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A B S T R A C T   

The linkage between agricultural activities, particularly livestock farming, and atmospheric pollution is broadly 
acknowledged, and its magnitude is widely analyzed. Lombardy, one of Europe’s most critical areas with regard 
to air pollution, has significantly large contributions from the farming industry. Although studies aimed at 
informing policy reflect uncertain and moderate pollution reduction even under simulated stringent policy 
scenarios, granular causal evidence at a sub-sector level remains insufficient to inform local and regional policies 
effectively. In this study, we employ a spatially and temporally indexed econometric model to investigate the 
specific impact of bovine and swine farming on the concentration levels of ammonia (NH3) and coarse particulate 
matter (PM10) in Lombardy’s atmosphere. Our findings indicate that an increase of 1000 units in livestock, 
equating to roughly a 1% and 0.3% rise in the average per-quadrant bovine and swine populations, respecti
vely—triggers a corresponding daily increase in NH3 and PM10 concentrations. These increases are quantified as 
0.26 [0.22; 0.33] and 0.29 [0.27; 0.41] μg/m3 for bovines (about 2% and 1% of the respective daily averages) 
and 0.01 [0.01; 0.05] and 0.04 [0.004; 0.16] μg/m3 for swine. Notably, these impacts are intensified under 
northerly upwind conditions, minimizing the potential for concurrent pollution sources and reinforcing the 
robustness of our estimated impacts. Finally, we employ our findings to extrapolate the potential environmental 
implications of reducing livestock emissions. Our analysis suggests that bovine and swine farming could account 
for up to 25% of local pollution exposure, empathizing the need for targeted mitigation strategies.   

1. Introduction 

Atmospheric particulate matter (PM) ranks as a major environmental 
health threat (Burnett et al., 2018), and the fourth mortality risk factor 
worldwide: in 2019, 1 in 9 death worldwide were caused by fine par
ticulate matter (PM2.5) and ozone (O3) air pollution,1 with the former 
contributing to such outcome by >94% (Murray et al., 2020). By 
threatening human welfare through poor air quality, PM also implies a 
large morbidity burden on individuals: exposure to high PM levels has 
been associated with increased incidence of respiratory and cardiovas
cular diseases, such as asthma, pneumonia, hyper- tension, and diabetes 
(Dominici et al., 2006; Feng et al., 2016; Mannucci et al., 2019). 

While there exists a large amount of literature focusing on the effects 
of industrial activities and motor-vehicle traffic on air pollution and 

health, the empirical evidence about the effects of farming on the con
centration of human-threatening pollutants is relatively scarcer (Anen
berg et al., 2019; Gibson and Carnovale, 2015; He et al., 2019). Indeed, 
livestock farms are a key contributor to PM emissions (Pue and Buysse, 
2020). Animal husbandry operations are responsible for large releases of 
ammonia (NH3), a gaseous alkaline compound that serves as a precursor 
in secondary particle formation, from reactions with other compounds, 
such as sulfur oxides (SOx) and nitrogen oxides (NOx), ammonia con
tributes to a major part of the inorganic composition of PM2.5. This ex
plains why air pollution from livestock farms is associated with airway 
obstruction diseases and severe pneumonia (Borlée et al., 2017; Kal
kowska et al., 2018). 

In the case of Lombardy, farming constitutes almost the only source 
of ammonia releases: the emission inventory of the Lombardy 
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environmental agency (INEMAR, 2020) estimates that as much as 97% 
of all its emissions originate from farming activities in the Italian Po- 
valley region. Since 2005, Italy has successfully reduced NOx and SO2 
emissions from major sources (Marco et al., 2019). NOx and SO2 emis
sions have decreased by 41% and 70% respectively, since 2005 and 
2016, primarily thanks to policies tackling emissions from road traffic, 
residential heating, and industry (Marco et al., 2019). Conversely, 
ammonia decreased only by 10% and PM2.5 emissions show positive and 
negative variations from 2005 to 2016 resulting in a 7% reduction be
tween 2005 and 2016. Thus, ammonia remains a concern, as actions in 
the agriculture sector have been less consistent, and PM levels remain 
high compared to the rest of Europe, especially in Lombardy. The 
detrimental role of livestock in the absence of efficient air pollution 
control practices is well recognized in the literature (McDuffie et al., 
2021). Yet, the marginal contribution of the different species of farming 
animals to ammonia and, in turn, PM concentrations is still poorly un
derstood. The emission factor of a farming animal can vary considerably, 
depending, among others, on species, animal characteristics, facility 
type, and manure removal system. As such, different measurement 
methodologies and experimental settings have resulted in a vast range of 
possible emission factors attributable to a single unit. By reviewing 
multiple approaches and studies, Hristov et al. (2011) find emission 
factors from cows varying from 0.82 to 250 g ammonia per day. In a 
similar effort, Philippe et al. (2011) reported the same value for swine, 
which was between 0.38 and 27.2 g per day. However, there have been 
limited efforts to measure the impact of animals on ammonia and PM 
levels on a significant scale. Roman et al. (2021), which looked at par
ticulate emissions from animal farming rather than concentrations, find 
higher values in rural areas compared to urban areas and that the 
contribution of animal farming to PM emissions varied significantly 
across different regions in Poland. Spencer and Van Heyst (2018) pro
vide a review of the literature on PM emissions resulting from different 
sources in Canadian agricultural and rural areas. The study found that 
PM emissions from agricultural and rural sources, including animal 
farming, can contribute to elevated PM concentrations in these areas and 

negatively impact human health. Livestock intensity changes can be 
attributed to concentration, which has a direct impact on human 
exposure and health, unlike emissions-specific factors. In this paper, we 
approach the problem of quantifying livestock-originating concentra
tion from a broader perspective. 

A wide variety of source apportionment techniques are available 
(Thunis et al., 2023) Some of these techniques employ bottom-up 
models that perturb source emissions (Thunis et al., 2019), while 
others utilize inverse modeling (Carozzi et al., 2013) or tagged trajec
tories (Kranenburg et al., 2013). Specifically, for PM, numerous methods 
rely on monitored chemical composition of particles to identify the 
sources contributing to the overall PM mass (Giardi et al., 2022). Here 
we employ a fixed-effects model with spatially and temporally indexed 
data that builds on exogenous high-frequency variation in wind direc
tion and detailed data on farming animals’ movements across the 
Lombardy region in Italy. We estimate the marginal impact of two an
imal kinds (cattle and swine) on ammonia and PM10 levels. Lombardy 
offers a particularly suitable setting for the analysis: in addition to 
providing publicly available high-frequency information on pollutants 
and weather conditions through a granular network of sensors, it is one 
of the most farming-intensive regions in Europe, with >1 million live 
cattle and 4 million live swine head (see Fig. 1). This, in turn, results in 
frequent movements of animals in and out. We take advantage of this 
variation to accurately identify the impact of farming on the concen
tration of pollutants. We access daily observations from 12 ammonia 
monitoring stations and 75 PM10 measuring points. For three stations, 
we obtain PM chemical decomposition data that allows us to isolate the 
share of ammonium sulfates (AS) and ammonium nitrates (AN), two 
inorganic salts that are part of the secondary PM share and are directly 
associated with the NH3 precursor. 

