A stochastic block model for hypergraphs

LUCA BRUSA (luca.brusa@unimib.it)

University of Milano-Bicocca - Department of Economics, Management and Statistics

CATHERINE MATIAS (catherine.matias@math.cnrs.fr)

Sorbonne Université, Université de Paris Cité, Centre National de la Recherche Scientifique

August 24, 2022

Hypergraphs

- Stochastic blockmodel for hypergraphs
 - Model formulation
 - Model identifiability
 - Parameter estimation

Simulation studies

- Performance of VEM algorithm
- Performance of model selection

Higher-order interactions

- Over the past two decades a broad variety of models has been developed for pairwise interactions, encoded in graphs
- Modern applications highlight the need to account for higher-order interactions, to include the information deriving from groups of three or more nodes
- Simple examples include triadic and larger groups interactions in social networks, scientific co-authorship, interactions between more than two species in ecological systems, and higher-order interactions between neurons in brain networks
- A graph description lacks a proper interpretation: it is impossible to state weather any higher-order interaction is actually present or not

Hypergraphs

Definition

A (simple) hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is defined as a set of nodes $\mathcal{V} \neq \emptyset$ and a set of hyperedges \mathcal{E} . Each hyperedge is a non-empty collection of m distinct nodes taking part within an interaction

- Hypergraphs naturally include the entity of graphs, by simply considering m = 2 for each hyperedge $e \in \mathcal{E}$
- A hypergraph can contain a hyperedge of size 3 [a, b, c] without any requirement on the existence of the hyperedges of size 2 [a, b], [a, c], and [b, c]

Graph vs Hypergraph representation

Set of higher-order interactions: $\{[a, b, c], [a, d], [c, d], [c, e]\}$

(b) Hypergraph representation

Hypergraphs

Stochastic blockmodel for hypergraphs

- Model formulation
- Model identifiability
- Parameter estimation

Simulation studies

- Performance of VEM algorithm
- Performance of model selection

Notation - Observable component

- $\mathcal{H} = (\mathcal{V}, \mathcal{E})$, with $\mathcal{V} = \{1, \dots, n\}$ set of nodes and \mathcal{E} set of hyperedges
- $M = \max_{e \in \mathcal{E}} |e| \geq 2$, largest size of hyperedges in \mathcal{E}
- $\mathcal{V}^{(m)} = \{\{i_1, \ldots, i_m\} : i_1, \ldots, i_m \in \mathcal{V} \text{ and } i_1 \neq \ldots \neq i_m\}, \text{ set of unordered node tuples of size } m$
- $\mathcal{E}^{(m)} = \{\{i_1, \ldots, i_m\} \in \mathcal{V}^{(m)} : \{i_1, \ldots, i_m\} \in \mathcal{E}\}$, set of hyperedges of size m

•
$$Y_{i_1,\ldots,i_m} = \mathbb{1}_{\{i_1,\ldots,i_m\}\in\mathcal{E}}$$
 for each $\{i_1,\ldots,i_m\}\in\mathcal{V}^{(m)}$

Notation - Latent component

- $1, \ldots, Q$, latent groups
- **Z** = (Z₁,..., Z_n), independent and identically distributed latent variables having a discrete distribution with support points {1,..., Q}
- $Z_i \rightarrow (Z_{i1}, \ldots, Z_{iQ})$, with $Z_{iq} = 1$ if node *i* belongs to latent group *q* and $Z_{iq} = 0$ otherwise
- Model parameters:
 - $\pi_q = \mathbb{P}(Z_i = q)$: prior probability of latent group q
 - $B_{q_1,...,q_m}^{(m)}$: probability that m unordered nodes with latent configuration $\{q_1,...,q_m\}$ are connected into a hyperedge

•
$$Y_{i_1,...,i_m} | \{ Z_1 = q_1, \ldots, Z_m = q_m \} \overset{i.i.d.}{\sim} \operatorname{Bern}(B_{q_1,...,q_m}^{(m)})$$

