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Abstract. We present a study of the fast, spontaneous rotation regime of tearing

modes in the RFX-mod circular tokamak discharges. Integrated analyses of magnetic,

flow and kinetic measurements, are discussed. This analysis of rotation frequency

components related to the ion flow and diamagnetic drift shows that the tearing

mode fast rotation is mainly driven by the diamagnetic drift. In particular, the global

decrease of the temperature profile, induced by a growing mode amplitude, can explain

the slowing-down of the rotation, which in turn can trigger a potentially disruptive

sequence. We show that in RFX-mod the slowing-down cannot be explained solely

on the basis of the electromagnetic torque with the external conductive structures, as

often reported in literature from other experiments.

Statistical analysis of disruptions with slowing down islands shows that tearing modes

take a part in the disruption, even without a locking to the wall.
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1. Introduction

Tearing modes (TMs) are resistive magnetohydrodynamics instabilities [1] observed both

in Tokamak and Reversed Field Pinch (RFP) fusion devices. A (m,n) TM, being m

and n the poloidal and toroidal mode numbers respectively, is characterized by a helical

magnetic island, generated through magnetic reconnection by current structures flowing

at the resonant surface, located at the radius rs where the condition q(rs) = m/n is

fulfilled (q is the safety factor).

TMs are a concern for fusion plasmas, as the topology of the associated magnetic islands

locally flatten the pressure profile and increase particle and energy radial transport.

Therefore, large magnetic islands lead to confinement degradation. TMs are a major

obstacle towards the achievement of high-performance fusion plasmas. Mode amplitude

and the related detrimental effects are mitigated by the spontaneous rotation with the

plasma. In fact, mirror currents induced onto the surrounding wall(s), always having

finite conductivity, screen the radial field therein. However, the electromagnetic torque

developed by the interaction between TM and these mirror currents can stop TM

rotation in the laboratory frame (wall-locking) as soon as the amplitude exceeds a

certain threshold [2, 3]. When this occurs, the stabilizing effect of the wall(s) is lost,

and the TM amplitude increases at a rate given by the wall(s) resistive time constant(s).

This phenomenon usually leads to a rapid termination of the discharge (disruption).

In tokamak, TMs are often seen to rotate with the electron fluid [4]. This phenomenon

has been also observed in low plasma current (Ip < 100kA) RFP discharges of RFX-

mod (RFX-mod plasma can have Ip up to 2MA in RFP configuration), where TM

spontaneous rotation can occur due to the small amplitudes in such low current

conditions [5]. In these cases, TM frequencies differ from the ion fluid rotation frequency,

owing to the diamagnetic drift.

The present paper mainly discusses the connection between TM frequencies, as detected

by large-bandwidth pick-up magnetic probes, located inside the vacuum-vessel, and flow

velocity, as reconstructed from spectroscopic and kinetic measurements, in RFX-mod

ohmic circular tokamak discharges (a=0.459m, R0=2m, Bϕ ≤ 0.55T , Ip ≤ 100kA).

We will show that the diamagnetic drift provides the dominant contribution to

TM frequency. Moreover, the spin-up/slow-down observed in conjunction with TM

amplitude decrease/increase is hardly explained purely in terms of a torque balance

model taking into account the electromagnetic interaction with the conductive wall.

Instead, we will provide clear indications that this dynamics is related to mode-island-

induced modifications of the kinetic profiles (mainly temperature), which determine the

diamagnetic drift. To our knowledge this is not a standard interpretation of the TM

rotational dynamics, hence the analyses here reported can be regarded as new results.

The paper is organized as described in the following.

In section 2, the adopted techniques for the detection and characterization of TMs,

both in terms of amplitude and rotation frequency, based on the in-vessel magnetic

measurements, are presented. The Fourier analysis of the pick-up probes signals will
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be adequately interpreted in terms of a standard MHD model based on the cylindrical

Newcomb’s equation [2, 3]. This allows an extrapolation of the edge measurements to

obtain an estimate of the island width inside the plasma. A new statistical analysis of

disruptions marked by TMs will confirm previous results obtained with out-vessel low

frequency probes [6]. In section 3 the ion-flow and diamagnetic components of the TM

rotation frequency will be identified, and compared to the previous magnetic analyses

on the basis of a two-fluid phenomenological model. Section 4 presents a comparison

between the TM slowing down, typically observed prior a disruption, and the torque

balance model of the interaction with the vacuum-vessel. Conclusions are drawn in

Section 5.

In appendix A, the procedure adopted for tearing mode detection from edge magnetic

probes is exposed. In appendix B, an analytical formula for the external radius of the

island is derived.

2. Characterization of TM behavior by magnetic analysis

RFX-mod is equipped with a network of out-vessel magnetic pick-up sensors that are

used for diagnosing integrated equilibrium and slow MHD phenomena [6]. As the ves-

sel (made of Inconel) time constant amounts to few ms, the out-vessel signals are not

well suited for fast MHD: to this purpose, the Integrated System of Internal Sensors

(ISIS) was installed in RFX-mod [7, 8]. This diagnostics system includes several arrays

of toroidal, poloidal and radial magnetic probes, installed on the inner surface of the

vacuum vessel (rw = 0.475m). The sampling frequency is 2 MHz and the estimated

bandwidth is up to 500 kHz.

The amplitude and frequency of the time fluctuating components of the magnetic field,

as well as their mutual phase relation, can be extracted from the edge probe signals. It

is worth to note that signals provided by ISIS do not undergo any analog integration,

but they provide the temporal derivative (through flux variation) of the magnetic field.

In particular, the time derivative of poloidal and radial magnetic field components are

measured by means of two poloidal arrays of 8 equally spaced coils each. The time

derivative of the toroidal magnetic field fluctuations is, instead, measured by means of

two arrays of 48 coils each, located at two opposite poloidal positions and uniformly dis-

tributed along the whole toroidal angle. Such a probe distribution was mainly designed

to identify the wide (1, n) MHD spectrum of the RFP configuration.

The identification of a given mode with poloidal and toroidal numbers (m, n), in terms

of amplitude and phase, is made through a combination of Fourier analyses both in

space and time domain. The procedure sequence is described in detail in Appendix A.
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2.1. Tearing mode dynamics in circular tokamak discharges

In figure 1, two examples of the time behavior of the frequency spectra of them = 2, n =

1 component is presented, along with the temporal evolution of Ip (ii) and q(a) (iii),

for two typical RFX-mod circular plasma discharges. As can be seen, the m = 2, n = 1

TM is rotating with a frequency of about 4.5 kHz during the plasma current flat-top

phase, but, in the second case only (figure 1b), TM rotation slows down to about 0.5

kHz, after 550ms, and eventually the plasma disrupts. The disruption is identified by a

spike in both safety factor and plasma current signals at t ∼ 620ms. At the same time,

the spectrogram shows a vertical band.

2.2. Consistency between in-vessel edge measurements and a vacuum cylindrical model

In this subsection we will show that the experimental estimates are consistent with a

standard vacuum model in cylindrical geometry, which provides analytical expressions

for the perturbed magnetic field components, in terms of modified Bessel functions [9].

In particular, the relationship between the fluctuating br and bθ, as detected by the

magnetic in-vessel probes, is consistent with the model prediction. The agreement, on

one hand validates the analysis method of the magnetic signals; on the other hand
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Figure 1. From top to bottom: i) spectrogram of m = 2, n = 1 magnetic fluctuations

for a) #35418 and b) #26703 RFX-mod tokamak discharges, ii) time evolution of

plasma current Ip and iii) edge safety factor q(a). A disruption occurred in shot

#26703, identified by a current spike at time t ≃ 620 ms.
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indicates that cylindrical geometry is a reasonable approximation when computing

further quantities of interest, on the basis of edge measurements. In particular, we

will extrapolate the measured br inside the plasma, thus providing an estimate of

the island width associated to a resonant magnetic perturbation. The extrapolation

is performed by solving Newcomb’s equation, which gives the radial profile of the

magnetic perturbation [2, 9], taking a suitable input for the magnetic equilibrium. Since

Newcomb’s equation is exactly the above mentioned vacuum representation outside the

plasma, here we adopt the formalism of this equation for the sake of generality.