We combine this information with daily weather conditions and 
monthly fluctuations in livestock units. We use variation in animal heads 
occurring in the upwind quadrant of a given sensor (the 90-degree 
portion of a circular area around the sensor) to estimate the marginal 
impact of farming animals on the levels of ammonia and PM10 recorded 

Fig. 1. Livestock presence - Eurostat NUTS2 level. 
Notes: the figure reports live cattle (Panel A) and swine animals (Panel B) across European NUTS2 regions (the French Guiana region is relocated in the bottom left of 
the map). The Lombardy region (framed) is the 14th area in terms of absolute units of bovine in Europe, 8th in terms of swine absolute units. Units are reported to the 
most recent data point available (2020 for bovine, 2016 for swine). Grey areas have no data available on livestock presence. 
Source: Eurostat. 
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at the station level. Using variation in wind direction allows our speci
fication to cope with potentially endogenous movements in livestock 
units induced by air pollutants. Indeed, conditional on observables and 
fixed effects, in order to identify the causal impact of farming animals on 
pollutant levels, our specification crucially rests on the assumption of 
orthogonality between livestock allocation decisions, weather condi
tions, and air quality considerations. 

Using our estimates, we then simulate average daily levels of PM10 
under the counterfactual stylized scenario of removing all livestock units 
around a sensor. We find a simulated local percentage reduction in daily 
concentrations of up to 25%. While negatively correlated with average 
daily levels of particulate matter, the drop in concentrations under our 
counterfactual simulation still emerges as a sizeable improvement in 
daily air quality for many densely populated areas. 

Our results differ in nature from those retrieved in micro-level 
studies. Our study aims to quantify the average relative contribution 
of livestock animals to station-level recorded concentrations of pollut
ants rather than pinpointing emissions in terms of mass and differenti
ating for animal characteristics. Previous studies on the impacts of 
livestock on air quality focus mainly on emissions (Hristov, 2011; INE
MAR, 2020; Kabelitz et al., 2020; Roman et al., 2021), and those going 
beyond emissions used averaged emission factors derived from the 
emissions studies (Pue et al., 2019; Rao et al., 2017). At a later stage, the 
most completed ones would then use source-receptor models or chem
ical transport models to derive concentrations and, ultimately, exposure 
(Lelieveld et al., 2015; McDuffie et al., 2021). As such, this research adds 
to the existing literature by estimating the contribution of different 
animal species on the levels of harmful pollutants in a highly polluted 
and livestock-dense area of Europe, a topic often overlooked in com
parison to the livestock contribution to greenhouse gas emissions (Kip
ling et al., 2019a, 2019b; Garnett, 2009). The paper contributes by 
establishing a necessary step to evaluate the nature of the direct corre
lation between changes in livestock levels and the impact on human 
health due to air pollution. The use of causal inference methods is a 
novel approach to this type of analysis, and our findings are functional to 
policymakers’ informed decisions regarding farming practices and air 
pollution control measures. 

The remainder of the paper is organized as follows. Section 2 details 
the empirical strategy employed. Section 3 describes the data, and 
Section 4 reports the main estimation results. Section 5 explores effect 
heterogeneity, while Section 6 presents a counterfactual calculation of 
pollutant concentrations and policy considerations following the evi
dence at hand. Finally, Section 7 concludes. 

2. Methods 

We calculate the incremental impact of a unit of animal, per species, 
on ammonia and PM10 levels. It’s important to understand that our 
calculation is based on the number of animals within a fixed area. As a 
result, the impact can be interpreted as a variation in animal density, 
since the area remains constant. For this reason, we refer to ‘intensity’ as 
the quantity of animals per unit area. To estimate the marginal contri
bution to ammonia and PM10 concentrations specific to each farming 
animal at the aggregate level, we estimate the following regression 
through OLS: 

Ys,t = β0 +
∑

j∈B∩G

∑

a∈A
βaΔLa,j,t ×Ω+X′

s,tΓ+ δs,q + δm + δy + εs,t (1)  

where Y represent the dependent variable of interest, ΔL is our main 
regressor, Ω is a weighting matrix, X is a matrix of covariates with the 
respective coefficients (Γ), and δs captures the fixed effects of our model. 
βa represents the main coefficient of our study. As our study focuses on 
pinpointing the causal effect of livestock on pollutant concentrations, 

OLS has the advantage, under our set of assumptions, to provide an 
unbiased and easily interpretable estimator for β. 

The outcomes of interest (Y) are ammonia concentrations (NH3), 
overall particulate matter (PM10), and mass concentration of ammonium 
sulfates and nitrate (PM10

ASN) measured daily by station s at time t. ΔL is 
the net sum of inflows and outflows for animal a (both within the region 
and from and to other regions and countries), births, and slaughters at 
the municipal level. The set B characterises a municipality j as: 
{

j ∈ B : di,j < r
}

hence containing municipalities within r distance from municipality i. 
We alternatively consider 50 km and 60 km centroid-distance as the two 
values of r.2 The set G is instead defined as: 
{

j ∈ G : ∠ijt ∈ WDi,t
}

and includes all municipalities that are in the same quadrant of the di
rection from which wind originates as measured in municipality i at time 
t (WDi,t). We use the concept of geometric angle (∠) to indicate that 
municipalities are assigned to quadrants depending on the angle be
tween the station and the municipality. We consider four quadrants: 
North (315–45), East (45–135), South (135–225), and West (225–315). 
Thus, for each station, we obtain a time-specific total variation in the 
number of livestock units (ΔL), calculated as the sum of variations at the 
municipal level for all municipalities that are located in the quadrant of 
wind direction at time t and within distance r from the station. To 
visualize the quadrant-wind direction variation strategy implemented, 
we provide a graphical illustration in Fig. 2. A is instead a set of two 
farming animals, bovine and swine, for which monthly variation in 
headcount is available. 

