In-sample and out-of-sample forecasts for early warning systems using a hidden Markov model with covariates

LUCA BRUSA¹, FULVIA PENNONI¹, FRANCESCO BARTOLUCCI², ROMINA PERUILH BAGOLINI² (luca.brusa@unimib.it)

¹University of Milano-Bicocca - Department of Statistics, and Quantitative Methods ²University of Perugia - Department of Economics

Perugia, 19.09.2024

Early warning systems

- 2 Hidden Markov models
- Forecasting with the HM model
- Application
- 5 Conclusions

Early warning systems

- An early warning system (EWS) may be defined as any system of biological or technical nature that helps to assess, detect, and prevent hazards and failures in different fields
- Two basic features of EWS:
 - stable relationship between failures and a set failure drivers
 - these failure drivers can be identified in advance
- We propose a statistical model for EWS tailored to longitudinal data with missing values and time-varying covariates
- The proposal is related to a hidden Markov (HM) model to predict financial crises, with time-varying economic drivers and the lagged response variable

- Early warning systems
- Pidden Markov models
 - 3 Forecasting with the HM model
- Application
- 5 Conclusions

Hidden Markov model: formulation for EWSs

- Univariate binary response variables $\mathbf{Y}_i = (Y_i^{(1)}, \dots, Y_i^{(T)})$, with
 - $Y_i^{(t)} = \begin{cases} 1 & \text{if the financial crisis is observed at time } t \text{ for unit } i \\ 0 & \text{otherwise} \end{cases}$
- Time-varying covariates: $\mathbf{x}_i = (\mathbf{x}_i^{(1)}, \dots, \mathbf{x}_i^{(T)})$, with $\mathbf{x}_i^{(t)}$ representing the vector of observed individual covariates for unit *i* at time *t*
- Hidden process: U_i = (U_i⁽¹⁾,...,U_i^(T)), following a first-order Markov chain with state-space {1,...,k}

Model formulation

• Measurement model: $p\left(y_i^{(t)} \mid u_i^{(t)}, \mathbf{x}_i^{(t)}, y_i^{(t-1)}\right)$

- represents the conditional distribution of the response variable $Y_i^{(t)}$ given the latent process $U_i^{(t)}$, with covariates $x_i^{(t)}$ and lagged response variable $Y_i^{(t-1)}$
- covariates directly influence the response variable
- the lagged response among covariates allows for serial dependence between observed responses over time, thus relaxing the conditional independence of **Y** given **U** and **x**

Q Latent model: $p(\mathbf{u}_i)$

- represents the non-parametric distribution of the latent process
- is not affected by covariates: the same latent model holds for all units
- accounts for unobserved heterogeneity between individuals, which remains when observed covariates in the measurement model cannot fully explain the variability

Model parameters

Conditional response probabilities, given the latent state, the covariate configuration, and the lagged response:

$$\phi_{u\mathbf{x}y}^{(t)} = \mathbb{P}\left(Y_i^{(t)} = 1 | u_i^{(t)}, \mathbf{x}_i^{(t)}, y_i^{(t-1)}\right),$$

such that:

$$\log \frac{\phi_{uxy}^{(t)}}{1 - \phi_{uxy}^{(t)}} = \mu + \alpha_u + \mathbf{x}'_i \mathbf{\beta} + \mathbf{y}_i^{(t-1)} \gamma$$

- μ : intercept
- $\alpha = (\alpha_1, \dots, \alpha_k)$: support points corresponding to the latent states
- $\beta = (\beta_1, \dots, \beta_p)$: regression parameters for the covariates
- γ : parameter for the lagged response variable

• Initial and transition probabilities, denoted as π_u and $\pi_{u|\bar{u}}$, respectively

BRUSA · PENNONI · BARTOLUCCI · PERUILH

Maximum likelihood estimation

- Expectation-maximization (EM) algorithm (Dempster et al., 1977) is usually employed to perform full maximum likelihood estimation (MLE) of discrete latent variable models
- It maximizes the observed-data log-likelihood function $\ell(\theta)$ relying on the complete data log-likelihood function $\ell^*(\theta)$
- It alternates the following steps until convergence:
 - E-step: compute the conditional expected value of *l**(*θ*) given the value of the parameters at the previous step and the observed data; it relies on the posterior distribution *q*(*u_i*|*x_i*, *y_i*)
 - M-step: update the model parameters by maximizing the expected value of $\ell^*(\theta)$

- Early warning systems
- 2 Hidden Markov models
- Forecasting with the HM model
 - Application
 - 5 Conclusions

