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Hypergraphs

Higher-order interactions

Over the past two decades a broad variety of models has been
developed for pairwise interactions, encoded in graphs

Modern applications highlight the need to account for higher-order
interactions, to include the information deriving from groups of three
or more nodes

Simple examples include triadic and larger groups interactions in
social networks, scientific co-authorship, interactions between more
than two species in ecological systems, and higher-order interactions
between neurons in brain networks

A graph description lacks a proper interpretation: it is impossible to
state weather any higher-order interaction is actually present or not
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Hypergraphs

Hypergraphs

Definition

A (simple) hypergraph H = (V, E) is defined as a set of nodes V ≠ ∅ and
a set of hyperedges E . Each hyperedge is a non-empty collection of m
distinct nodes taking part within an interaction

Hypergraphs naturally include the entity of graphs, by simply
considering m = 2 for each hyperedge e ∈ E

A hypergraph can contain a hyperedge of size 3 [a, b, c] without any
requirement on the existence of the hyperedges of size 2 [a, b], [a, c],
and [b, c]
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Hypergraphs

Graph vs Hypergraph representation

Set of higher-order interactions: {[a, b, c], [a, d ], [c , d ], [c , e]}
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(b) Hypergraph representation
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Stochastic blockmodel for hypergraphs Model formulation

Notation - Observable component

H = (V, E), with V = {1, . . . , n} set of nodes and E set of hyperedges

M = max
e∈E

|e| ≥ 2, largest size of hyperedges in E

V(m) =
{
{i1, . . . , im} : i1, . . . , im ∈ V and i1 ̸= . . . ̸= im

}
, set of

unordered node tuples of size m

E(m) =
{
{i1, . . . , im} ∈ V(m) : {i1, . . . , im} ∈ E

}
, set of hyperedges of

size m

Yi1,...,im = 1{i1,...,im}∈E for each {i1, . . . , im} ∈ V(m)
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Stochastic blockmodel for hypergraphs Model formulation

Notation - Latent component

1, . . . ,Q, latent groups

Z = (Z1, . . . ,Zn), independent and identically distributed latent
variables having a discrete distribution with support points {1, . . . ,Q}

Zi → (Zi1, . . . ,ZiQ), with Ziq = 1 if node i belongs to latent group q
and Ziq = 0 otherwise

Model parameters:

πq = P(Zi = q): prior probability of latent group q

B
(m)
q1,...,qm : probability that m unordered nodes with latent configuration

{q1, . . . , qm} are connected into a hyperedge

Yi1,...,im |{Z1 = q1, . . . ,Zm = qm}
i .i .d .∼ Bern(B

(m)
q1,...,qm)
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Stochastic blockmodel for hypergraphs Model identifiability

Parameter identifiability

Generic identifiability: a parameter θ almost surely (w.r.t. Lebesgue
measure) uniquely defines the distribution Pθ up to label switching on the
node groups

Theorem

For any m ≥ 2 and any Q, the parameter θ(m) = (πq,B
(m)
q1,...,qm)q,q1,...,qm of

the HSBM restricted to m-uniform (simple) hypergraphs over n nodes, is
generically identifiable for large enough n

Corollary

For any Q, the parameter θ = (πq,B
(m)
q1,...,qm)m,q,q1,...,qm of the HSBM for

(simple) hypergraphs over n nodes, is generically identifiable for large
enough n
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Stochastic blockmodel for hypergraphs Parameter estimation

Variational approximation

EM algorithm is not feasible because latent variables are not
independent conditional on observed ones

Variational approximation to EM algorithm: replace the intractable
posterior distribution by the best approximation (with respect to
Kullback-Leibler divergence) in a class of simpler distributions:

Qτ (Z1, . . . ,Zn) =
n∏

i=1

Qτ (Zi ) =
n∏

i=1

Q∏
q=1

τ
Ziq

iq ,

with the variational parameter τiq = Qτ (Zi = q) ∈ [0, 1] and∑Q
q=1 τiq = 1, for any i = 1, . . . , n and q = 1, . . . ,Q
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Stochastic blockmodel for hypergraphs Parameter estimation

Evidence lower bound

Define the following function based on the variational distribution Qτ :

J (θ, τ) = EQτ [logPθ(Y ,Z )]− EQτ [logQτ (Z )]

J (θ, τ) satisfies J (θ, τ) = logPθ(Y )− KL(Qτ (Z )||Pθ(Z |Y )), where
KL denotes the Kullback-Leibler divergence

It follows that J (θ, τ) ≤ logPθ(Y ), with equality iff Qτ (Z ) is the
true posterior Pθ(Z |Y )

Maximise the lower bound J (θ, τ) (with respect to τ and θ) instead
of the intractable log-likelihood logPθ(Y )
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Stochastic blockmodel for hypergraphs Parameter estimation

VEM algorithm

VE-Step maximizes J (θ, τ) with respect to τ :

τ̂ (t) = argmax
τ

J (θ(t−1), τ); s.t.
∑Q

q=1 τiq = 1 ∀i = 1, . . . , n.

