.204) (0.011) (0.040) (0.043) (0.191)
MV-MIN 0.1744 0.3957*** 0.0445 0.1154 0.4039*** 0.4825***

(0.261) (0.007) (0.100) (0.083) (0.000) (0.000)
EW-MIN 0.2162 0.2441 0.1125* 0.1204 0.2702*** -0.2707

(0.480) (0.162) (0.094) (0.048) (0.002) (0.000)
ERC-C 0.2202 0.2272* 0.0954* 0.1301 0.1946** 0.2230

(0.427) (0.086) (0.067) (0.096) (0.005) (0.134)

The increased numerical stability induced by the longer estimation win-
dow positively affects the strategies’ out-of-sample performance under com-
parison. In this framework, with respect to the previous experiments, a
larger number of strategies significantly outperform the 1/N, both in terms
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Table 9: Certainty equivalent of the out-of-sample returns, increasing W , H = 1.

Strategy S&P Ind Int MSH FF1 FF4

1/N 0.0081 0.0084 0.0033 0.0030 0.0087 0.0080

MV (in sample) 0.0313 0.0481 0.0132 0.0047 0.0287 -0.0038

MV 0.0053 0.0509*** 0.0057 0.0033 0.0276*** 0.0036
(0.243) (0.000) (0.151) (0.312) (0.000) (0.033)

BS 0.0060 0.0484*** 0.0042 0.0024 0.0237*** 0.0031
(0.229) (0.000) (0.262) (0.115) (0.000) (0.022)

DM 0.0088 0.0184*** 0.0044* 0.0048** 0.0108 0.0111
(0.125) (0.000) (0.095) (0.028) (0.055) (0.143)

MIN 0.0066 0.0078 0.0036 0.0019 0.0103 -0.0013
(0.277) (0.347) (0.401) (0.012) (0.229) (0.000)

VW 0.0092** 0.0062 0.0041 0.0062** 0.0062 0.0062
(0.042) (0.000) (0.123) (0.023) (0.016) (0.045)

MP 0.0084 0.0085 0.0032 0.0054 0.0085 0.0085
(0.150) (0.309) (0.273) (0.142) (0.063) (0.165)

MV-C 0.0121* 0.0064 0.0042 0.0060** 0.0079 0.0080
(0.056) (0.068) (0.242) (0.027) (0.264) (0.482)

BS-C 0.0096 0.0065 0.0049* 0.0045* 0.0082 0.0082
(0.201) (0.076) (0.053) (0.097) (0.329) (0.449)

MIN-C 0.0063 0.0075 0.0043 0.0019 0.0089 0.0026
(0.207) (0.245) (0.110) (0.012) (0.418) (0.003)

G-MIN-C 0.0071 0.0081 0.0040* 0.0020 0.0089 0.0051
(0.205) (0.390) (0.078) (0.015) (0.362) (0.025)

MV-MIN 0.0057 0.0485 0.0010 0.0020 0.0224 0.0030
(0.185) (0.000) (0.092) (0.041) (0.000) (0.020)

EW-MIN 0.0070 0.0081 0.0037 0.0021 0.0100 -0.0012
(0.280) (0.378) (0.312) (0.015) (0.197) (0.000)

ERC-C 0.0077 0.0083 0.0034 0.0023 0.0089* 0.0052
(0.190) (0.315) (0.264) (0.033) (0.085) (0.025)

of Sharpe ratio, see Table 8, and certainty equivalent, see Table 9. Despite
this evidence, finding at least one strategy that significantly outperforms
1/N for all the databases and the metrics is still impossible. By compar-
ing this experiment with one of the original paper performed on simulated
data, we confirm that the length of the estimation window is a key param-
eter to obtain good performance of the optimization-based models in the
mean-variance framework.

One further interesting aspect to underline is how the performance of the
ERC, that is very good with estimation windows of limited lengths, does not
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Table 10: Absolute Turnovers of the out-of-sample strategies, increasing W , H = 1.