In the kHz frequency range we are dealing with, the screening of the vessel onto br is

very important. This effect is included in the model as follows. The RFX-mod vacuum

vessel is a complex three-dimensional structure made of Inconel 625, with a 2mm thick

inner shell at the radius rw = 0.475 m, and a 1mm thick outer shell at the radius

rv = 0.505 m [10]. The resistance in the poloidal direction differs from that in the

toroidal direction due to anisotropic features. Therefore, the time-constant, which for

a uniform shell would be the product of the vacuum permeability with the radius, the

thickness and the conductivity, turns out to depend on the poloidal and toroidal mode

numbers m,n of the perturbation. Gimblett’s formula quantifies this effect for a thin

shell [11], and provides a possible way to model the RFX-mod vessel: a single thin

shell with the Gimblett’s time constant [3] (poloidal and toroidal resistances are known

quantities). For the mode numbers here considered (m = 2, 3, n = 1, 2) the Gimblett’s

time constant is about 2.3 ms. Here we prefer to use a different approach, approximating

the vessel by two uniform thin shells, the innermost placed at r = rw, the outermost

at r = rv, with time constants, τw and τv respectively, in the role of fitting parameters

of magnetic probe data. The fit is considered successful if such parameters turn out to

be comparable to the actual time constants of the inner and outer shell of the vessel:

τw ∼ τv ∼ 1 ms.

RFX-mod is also equipped with an outermost (radial position b = 0.5125 m) copper

shell, acting as stabilizing structure against MHD perturbations. With a 100ms time

constant, it can be approximated as an ideal wall in the kHz frequency range we are

analyzing. Hence, br is considered zero there.

Now we introduce the Newcomb’s equation formalism. The solution of this equation

gives the radial profile of them,n Fourier harmonic of br (referred to the basis ei(mθ−nϕ)).

Let’s consider a resonant mode, i.e. suppose that a radius rs exists inside the plasma

where the safety factor qcyl takes the value m/n. It is convenient to expand the br profile

making use of a basis ψ̂s(r), ψ̂w(r), ψ̂v(r) of real, independent solutions of Newcomb’s

equation:

−irbm,n
r ≡ ψm,n(r, t) = ψs(t)ψ̂s(r) + ψw(t)ψ̂w(r) + ψv(t)ψ̂v(r) (1)

The superscript m,n in the r.h.s have been dropped for ease of notation. The solution

ψ̂s(r) is regular at r = 0, equal to 1 at the mode resonant surface rs, equal to 0 at r ≥ rw;

the solution ψ̂w(r) is 0 at r ≤ rs, 1 at rw, 0 at r ≥ rv; the solution ψ̂v(r) is 0 at r ≤ rw,

1 at rv, 0 at r ≥ b. Accordingly, the complex coefficients ψs(t), ψw(t), ψv(t) encapsulate
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amplitude and phase of the perturbation respectively at the resonant surface, at the

innermost vessel surface and at the outermost vessel surface, respectively. For a non-

resonant mode, Equation (1) is still valid letting rs = 0 and ψs(t) = 0.

The radial function ψm,n is everywhere continuous, but in general its first derivative has

a discontinuity at rs, rw, rv, modelling the presence of localized currents therein. Those

at rw, rv rule the diffusion of the radial field across the vessel. To this purpose, the

thin-shell dispersion relation τx∂ψ
m,n/∂t ≡ [r∂ψm,n/∂r]rx+rx− (being x = w, v) is taken

into consideration: by exploiting (1), one gets

iωτwψw = Eswψs + Ewwψw + Evwψv (2)

iωτvψv = Ewvψw + Evvψv (3)

where ω = 2πf , with f the mode frequency. The real coefficients Eyx = rdψ̂y/dr
∣∣∣rx+
rx−

encapsulate the derivative discontinuities of ψ̂y(y = s, w, v) at r = rx(x = w, v). It must

be also taken into account that in vacuum [9]

bm,n
θ = − m

m2 + n2(r/R0)2
∂

∂r
ψm,n (4)

From (1)-(4), the (complex) ratio between the m,n harmonics of poloidal and radial

field, taken on the inner surface of the vessel, where the magnetic sensors are located, is

bm,n
θ

ibm,n
r

∣∣∣∣∣
rw−

= − m

m2 + n2(rw/R0)2
[A(ω) + iB(ω)] (5)

with

A(ω) =
EvwEwvEvv

ω2τ 2v + E2
vv

− rw
dψ̂w

dr

∣∣∣∣∣
rw+

, B(ω) = ω

(
τw +

EvwEwv

ω2τ 2v + E2
vv

τv

)
(6)

All the parameters Eyx in (6), as well as dψ̂w/dr
∣∣∣
rw+

, refer to the vacuum region, hence

they do not depend on plasma equilibrium. Quantities A,B very weakly depend on the

mode numbers m,n. Therefore, the phase difference between br and bθ is almost the

same function of ω for different modes, and tends to π/2 for ω → 0.

For the mode here considered (m = 2, 3, n = 1, 2) one gets: Evw ∼ Ewv ∼ 16,

dψ̂w/dr
∣∣∣
rw+

∼ −16, Evv ∼ −84. Therefore the dependence of the coefficients A,B on τv
turns out to be very weak. Instead, they are much more sensitive to τw. Accordingly,

the comparison between the predictions of equation (5), (6) and the fluctuating br, bθ
extracted from magnetic coils, selects a very narrow interval for τw: τw ∼ 1.1− 1.3ms.

Instead, as far as τv is concerned, any value smaller than 4− 5ms can be taken (hence,

also τv = 0). In figures 2, 3 specific examples are provided for a couple of shots,

featuring a different equilibrium. In shot 35364 we have qcyl(a) ∼ 3, and the dominant

perturbation pertains to the m = 2, n = 1 tearing mode. Its toroidal non-resonant

sideband m = 3, n = 1 is also analyzed. In this shot, we take τw = 1.2 ms and

τv = τw/2. In shot 34642, the m = 2, n = 1 perturbation is replaced by the m = 3,

n = 2 tearing mode, being qcyl(a) ∼ 1.75 (in RFX-mod the condition qcyl(a) < 2 can

be safely achieved thanks to the suppression of the non-resonant m = 2, n = 1 resistive



Physics of tearing mode rotation slow-down in the RFX-mod tokamak 7

wall mode, by means of a sophisticated magnetic feedback system [12]). In this case we

take τw = 1.1ms, alongside τv = τw/2. The nearly coincidence of the chosen values of τw
with the actual time constant of the inner shell indicates that the latter represents the

most important screening component of the vessel. Nonetheless, the slight discrepancy

between the best fitting τw for the m = 2, n = 1 and the m = 3, n = 2 modes could be

symptomatic of the 3D structure of the vessel. However, the detection of the m = 3,
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Figure 2. Ratio between the poloidal and radial field harmonics amplitudes.

a) Experimental data from shot 35364 for tearing mode m = 2, n = 1 and its

toroidal sideband m = 3, n = 1, vs mode frequency, alongside prediction from

equation (5); in this shot, the mode slows down from f ∼ 4kHz to f ∼ 2kHz

in the second half of the discharge. b) Experimental data from shot 34642 for

tearing mode m = 3, n = 2, plotted as function of time, alongside prediction

from equation (5); in this shot the mode slows down from f ∼ 9kHz to f ∼ 5kHz

in the final part of the discharge.

n = 2 mode is not as reliable as that of the m = 2, n = 1, owing to its very small

amplitude. Note, indeed, that the experimental data for this mode are rather scattered.

Figure 2a shows that the ratio |bθ/br| increases with f , due to the screening of the vessel

onto the radial field. Figure 3 shows that the phase difference between bθ and br, which

is decreasing as a function of f , is insensitive to the mode number. In conclusion, a good

consistency between the model and the edge magnetic data is obtained with realistic

values of τw and τv. This result suggests that the magnetic data can be integrated within

the model to extrapolate the magnetic perturbation inside the plasma. In particular,

this allows an estimate of the TM island width, as discussed later on.