This variation in livestock units is only available at the monthly level, 
while ammonia levels and weather conditions are measured daily. Given 
the impossibility of exactly pinpointing the day of the variation in 
farming animals’ headcount, we test the robustness of the results by 
applying a set of analytic weights to magnify the weight of observations 
occurring toward the end of the month. By defining analytic weights as 
the probability of a given variation in animal headcount has realized 
(assuming a probability increasing linearly and monotonically), we 
want to impose that data points at the beginning of the month could be 
estimating the marginal effect captured by our β less precisely. Analytic 
weights are equivalent to assuming observation j belongs to a sub- 
population with variance σ2

wj
, where σ2 is a common variance and wj is 

the weight of the observation j.3 This is justified by thinking that, during 
the last days of each month, the movements depicted with monthly 
frequency in the data are more likely to be fully realized. Specifically, 
observations on the first day of the month are assigned a weight of 1/30, 
while observations on the last day of each month are assigned a weight 
of 1, with other observations in between weighted with a monotonic 
linear increment of 1/30. 

2 There exists no universal rule to assess the distance potentially traveled by 
pollutants, as this is closely dependent on the area’s morphology, wind con
ditions, and the nature of airborne particles. As such, we set the boundaries of 
circular areas around sensors employing a data-driven approach. In Fig. A2.2 in 
the Appendix, we show the sensitivity of the estimated βa from Eq. (1) to 
gradually expanding circular areas from a radius of 10 km. For both animals 
and pollutants, the coefficient of interest converges to an asymptotic value 
between 40 km and 60 km, which leads us to exclude variations in livestock 
headcount taking place outside of this range. Furthermore, as the area radius 
increases, so does the probability of sensors relatively far from each other 
showing overlapping circular areas, which may induce noise in our estimates. 
The average intra-sensor distance is 75.4 km and 74.5 km for ammonia and 
PM10 sensors respectively. Hence, we deem the 60 km threshold to be an 
adequate upper bound to consider variation in livestock units relevant to a 
given sensor.  

3 Weights are implemented in Stata. For further, refer to Stata Technical 
Bulletin, issue 20, July 1994. 
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Ω is a diagonal matrix of weights based on the distance between 
sensors and municipalities. This is motivated by assuming that the 
impact on ammonia levels of animals that are in closer proximity to the 
station will be stronger than that of animals further away, as dispersion 
of emissions during transportation will be less likely to occur. As such, Ω 
partially discounts the variation happening further away from each 
station. Considering a total of M municipalities around a given sensor, in 
our baseline specification, Ω is an identity matrix of size M × M (i.e., no 
discounting based on distance implied). We then test the robustness of 
our results by populating Ω with linear and Gaussian distance weights.4 

To better understand how we compute variation in livestock units under 
different weighting schemes, a numerical example is reported in the 
Appendix (Section A3.1). 

X is a matrix of weather controls, including temperature, rainfall, 
radiance, wind speed, humidity, and boundary layer height, up to the 
third lag and interacted with each other, and Γ is a matrix of coefficients. 
δs,q, δm, and δy represent a set of sensor-by-quadrant, month, and year- 
fixed effects.5 Sensor-by-quadrant allows for different time-invariant 
intrinsic characteristics not only across sensors, but also around a 

sensor and, as such, it is deemed as the most conservative approach.6 

Our model estimates 66 weather control parameters and 62 fixed effects 
parameters overall, in addition to our coefficients of interest. Finally, εs,t 

is an error term, assumed to be normally distributed. We allow for 
variance in error to be dependent on our regressors, estimating 
heteroskedasticity-robust standard errors.7 

The marginal effect of a livestock unit for animal a is captured by our 
main coefficient of interest, βa. To be able to identify, the variation in the 
number of animals at the municipal level should be independent of 
ammonia levels and PM levels. If farmers were to time their buying, 
selling, and slaughtering decisions based on air quality, this could 
induce a reverse causality bias in our estimates. Despite the absence, in 
the current regulatory framework of Lombardy, of policies aimed to curb 
livestock presence as a function of pollution levels, even assuming that 
part of farmers’ decision concerning animal net flows is indirectly 
correlated with air quality, the use of wind direction to mediate the 
source of variation in livestock units allows us to restore exogeneity. 
Indeed, in our specification, it is enough to assume non-adapting 
behavior from farmers to wind flows, i.e., animal stock decisions 
being independent of observed and expected wind flows. In addition, the 
presence of station-, quadrant-, and time-fixed effects allows differen
tiating part of the confounding variation that may be related to more 

Fig. 2. Station quadrants and wind direction. 
Notes: the figure provides an example of quadrant-specific variation conditional on wind direction. Consider the stations A and B at time t (Panel I). The existing stock 
of swine and cattle within r kilometers from the sensor is divided across four quadrants, i.e., 90-degree portions oriented along main cardinal directions (North, East, 
South, West). Consider the variation in animal headcount from time t in time t + 1. In our specification, this variation is expected to influence concentrations of 
pollutants only as long as it takes place upwind from the sensor. For instance, on days when West wind is blowing (red arrows), station A will be imputed a reduction 
in swine stock, while station B will exhibit no change in animal presence around the station. Conversely, on days of North wind, station A will be imputed a positive 
change in the stock of both swine and cattle, while in station B the increase will be observed only in swine headcount. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

4 Linear weights are computed as in Eq. (2): 

wij = 1 −
dij

r
(2)  

while Gaussian weights obey to Eq. (3): 

wij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if dij ≥ r

exp

(
1
2

(
dij

r

)2
)

1 otherwise

if
r

√2
ln
(

2π− 1
2

)
< dij < r (3)   

5 The use of lags and interactions, as well as the choice of fixed effects, fol
lows the strategy adopted by Deryugina et al. (2019). The results are robust to 
less conservative structure of weather covariates, excluding lags and interaction 
terms. 

6 The results are mostly unchanged when only sensor fixed effects are 
included in the regression.  

7 The choice of heteroskedasticity-robust standard errors is motivated by our 
model using a relatively small number of sensors and a large number of tem
poral observations (days), hence likely inducing serial correlation in the error. 
We refrain from clustering standard errors at the sensor level given the limited 
number of clusters available, especially with regards to ammonia stations 
(Cameron and Miller, 2015: Abadie et al., 2023). To assess the presence of 
residual correlation in the model, we plot model residuals against the fitted 
values in Fig. A2.3. 
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polluted areas with relatively more frequent animal displacement.8 

Conditional on observables and fixed effects, we also argue against 
the likelihood ofour results being driven by the presence of omitted 
variable bias. While we can look separately at the fluctuations in the 
concentration of the two among the most important farming animals in 
terms of pollutant contribution, the absence of data available on the 
movements of other animals, particularly poultry, may be especially 
concerning, being this the third major specie in terms of air pollutants 
contribution.9 This would be particularly concerning under the hy
pothesis that variations in our measure of animal headcount at the 
municipal level may co-vary with the unobservable variation in the 
number of other farming animals (especially in the case of multi-breed 
farms) whose effect, in turn, would be wrongly imputed to variation 
in cattle and swine units alone, biasing the estimator. 