Parameter identifiability

Generic identifiability: a parameter θ almost surely (*w.r.t.* Lebesgue measure) uniquely defines the distribution \mathbb{P}_{θ} up to label switching on the node groups

Theorem

For any $m \ge 2$ and any Q, the parameter $\theta^{(m)} = (\pi_q, B_{q_1,...,q_m}^{(m)})_{q,q_1,...,q_m}$ of the HSBM restricted to m-uniform (simple) hypergraphs over n nodes, is generically identifiable for large enough n

Corollary

For any Q, the parameter $\theta = (\pi_q, B_{q_1,...,q_m}^{(m)})_{m,q,q_1,...,q_m}$ of the HSBM for (simple) hypergraphs over n nodes, is generically identifiable for large enough n

Variational approximation

- EM algorithm is not feasible because latent variables are not independent conditional on observed ones
- Variational approximation to EM algorithm: replace the intractable posterior distribution by the best approximation (with respect to Kullback-Leibler divergence) in a class of simpler distributions:

$$\mathbb{Q}_{\tau}(Z_1,\ldots,Z_n)=\prod_{i=1}^n\mathbb{Q}_{\tau}(Z_i)=\prod_{i=1}^n\prod_{q=1}^Q\tau_{iq}^{Z_{iq}},$$

with the variational parameter $\tau_{iq} = \mathbb{Q}_{\tau}(Z_i = q) \in [0, 1]$ and $\sum_{q=1}^{Q} \tau_{iq} = 1$, for any i = 1, ..., n and q = 1, ..., Q

Evidence lower bound

Define the following function based on the variational distribution \mathbb{Q}_{τ} :

$$\mathcal{J}(\theta,\tau) = \mathbb{E}_{\mathbb{Q}_{\tau}}[\log \mathbb{P}_{\theta}(\boldsymbol{Y}, \boldsymbol{Z})] - \mathbb{E}_{\mathbb{Q}_{\tau}}[\log \mathbb{Q}_{\tau}(\boldsymbol{Z})]$$

- $\mathcal{J}(\theta, \tau)$ satisfies $\mathcal{J}(\theta, \tau) = \log \mathbb{P}_{\theta}(\mathbf{Y}) \mathsf{KL}(\mathbb{Q}_{\tau}(\mathbf{Z})||\mathbb{P}_{\theta}(\mathbf{Z}|\mathbf{Y}))$, where KL denotes the Kullback-Leibler divergence
- It follows that $\mathcal{J}(\theta, \tau) \leq \log \mathbb{P}_{\theta}(\mathbf{Y})$, with equality iff $\mathbb{Q}_{\tau}(\mathbf{Z})$ is the true posterior $\mathbb{P}_{\theta}(\mathbf{Z}|\mathbf{Y})$
- Maximise the lower bound $\mathcal{J}(\theta, \tau)$ (with respect to τ and θ) instead of the intractable log-likelihood log $\mathbb{P}_{\theta}(\mathbf{Y})$

VEM algorithm

• **VE-Step** maximizes $\mathcal{J}(\theta, \tau)$ with respect to τ :

$$\widehat{\tau}^{(t)} = rg\max_{\tau} \mathcal{J}(\theta^{(t-1)}, \tau); \quad \text{s.t. } \sum_{q=1}^{Q} \tau_{iq} = 1 \qquad \forall i = 1, \dots, n.$$

This is equivalent to minimising the Kullback-Leibler divergence In practice this step is obtained by a fixed-point algorithm

• **M-Step** maximizes $\mathcal{J}(\theta, \tau)$ with respect to θ :

$$\widehat{\theta}^{(t)} = \operatorname*{arg\,max}_{\theta} \, \mathcal{J}(\theta, \tau^{(t-1)}), \quad \mathrm{s.t.} \ \sum_{q=1}^{Q} \pi_q = 1,$$

thus updating the value of the model parameters π_q and $B_{q_1,...,q_m}^{(m)}$.