Strategy S&P Ind Int MSH FF1 FF4

1/N 0.0219 0.0233 0.0175 0.0222 0.0170 0.0206
MV (in sample) – – – – – –

MV 1.5702 34.3216 0.5211 0.0297 1.4483 7.1640
BS 0.6810 13.9747 0.1724 0.0250 0.9417 6.6248
DM 0.1362 0.4944 0.0416 0.0210 0.2120 13.5535
MIN 0.1705 0.1157 0.0961 0.0209 0.3193 0.0989
VW 0 0 0 0 0 0

MP 0.0217 0.0234 0.0178 0.0518 0.0177 0.0189

MV-C 0.0709 0.0798 0.0561 0.0081 0.1385 0.1369
BS-C 0.1406 0.0747 0.0469 0.0292 0.1186 0.1221
MIN-C 0.0199 0.0286 0.0201 0.0209 0.0332 0.0252

G-MIN-C 0.0215 0.0238 0.0216 0.0209 0.0190 0.0291
MV-MIN 0.6322 15.7207 0.3726 0.0272 0.8182 6.4754
EW-MIN 0.1279 0.0738 0.0620 0.0214 0.1816 0.0981
ERC-C 0.0223 0.0237 0.0174 0.0215 0.0165 0.0289

get better while the results of the other strategies seem to generally improve.
We also underline that, not only the number of scenarios in which the

strategies beat the benchmark is larger, but also the significance level of the
statistical test gets better (roughly speaking, to note this fact it is sufficient
to count the number of stars in table 8 with respect to the number of stars
in tables 5 and 2).

As expected, in this experiment, the importance of W on the numerical
stability of the allocation models is clear through the amount of the trans-
action costs represented by turnover. In general, we can observe a decrease
in the transaction costs, noting how the turnover of the various strategies is
closer to the referring one. Moreover, in this framework, few strategies are
characterized by a lower turnover with respect to 1/N.

2.6. W = 120 and H = 12

In this experiment, we vary the length of the holding period of the in-
vestment strategies as suggested by Chan et al. (1999) and Jagannathan and
Ma (2003). This permits to influence the turnover of the strategies acting
on a different parameter. The results of this experiment are in Tables 11, 12
and 13. Again, as noted in the previous experiment, see subsection 2.5, the
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number of strategies that outperform 1/N is larger than what obtained in
the first two experiments.

Table 11: Sharpe ratios of the out-of-sample returns, W = 120, H = 12.

