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Early warning systems

Early warning systems

An early warning system (EWS) may be defined as any system of
biological or technical nature that helps to assess, detect, and prevent
hazards and failures in different fields

Two basic features of EWS:

stable relationship between failures and a set failure drivers

these failure drivers can be identified in advance

We propose a statistical model for EWS tailored to longitudinal data
with missing values and time-varying covariates

The proposal is related to a hidden Markov (HM) model to predict
financial crises, with time-varying economic drivers and the lagged
response variable
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Hidden Markov models

Hidden Markov model: formulation for EWSs

Univariate binary response variables Yi = (Y
(1)
i , . . . ,Y

(T )
i ), with

Y
(t)
i =

{
1 if the financial crisis is observed at time t for unit i

0 otherwise

Time-varying covariates: xi = (x (1)
i , . . . , x (T )

i ), with x (t)
i

representing the vector of observed individual covariates for unit i at
time t

Hidden process: Ui = (U
(1)
i , . . . ,U

(T )
i ), following a first-order

Markov chain with state-space {1, . . . , k}
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Hidden Markov models

Model formulation

1 Measurement model: p
(
y
(t)
i

∣∣ u(t)i , x (t)
i , y

(t−1)
i

)
represents the conditional distribution of the response variable Y

(t)
i

given the latent process U
(t)
i , with covariates x (t)

i and lagged response

variable Y
(t−1)
i

covariates directly influence the response variable

the lagged response among covariates allows for serial dependence
between observed responses over time, thus relaxing the conditional
independence of Y given U and x

2 Latent model: p (ui )
represents the non-parametric distribution of the latent process

is not affected by covariates: the same latent model holds for all units

accounts for unobserved heterogeneity between individuals, which
remains when observed covariates in the measurement model cannot
fully explain the variability
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Hidden Markov models

Model parameters

1 Conditional response probabilities, given the latent state, the
covariate configuration, and the lagged response:

ϕ
(t)
uxy = P

(
Y

(t)
i = 1|u(t)i , x (t)

i , y
(t−1)
i

)
,

such that:

log
ϕ
(t)
uxy

1− ϕ
(t)
uxy

= µ+ αu + x ′
i β + y

(t−1)
i γ

µ: intercept

α = (α1, . . . , αk): support points corresponding to the latent states

β = (β1, . . . , βp): regression parameters for the covariates

γ: parameter for the lagged response variable

2 Initial and transition probabilities, denoted as πu and πu|ū,
respectively
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Hidden Markov models

Maximum likelihood estimation

Expectation-maximization (EM) algorithm (Dempster et al., 1977)
is usually employed to perform full maximum likelihood estimation
(MLE) of discrete latent variable models

It maximizes the observed-data log-likelihood function ℓ(θ) relying on
the complete data log-likelihood function ℓ∗(θ)

It alternates the following steps until convergence:

E-step: compute the conditional expected value of ℓ∗(θ) given the
value of the parameters at the previous step and the observed data; it
relies on the posterior distribution q(ui |xi , yi )

M-step: update the model parameters by maximizing the expected
value of ℓ∗(θ)
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Forecasting with the HM model

In-sample forecasting

Units Time occasions

Model estimation i = 1, . . . , n t = 1, . . . ,T
Forecasting i = 1, . . . , n t = 1, . . . ,T

In-sample estimated crisis probability

The probability p
(t)
i of a crisis for unit i at time t is computed as

p̂
(t)
i =

k∑
u=1

q̂(t)(u|xi , yi ) ϕ̂
(t)
ux

ϕ̂
(t)
ux : estimated conditional probabilities at time t

q̂(t)(u|xi , yi ): estimated posterior distribution of the latent variable

U
(t)
i given the responses yi and the covariates xi
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Forecasting with the HM model

Out-of-sample forecasting

Units Time occasions

Model estimation i = 1, . . . , n t = 1, . . . , t∗ (t∗ < T )
Forecasting i = 1, . . . , n t = t∗ + 1

Out-of-sample estimated crisis probability

The probability p
(t∗+1)
i of a crisis for unit i at time t∗ + 1 is computed as

p̂
(t∗+1)
i =

k∑
u=1

q̂(t
∗+1)(u|xi , yi ) ϕ̂

(t∗+1)
ux

ϕ̂
(t∗+1)
ux : estimated conditional probabilities at time t∗ + 1

q̂(t
∗+1)(u|xi , yi ) =

∑k
ū=1 π̂u|ū q̂(t

∗)(ū|xi , yi ): estimated posterior

distribution of the latent variable U
(t∗+1)
i given the responses yi and

the covariates xi
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Forecasting with the HM model