Hypergraphs

2 Stochastic blockmodel for hypergraphs

- Model formulation
- Model identifiability
- Parameter estimation

Simulation studies

- Performance of VEM algorithm
- Performance of model selection

Simulation setting

- 10 Hypergraphs are simulated from the HSBM with Q = 2 latent groups ($\pi_1 = 0.6$ and $\pi_2 = 0.4$), M = 3, and $n \in \{50, 100, 150, 200\}$
- Various scenarios according to a simplified submodel:

$$B_{q_1,\ldots,q_m} = \begin{cases} \alpha & \text{if } q_1 = \cdots = q_m \\ \beta & \text{if there exist at least } q_i \neq q_j \end{cases} \quad \forall m = 2,\ldots,M$$

- A. Communities: case of high intra-groups and low inter-groups connection probabilities ($\alpha = 0.7 > \beta = 0.3$);
- B. *Disassortative*: case of low intra-groups and high inter-groups connection probabilities ($\alpha = 0.3 < \beta = 0.7$)
- C. *Erdös-Rényi-like*: diffcult case of very similar intra-groups and inter-groups connection probabilities ($\alpha = 0.25 \approx \beta = 0.35$)

Recovery of the correct clustering (ARI)

We rely on the Adjusted Rand Index, measuring the similarity between the correct node clustering and the estimated one

n	Scenario A	Scenario B	Scenario C
50	1.00	1.00	0.50
100	1.00	1.00	0.90
150	1.00	1.00	1.00
200	1.00	1.00	1.00

- Scenarios A and B: all values are equal to 1 and the correct clusters are perfectly recovered in all cases
- Scenario C: the proposed approach sometimes fails to recover the optimal clustering, in particular in the case with n = 50 nodes, where the average ARI is rather low

Estimation of the model parameters (MSE)

We rely on an aggregated Mean Squared Error over all the components of θ measuring the distance between true and estimated parameters

- Again, scenarios A and B provide the best results, with values of the MSE that are always lower than 0.5%
- Scenario C confirms to be the most difficult from the estimation perspective, showing the highest MSE for each value of n (up to 8%)

Model selection setting

- We simulate 50 hypergraphs from the HSBM with Q = 3 latent states and assuming the same simplified formulation for the latent structure (with $\alpha = 0.7$ and $\beta = 0.3$)
- Two different values are tested for the number of nodes, n = 100 and n = 200
- The largest size *M* of hyperedges is set equal to 3
- The simulated data is then fitted with the HSBM with a number of latent states ranging from 1 to 5
- We rely on the Integrated Classification Likelihood: $\hat{q} = \underset{q}{\arg \max} ICL(q)$

Model selection results

	<i>n</i> = 100		<i>n</i> = 200		
Q	Percentage	ARI for 3 groups	Percentage	ARI for 3 groups	
2	0%	-	2%	0.55	
3	68%	1.00	90%	1.00	
4	22%	0.57	6%	0.60	
5	10%	0.58	2%	0.61	

- The correct model is selected in 68% of cases for n = 100 and in 90% of cases for n = 200
- The ARI value of the classification obtained with 3 clusters is equal to 1 when the correct model is recovered
- When an incorrect number of groups is selected, values of ARI are quite low (around or smaller than 0.60)

Hypergraphs

2 Stochastic blockmodel for hypergraphs

- Model formulation
- Model identifiability
- Parameter estimation

Simulation studies

- Performance of VEM algorithm
- Performance of model selection

Conclusions

- We propose a Stochastic Blockmodel for clustering the nodes of a (simple) hypergraph
- We establish (generic) identifiability of the parameters of the model
- Estimation and nodes clustering is performed through VEM algorithm
- ICL criterion is used to select the number of groups
- R package (https://github.com/LB1304/HyperSBM) and preprint available very soon (write me an email!)

Any questions ?