2.3. Extrapolation of the in-vessel edge measurements inside the plasma

The combination of equations (1) and (4), taken at r = rw− where edge magnetic

measurements br,edge and bθ,edge for the m,n mode are provided, gives the radial field



Physics of tearing mode rotation slow-down in the RFX-mod tokamak 8

0

0,5

1

1,5

0 5 10

m=2,n=1 #35364
m=2,n=1 eq.(5) 
m=3,n=2 #34642
m=3,n=2 eq.(5)

a
rg

(b
r) 

- 
a

rg
(b

θ
) 

 (
ra

d
)

f (KHz)

Figure 3. Phase difference between radial and poloidal field harmonics as

function of frequency: experimental data from shot 35364 for harmonic m = 2,

n = 1 and from shot 34642 for harmonic m = 3, n = 2, alongside prediction

from equation (5).

amplitude and phase at the resonant surface, namely the quantity ψs(t), as follows:

ψs = Kbθ,edge + iHbr,edge (7)

K =
m2 + n2(rw/R0)

2

m

rw
Esw

, H =
rw
Esw

(
Eww − rw

dψ̂w

dr

∣∣∣∣
rw+

)
(8)

The coefficients Eww, Esw, hence K and H, are equilibrium-dependent. They

are computed from the solution basis (1) of the zero-pressure Newcomb’s equation.

Neglecting pressure is a reasonable approximation for the ohmic plasmas of RFX-

mod. Accordingly, the equilibrium is modelled by the standard current profile for

the low-β tokamak [13]: µ0J = σB, with σ(r) = σ0 [1− (r/a)2]
ν
, σ0 = 2/[qcyl(0)R0],

ν ∼ qcyl(a)/qcyl(0) − 1. Therefore, only the two parameters qcyl(a), qcyl(0) are required

as input. The first is set by qcyl(a) = 5a2BΦ/[R0Ip(MA)]. As far as qcyl(0) is

concerned, independent estimates from internal inductance and on-axis Ohm’s law

display a linear trend with qcyl(a), as shown in [6]. Here, we adopt the linear interpolation

qcyl(0) ∼ 0.136 + 0.356qcyl(a). The amplitude |ψs| so obtained is used to estimate the

width of the magnetic island associated to the resonant mode. This is the topic of the

next subsection.

2.4. Estimate of the island width

According to a standard text-book formula the ‘nominal’ island width W is given by

the mode amplitude at the resonant surface divided by an equilibrium related coefficient
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[9]:

W = 4

(∣∣∣∣∣ ψs

dF0(rs)/dr

∣∣∣∣∣
) 1

2

, F0(r) ≡ mBθ − nBϕr/R0 (9)

It is implicit that the perturbed quantities refer to the m,n harmonic. We speak of

‘nominal’ width since (9) is valid under the so-called ‘constant-ψ approximation’, i.e.

when ψm,n weakly varies within the island. For macroscopic islands this assumption is

not justified, in particular for the m = 2, n = 1 mode. In such cases, the island width

can be estimated only from the reconstruction of the magnetic topology as obtained, for

example, by a field line tracing code. Nonetheless, for high-frequency m = 2, n = 1 and

m = 3, n = 2 tearing modes, at r ≥ rs, the radial function |ψm,n| can be approximated

by a linear decreasing function vanishing at the vessel inner surface rw. In such a case, a

refinement, as far as the maximum ‘external’ radial excursion of the island is concerned,

can be straightforwardly found: in appendix B it is shown that the point on the island

separatrix corresponding to the maximum radius is

risland,ext = rs +
W

2
− W 2

16(rw − rs)
(10)

Formula (10) improves the ‘constant-ψ expression’ risland,ext = rs + W/2. Finding a

similar equation for the inboard side of the island, which combined with (10) would give

the true island width, does not seem an easy task, due to the non-monotonic, strongly

equilibrium-dependent behavior of |ψm,n| for r ≤ rs.

For the sake of clarity, we want to underline here that the validity interval of the

Newcomb’s equation, which gives an estimate of the perturbation profile bm,n
r (r), must

not be superimposed on that of the Rutherford’s equation, W/a << 1, which gives

an estimate of the island width time-evolution. We do not employ the Rutherford’s

equation in the present analysis. Newcomb’s equation derives from the linearized ideal-

MHD force balance constraint ∇ × (̃j × B0 + J0 × b̃ = 0). Therefore, this equation is

valid as long as b̃/B0 ≪ 1. Rutherford’s and Newcomb’e equations have different limits

of applicability. Let’s consider the ’standard’ island width formula (9)

W = 4

(∣∣∣∣∣ ψs

F
′
0(rs)

∣∣∣∣∣
) 1

2

→ W

a
∼ 4

(
R0

a

) 1
2

(∣∣∣∣∣br(rs)Bϕ

∣∣∣∣∣
) 1

2

∼ 8

(∣∣∣∣∣br(rs)Bϕ

∣∣∣∣∣
) 1

2

where the approximation holds for the m = 2, n = 1 mode in RFX-mod. This formula

clarifies that a macroscopic island, for which the Rutherford’s equation description is

doubtful, is associated to a relatively small magnetic perturbation. For example, taking

W/a = 0.5, we get br(rs)/Bϕ ∼ 0.4%. In this conditions Newcomb’s equation is still

applicable.

An example of W estimate for the m = 2, n = 1 mode is shown in figure 4a (black

continuous line), where the growth of a large island (W/a > 0.5), associated to a slowing

down of the mode, eventually triggers a disruption (t = 530ms).

A similar evaluation, based on the out-vessel sensors (black dotted line), is affected by

the vessel screening, thus giving a comparable, but smaller result. The growing mode
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Figure 4. Estimates of the normalized island width W/a, from in-vessel

edge measurements (black continuous line) and from out-vessel probes (black

dotted line), the latter limited to plot a). Mode frequency, from in-vessel edge

measurements, is shown in red. The disruptive phase is shaded in gray. Plot

a) displays the m = 2, n = 1 mode for shot 30490: in the examined interval,

qcyl(a) ∼ 3 and the Greenwald normalized density is ne/nG ∼ 0.75. Plot b)

displays the m = 3, n = 2 mode for shot 34642: in the examined interval,

qcyl(a) ∼ 1.8, and ne/nG ∼ 0.2.

slows down during the pre-disruptive phase, from f ∼ 4kHz to f ∼ 0.4kHz, without

locking to the wall in the strict sense (the following frequency spike occurs during the

disruption).

A similar W estimate for the m = 3, n = 2 mode is shown in figure 4b. The maximum

island width prior to the disruption, W/a < 0.15, is smaller than the typical disruptive

values of the m = 2, n = 1 island (the following spike of W takes place during the

disruption process). The disruption occurs after a slowing down of the mode from

f ∼ 8kHz to f ∼ 2kHz.

A growing amplitude, slowing down TM is the signature of the majority of the

disruptions observed in the RFX-mod tokamak. Regardless of the fact that TM is

or not the original cause of the disruption, it surely takes a part in the final process.

Therefore it is interesting to analyze the island width in the pre-disruptive phase of the

discharge. This is the subject of the following subsection.

2.5. Disruptions analysis

A new statistical analysis over a database of discharges disrupted after a slowing down

of the dominant tearing mode (m = 2, n = 1 or m = 3, n = 2) refines previously

published results obtained from analysis with the outer magnetic sensors (figures 5-7 of

[6]). Figure 5a confirms what was stated in [6]: the m = 2, n = 1 (nominal) island

width prior to the disruption increases with qcyl(a). This trend is interpreted as due to
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Figure 5. Statistical analysis on a database of disrupted discharges

characterized by a slowing down of the dominant tearing mode. The average

W/a is plotted against (a) the average edge cylindrical safety factor and (b)

the average value of ne/nG . All quantities are estimated within 10 ÷ 20 ms

before the disruption.

