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Early warning systems

e An early warning system (EWS) may be defined as any system of
biological or technical nature that helps to assess, detect, and prevent
hazards and failures in different fields

@ Two basic features of EWS:
e stable relationship between failures and a set failure drivers

o these failure drivers can be identified in advance

@ We propose a statistical model for EWS tailored to longitudinal data
with missing values and time-varying covariates

@ The proposal is related to a hidden Markov (HM) model to predict
financial crises, with time-varying economic drivers and the lagged
response variable
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Hidden Markov models

Hidden Markov model: formulation for EWSs

@ Univariate binary response variables Y; = (Yi(l), e Y,.(T)), with
v(® _ 1 if the financial crisis is observed at time t for unit /
"o otherwise

o Time-varying covariates: x; = (x,.(l), e ,x,.(T)), with x,.(t)
representing the vector of observed individual covariates for unit i at
time t

e Hidden process: U; = (U,.(l), ce U,.(T)), following a first-order
Markov chain with state-space {1,..., k}
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Hidden Markov models

Model formulation

@ Measurement model: p (y,.(t) ‘ uft),x.(t),yi(t*l))

1

e represents the conditional distribution of the response variable Y,-(t)
(t
i

given the latent process U,-(t), with covariates x'* and lagged response

variable Yi(t_l)
e covariates directly influence the response variable

o the lagged response among covariates allows for serial dependence
between observed responses over time, thus relaxing the conditional
independence of Y given U and x

@ Latent model: p(u;)
e represents the non-parametric distribution of the latent process

e is not affected by covariates: the same latent model holds for all units

e accounts for unobserved heterogeneity between individuals, which
remains when observed covariates in the measurement model cannot
fully explain the variability
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Model parameters

@ Conditional response probabilities, given the latent state, the
covariate configuration, and the lagged response:

gb(xy =P (Y,(t) = 1|u§t)ax,'(t)ay'(t71)) )

1

such that:
<25uxy
1- d)uxy

log —2 — — ji+ o, + X B+ y! Dy

e L intercept

e a=(ay,...,ak): support points corresponding to the latent states
B = (P1,...,0p): regression parameters for the covariates

~: parameter for the lagged response variable

@ Initial and transition probabilities, denoted as 7, and 7,3,
respectively

BRusA - PENNONI - BARTOLUCCI - PERUILH




Maximum likelihood estimation

e Expectation-maximization (EM) algorithm (Dempster et al., 1977)
is usually employed to perform full maximum likelihood estimation
(MLE) of discrete latent variable models

@ It maximizes the observed-data log-likelihood function £(8) relying on
the complete data log-likelihood function ¢*(8)

@ It alternates the following steps until convergence:

o E-step: compute the conditional expected value of ¢*(0) given the
value of the parameters at the previous step and the observed data; it
relies on the posterior distribution g(u;|x;, ;)

o M-step: update the model parameters by maximizing the expected
value of /*(0)
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Forecasting with the HM model

In-sample forecasting

Units Time occasions
Model estimation i=1,...,n t=1,...,T
Forecasting i=1,...,n t=1,...,T

In-sample estimated crisis probability

(t)

The probability p;”’ of a crisis for unit i at time t is computed as

k

B =360 (ulx, y)

u=1
° gb(x' estimated conditional probabilities at time t

o 4 (ulx;,y;): estimated posterior distribution of the latent variable

U,-(t) given the responses y; and the covariates x;
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Forecasting with the HM model

Out-of-sample forecasting

Units Time occasions

Model estimation i=1,...,n t=1,...,t* (t*<T)
Forecasting i=1,...,n t=t"+1

Out-of-sample estimated crisis probability

(t7+1)

The probability p; of a crisis for unit i at time t* + 1 is computed as

k
B = S D) 35

¢(t +1)

. estimated conditional probabilities at time t* 4+ 1
o G (ulx;,yi) =Sk, Tula §\t)(id|x;, y;): estimated posterior

distribution of the latent variable U,-(t +1) given the responses y; and
the covariates x;
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Choice of the cutoff

@ In both cases, the choice of a suitable cutoff ¢ € [0,1) to forecast the
crisis is based:

o either on the Receiver Operating Characteristics (ROC) curve,
through the Yuoden’s J statistics

e or on the precision-recall (PR) curve, through the F1 score

@ A crisis is finally predicted if

'6’(1.“) > ¢ or ﬁ(t*ﬂ)