Choice of the cutoff

In both cases, the choice of a suitable cutoff c ∈ [0, 1) to forecast the
crisis is based:

either on the Receiver Operating Characteristics (ROC) curve,
through the Yuoden’s J statistics

or on the precision-recall (PR) curve, through the F1 score

A crisis is finally predicted if

p̂
(t)
i > c or p̂

(t∗+1)
i > c
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Application

Financial crisis of countries

Data refer to 129 countries and cover the period from 1983 to
2017

For each country-year observation, a binary variable indicates whether
or not the country has experienced a financial crisis (overall we
observe 227 crises over 4,415 records)

Time-varying covariates are lagged by one period and belong to these
categories:

macroeconomic variables: real GDP growth rate, logarithm of the
per-capita GDP, inflation and real interest rate

monetary variables: broad money over foreign exchange reserves, and
growth of private credit

financial variables: growth rate of net foreign assets to GDP
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Application

Feature of the data

Data are unbalanced, with the number of available observations
considerably varying across years

Partially missing outcomes at a given time are considered under the
missing-at-random assumption

Partially missing values on the covariates are set to 0 and are
handled by dummy variables serving as missing indicators. This allows
us to evaluate the informativeness of the missing observations
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Application

Estimation settings

Training Test

In-sample t = 1983, . . . , 2016 → t = 1983, . . . , 2016

Out-of-sample t = 1983, . . . , 2006 → t = 2007
t = 1983, . . . , 2007 → t = 2008
. . . . . .
t = 1983, . . . , 2016 → t = 2017

Each HM model is estimated considering a number of latent
components k ranging from 1 to 4

The estimation of each HM model is repeated 25 times, employing
both deterministic and random initialization methods
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Application

In-sample forecasting

Model selection in terms of AIC criterion of the HM models for k ranging
from 1 to 4. Crisis prediction and false alarms for the threshold based on
the Youden’s J statistics and the F1 score

k = 1 k = 2 k = 3 k = 4

AIC 1060.77 1059.69 1045.64 1041.06

ROC curve

Threshold (c) 0.03 0.06 0.08 0.38

Youden’s J 0.65 0.98 0.99 1.00

Predicted crises 170 227 227 227

False alarms 403 76 35 0

PR curve

Threshold (c) 0.21 0.17 0.19 0.38

F1 score 0.66 0.91 0.95 1.00

Predicted crises 150 203 208 227

False alarms 81 14 2 0
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Application

Out-of-sample forecasting

Number of correctly predicted crises and false alarms obtained with the
out-of-sample forecast procedure for the years from 2007 to 2017

Year Total crises Predicted (%) False alarms
2007 2 0 (0.00) 0
2008 7 2 (28.57) 0
2009 8 7 (87.50) 0
2010 6 6 (100.00) 2
2011 5 5 (100.00) 1
2012 3 3 (100.00) 2
2013 0 0 (-) 3
2014 3 0 (0.00) 0
2015 3 3 (100.00) 0
2016 3 3 (100.00) 0
2017 3 3 (100.00) 0
Total 43 32 (74.42) 8
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Application

Other approaches

We compared the results of out-of-sample forecasting with other
machine learning approaches: logistic regression, support vector
machine (SVM), and extreme gradient boosting (XGBoost)

The SVM with polynomial kernel provides the best results, with 33
predicted crises (but 33 false alarms)

The logistic model and the SVM with linear kernel correctly
predict 32 crises (same as the HM model), with 9 and 8 false alarms,
respectively

The XGBoost recognizes only 19 crises (with 5 false alarms)
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Conclusions

Conclusions

The proposed HM model constitutes a simple and interpretable
alternative for early warning systems to machine learning methods
(higher predictive performance but results difficult to interpret)

The application reveals that the HM model with covariates and k = 4
latent components yields the most accurate in-sample forecasts,
effectively predicting all banking crises, with no false alarms

Out-of-sample forecasting provides a high level of accuracy,
correctly predicting approximately three-quarters (32 out of 43)
of banking crises occurring between 2007 and 2017, with minimal
false alarms
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Estimated model parameters

Covariate Estimate Standard Error p-value

Crisis 11.574 2.787 < 0.0001
Growth of real GDP -0.006 0.056 0.9185
Log per capita GDP -0.228 0.164 0.1638
Real interest rate 0.066 0.026 0.0100
M2 to foreign exchange reserves 0.040 0.021 0.0572
Inflation -0.002 0.002 0.2623
Growth of real domestic credit 0.054 0.020 0.0085
Growth of net foreign assets to GDP -3.845 2.028 0.0580
Auxiliary binary variable 1 -3.384 1.449 0.0196
Auxiliary binary variable 2 1.693 0.785 0.0310

Support point latent state 1 -7.004
Support point latent state 2 3.838
Support point latent state 3 14.715
Support point latent state 4 15.127
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Estimated conditional crisis probability
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