However, we notice in Fig. A2.4 that the share farms specializing in 
more than one animal are relatively small. Farms whose production 
includes at least two out of three species (cattle, chickens, and swine) are 
<1% of all breeders, with the share of farms breeding all three animals 
being <0.2%. This is partially confirmed by observing that variation in 
the number of cattle and swine units at the municipal level does not 
correlate.10 Moreover, poultry farming appears to be more concen
trated, with a relative density of >19,000 animals per farm, the same 
figure being 103 for cattle and 544 for swine. Thus, while it is not 
possible to fully rule out the possibility of noise induced by the absence 
of comprehensive data on all farming animals, the low likelihood of 
correlated shocks significantly reduces the concern of omitted variable 
bias, reinforcing our assumption. Finally, our model implies linearity in 
the effect of livestock change. This assumption simplifies the intricate 
process of PM formation through secondary aerosol via chemical re
actions with ammonia, which can lead to non-linear effects at varying 
concentrations. Amid this simplifying assumption, our model serves as a 
valuable reference point, as it enables us to analyze the overall contri
bution of livestock under minimal computing and modeling 
requirements. 

3. Data description 

A flowchart describing the data used in this paper can be found in 
Fig. 3. We access publicly available daily data on NH3 and PM10 con
centration levels and weather conditions in the Lombardy region from 
ARPA Lombardia.11 We focus on the years between 2015 and 2020 to 
match the frequency of livestock data. Some stations have been active 
for a short amount of time during those years (as the measurement ac
tivity ceased or started at the extremes of our sample period).12 As such, 

we restrict the sample to stations for which daily concentration data is 
available for at least 365 days between 2015 and 2020, obtaining 12 
NH3 stations and 75 PM10 stations. For a subset of stations (Schiveno
glia, Milano Pascal, Milano Senato), for a total of 3299 sensor-day 
combinations available, we obtain information on the mass concentra
tion of ammonium nitrates and ammonium sulfates, two compounds 
that enter the composition of PM10 and require ammonia to form. In 
Lombardy, the share of ammonium salts on the total PM mass can be 
higher than 50% (Lanzani et al., 2020). We obtain a final dataset of 
16,577 day-station-wind direction observations for NH3, 109,663 ob
servations for PM10, and 3299 observations for decomposed AS and AN. 
Summary statistics on pollutants are reported in Table 1, Panel A. 
Especially for PM concentrations, variation within the same sensor ap
pears to be larger, given natural seasonal fluctuations. Yet, sizeable 
differences across stations can be observed, particularly in the case of 
ammonia concentrations. 

Each station is imputed weather conditions recorded at the respec
tively closest weather stations. We collect daily data on temperatures 
(◦C), rainfall (mm), wind direction (degrees) and speed (m/s), humidity 
(%), and radiance (W/m2). In addition, we collect hourly data on 
Planetary Boundary Layer Height (PBLH) through the ERA5 Reanalysis 
provided by ECMWF13 and compute average daily values. Each of these 
variables directly impacts airborne pollutant concentrations. Warmer 
temperatures are usually associated with lower concentrations, given 
higher thermal dispersion. Positively correlated with temperature, PBLH 
constitutes an even more cogent measure for vertical dispersion: higher 
PBL implies increased dispersion capacity and is associated with lower 
pollutant concentrations (Seidel et al., 2010). Similarly, increased level 
of rainfall reduces PM concentrations through “wet deposition”. 

As previously noted, wind speed and direction can affect the pres
ence of pollutants in an area by dispersing pollution plums. With 
increased humidity, moisture particles grow in size to the point of “dry 
deposition”, reducing PM10 concentrations. Finally, radiance can impact 
PM levels, especially through photochemical reactions. These variables 
are summarized in Table 1, Panel B. 

To visualize the correlation between wind direction and pollutants in 
the region, we look at the polar plots reported in Fig. 4. Lombardy’s 
morphological territory implies lower levels of pollutants are recorded 
when winds flow from the Alpine arch in the Northern part of the region. 
In general, wind in the Po Valley plays an important role in dispersing 
pollutants and leads to lower average concentrations than the winds that 
flow longitudinally within the region. However, the relative frequencies 
of wind flowing from each quadrant indicate significant variation across 
NH3 stations. For instance, South-East stations are more susceptible to 
West and North winds, while North-West areas receive more wind from 
the South. Similarly, PM stations show a prevalence of West winds in the 
region’s central plains, but South-East and South-West areas experience 
a higher probability of winds flowing respectively from the North and 
the East. Despite some patterns, considerable variability at the station 
level is observed. This is particularly relevant for our strategy: observing 
wind consistently blowing from the same direction throughout the 
month would imply that our fixed effects structure, which controls both 
for month and sensor-by-quadrant time-invariant characteristics, would 
absorb most of the effect of the change in livestock units. In this case, our 
coefficients of interest would capture noisy residual variation. Signifi
cant variation in wind direction, both within the same sensor and across 
sensors, mitigates this concern. It is worth noting that the Po Valley, 
particularly Lombardy, is surrounded by mountains on three sides, 
which limits outward air circulation and can lead to very low winds and 
stable conditions, especially in winter. This condition creates the perfect 
environment for air pollution accumulation, making the region a 
pollution hotspot. 

Data on livestock presence and movements are available through the 

8 To this aim, it is also important how, with specific reference to ammonia, 
>95% of total emissions are ascribable to livestock. This importantly reduces 
the concern of unobservables spatially correlated with sensor proximity (e.g. 
other agricultural activities) inducing bias in the estimates. PM concentrations 
are more susceptible to confounding emission sources, which, however, are less 
likely to be spatially correlated with proximity to a measuring station, such as 
traffic or industrial activities.  

9 While the emission factor of hen is importantly lower than cattle and swine, 
data from INEMAR quantify poultry total particulate matter emissions in the 
Lombardy region at 438.9 tons, with the same number for cattle and swine 
being respectively 358.6 and 739.4 tons. The contribution of other animals 
(ovine, equine) is marginal. No disaggregated data on ammonia emissions are 
currently available.  
10 Pearson’s product-moment correlation coefficient: 0.02  
11 ARPA: Regional Agency for Environmental Protection. The agency collects 

hourly data on NH3 and PM10 concentrations but disseminates the information 
as daily averages.  
12 For NH3 sensors, only two stations are not active throughout the entire 

period (Cremona Borghi, inactive since January 2017, and Piadena, inactive 
between March 2014 and June 2016). For PM10, 11 stations cease measurement 
only between 2017 and 2018. 13 The measure is provided at 0.25

◦

× 0.25
◦

grid level. 
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National Zootechnics Registry (Anagrafe Nazionale Zootecnica, ANZ) 
database. The registry provides monthly municipal-level data on inflows 
and outflows of livestock (either transferred within municipalities or 
acquired from and sold abroad), animal slaughtering, and births. Given 
insufficient data on other farming species, our study focuses on two 
animals, cattle and swine.14 These two breeds are the primary contrib
utors to ammonia emissions. Data on newborns for swine are incorpo
rated into monthly inflow data, thus resulting indivisible from positive 
variation originating from other activities. Conversely, they can be 
computed separately for cattle.15 Our analysis is concentrated on Lom
bardy and its three adjacent regions, namely Piemonte, Veneto, and 
Emilia Romagna, which includes stations situated near the borders of 
Lombardy. This helps us consider the presence of animals in close 
proximity to a station while formally being located across the region’s 
borders. To supplement our data, we compute the stock of animals 
registered in each municipality, which is available twice a year. This 
measure enables us to differentiate between areas with high livestock 
density and those with relatively scarce farming activities. 