Figure 6. Analysis on the same shots considered in figure 5. The average frequency

attained by the mode before the disruption is plotted against the average value of the

outward island radius, as given by formula (10). Both quantities are estimated within

10÷ 20 ms before the disruption. note the log scale for the y-axis.

the increase with qcyl(a) of the distance between the resonant surface, where the island

develop, and the plasma-facing stabilizing structures (vacuum-vessel and shell). For the

m = 3, n = 2 island the range of qcyl(a) is not wide enough to establish a clear trend.

Note, in fact, that the amount of data relative to the m = 3, n = 2 is rather poor.

Figure 5b shows that, at least for the examined cases, the m = 3, n = 2 induced
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disruptions occur at W/a and ne/nG smaller than those featuring the m = 2, n = 1

disruptions. Nonetheless, according to figure 6, the external radius of the island, as

given by equation (10), gets close or even beyond the plasma surface, in both cases.

The figure reports also the minimum rotation frequency of the island, observed before

the disruption: in fact, this quantity is better correlated with the external radius of the

island, which combines both equilibrium and W , than with W alone.

Note that, none of the considered cases is wall-locked. Disruptions with a true wall-

locked m = 2, n = 1 TM also occur in RFX-mod, but only at q(a) very close to

2. Nonetheless, the qcyl(a) ∼ 2 cases are more benign than those considered in the

database, since they feature a relatively small island width (see trend of figure 5a), so

they can be successfully managed (in general) by the magnetic feedback. The feedback

action mitigates the wall-locking by inducing a slow rotation regime (about 50Hz), thus

preventing the mode further growth related to the penetration of the passive structures,

and avoiding the disruption [6]. With active coils outside the copper shell, the magnetic

feedback can control the island width only indirectly, by keeping small the edge radial

field amplitude. Therefore it cannot do much when W is large with an edge radial field

already small because of the significant rotation, as in the high-frequency disruptions

considered in the present database.

3. Interpretation of the tearing modes island rotation frequency

In this section, TM frequencies obtained from the in-vessel edge data are interpreted by

means of a two-fluid phenomenological model, already used to describe the island fast

rotation in the low-current RFP plasmas (Ip ≤ 100kA) of RFX-mod [5]. A connection

between TM island rotation, plasma flow and kinetic profiles is established by the model.

3.1. Two-fluids model of TM island rotation

The model formalizes the assumption that the magnetic island is frozen within the

electron fluid at the resonant surface. This hypothesis is supported by experimental

observation both in tokamak [4] and stellarator [14]. From a theoretical point of view, it

is justified for small-size islands, unable to flatten significantly the pressure profiles at the

resonant surface, whereas, above an amplitude threshold, the island should propagate

with the ion fluid [15, 16]. Here we do not attempt any comparison between the

amplitude threshold, as predicted by the mentioned works, and the island width, as

estimated in RFX-mod.

Referring the harmonics to the basis ei(mθ−nϕ), the electron-fluid frozen condition implies

that the island phase velocity is a combination of the poloidal and toroidal angular

velocities (Ωϕ = Vϕ/R0, Ωθ = Vθ/r) of the electrons at the resonant radius:

dφm,n

dt
= nΩϕ,e(rs, t)−mΩθ,e(rs, t) =

n

R0Bθ

(B×Ve)r

∣∣∣∣
rs

(11)

To get the last equality, the equation qcyl(rs) = m/n = rBϕ/(R0Bθ)|rs was used. Note
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that only the velocity perpendicular to B contributes to (11). This equation is managed

in order to express Ve in terms of the total ion velocity combined with the diamagnetic

components of electron and ion velocities. The former can be indeed estimated by

spectroscopic diagnostic, the latter by pressure profile reconstruction. Taking the

perpendicular velocity, in the absence of any external momentum input, as the sum

of the E×B drift and the diamagnetic drift, the total velocity for ions and electrons is:

Vj = VE×B +Vdiam
j +V

//
j ; Vdiam

j = ± 1

eneB2
∇pj ×B ; (j = e, i) (12)

where V
//
j represents the parallel velocity component. The diamagnetic velocity

definition holds with sign + for electrons and − for ions. Symbol e > 0 denotes the

electron charge magnitude, ne the electron density (= ni), pe, pi the electron and ion

pressure respectively.

The E × B drift is the same for electrons and ions. Therefore, the electron velocity is

related to the ion velocity by:

Ve = Vi +Vdiam
e −Vdiam

i +V//
e −V

//
i (13)

By combination of (11) and (13), one ends up with the formula:

dφm,n

dt
= ωdiam + ωflow (14)

ωdiam =
m

enerBϕ

d(pe + pi)

dr

∣∣∣∣∣
rs

; ωflow = nΩϕ,i(rs, t)−mΩθ,i(rs, t) (15)

The island phase velocity can be modelled by the sum of two terms taken at the resonant

surface: a ‘flow’ frequency, associated to the ion velocity, and a ‘diamagnetic’ frequency,

determined by pressure and density profiles. Note that ωflow is the frequency of an

island frozen within the ion-fluid. An expression similar to (14) has been derived within

a two-fluid model of the error field penetration [17].

An estimate of rs is needed to implement (14). Despite the lacking in RFX-mod

of a specific diagnostic for a direct measurement of q(r), this can be obtained by

equilibrium reconstructions. Here, we make use of the toroidal version, with the same

input parameters, of the cylindrical equilibrium model described in subsection 2.3. The

latter adapts the method developed for the RFP [18] to the circular cross section, low-β

tokamak.

3.2. Evaluation of ωdiam

The diamagnetic frequency is obtained by estimates of density and temperature radial

profiles. Electron and ion densities are equal (ni = ne), since only hydrogen and

deuterium plasmas are analyzed. The electron density profile is computed by inversion of

the interferometer data [19], using a numerical code exploiting flux coordinate [20]. The

electron temperature profile is resolved by means of a Thomson scattering diagnostic
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[21], measuring Te at 78 radial positions, with a spatial resolution of about 1 cm. The

following interpolating profile is adopted:

Te(r) = T0

(
1−

(
r

a

)α)β

+ Tedge (16)

While α, β, T0 are fitting parameters, the edge temperature Tedge is determined

by the triple Langmuir probes located at the vacuum vessel radius. In fact, these

probes represent a useful complementary diagnostic for the outermost region of the

plasma, where the Thomson scattering data are not available or unreliable. A good

reconstruction of Te in this region is mandatory to estimate ωdiam when rs gets close

to a. Figure 15b presents an example of the temperature measured by the Thomson

scattering, alongside the fitting profile (16). Note that the m = 2, n = 1 resonant radius

(highlighted by a vertical line) is outside the region covered by the Thomson scattering,

in this particular shot. Hence, the necessity of including the Langmuir probes data in

(16) for fitting Te profile.

In RFX-mod the ion temperature Ti can be estimated by the Neutral Particle Analyzer

[22] but this measurement is not available in the shots analyzed in this paper. It

is found that, in similar discharges, Ti ∼ 2/3Te on average. Therefore, we assume

Ti(r) = 2/3Te(r) with profile (16). For both density and temperature, the profiles are

reconstructed every 10ms, according to the sampling time of the relative measurements.

Let us note that temperature and density measurements were available on a limited

subset of the discharges, due to the fact that these diagnostics were designed for RFP

plasma conditions.

3.3. Comparison between ωdiam and magnetic frequencies

We present, in this subsection, the comparison between the frequencies obtained by the

magnetic probes (hereinafter dubbed ‘magnetic frequencies’) and the ωdiam frequencies

predicted by the model, described in Equation (15). At the moment, we do not consider

in the comparison the contribution of the ωflow term, which will be reported later by

the subsection 3.4. We want to demonstrate that the diamagnetic term represents the

main contribution in determining the rotation frequency of the mode.