Strategy S&P Ind Int MSH FF1 FF4

1/N 0.9140 0.7384 0.2691 0.4540 0.6228 0.6230

MV (in sample) 1.6825 1.8956 0.9448 0.5913 1.6586 2.4058

MV 0.6007 0.9015** 0.2313 0.1051 0.8054*** 0.7049*

(0.001) (0.021) (0.364) (0.000) (0.002) (0.060)
BS 0.7217 0.8800** 0.2670 0.0740 0.8561*** 0.7065*

(0.019) (0.036) (0.492) (0.000) (0.000) (0.060)
DM 0.9338 0.6007 0.1463 0.3217 0.6294 -0.1513

(0.262) (0.009) (0.012) (0.014) (0.447) (0.000)
MIN 0.7932 0.7182 0.3232* 0.1982 0.8614*** -0.6124

(0.125) (0.346) (0.062) (0.000) (0.000) (0.000)
VW 0.8979 0.5586 0.3244*** 0.5586*** 0.5586 0.5586

(0.007) (0.000) (0.002) (0.000) (0.000) (0.000)
MP 0.8857 0.6892 0.0876 0.2525 0.6022 0.6004

(0.022) (0.000) (0.000) (0.001) (0.000) (0.000)
MV-C 0.6150 0.4099 0.3555*** 0.5389 0.6365 0.6386

(0.000) (0.000) (0.000) (0.063) (0.354) (0.332)
BS-C 0.6082 0.4188 0.3371*** 0.5607* 0.6781 0.6676

(0.000) (0.000) (0.000) (0.023) (0.068) (0.109)
MIN-C 0.9539 0.8438*** 0.3090*** 0.2117 0.7798*** 0.3475

(0.348) (0.001) (0.004) (0.000) (0.000) (0.000)
G-MIN-C 1.0639*** 0.8008*** 0.2663 0.2991*** 0.7008*** 0.6084

(0.009) (0.003) (0.360) (0.000) (0.000) (0.313)
MV-MIN 0.7568 0.8740** 0.2167 0.0637 0.8465*** 0.7000

(0.043) (0.042) (0.220) (0.000) (0.000) (0.079)
EW-MIN 0.9360 0.7776 0.3484*** 0.2412*** 0.8419*** -0.6085

(0.389) (0.163) (0.003) (0.000) (0.000) (0.000)
ERC-C 0.9620*** 0.7755*** 0.2733** 0.3428*** 0.6384 0.6234

(0.001) (0.000) (0.040) (0.000) (0.000) (0.495)
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Table 12: Certainty equivalent of the out-of-sample returns, W = 120, H = 12.

Strategy S&P Ind Int MSH FF1 FF4

1/N 0.1024 0.1032 0.0361 0.0358 0.1061 0.0974

MV (in sample) 0.0313 0.0481 0.0132 0.0047 0.0287 -0.0038

MV 0.0873 0.1230 -1.1027 -0.9703 0.2979** 0.0478
(0.355) (0.482) (0.029) (0.005) (0.027) (0.032)

BS 0.0835 0.1838 -0.0647 -0.4629 0.2816*** 0.0418
(0.268) (0.418) (0.304) (0.015) (0.007) (0.022)

DM 0.1136 0.1577 0.0063 0.0407 0.0925 -13.2557
(0.135) (0.187) (0.257) (0.431) (0.316) (0.000)

MIN 0.0704 0.0857 0.0475 0.0141 0.1460* -0.0222
(0.149) (0.206) (0.347) (0.001) (0.063) (0.001)

VW 0.1051 0.0738 0.0469 0.0738** 0.0738 0.0738
(0.396) (0.000) (0.235) (0.036) (0.058) (0.109)

MP 0.1087 0.1033 -0.0125 0.0282 0.1027 0.1021
(0.139) (0.496) (0.149) (0.400) (0.033) (0.181)

MV-C 0.1164 0.0680 0.0600 0.0618* 0.1127 0.1131
(0.384) (0.119) (0.114) (0.098) (0.386) (0.235)

BS-C 0.1104 0.0689 0.0547 0.0617* 0.1194 0.1172
(0.427) (0.117) (0.156) (0.082) (0.276) (0.177)

MIN-C 0.0751 0.0956 0.0448 0.0153 0.1108 0.0257
(0.167) (0.297) (0.253) (0.001) (0.376) (0.002)

G-MIN-C 0.0855 0.0992 0.0352 0.0235 0.1095 0.0650
(0.180) (0.343) (0.449) (0.008) (0.331) (0.032)

MV-MIN 0.0817 0.1725 0.0235 -0.5624 0.2652*** 0.0399
(0.237) (0.430) (0.409) (0.010) (0.008) (0.019)

EW-MIN 0.0807 0.0911 0.0533 0.0178 0.1373* -0.0219
(0.165) (0.234) (0.234) (0.001) (0.059) (0.001)

ERC-C 0.0972 0.1024 0.0371 0.0271 0.1083* 0.0671
(0.176) (0.397) (0.337) (0.013) (0.055) (0.035)

ERC and G-MIN-C are strategies that more often beat the benchmark
in terms of Sharpe ratio; if we look at the CE, a few strategies outperform
in one single scenario. The fact that the strategies that are better in terms
of CE are less numerous than the ones that over-perform with the SR is a
behavior that can be found in all the experiments.