The municipalities surrounding Lombardy’s sensors exhibit the high 
prevalence of livestock animals typical of the Lombardy region, with an 
average of >1000 cattle units and 2500 swine units per municipality. 
Both cattle and swine numbers appear to be decreasing, although the 
variation is still a relatively small share of the existing stock (Table 2). 
Fig. 5 shows instead how the majority of animal husbandry activities are 

Fig. 3. Data sources - flowchart. 
Notes: the figure plots a flowchart of the data used in our study, specifying the geographic and temporal level of the information available and the correspond
ing sources. 

Table 1 
Descriptive statistics - pollutants and weather.   

Overall Within Between 

Panel A - Pollutants    
NH3 15.74   
(μg/m3) (19.97) (14.06) (12.84)  

[0.0; 430.6] [− 29.1; 429.2] [3.0; 45.4] 
PM10 30.61   
(μg/m3) (20.70) (19.99) (5.15)  

[0.0; 264.0] [− 10.0; 264.4] [13.0; 41.6] 
PM10 (AS + AN)* 10.95   
(μg/m3) (10.78) (10.77) (0.57)  

[0.0; 58.3] [0.0; 58.7] [10.5; 11.7] 
Panel B - Weather    
Temperature 13.87   
(
◦

C) (8.25) (8.12) (1.41)  
[− 11.3; 32.7] [− 7.1; 31.4] [9.7; 15.3] 

Rainfall 0.05   
(mm) (2.19) (2.19) (0.04)  

[0.0; 256.8] [− 0.1; 256.8] [0.0; 0.1] 
Wind Speed 1.97   
(m/s) (0.95) (0.92) (0.30)  

[0.0; 26.3] [− 0.4; 26.4] [1.5; 2.6] 
Wind Direction 176.01   
(Degree) (97.61) (95.62) (21.82)  

[0.1; 360.0] [− 28.8; 404.2] [131.8; 205.0] 
Radiance 161.25   
(W/m2) (103.94) (103.64) (8.12)  

[0.0; 517.6] [− 18.4; 528.7] [150.2; 179.6] 
Humidity 73.22   
(%) (16.83) (16.17) (4.85)  

[0.0; 100.0] [− 2.1; 107.1] [65.5; 79.9] 
PBLH 1654.82   
(m) (1415.71) (1412.01) (100.24)  

[11.4; 5553.5] [− 127.5; 5543.8] [1439.3; 1803.9] 

Notes: the table reports summary statistics for pollutants (A) and weather vari
ables (B). Mean values are presented first, both within the same sensor across 
time and between the sensor and the overall mean. Parentheses include standard 
deviations. Brackets report minimum and maximum values. Within and between 
statistics are computed through the command xtsum in Stata. 
Source: ARPA Lombardia, ECMWF. 

14 Cattle identifies all bovine farming species, including Italian Mediterranean 
buffalos. Data on swine is only available starting in 2016.  
15 As we are not able to separate between adult animals and calves for all 

species in the dataset, in the headcount, we assign to all animals a unit weight. 
This assumption neglects the difference in emission factors between adults and 
calves. We deem this strategy viable in our setting in light of the objective to 
quantify an aggregated impact of livestock movements on airborne pollutants in 
the region. In addition, given the existence of a positive correlation between 
adult animals and calves, this distinction is unlikely to induce bias in our 
estimates. 
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concentrated in the South-East area of the Po Valley, both in terms of 
cattle and swine breeding. This is reflected both in average monthly 
outflows and inflows, which tend to be larger in numbers in areas more 
populated by farming animals (Fig. A2.1) and in consistently higher 
concentrations of ammonia located within areas of high livestock den
sity (Fig. 6, Panel A). Conversely, due to the more heterogeneous 
composition of airborne particulate matter, the spatial correlation be
tween farming animals’ presence and PM10 is instead blurred. Thus, we 
employ our empirical strategy to explore the existence and magnitude of 
a causal relationship between animal husbandry and air pollutants and 
present our findings in the next Section. 

4. Results 

The results of estimating Eq. (1) are reported in Table 3. At the 

baseline, we look at variations in the number of animals not discounted 
by distance from the station. To enhance intuition, we present our es
timates in two separate forms. 

In Panel A, coefficients have been re-scaled to capture a 1000 live
stock units variation at the quadrant level, which is approximately a 1% 
change in bovines and 0.3% change in swine with respect to the overall 
average quadrant-level animal density. We report the results separately 
for the different pollutants considered: NH3 (Columns 1 to 3), PM10 
(Columns 4 to 6), and ammonium compounds share of PM (Columns 7 to 
9). For each outcome variable, the first two columns show the estimates 
of βa, respectively, when including only the variation in cattle units and 
swine units. The third column includes the two variations as separate 
variables and estimates the marginal contributions when the two re
gressors are included together. In Panel B, we instead present stan
dardized coefficients of the same estimated relationship. We center the 

Fig. 4. Frequency of wind directions - regional and sensor values. 
Notes: the figure reports quadrant-specific wind frequency at the station level, calculated as the number of days recording wind flowing from a given quadrant over 
the entire sample period (2015–2020). Triangles mark sensors that provide decomposed data on ammonium nitrates and ammonium sulfates. Panel A plots wind 
frequencies for ammonia stations, while Panel B plots the same statistics for PM10 stations. Polar plots are reported at the bottom to visualize the mean concentrations 
of each pollutant of each combination of wind direction and speed at the regional level. These plots are obtained using the function polarPlot in R. Computational 
details for calculating the concentration surface can be found in Carslaw et al. (2006) and Westmoreland et al. (2007). 
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variation around the mean and standard deviation of livestock units 
present in the neighboring quadrants. As such, one standard deviation 
increase represents a sizeable shock in animal heads, given the high 
concentration at the quadrant level. 