This is equivalent to minimising the Kullback-Leibler divergence
In practice this step is obtained by a fixed-point algorithm

M-Step maximizes J (θ, τ) with respect to θ:

θ̂(t) = argmax
θ

J (θ, τ (t−1)), s.t.
∑Q

q=1 πq = 1,

thus updating the value of the model parameters πq and B
(m)
q1,...,qm .
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Simulation studies Performance of VEM algorithm

Simulation setting

10 Hypergraphs are simulated from the HSBM with Q = 2 latent
groups (π1 = 0.6 and π2 = 0.4), M = 3, and n ∈ {50, 100, 150, 200}

Various scenarios according to a simplified submodel:

Bq1,...,qm =

{
α if q1 = · · · = qm

β if there exist at least qi ̸= qj
∀m = 2, . . . ,M

A. Communities: case of high intra-groups and low inter-groups
connection probabilities (α = 0.7 > β = 0.3);

B. Disassortative: case of low intra-groups and high inter-groups
connection probabilities (α = 0.3 < β = 0.7)

C. Erdös-Rényi-like: diffcult case of very similar intra-groups and
inter-groups connection probabilities (α = 0.25 ≊ β = 0.35)
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Simulation studies Performance of VEM algorithm

Recovery of the correct clustering (ARI)

We rely on the Adjusted Rand Index, measuring the similarity between the
correct node clustering and the estimated one

n Scenario A Scenario B Scenario C

50 1.00 1.00 0.50
100 1.00 1.00 0.90
150 1.00 1.00 1.00
200 1.00 1.00 1.00

Scenarios A and B: all values are equal to 1 and the correct clusters
are perfectly recovered in all cases

Scenario C: the proposed approach sometimes fails to recover the
optimal clustering, in particular in the case with n = 50 nodes, where
the average ARI is rather low
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Simulation studies Performance of VEM algorithm

Estimation of the model parameters (MSE)

We rely on an aggregated Mean Squared Error over all the components of
θ measuring the distance between true and estimated parameters
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Again, scenarios A and B provide the best results, with values of the
MSE that are always lower than 0.5%

Scenario C confirms to be the most difficult from the estimation
perspective, showing the highest MSE for each value of n (up to 8%)
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Simulation studies Performance of model selection

Model selection setting

We simulate 50 hypergraphs from the HSBM with Q = 3 latent
states and assuming the same simplified formulation for the latent
structure (with α = 0.7 and β = 0.3)

Two different values are tested for the number of nodes, n = 100 and
n = 200

The largest size M of hyperedges is set equal to 3

The simulated data is then fitted with the HSBM with a number of
latent states ranging from 1 to 5

We rely on the Integrated Classification Likelihood:
q̂ = argmax

q
ICL(q)
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Simulation studies Performance of model selection

Model selection results

n = 100 n = 200

Q Percentage ARI for 3 groups Percentage ARI for 3 groups

2 0% - 2% 0.55
3 68% 1.00 90% 1.00
4 22% 0.57 6% 0.60
5 10% 0.58 2% 0.61

The correct model is selected in 68% of cases for n = 100 and in 90%
of cases for n = 200

The ARI value of the classification obtained with 3 clusters is equal to
1 when the correct model is recovered

When an incorrect number of groups is selected, values of ARI are
quite low (around or smaller than 0.60)
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Conclusions

Conclusions

We propose a Stochastic Blockmodel for clustering the nodes of a
(simple) hypergraph

We establish (generic) identifiability of the parameters of the model

Estimation and nodes clustering is performed through VEM algorithm

ICL criterion is used to select the number of groups

R package (https://github.com/LB1304/HyperSBM) and preprint
available very soon (write me an email!)

Any questions ?

Brusa L. SBM for Hypergraphs 20 / 20

https://github.com/LB1304/HyperSBM

	Hypergraphs
	Stochastic blockmodel for hypergraphs
	Model formulation
	Model identifiability
	Parameter estimation

	Simulation studies
	Performance of VEM algorithm
	Performance of model selection

	Conclusions