First, we consider shot 35372, whose equilibrium parameters are displayed in figure 7:

it is a qcyl(a) ∼ 2.5 discharge featuring both m = 2, n = 1 and m = 3, n = 2

modes, as can be seen in the spectrogram obtained from the magnetic signals (panel

i). The comparison with the ωdiam term is performed only in the time interval [135,

245]ms, where both electron density and temperature are available. But, as far as the

m = 3, n = 2 mode is concerned, it is further restricted to the sub-interval [205, 245]ms,

where mode amplitude can be detected with sufficient accuracy. Referring to these time

intervals, figure 8 shows the magnetic frequencies and the ωdiam ones, deduced from the

model. The colored bands represent the error estimate. A negative frequency means

that the island moves in the electron diamagnetic direction. Note that a quite good

agreement is found, for both the m = 2, n = 1 and m = 3, n = 2 modes.
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Figure 7. i) Spectrogram of edge magnetic fluctuation data for discharge 35372 . The

m = 2, n = 1 and m = 3, n = 2 mode frequencies are highlighted. ii) Time traces

of edge safety factor qcyl(a) and iii) plasma current Ip. The vertical lines identify the

time intervals where the comparison with model (14) is done.

a)

b)

Figure 8. Comparison of TM magnetic frequencies (black) and the diamagnetic

component ωdiam (blue) of model (14). Panel (a) refers to the m = 2, n = 1 TM,

panel (b) to the m = 3, n = 2 TM. The estimated error is represented by the colored

bands.
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Accordingly, the m = 2, n = 1 spin up at about 150ms (see figure 9a) is due to a

modification of ωdiam. From figure 7, one can see that no significant modification of

the magnetic equilibrium can explain such a spin-up. Further evidences of this strict

correlation between the ’magnetic’ and the diamagnetic frequencies will be provided in

the following.

3.4. Evaluation of ωflow

We now add the ωflow term to have a complete comparison between the experimentally

determined magnetic frequencies and those predicted by model (14).

In RFX-mod, ion velocity is estimated by means of a multi-chord Doppler spectroscopy

diagnostic, which measures impurity emissions, integrated over several poloidal and

toroidal lines of sight [23]. The spectrum is acquired for three different ions: CIII

(λ = 4647 Å), CV (λ = 2271 Å) and OV (λ = 6500 Å). It should be considered that the

diagnostics does not allow reconstructing the radial profile with the resolution necessary

to estimate the velocity at the resonant surface, as required by (15). However, this is

not a strong limitation in the present analysis, since the ωflow term only moderately

participates in determining the TM island rotation, as this is dominated by the ωdiam

contribution, as will appear clear from section (3.4.2.1)

For the best estimation of ωflow term, we will model the toroidal and poloidal flow

components with reasonable assumptions. In particular, for the poloidal flow, we rely

on two different models. The first uses a phenomenological poloidal flow damping term

(subsection 3.4.2), the second one is based on neoclassical theory (subsection 3.4.3).

3.4.1. Evaluation of toroidal velocity profile

For the toroidal flow component, we take the following model profile, which is given by

the toroidal component of the single-fluid (i.e. ion) MHD motion equation in stationary

conditions [24]:

1

r

d

dr

(
µ r

d

dr
Ωϕ,i

)
+ Sϕ = 0 (17)

Here µ is the perpendicular viscosity and Sϕ is the phenomenological momentum source

density, considered radially constant for the sake of simplicity. The velocity boundary

conditions, which satisfy on-axis continuity of the derivative and the constraint of small

velocity at the plasma edge, are:

d

dr
Ωϕ,i(0) = Ωϕ,i(a) = 0 (18)

The solution of (17) satisfying (18) is:

Ωϕ,i(r) =
SϕτV
4ρ

(
1− r2

a2

)
(19)
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The quantity τV = ρa2/µ is the viscous diffusion time, being ρ the mass density. The

latter equation can be rewritten as

Ωϕ,i(r) = Ωϕ,i(0)

(
1− r2

a2

)
(20)

where the global coefficient Ωϕ,i(0) is here determined by the above mentioned

spectroscopic measurement by assuming the same toroidal velocity for ions and

impurities. This is justified for a collisional plasma [25], as that under discussion.

3.4.2. Phenomenological poloidal flow

The model considers the following poloidal component of the single fluid MHD motion

equation in stationary condition [24]:

1

r3
d

dr

(
µ r3

d

dr
Ωθ,i

)
− ρ

τD
Ωθ,i + Sθ = 0 (21)

The second term in (21) is phenomenological, and it models the poloidal flow damping,

by assuming a characteristic time τD. In the framework of the cylindrical tokamak

theory, this model has been adopted in [2]. The velocity boundary conditions, as for

the toroidal flow case, are:

d

dr
Ωθ,i(0) = Ωθ,i(a) = 0 (22)

We assume all the quantities µ, ρ, τD, Sθ to be radially constant, as before. Then, the

solution of (21) satisfying (22) is:

Ωθ,i(r) =
SθτD
ρ

1− a

r

I1

(
r
a

√
τV
τD

)
I1

(√
τV
τD

)
 (23)

where I1 is the first-order modified Bessel function and the combination
√
τV /τD

represents a shape parameter for Ωθ,i(r). The latter equation can be written as:

Ωθ,i(r) = Ωθ,i(0)
F (r)

F (0)
, F (r) =

1− a

r

I1

(
r
a

√
τV
τD

)
I1

(√
τV
τD

)
 (24)

where, again, Ωθ,i(0) is determined by spectroscopic measurement, though main ion and

impurities can have quite different poloidal velocities [25]. However, this is not a major

issue, given the estimated small contribution of ωflow with respect to ωdiam.

3.4.2.1. Model and experimental data comparison

In a first analysis we take τV = 60ms and τD = τV /350, considering that τV should be

comparable to the energy confinement time, and that the observed strong damping of

the spectroscopic poloidal velocity implies τD ≪ τV (by comparison between (19) and

(23)).
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The particular value chosen for the ratio τV /τD will be justified by a chi-square test

(sensitivity analysis) between the modelled frequency and the frequency detected by

the magnetic coils. In any case, the modelled frequency (14) weakly depends on these

two characteristic times, as we shall see later on in subsection 3.4.2.2.

The figure 9 shows the comparison for shot 35372, together with the ωdiam and ωflow

components, as previously derived. A good agreement is found between the magnetic

and modelled frequencies, for both the m = 2, n = 1 and m = 3, n = 2. It can be seen

that the rapid change in frequency of m = 2, n = 1 mode at t ∼ 160 ms is associated

with the corresponding change in the diamagnetic component, while the flow component

changes only slightly.

The same analysis has been performed on shot 33822, characterized by a qcyl(a) < 2

phase (figure 10) where the m = 3, n = 2 amplitude becomes important. This mode ap-

pears earlier at 100ms with a frequency of about 8 kHz (see figure 10b), almost constant

a)

b)

Figure 9. Comparison of TM magnetic frequencies (black) and the full modelled

frequencies of (14). The components ωdiam and ωflow are reported as well. Panel (a)

refers to the m = 2, n = 1 TM, panel (b) to the m = 3, n = 2 TM. The estimated

error is represented by the colored bands.
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a)

b)

Figure 10. Analysis of the m = 3, n = 2 TM in shot 33822. a) Comparison of TM

magnetic frequencies (black) and the full modelled frequencies of (14). The components

ωdiam and ωflow are reported as well. b) same quantities as in figure 7. The vertical

lines identify the time interval where the comparison with the model is performed.

up to 375ms. Afterwards, it rapidly slows down to few hundreds Hz, and a disruption

occurs. A good agreement between the magnetic and ωdiam frequencies is found even

in this case, with the same dominance of ωdiam over ωflow (see figure 10a). The final

slowing down of the mode follows a quenching of ωdiam, whereas ωflow does not exhibit

significant variations. It is worth to mention that the present analysis differs from that

presented in [26], which was dedicated to the study of the effect of 3D fields due to

intrinsic magnetic field errors or active coils on the plasma flow in RFX-mod.