1

>cC
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Application

Financial crisis of countries

@ Data refer to 129 countries and cover the period from 1983 to
2017

@ For each country-year observation, a binary variable indicates whether
or not the country has experienced a financial crisis (overall we
observe 227 crises over 4,415 records)

@ Time-varying covariates are lagged by one period and belong to these
categories:

e macroeconomic variables: real GDP growth rate, logarithm of the
per-capita GDP, inflation and real interest rate

e monetary variables: broad money over foreign exchange reserves, and
growth of private credit

e financial variables: growth rate of net foreign assets to GDP
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Application

Feature of the data

@ Data are unbalanced, with the number of available observations
considerably varying across years

@ Partially missing outcomes at a given time are considered under the
missing-at-random assumption

@ Partially missing values on the covariates are set to 0 and are
handled by dummy variables serving as missing indicators. This allows
us to evaluate the informativeness of the missing observations
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Estimation settings

Training Test
In-sample t=1983,...,2016 — t=1983,...,2016
Out-of-sample t=1983,...,2006 — t=2007
t=1083,...,2007 — t=2008

t =1983,...,2016 — t=2017

@ Each HM model is estimated considering a number of latent
components k ranging from 1 to 4

@ The estimation of each HM model is repeated 25 times, employing
both deterministic and random initialization methods
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Application

In-sample forecasting

Model selection in terms of AIC criterion of the HM models for k ranging
from 1 to 4. Cirisis prediction and false alarms for the threshold based on
the Youden's J statistics and the F1 score

k=1 k=2 k=3 k=4
AIC 1060.77 1059.69 1045.64 1041.06
ROC curve
Threshold (c) 0.03 0.06 0.08 0.38
Youden's J 0.65 0.98 0.99 1.00
Predicted crises 170 227 227 227
False alarms 403 76 35 0
PR curve
Threshold (c) 0.21 0.17 0.19 0.38
F1 score 0.66 0.91 0.95 1.00
Predicted crises 150 203 208 227
False alarms 81 14 2 0
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Application

Out-of-sample forecasting

Number of correctly predicted crises and false alarms obtained with the
out-of-sample forecast procedure for the years from 2007 to 2017

Year Total crises Predicted (%) False alarms
2007 2 0 (0.00) 0
2008 7 2 (28.57) 0
2009 8 7 (87.50) 0
2010 6 6 (100.00) 2
2011 5 5 (100.00) 1
2012 3 3 (100.00) 2
2013 0 0 () 3
2014 3 0 (0.00) 0
2015 3 3 (100.00) 0
2016 3 3 (100.00) 0
2017 3 3 (100.00) 0
Total 43 32 (74.42) ]
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Other approaches

@ We compared the results of out-of-sample forecasting with other
machine learning approaches: logistic regression, support vector
machine (SVM), and extreme gradient boosting (XGBoost)

@ The SVM with polynomial kernel provides the best results, with 33
predicted crises (but 33 false alarms)

@ The logistic model and the SVM with linear kernel correctly
predict 32 crises (same as the HM model), with 9 and 8 false alarms,
respectively

@ The XGBoost recognizes only 19 crises (with 5 false alarms)
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Conclusions

Conclusions

@ The proposed HM model constitutes a simple and interpretable
alternative for early warning systems to machine learning methods
(higher predictive performance but results difficult to interpret)

@ The application reveals that the HM model with covariates and k = 4
latent components yields the most accurate in-sample forecasts,
effectively predicting all banking crises, with no false alarms

@ Out-of-sample forecasting provides a high level of accuracy,
correctly predicting approximately three-quarters (32 out of 43)
of banking crises occurring between 2007 and 2017, with minimal
false alarms
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Estimated model parameters

Covariate Estimate Standard Error  p-value
Crisis 11.574 2.787 < 0.0001
Growth of real GDP -0.006 0.056 0.9185
Log per capita GDP -0.228 0.164 0.1638
Real interest rate 0.066 0.026 0.0100
M2 to foreign exchange reserves 0.040 0.021 0.0572
Inflation -0.002 0.002 0.2623
Growth of real domestic credit 0.054 0.020 0.0085
Growth of net foreign assets to GDP -3.845 2.028 0.0580
Aucxiliary binary variable 1 -3.384 1.449 0.0196
Auxiliary binary variable 2 1.693 0.785 0.0310
Support point latent state 1 -7.004

Support point latent state 2 3.838

Support point latent state 3 14.715

Support point latent state 4 15.127
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Estimated conditional crisis probability
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