When looking at concentrations of ammonia, all coefficients are 
significant, at least at a 5% level across different specifications. The 
inclusion of variations in both species in the equation has only a minor 
impact on the respective coefficients. A 1000-unit increase in the 
number of cattle upwind (Panel A) raises ammonia levels between 0.286 
and 0.332 μg/m3, resulting in a 1.8% variation from the average 
ammonia concentrations during the sample period. The effect of a pos
itive variation of 1000 units in swine headcount is more modest, at 
around 0.04, or about 0.26% relative to the average concentrations. This 
can be attributed not only to lower emission factors of swine but also to 
the fact that swine are almost four times more prevalent in the region 
than cattle. The standardized coefficients reported in Panel B confirm 
the relatively sizeable impact of livestock variation for both species: one 
standard deviation increase in cattle in an upwind quadrant leads to a 
1.63 to 1.51 standard deviation spike in ammonia concentration. A 
similar increase in swine results in a 0.85 standard deviation spike. 

Looking at the same estimated effect for PM10, despite PM mass 
concentration being almost double in size compared to ammonia, the 
marginal impact estimated is comparable in magnitude to the one pre
viously obtained. Indeed, upwind 1000-units increases in cattle and 
swine units are expected to increase PM concentrations by respectively 
0.247 to 0.289 μg/m3 and 0.01 to 0.04 μg/m3 (which are respectively 
around 0.8% and 0.03% deviations from mean concentrations). On the 
one hand, this evidence supports the validity of our empirical strategy: if 
our estimates had been affected by confounding factors, the impact on 
PM and ammonia concentrations would not necessarily be equal, as 
these are present in the atmosphere with varying levels of mass con
centrations. On the other hand, similarity in the coefficients shows how 
positive variation in livestock units induces a comparable increase in 
NH3 and PM10 concentrations and, as such, supports the belief that PM 

mass concentrations observed when livestock increases are indeed the 
result of secondary aerosol formation through ammonia. 

While we would expect the observed increase in PM10 to be attrib
utable to ammonium nitrates and ammonium sulfates particles spurring 
from ammonia gaseous emissions, the relatively different and not sig
nificant coefficients observed in Columns 7 to 9 can be explained by data 
on PM10

ASN being available only for three stations, which implies around 
3% of the entire station-day level sample for PM. Furthermore, two 
sensors are located in the Milan area, where pollutants from other 
sources are present in the highest concentration. Even when the as
sumptions of our empirical model are satisfied, a sizeable reduction in 
the sample size may violate the asymptotic properties of our estimator, 
implying less precise and potentially biased estimates. With these ca
veats in mind, it is still meaningful to notice that the main coefficients 
remain positive and deviate by a small amount, with respect to sample 
average concentrations, when compared to their counterpart estimated 
for ammonia and overall PM concentrations. 

We then proceed to explore the robustness of our results, addressing 
two main concerns with our empirical design. First, the variation in 
livestock units cannot be identified with daily frequency. As such, we 
repeat the estimations, placing more weight on the observations of air 
pollutant concentrations occurring toward the end of the month, where 
the shift in the animal count is more likely to be fully realized. The re
sults obtained are comparable in magnitude and significance to our 
baseline estimates (Table A1.1 in Appendix). Second, as we argued that 
animals further away from the sensor location may contribute differ
ently to pollutant measurement than those located in close proximity to 
it, we apply different specifications of Ω, i.e. varying the distance dis
counting weights to the variation in livestock units. In this case, co
efficients are not directly comparable to the ones obtained before, as the 
weighting implies a rescaling of our main regressor (ΔL) and, in other 
words, inevitably inflates the magnitude of β̂a by magnifying the rele
vance of a one-unit increase. To compare our estimates, we iteratively 
simulate a 1000-unit increase in a quadrant and use the derived values 

Table 2 
Descriptive statistics - livestock.    

Cattle    Swines  

Overall Within Between  Overall Within Between 

Inflow* 13.84    456.75   
(monthly) (59.43) (57.55) (16.11)  (1429.43) (1348.00) (565.28)  

[0.0; 1663.0] [− 37.0; 1641.0] [0.8; 50.9]  [0.0; 23,932.0] [− 967.8; 23,342.1] [1.9; 1424.5] 
Births** 43.39    –   
(monthly) (88.57) (80.46) (42.84)  – – –  

[0.0; 1379.0] [− 74.4; 1362.2] [8.9; 117.8]  – – – 
Outflow − 6.61    − 450.06   
(monthly) (30.35) (29.91) (6.02)  (1650.23) (1583.29) (547.31)  

[− 1201.0; 0.0] [− 1197.3; 10.2] [− 16.8; − 0.5]  [− 20,431.0; 0.0] [− 19,957.8; 994.5] [− 1444.6; − 0.7] 
Slaughters − 57.16    − 370.86   
(monthly) (190.71) (179.90) (74.50)  (1044.20) (980.95) (412.65)  

[− 3643.0; 0.0] [− 3511.9; 137.0] [− 194.2; − 5.2]  [− 14,064.0; 0.0] [− 13,575.4; 631.7] [− 1002.6; − 1.5] 
Net variation − 262.63    − 415.14   
(monthly) (4719.15) (3977.39) (3035.25)  (433.52) (263.28) (384.11)  

[− 20,706.0; 
9072.0] 

[− 16,007.1; 13,482.5] [− 7324.1; 2386.3]  [− 18,574.10; 
10,742.0] 

[− 14,710.72; 53,331.7] [− 10,574.50; 
− 11.2] 

Tot animals 137,984    320,928   
(quadrant) (139,002) (91,009) (117,959)  (430,301) (320,167) (291,739)  

[2204.25; 497,245] [− 170,965.74; 
351,963] 

[13,925.67; 
326,303]  

[0.00; 1,642,738] [− 552,364.85; 
1,448,462] 

[1117.73; 873,293] 

Tot animals 1088    2533   
(municipality) (2382) (197) (2318)  (7655) (1102) (7189)  

[1.00; 35,915] [− 5255.98; 4957] [1.00; 34,079]  [0.00; 94,944] [− 16,040.20; 34,015] [0.00; 85,873] 

Notes: the table reports summary statistics for livestock variables. Mean values are presented first, both within the same sensor across time and between the sensor and 
the overall mean. Parentheses include standard deviations. Brackets report minimum and maximum values. 
Source: National Zootechnics Registry. 