3.4.2.2. Analysis of the sensitivity on τV /τD
A justification for the above choice τV /τD = 350 is given by a chi-square test: for several

values of τV /τD, the quantity χ
2(τV /τD) is computed as the sum of the sampled squared
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Figure 11. Chi-square parameter as a function of τV /τD for shot 33822. A minimum

is obtained for τV /τD ≈ 350.

differences between the modelled and magnetic frequencies, weighed by the error on

the modelled frequency (the error on the magnetic frequency is much smaller, it is

thus neglected). In Figure 11 such χ2 is plotted for the shot 33822 in a wide range of

τV /τD, which covers four orders of magnitude: a minimum is obtained for τV /τD ≈ 350,

representing the best agreement between modelled and magnetic frequencies. The

explicit comparison is shown in figure 12 for the considered extreme values of τV /τD.

Only a weak dependence turns out on this parameter, in the large interval explored, in

agreement with the previous consideration that ωflow is a minor contribution within the

modelled frequency.

Figure 12. Comparison between the magnetic and modelled frequencies (the latter

reported with the diamagnetic and flow components) for two extreme values of τV /τD
as in figure 11. Note that, as expected, ωflow varies with this ratio, whereas ωdiam

does not.

3.4.3. Neoclassical poloidal flow model

The customary model for the poloidal flow velocity makes use of neoclassical calculation

as described in [25]. Neoclassical poloidal flow of the main ions, largely driven by the
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temperature gradient, is described by eq. (33) in [25]. A simplified version of such

formula, by considering B ∼ Bϕ, is:

V i
θ (r) ≈ k1

1

B

dTi
dr

(25)

where k1 is a function of collisionality and the superscript i denotes that we are referring

just to the main ion.

We use this relation, considering Ti(r) = 2/3Te(r), to estimate the poloidal velocity

in our model by optimizing the parameter k1. As before, this χ2 analysis is based on

the discrepancies between the modelled and magnetic TM frequencies for the same shot

35372 as in figure 9. The result of this analysis is presented in figure 13. It turns out

that the best agreement is found for k1 ≈ 0.25. This k1 value implies a low poloidal flow

velocity (∼ 400m/s) which is not surprising taking into account that the ωdiam term is

already in a good agreement with the experimental data.

As predicted by theory, k1 is a function of the ion collisionality ν∗i , defined as the ratio

of ion-ion collision frequency to bounce frequency ν∗i = νiiR0q(R0/a)
3/2vth,i, and the

impurity strength parameter α = nIZ
2
I /niZ

2
i =

Zeff−1

1−Zeff/ZI
, where the subscripts i and I

represent the primary ion and impurity species, with the assumption of single impurity

species; Zi, ZI , Zeff are the main ion charge, impurity charge and effective charge

respectively, respectively.

A typical value for ν∗i can be estimated for the RFX-mod tokamak plasma. In cylindrical

approximation and introducing the Greenwald density nG = Ip[MA]/(πa2), one gets

ν∗i ≈ 5.5 × 10−4 ln ΛBt

Ip
(R0

a
)
3
2

n
nG
T−2
i . The considered shot 35372 is characterized by

Ti ∼ 0.23keV , Ip ∼ 0.12MA, n/nG ∼ 0.55 and lnΛ ∼ 17, hence ν∗i is about 3.7.

As far as α is concerned, in the expected range Zeff < 2 (no Zeff measurement is

possible in these plasmas, but they should be relatively clean, due to the frequent use

of glow-discharges cleaning and low input power), and assuming carbon impurity with

ZI = 6, one would get α < 1.5. On the basis of these estimates for ν∗i and α, the

optimum k1 = 0.2 is compatible with the theoretical prediction of figure 1 of [25].
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Figure 13. Chi-square parameter as a function of k1 for discharge 35372. A minimum

is obtained for k1 ∼ 0.2 .
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i)

ii)

iii)

iv)

v)

Figure 14. Temporal evolution of several quantities related to the diamagnetic

frequency for them = 2, n = 1 TM in shot 35372 (left panels) and them = 3, n = 2 TM

in shot 33822 (right panels). From top to bottom: electron temperature (i), absolute

value of the Te logarithmic radial derivative (ii), absolute value of the ne logarithmic

radial derivative (iii). All these quantities are estimated at the resonant radius. The

absolute values of ωdiam,Te
and ωdiam,ne

are shown in panel (iv). Panel (v) displays

the estimated island width normalized to the minor radius.

As a final comment on this point, it is worth to add that we also attempted to interpret

our experimental data by using a model in which the electron diamagnetic term plays

no role and hence the plasma flow only would determine mode rotation. From a physical

point of view, this would correspond to having TM islands frozen within the ion flow and

not within the electron one. A sensitivity analysis, not shown, predicts an optimal value

k1 ≈ −4. This value, even considered our limited interpretative capabilities, appears,

on the basis of the theoretical expectation, somehow unrealistic, as this would require

very high α, hence Zeff values (see again Figure 1 in [25]).

3.5. Analysis of ωdiam

The contributions of density and temperature within the diamagnetic frequency are now

investigated in more detail for the m = 2, n = 1 and m = 3, n = 2 modes, described in

figures 9a and 10a respectively. Let’s consider the splitting

ωdiam = ωdiam,Te + ωdiam,ne (26)

ωdiam,Te = CTe
d(lnTe)

dr

∣∣∣∣∣
rs

; ωdiam,ne = CTe
d(lnne)

dr

∣∣∣∣∣
rs

; C =
5

3

m

ersBϕ

(27)

We assumed Ti = 2/3Te. The factor C, related to the magnetic equilibrium, does not
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significantly change within the examined time intervals (qcyl(a) is almost constant there:

see figures 7, 10b). Hence, C can be regarded as a shot-dependent coefficient. Note that

a)

i)

ii)

b)

c)

i)

ii)

Figure 15. Analysis of the m=2, n=1 TM in shot 36346. a): spectrogram (i) and time

trace of W/a (ii). b): Te profile, acquired and fitted, at two different time instants t1
and t2 (highlighted in (a) by vertical lines), corresponding to significantly different TM

frequencies. The violet vertical line denotes the resonant q = 2 radius. c): time traces

of Te (i) and |d(lnTe)/dr| (ii) estimated at the resonant radius, during the slowing

down phase.
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ωdiam,Te depends on Te only, whereas ωdiam,ne combines both Te and ne.

In figure 14 the temporal behavior of ωdiam,Te and ωdiam,ne are displayed, in absolute

value, for the two cases considered in figures 9a and 10a. The time evolution of Te,

|d(lnTe)/dr|, |d(lnne)/dr|, all taken at rs, and of the estimated normalized island width

are also plotted. As shown in panels (iv), the ωdiam,Te is more important than ωdiam,ne ,

both in absolute terms and as far as the variations are concerned. In fact, |d(lnTe)/dr|
(panels ii) is larger and more variable than |d(lnne)/dr| (panels iii).
The W/a drop at time t ≈ 150ms in shot 35372 (panel v on the left) correlates with

an increase of both Te and |d(lnTe)/dr| at the resonant surface, which determines an

increase of the absolute value of ωdiam,Te : this explains the mode spin-up reported in

figure 9a at this time. The same process, in the opposite sense, takes place in the final

part of shot 33822: the island growth correlates with the local decrease of temperature

and its logarithmic derivative, which determines a drop of ωdiam,Te , and therefore of the

mode frequency, as reported in figure 10a. Note that, the density profile, hence ωdiam,ne ,

is less sensitive to the island width variations (panels iii).

In these two examples the variations of Te at the resonant surface are concordant with

those of d(lnTe)/dr, and enhance the overall effect onto ωdiam,Te . This synergistic

behavior is found also in the further example considered in figure 15. Being characterized

by a long slowing down phase of them = 2, n = 1 TM, this case is well suited to correlate

the modifications of the frequency with those of the temperature profile. Indeed, the

slowing down of the magnetic frequency associates with a similar slow decrease of the

temperature parameters (value and logarithmic derivative) at the resonant surface.

A weak, but steady W increase can be also detected during this phase. The full

temperature profile is also provided at two time instants: note that the modifications

of Te(r) have a global character.