In-sample forecasting

	Units	Time occasions
Model estimation Forecasting		$t = 1, \dots, T$ $t = 1, \dots, T$

In-sample estimated crisis probability

The probability $p_i^{(t)}$ of a crisis for unit *i* at time *t* is computed as

$$\hat{p}_i^{(t)} = \sum_{u=1}^k \hat{q}^{(t)}(u|\mathbf{x}_i, \mathbf{y}_i) \ \hat{\phi}_{u\mathbf{x}}^{(t)}$$

- $\hat{\phi}_{u\mathbf{x}}^{(t)}$: estimated conditional probabilities at time t
- $\hat{q}^{(t)}(u|\mathbf{x}_i, \mathbf{y}_i)$: estimated posterior distribution of the latent variable $U_i^{(t)}$ given the responses \mathbf{y}_i and the covariates \mathbf{x}_i

Out-of-sample forecasting

	Units	Time occasions
Model estimation Forecasting	$i = 1, \dots, n$ $i = 1, \dots, n$	$t = 1, \dots, t^* \ (t^* < T) \ t = t^* + 1$

Out-of-sample estimated crisis probability

The probability $p_i^{(t^*+1)}$ of a crisis for unit *i* at time $t^* + 1$ is computed as

$$\hat{p}_{i}^{(t^{*}+1)} = \sum_{u=1}^{k} \hat{q}^{(t^{*}+1)}(u|\mathbf{x}_{i}, \mathbf{y}_{i}) \hat{\phi}_{u\mathbf{x}}^{(t^{*}+1)}$$

- $\hat{\phi}_{ux}^{(t^*+1)}$: estimated conditional probabilities at time $t^* + 1$
- $\hat{q}^{(t^*+1)}(u|\mathbf{x}_i, \mathbf{y}_i) = \sum_{\bar{u}=1}^k \hat{\pi}_{u|\bar{u}} \hat{q}^{(t^*)}(\bar{u}|\mathbf{x}_i, \mathbf{y}_i)$: estimated posterior distribution of the latent variable $U_i^{(t^*+1)}$ given the responses \mathbf{y}_i and the covariates \mathbf{x}_i

Choice of the cutoff

- In both cases, the choice of a suitable cutoff c ∈ [0, 1) to forecast the crisis is based:
 - either on the **Receiver Operating Characteristics** (ROC) curve, through the **Yuoden's J statistics**
 - $\bullet\,$ or on the precision-recall (PR) curve, through the F1 score
- A crisis is finally predicted if

$$\hat{p}_i^{(t)} > c$$
 or $\hat{p}_i^{(t^*+1)} > c$

- Early warning systems
- 2 Hidden Markov models
- Forecasting with the HM model
- Application
- 5 Conclusions

Financial crisis of countries

- Data refer to 129 countries and cover the period from 1983 to 2017
- For each country-year observation, a binary variable indicates whether or not the country has experienced a **financial crisis** (overall we observe 227 crises over 4,415 records)
- Time-varying covariates are lagged by one period and belong to these categories:
 - macroeconomic variables: real GDP growth rate, logarithm of the per-capita GDP, inflation and real interest rate
 - monetary variables: broad money over foreign exchange reserves, and growth of private credit
 - financial variables: growth rate of net foreign assets to GDP

Feature of the data

- Data are **unbalanced**, with the number of available observations considerably varying across years
- Partially **missing outcomes** at a given time are considered under the missing-at-random assumption
- Partially **missing values on the covariates** are set to 0 and are handled by dummy variables serving as missing indicators. This allows us to evaluate the informativeness of the missing observations

Estimation settings

	Training		Test
In-sample	$t=1983,\ldots,2016$	\rightarrow	$t = 1983, \dots, 2016$
Out-of-sample	$t = 1983, \dots, 2006$ $t = 1983, \dots, 2007$		
	\ldots $t = 1983, \ldots, 2016$	\rightarrow	t = 2017

- Each HM model is estimated considering a number of latent components *k* ranging from 1 to 4
- The estimation of each HM model is repeated 25 times, employing both deterministic and random initialization methods

In-sample forecasting

Model selection in terms of AIC criterion of the HM models for k ranging from 1 to 4. Crisis prediction and false alarms for the threshold based on the Youden's J statistics and the F1 score

	k = 1	k = 2	<i>k</i> = 3	k = 4
AIC	1060.77	1059.69	1045.64	1041.06
	ROC curve			
Threshold (c)	0.03	0.06	0.08	0.38
Youden's J	0.65	0.98	0.99	1.00
Predicted crises	170	227	227	227
False alarms	403	76	35	0
	PR curve			
Threshold (c)	0.21	0.17	0.19	0.38
F1 score	0.66	0.91	0.95	1.00
Predicted crises	150	203	208	227
False alarms	81	14	2	0