* Inflow and outflow variables include animal movements taking place between facilities within and outside the region. 
** Data on newborns for swine are incorporated into the provided measure for monthly inflow by the data provider and cannot be accessed separately. 
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Fig. 5. Animals total headcount. 
Notes: the figure reports the time average total headcount of cattle (Panel A) and swine (Panel B) at the municipal level across four regions: Lombardy (borders in 
bold), Piedmont, Emilia-Romagna, and Veneto. The region’s area covers all municipalities located within a 60 km radius of at least one NH3 or PM station. 
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of ΔL × Ω in the given quadrant to rescale the estimated coefficients.16 

We summarize the results in Fig. 7.17 Each weighting method calculates 
a corresponding distribution of the estimated coefficient by multiplying 
the point estimates and the simulated 1000-unit variation distribution. 
The median result is then marked and compared to the point estimates of 
the non-weighted strategy. While linear discounting affects the esti
mated coefficients by a more sizeable amount with respect to Gaussian 
weighting, different specifications of Ω lead to comparable results. The 
marginal effect of 1000 cattle units oscillates between 0.22 and 0.33 μg/ 
m3 of NH3 and 0.27 and 0.41 μg/m3 of PM10. The same variation in terms 
of swine units provides estimates fluctuating between around 0.02 and 
0.05 μg/m3 of NH3 and 0.004 and 0.16 μg/m3 of PM10. 

To get a better understanding of our results, we need to stress how 
the impact on concentrations is fundamentally different from that on 
emissions, which causes our results to be inherently separate from 
emission factors more commonly found in the literature.18 Concentra
tions are influenced by the specific geographical, meteorological, and 
chemical conditions of the region where the emissions occur. This is why 

we can only draw a partial analogy between our estimated impact on 
ammonia concentrations and the ammonia emission factors from the 
regional emission inventory (INEMAR, 2020), which would otherwise 
constitute a natural benchmark, at least in terms of geographic region. 
Comparing these, we observe a similar order of magnitude difference 
between cattle and swine emission factors as the one identified in our 
estimates, with cows showing emissions one order of magnitude higher. 
We cannot, however, make the same comparison with PM10 concen
trations and the corresponding emission factors. In fact, the latter 
pertain to direct emissions, whereas our estimates also include second
ary PM10 concentrations. 

There, our results provide a robust and new perspective on the 
aggregate impact of animal husbandry on concentrations of air pollut
ants in a region with a high density of livestock, such as Lombardy. This 
evidence can help guide the cost-benefit analysis of expansions and 
reduction of livestock intensity from a policymaking perspective. To this 
aim, we explore heterogeneity in effect retrieved that may result in 
better-informed policy considerations. 

5. Heterogeneity and sensitivity 

We test the sensitivity and heterogeneity of our results in two ways. 
First, we account for potential differential effects of livestock variation 
depending on the quadrant of the source. To this aim, we add a set of 
interactions to Eq. (1), letting the marginal impact of farming animal 
variation vary through the source quadrant. Analytically, Eq. (1) is 
expanded as follows: 

Ys,t = β0 +
∑

j∈B∩G

∑

a∈A
βaΔLa,j,t +

∑

j∈B∩G

∑

a∈A

∑

q∈Q

ηaΔLa,j,t ×Dq +X′
s,tΓ+ δs,q

+ δm + δy + εs,t

(4)  

where, for simplicity, we consider the absence of weighting (Ω=I), and 
Dq is an indicator assuming value 1 when variation originates from 
quadrant q ∈ Q (the set including the four quadrants), zero otherwise. 
Note that our fixed effects structure naturally absorbs the differential 
intercept for each quadrant. The results are presented graphically in 
Fig. 8. We take as reference group livestock headcount variation 

Fig. 6. Pollutants concentration - sensor sample average. 
Notes: the figure plots ammonia (Panel A) and PM stations in Lombardy. Sensor color is determined by average daily concentration (μg/m3) throughout the year at the 
sensor level. Max - Min values: [2.7; 47.7] Panel A; [13.8; 39.9] Panel B. 

16 To clarify this aspect implied by our weighting strategy further, assume a 
1000-units positive variation taking place around a station. Livestock units are 
located at a random distance d̃ from the sensor, where d̃ is drawn form a uni
form distribution ̃d ∼ U(0, r). Each unit is then assigned a distance-based weight 
according to our different weighting strategies. It is then computed the corre
sponding ΔL (refer to the numerical example in Section A3.1). By randomly 
simulating the distance of each unit, we are actively randomizing the weight 
received by each unit. This, in turn, implies a different computed value of ΔL ×

Ω depending on the outcome of the randomization. To show it, we iteratively 
simulate (10,000 iterations) a 1000-units positive variation around a station 
and apply the corresponding weighting to each unit. We then plot the corre
sponding value of ΔL × Ω in Fig. A2.5.  
17 Estimates of the weighted variation strategy are reported in Appendix, 

Tables A1.2, A1.3, A1.4.  
18 For instance, Hristov et al. (2011) find an average ammonia emission factor 

59 g per cow per day. Philippe et al. (2011) provide a summary of swine 
emission factors under different waste management systems, between 0.38 and 
27.2 g/day. However, it is not straightforward to determine how this would 
translate into ammonia concentrations at aggregate level in the context of their 
studies. 
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happening in Southern quadrants. The results highlight how movements 
in farming animals tend to have a larger impact on pollutant concen
trations at the sensor level when they occur to the North of a station. 
This finding appears in line with the evidence presented in Fig. 4: North 
winds are usually associated with lower levels of pollutants, which re
duces the extent of confounding variation, particularly with respect to 
particulate matter, and makes fluctuations in the livestock units more 
crucial in driving up and down the concentrations of airborne pollutants. 
The effect appears instead to be homogeneous across other quadrants, 
with smaller and primarily non-significant coefficients associated with 
the interaction terms. 

Second, we investigate whether the effect retrieved is driven by using 
only a limited number of sensors. This is particularly of concern when 
considering ammonia concentrations measured on a relatively smaller 
network of stations. The presence of one or few sensors driving the re
sults may cast doubt over the accuracy and generalizability of our re
sults. To this aim, we iteratively repeat the estimation, dropping one 
sensor at each iteration. The new coefficients obtained for ammonia 
through this methodology are plotted in Fig. 9. On the horizontal axis is 
reported the name of the dropped station. Stations are sorted from left to 
right according to the number of animal units within the defined r radius 
circular area. The coefficients remain relatively stable with some minor 
fluctuations, and most instances show significance at a 95% level. In 
Panel B, we also notice that only one sensor offers a noticeable fluctu
ation in the effect retrieved, which is located in the Corte de Cortesi 
municipal area. This can be attributed to the proximity of a large swine 
farm near the station.19 This station was purposely placed next to a 
large-scale swine livestock facility in order to monitor emissions from 
swine husbandry. Similarly, the Bertonico station is located next to a 
large-scale cattle husbandry area to closely monitor concentrations in 
the farming area.20 In turn, local fluctuations in ammonia levels origi
nating from daily farming activities of different natures may overcast the 
movements in animal units taking place further away from the station, 

hence inducing particular noise in the estimates retrieved through our 
empirical strategy.21 Nonetheless, while the coefficient decreases in 
magnitude when excluding the sensor from the sample, it remains pos
itive and comparable in size. 