3.6. Discussion

The above analysis suggests a correlation between the TM island fast rotation and the

kinetic profiles. The results can be summarized as follows.

i) In the RFX-mod tokamak, TM rotates with the electron fluid at the resonant surface,

because their frequency can expressed by the sum of ωflow, the frequency of a mode

frozen in the ion fluid, and ωdiam, representing the diamagnetic drift. Moreover, the lat-

ter contribution is dominant. However, the diamagnetic effect should be less important

in larger devices, due to its inverse dependence on the minor radius and on the toroidal

magnetic field.

ii) This drift mainly depends on the temperature derivative at the resonant surface: the

dominant contribution ωdiam,Te can be written as CdTe/dr|rs .
iii) This local derivative is affected by the TM island through global modifications

of the temperature profile. In particular, the following sequence is proposed: an in-

crease/decrease of the island width involves an increase/decrease of the energy trans-

port, hence a decrease/increase of Te, which slows-down/spins-up the diamagnetic drift
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along with the TM frequency.

It should be notice that this is not the customary interpretation, as far as the TM slow-

ing down process is concerned. In fact, this is generally due to the interaction with the

mirror currents induced onto the vacuum-vessel, developing an electromagnetic torque

on the ion fluid at the resonant surface. If such an effect was relevant in the consid-

ered cases, the correlation between the diamagnetic frequency and the mode frequency

would not be so strict. Rather, a significant modification of ωflow, not observed, would

occur. In the section 4, further evidences are presented, supporting the inadequacy of

the purely electromagnetic slowing-down model in the RFX-mod discharges.

4. Slowing down analysis

The RFX-mod analysis above presented links the dynamics of TM fast rotation to

that of the kinetic profiles, temperature in particular. In this case, the electromagnetic

interaction with the vacuum-vessel mirror currents should be a secondary effect. In

this section, a more quantitative assessment of this statement is provided, showing that

the electromagnetic torque model does not fit the pre-disruptive slowing down phase.

Let’s consider the m = 2, n = 1 TMs of several RFX-mod shots, taken in a subset of

the database displayed in figures 5 and 6, which benefits from clearer data than those

referring to the m = 3, n = 2 mode. The related magnetic frequencies are plotted as a

function of time in figure 16a. Most of the initial values, before the slowing down, stand
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Figure 16. Slowing down analysis for the m = 2, n = 1 TM for several RFX-mod

tokamak shots. a) magnetic frequencies vs time (only the frequency slowdown phase

for each analyzed discharge is shown in the graph); b) island width vs frequency: the

blue line is the logarithmic fit (y = a1 + a2 log(x)), whereas the red dashed line is the

fit (29).

between 4 ÷ 5 kHz. Therefore, we take these frequencies unaltered, without applying
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any normalization. In figure 16b the normalized island width is plotted against these

frequencies. A continuous slowing down occurs as the mode amplitude increases, roughly

fitted by a logarithmic function (blue continuous line). The further fit (red dotted line)

wants to assess the compatibility of the data with the electromagnetic braking model.

Now such a fit is described. Modelling the vacuum vessel only by the innermost thin

shell (i.e. τv = 0: choice justified by the analysis presented in paragraph 2.2), and

taking the outermost copper shell as ideal, the braking model predicts the following

relationship between the mode frequency f and the island width [3]:

C
(
W

a

)4 2πfτw
(2πfτw)2 + E2

vess

= f0 − f ; Evess = Eww − EvwEwv

Evv

(28)

The constant C incorporates the viscosity and the poloidal flow damping time, as well

as other equilibrium related parameters, whereas f0 is the mode frequency forW/a≪ 1.

By inverting (28), in order to express W/a as a function of the frequency, the following

interpolating function of the data displayed in figure 16b is tried:

W

a
= m1

{
|m4 − f |

[
(2πfτw)

2 +m2
2

]
/(2πfτw)

}1/4
+ |m3| (29)

In this expression f is in kHz and τw in ms. The coefficients of the fit are denoted mi,

with i = 1, ..., 4. In particular, m4 gives an estimate of f0 and m2 of Evess. In order

to make the fit viable, two changes have been made with respect to equation (28): the

difference f0 − f is taken in absolute value, and an offset m3, expected to be small, is

added. There is little dependence of the result on τw: here it is fixed at 1.5ms. The

quality of the fit (29) is rather poor, as can be seen in the figure. Moreover, while m4

turns out to be in the correct range, and m3 is small as expected, m2 ∼ 84 is quite

larger than the estimate |Evess| ∼ 18 given by Newcomb’s equation.

The model represented by (28) is based on the thin-shell approximation, already

discussed in section 2.2. We tried to compare the slowing down data also with

the electromagnetic braking model based on a thick-shell approximation, though this

hypothesis does not seem justified for the RFX-mod vessel. According to equation (73)

of reference [3], equation (28) is replaced by

C
(
W

a

)4

= f
1
2 (f0 − f) (30)

with all the numerical constant encapsulated within C. Using an interpolating function

based on such a model, indeed we obtained a even worse fit with respect to that based

on the thin-shell model, presented in figure 16b.

The conclusion is that the electromagnetic model cannot describe the slowing down of

the m = 2, n = 1 tearing mode in the presented RFX-mod discharge. This statement

is applied to the fast rotation only and it does not imply that TMs do not interact

with the passive or active conductive structures. In fact, the electromagnetic torque

determines the final wall-locking, so far as this phenomenon takes place at the end of

the slowing down, being the unique mechanism able to stop the TM island rotation in

the laboratory frame, above an amplitude threshold [3]. Moreover, the electromagnetic
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model well describes the slow rotation regime, mentioned at the end of paragraph 2.5,

which is induced by the feedback action as mitigation of the wall-locking condition [6].

5. Conclusions

Tearing modes represent a concern for the control of fusion plasmas, being characterized

by magnetic islands that degrade confinement and increase the plasma wall interaction.

In tokamak, the growth of their amplitude and the concomitant slowing down of their

spontaneous fast rotation, can lead to a disruption. In this paper we try to under-

stand the mechanisms which determine the TM island rotation, by analyzing the high

frequency regime observed in the circular tokamak plasmas of RFX-mod. This work

complements previous analyses focused on the slow rotation frequency regime induced

by the magnetic feedback [6]. The analysis is mostly based on the data from a set of

large-bandwidth in-vessel edge probes located in front of the plasma, and therefore not

affected by screening from the passive conductive structures. This is an improvement

with respect to [6], where the out-vessel sensors of RFX-mod were instead used. The

procedure by which the amplitude and frequency of the modes are extracted from the

raw measurements is quite standard, but not straightforward. Then, these harmonics

have been compared with two models dealing with different features of the tearing mode

physics: the good agreement found provides a validation both for the processing of the

magnetic data and the models themselves.

The first model, based on Newcomb’s equation and the thin-shell dispersion relation, de-

scribes the radial profile of the perturbation, as well as the frequency-dependent bound-

ary conditions imposed by the screening effect of the vacuum-vessel. It is used to

extrapolate the magnetic perturbation harmonics inside the plasma, thus giving an es-

timate of the island width, according to the text-book formula, besides a more refined

estimate of the external radial excursion of the island. This analysis has been applied to

the database, already considered in [6], of discharges disrupted after slowing down of the

dominant TM (m = 2,n = 1 or m = 3,n = 2). The new results confirm that disruptions

can occur even without a locking to the wall. Furthermore, the external radius of the

island gets close or even beyond the plasma surface in the pre-disruptive phase for both

m = 2,n = 1 and m = 3,n = 2 modes. This suggests that, though TM could be not the

original cause of the disruption, it surely takes a part in the final process.

The second model deals with the mode rotation, which is obtained from a frozen con-

dition of the island within the electron fluid. Then, the frequency can be expressed by

the sum of a frequency ωflow related to the ion velocity (i.e. the frequency of an island

frozen within the ion-fluid) and a frequency ωdiam related to the diamagnetic effects.