The present experiment confirms that, while the performance of the
optimization-based strategies is strictly related to the estimation window’s
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Table 13: Absolute turnovers of the out-of-sample strategies, W = 120, H = 12.

Strategy S&P Ind Int MSH FF1 FF4

1/N 0.0017 0.0019 0.0017 0.0017 0.0014 0.0017
MV (in sample) – – – – – –

MV 0.2115 6.1024 5.0181 0.7536 0.3263 0.7786
BS 0.1190 4.9655 2.3650 0.4481 0.2063 0.7229

DM (σα = 1.0%) 0.0127 0.2441 0.2538 0.0268 0.3108 6.6035
MIN 0.0275 0.0240 0.0548 0.0018 0.0598 0.0103
VW 0 0 0 0 0 0

MP 0.0018 0.0020 0.0174 0.0325 0.0015 0.0016

MV-C 0.0060 0.0105 0.0074 0.0069 0.0194 0.0196
BS-C 0.0172 0.0112 0.0065 0.0047 0.0193 0.0198
MIN-C 0.0039 0.0038 0.0050 0.0018 0.0020 0.0021

G-MIN-C 0.0026 0.0027 0.0037 0.0018 0.0015 0.0024
MV-MIN 0.1047 4.9390 0.6392 0.4873 0.1789 0.7037
EW-MIN 0.0202 0.0180 0.0456 0.0019 0.0444 0.0102
ERC-C 0.0017 0.0019 0.0017 0.0017 0.0015 0.0024

length W, the ERC strategy’s results seem to be poorly influenced by this
parameter. Since the alternative strategies under comparison in the paper
use the covariance matrix as the fundamental input, it could be useful to
study the differences in detail in future research. We can argue that different
models can use the same input and, consequently, the same information, in
very different ways.

3. Conclusion

The main finding of the present research qualitatively confirms the gen-
eral results obtained in DeMiguel et al. (2009b). In the same settings of the
original experiment (estimation windows of limited lengths, W = 60 or 120,
monthly returns, same datasets, proportional transaction costs of 50 basis
points), comparing the same allocation strategies to the equally weighted
portfolio through the use of the same metrics (Sharpe ratio, certainty equiv-
alent, turnover), none of the considered strategies can significantly and sys-
tematically outperform the 1/N. A more accurate observation of the results
suggests that, compared to the original paper, the number of strategies that
beat the benchmark is larger. This evidence probably depends on the in-
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creased volatility of the more recent data. The same authors underlined
how the results could be somehow influenced by the level of volatility in the
market. It is well known that active portfolio strategies can over-perform
in periods characterized by financial turbulence. We also underline that the
equally risk contribution strategy, not considered in the original paper, is
very competitive in some scenarios. Even if this fact strongly supports the
validity of the ERC in practice, limited to the experiment performed in the
paper, we cannot conclude that it is statistically significantly better than the
1/N for all the metrics and for all the databases. This fact reinforces the
main result.

It is also straightforward to notice that changing the settings for the re-
ferring experiment does not substantially modify the results. With a shorter
estimation window W = 60, the number of strategies performing better than
the benchmark decreases. One specific comment is needed for the case of a
growing length of W: such an experiment was performed only on simulated
data in the original paper with the result that optimization-based techniques
could outperform the 1/N for very large values of W with respect to N . Our
experiment is entirely conducted on real data, and we do not observe an anal-
ogous behavior. In our settings, even when W is large with respect to N , it
is impossible to find a value of W/N such that the optimization-based strate-
gies start to systematically outperform the 1/N. The last comment concerns
the fact that an increased length of the holding period, even if positively im-
pacting on the transaction costs of the active strategies, cannot significantly
change the core evidence that the 1/N strategy still remains a challenging
benchmark.
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