Out-of-sample forecasting

Number of correctly predicted crises and false alarms obtained with the out-of-sample forecast procedure for the years from 2007 to 2017

Year	Total crises	Predicted (%)	False alarms
2007	2	0 (0.00)	0
2008	7	2 (28.57)	0
2009	8	7 (87.50)	0
2010	6	6 (100.00)	2
2011	5	5 (100.00)	1
2012	3	3 (100.00)	2
2013	0	0 (-)	3
2014	3	0 (0.00)	0
2015	3	3 (100.00)	0
2016	3	3 (100.00)	0
2017	3	3 (100.00)	0
Total	43	32 (74.42)	8

Other approaches

- We compared the results of out-of-sample forecasting with other **machine learning approaches**: logistic regression, support vector machine (SVM), and extreme gradient boosting (XGBoost)
- The **SVM with polynomial kernel** provides the best results, with 33 predicted crises (but 33 false alarms)
- The **logistic model** and the **SVM with linear kernel** correctly predict 32 crises (same as the HM model), with 9 and 8 false alarms, respectively
- The **XGBoost** recognizes only 19 crises (with 5 false alarms)

- Early warning systems
- 2 Hidden Markov models
- Forecasting with the HM model
- Application

Conclusions

- The proposed HM model constitutes a **simple and interpretable alternative** for early warning systems to machine learning methods (higher predictive performance but results difficult to interpret)
- The application reveals that the HM model with covariates and k = 4 latent components yields the most accurate in-sample forecasts, effectively predicting all banking crises, with no false alarms
- Out-of-sample forecasting provides a high level of accuracy, correctly predicting approximately three-quarters (32 out of 43) of banking crises occurring between 2007 and 2017, with minimal false alarms

- Early warning systems
- 2 Hidden Markov models
- Forecasting with the HM model
- Application
- 5 Conclusions

References I

- BARTOLUCCI, F. AND FARCOMENI, A. (2009). A multivariate extension of the dynamic logit model for longitudinal data based on a latent markov heterogeneity structure. *J. Am. Stat. Assoc.*, **104**, 816–831.
- BARTOLUCCI, F., FARCOMENI, A., AND PENNONI, F. (2013). Latent Markov models for longitudinal data. Chapman & Hall/CRC, Boca Raton.
- BRADLEY, A. P. (1997). The use of the area under the curve in the evaluation of machine learning algorithms. *Patern recognit.*, **30**, 1145–1159.
- DEMPSTER, A., LAIRD, N., AND RUBIN, D. (1977). Maximum
 likelihood from incomplete data via the EM algorithm (with discussion).
 J. R. Stat. Soc. Series B Stat. Methodol., **39**, 1–38.
- LAEVEN, L. AND VALENCIA, F. (2018). Systemic Banking Crises Revisited. IMF Working Papers, International Monetary Fund.

References II

- LEVINSON, S. E., RABINER, L. R., AND SONDHI, M. M. (1983). An introduction to the application of the theory of probabilistic functions of a markov process to automatic speech recognition. *Bell Labs Tech. J.*, 62, 1035–1074.
- PIGINI, C. (2021). Penalized maximum likelihood estimation of logit-based early warning systems. *Int. J. Forecast.*, **37**, 1156–1172.
 SAMBRIDGE, M. (2005). *Hsiao, C.* Cambridge University Press, New York.
- WELCH, L. (2003). Hidden Markov models and the Baum-Welch algorithm. *IEEE Inform. Theory Soc. Newsl.*, **50**, 10–13.

Estimated model parameters

Covariate	Estimate	Standard Error	<i>p</i> -value
Crisis	11.574	2.787	< 0.0001
Growth of real GDP	-0.006	0.056	0.9185
Log per capita GDP	-0.228	0.164	0.1638
Real interest rate	0.066	0.026	0.0100
M2 to foreign exchange reserves	0.040	0.021	0.0572
Inflation	-0.002	0.002	0.2623
Growth of real domestic credit	0.054	0.020	0.0085
Growth of net foreign assets to GDP	-3.845	2.028	0.0580
Auxiliary binary variable 1	-3.384	1.449	0.0196
Auxiliary binary variable 2	1.693	0.785	0.0310
Support point latent state 1	-7.004		
Support point latent state 2	3.838		
Support point latent state 3	14.715		
Support point latent state 4	15.127		

References

Estimated conditional crisis probability