Due to the relatively few cases where both temperature and density can be measured

with a sufficient accuracy to estimate the diamagnetic frequency, the comparison be-

tween the frequencies from the model and those from the in-vessel magnetic analysis

cannot be done on a statistical basis. Nonetheless, the indications from the examined

cases are quite clear. i) The magnetic frequencies are well reproduced by the model,
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hence TM island co-rotates with the electron fluid. ii) The diamagnetic frequency domi-

nates over the ion-flow related frequency. iii) A correlation between the variations of the

frequency, the island width and the temperature profile is found, suggesting a transport-

based interpretation of the mode slowing-down/spin-up: a growing island slows down

by increasing the energy transport, hence decreasing the temperature profile and conse-

quently the diamagnetic drift; a quenching island should instead spins up through the

opposite process.

It must be said that this does not represent the standard interpretation of the TM island

rotation dynamics, which is generally ascribed to the electromagnetic torque developed

by the interaction between the island and the mirror currents induced onto the passive

conductive structures. We have also shown that this electromagnetic model does not

fit the magnetic frequencies, in the pre-disruptive slowing phase, thus confirming the

previous interpretation based on the kinetic profiles. However, this concerns only the

fast rotation and it does not imply that TMs are not subject to the interaction with

the conductive structures. In fact, the wall-locking, if it takes place at the end of the

slowing down phase, can be produced only by the electromagnetic torque. Finally, we

note that the inverse dependence of ωdiam on the minor radius and the toroidal field

might reduce the relevance of this effect in large devices.

6. Appendix A: Mode detection from in-vessel edge signals

This appendix is devoted to present the techniques used for mode identification from

in-vessel edge signals. In particular, in the following, the procedure sequence for the

identification of a given mode with poloidal and toroidal numbers m,n is described:

1) A spatial Fourier transform is performed at each time sample on the poloidal array

signals, providing the perturbation components with m ≤ 3 (regardless to n).

2) A discrete Fourier transform (DFT) in the frequency domain is applied to the time

series of each spatial harmonic component in order to associate the proper frequency to

the various coherent modes.

It is worth noting that the use of the DFT has been chosen to determine the frequency

of each mode as an alternative and more reliable technique with respect to the use of the

time derivative of the phase of each single spatial harmonic. This choice, which is based

on a time sliced division of the signals, considered as independent realization of the same

process, gives a more statistically meaningful result even if less time-resolved. This has

been forced by a relatively low signal-to-noise ratio collected by the used in-vessel coils.

It must, indeed, be reminded that such probes, measuring the time derivative of the edge

magnetic fields, had been originally designed to detect magnetic fluctuations in the RFP

configuration, which can be significantly larger than in the Tokamak. Obviously, the

use of the Fourier decomposition is justified in time windows in which mode frequency

and amplitude remain almost constant.

The Fourier spectrogram (i.e. the frequency power spectrum resolved on time windows)
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Figure 17. Frequency spectrum of the m = 2 (black curve) and n = 1 (red

curve) magnetic fluctuation performed at time t = 320ms for the #26703

tokamak discharge. Amplitudes are normalized to unity. Both m = 2 and

n = 1 components exhibit a dominant frequency at about 4.3 kHz.

is thus performed on each m-component and the dominant associated frequency

determined.

The frequency power spectrum for the m = 2 harmonic component, in a given time

interval during the flat-top phase of a typical tokamak discharge, is shown in figure 17.

A dominant peak is clearly seen, centered around 4.3 kHz.

3) The spatial Fourier transform is performed on the toroidal array signals, which allow

the discrimination of the various n-harmonics up to n ≤ 24 (regardless to m).

4) The associated dominant frequencies are determined by means of Fourier spectrogram

analysis.

5) The m,n modes are then identified by matching the dominant frequencies obtained

at points 2) and 4).

In figure 17, the frequency power spectrum obtained for shot #26703 for the n = 1

component is superimposed, as a red curve, to the m = 2 one (for the same time

interval). As clearly seen, the two spectra exhibit a dominant peak, with a coincident

central frequency, allowing the recognition of a m = 2, n = 1 mode, that we identify as

a resistive tearing mode, internally resonant at the position where the cylindrical edge

safety factor qcyl is equal to 2. Also the m = 3, n = 2 TMs and the m = 3, n = 1 toroidal

side-bands of the m = 2, n = 1 TMs, discussed through this paper, have been detected

with the same technique.

It is important to note that, during the slowing down phase, a different approach to

the one previously described has been adopted in order to improve the time resolution

in the determination of the mode frequency. Indeed, thanks to the increase of the

mode amplitude, the phase of the dominant m harmonic Φ(t)m is determined in a more

reliable way, so that the mode frequency can be obtained at any given time instant as

f(t)m = Φ̇(t)m/2π.
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7. Appendix B: derivation of Equation (10)

Equation (10) stems from the following approximation, which can be applied fairly well

either to a high-frequency m = 2, n = 1 or m = 3, n = 2 mode, screened by the vacuum

vessel, in the region r ≥ rs:

|ψm,n| = |ψs|
(
1− x

xw

)
, x = (r − rs)/rs ≥ 0 , xw = (rw − rs)/rs (B-1)

Let’s consider the cylindrical, helical formalism described in [27]: every quantity depends

on r and the helical angle u = mθ − nϕ. Denoting by χ the helical flux, which is a real

quantity, standard relations are:

rbr =
∂χ

∂u
(B-2)

rB · ∇u = mBθ − n
r

R
Bϕ = −∂χ

∂r
(B-3)

We also assume the expansion χ(r, u) = χ0(r)+χ1(r)cos(u) . In this case equations (1)

and (B-2) are conciliated by taking χ1 = |ψm,n| and including in ψm,n a factor 2, which

encapsulates the complex conjugate harmonic’s (i.e. −m,−n) contribution. Hence,

χ1(rs) = |ψs| . As far as the zeroth-order component is concerned, (B-3) becomes

−∂χ0

∂r
= mBθ0 − n

r

R
Bϕ0 = F0(r) (B-4)

For the m = 2, n = 1 mode of a tokamak equilibrium F0 can be well approximated by

a linear decreasing function, hence χ0 by a parabolic function, in the region beyond the

resonant surface:

F0(r) ∼= F ′
0s rs x → χ0

∼= −1

2
F ′
0s r

2
s x

2 , x ≥ 0 , F ′
0s ≡ F ′

0(rs) < 0 (B-5)

A magnetic surface identified by χ(r, u) = χ0(r) + χ1(r)cos(u) = χ is described by a

parametric equation for x(u), obtained from (B-1), (B-5):

x2 −
(
ξ

xw
cosu

)
x+ ξcosu+ C = 0 , ξ =

2χ1(rs)

r2s |F ′
0s|

=
W 2

8r2s
, C = − 2χ

r2s |F ′
0s|

(B-6)

Use has been made of definition (9). Note that ξ is a small positive parameter.

The approximations leading to (B-6), valid for x ≥ 0, still holds for x < 0, but

not too far from the resonant surface. The discriminant of (B-6) is ∆(u,C)/4 =

−ξcosu
[
1− ξ

4x2
w
cosu

]
− C = ∆(u, 0)/4 − C . Given the smallness of ξ, we can take

the term in parenthesis to be positive. Hence, ∆(u, 0) is monotonically increasing from

u = 0 to u = π, and then monotonically decreasing up to u = 2π. Therefore, for

C < ∆(0, 0)/4 = −ξ
[
1− ξ

4x2
w

]
two real solutions of x are given at any u: this is the region

outside the magnetic island. Instead, for ∆(0, 0)/4 < C < ∆(π, 0)/4 = ξ
[
1 + ξ

4x2
w

]
two real solutions of x are given only within the intervals uC < u < 2π − uC , being

∆(uC , C) = 0: this is the region of the magnetic island. The island separatrix is
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identified by C = ∆(0, 0)/4 = −ξ
[
1− ξ

4x2
w

]
: here, the maximum x, attained at u = π,

is

max[x]separatrix =
1

2

(
W

rs
− ξ

xw

)
(B-7)

Using the x and ξ definitions within (B-7), formula (10) is finally obtained.
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