Since the sample available for PM10 includes a considerably larger 
number of sensors, dropping a single sensor has a more marginal impact 
on the overall sample. Hence, to assess the presence of sensors in critical 
areas driving the results, we repeat the above procedure but drop all 
stations in a province (Fig. 10).22 The results again show minor fluctu
ations around the average estimated effect, proving the relative stability 
of the effect of farming animals across the region. 

6. Policy considerations 

Assessing the agricultural sector’s impact on ammonia and particu
late matter (PM) concentrations is crucial for policymaking in Lom
bardy. The region is susceptible to environmental and health threats due 
to its dense population, intense farming, and low wind conditions caused 
by its orographic features. To comprehend the implications of our 
findings, we propose a straightforward calculation to determine the toll 
that farming takes on air quality and, consequently, public health. 

Our objective is to establish the impact of farming animals on air 
pollution levels in the area surrounding a station. Using data from 
ISTAT,23 we calculate the resident population within a 50 km radius of 
the station and couple it with information on the number of livestock 
units within each circular area. We then simulate a hypothetical 

Table 3 
Baseline estimates.    

NH3   PM10   PM10ASN  

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Panel A] - Δ103-units          
Δ - Cattle 0.332***  0.286** 0.247***  0.289*** 0.118  0.150  

(0.106)  (0.112) (0.052)  (0.052) (0.13)  (0.14) 
Δ - Swine  0.040** 0.0403***  0.004 0.0099***  0.014 0.0147   

(0.016) (0.016)  (0.003) (0.003)  (0.02) (0.02) 
Panel B]          
Δ - Cattle 1.63***  1.51** 1.38***  1.62*** 1.01  1.28  

(0.66)  (0.69) (0.29)  (0.29) (1.12)  (1.18) 
Δ - Swine  0.84** 0.85***  0.08 0.2123***  0.30 0.3230   

(0.36) (0.36)  (0.06) (0.06)  (0.42) (0.41) 
Observations 16,579 13,919 13,919 109,202 109,650 109,650 3299 2790 2790 
Adj R2 0.5767 0.5694 0.5698 0.5144 0.5143 0.5146 0.5061 0.5109 0.5114 
Dep. Var. Mean 15.53 15.53 15.53 30.42 30.42 30.42 10.68 10.68 10.68 
Weather Controls Y Y Y Y Y Y Y Y Y 
Month FE Y Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y Y 
Sensor-by-quadrant FE Y Y Y Y Y Y Y Y Y 

Notes: the table reports the estimates of βa from Eq. (1), where Ω is an identity matrix (absence of distance weighting). Weather controls include temperature, wind 
direction, wind speed, rainfall, radiance, humidity, and average PBLH, interacted with each other up to three lags. Robust standard errors are reported in parentheses. 
*p < 0.05. 

*** p < 0.001. 
** p < 0.01. 

19 The sensor is located within 100 m from the breeding facility. The exact 
location of the farm is excluded for data privacy.  
20 The sensor is located between two facilities placed within 1 and 1.5 km. The 

exact location of the farms is excluded for data privacy. 

21 For instance, ammonia levels can fluctuate due to manure management 
practices, such as storage and disposal, or even due to the application of 
nitrogen-based fertilizers, which can release ammonia gas into the air. This can 
lead to the release of ammonia into the air, affecting local air quality. The use of 
litter and manure management practices can also contribute to fluctuations in 
local ammonia levels in poultry farming operations. Finally, the handling of 
dairy waste, such as urine and manure, can also lead to local fluctuations in 
ammonia levels.  
22 The Lombardy region is divided into 12 provinces. In brackets, the number 

of PM10 sensors per province is reported: BG (9); BS (6); CO (3); CR (6); LC (5); 
LO (7); MB (4); MI (11); MN (8); PV (7); SO (4); VA (5).  
23 Source: Resident Population on 1st January. 
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Fig. 7. Distributions of simulated weighted variation in livestock units (quadrant). 
Notes: the figure compares the marginal contribution of a 1000-unit positive variation estimated without distance discounting weighting with that obtained through 
different specifications of Ω. Estimates are presented separately by pollutant (Panels I and II) and farming animal (Panels A and B). Coefficients are estimated 
according to Eq. (1), while Ω weights are computed according to Eqs. (2) and (3). The resulting effect plotted in the graph is obtained by multiplying point estimates 
(See Appendix, Tables A1.1 through A1.4) and the simulated 1000-unit variation distribution. 
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scenario where we remove all farming animals from each circular area, 
all else equal (i.e., keeping all other observable and unobservable factors 
constant, including weather conditions), leveraging the coefficients we 
obtained from a 1000-unit variation analysis to estimate the corre
sponding reduction in concentrations of air pollutants.2425 This exercise 

does not aim to explore a viable policy action to improve air quality in 
the region (i.e., the complete dismantlement of the farming industry) but 
rather to provide an estimate of the contribution of livestock to daily 
pollutant concentrations. Given the linearity of our approach, the ex
pected results of a less sizeable reduction in livestock units can be easily 
inferred from our analysis. Moreover, provided that adverse health ef
fects are associated with PM rather than gaseous ammonia alone, which 
instead acts as a precursor to the particulate formation, in this part of the 
paper, we only focus on PM10 concentrations. 

Panel A in Fig. 11 shows the results of this exercise by plotting the 
reduction in daily PM10 concentrations over twenty sensor bins, with the 
latter calculated conditioning on yearly average concentrations. Panel B 
plots the same reduction paired with the total resident population in 
each bin. Two main considerations are in place. First, it appears that the 
areas with lower average daily concentrations of PM10 are more severely 
affected by the threat to air quality posed by livestock (Panel A). The 
largest reduction (approximately 25%) observed in the simulation is in 
sensors with an average yearly concentration of <30 μg/m3. This can be 
attributed to the fact that areas with more farming activity generally 
have a lower degree of urbanization and a reduced incidence of emission 
factors from other industries like transportation, construction, and 

Fig. 8. Effect heterogeneity - Wind direction. 
Notes: The table reports the estimates of ηa coefficients from Eq. (4). The control group is the variation in livestock units taking place in the quadrant South of each 
sensor. Weather controls (temperature, wind direction, wind speed, rainfall, radiance, humidity, average PBLH, interacted with each other up to three lags) and 
month, year, and station-by-quadrant fixed effects are included. Robust confidence intervals at 95% are plotted. 

24 This strategy once again simplifies by assuming the effect to be linear and 
unsusceptible to the number of livestock units already present in the area. 
While this may constitute a limitation to our approach, we still deem this 
procedure informative to approximate the true impact of the farming industry 
on air pollution in the region.  
25 Population and livestock headcount data are available at the municipality 

level. To avoid double- counting, whenever a municipality lies within a 50 km 
radius of multiple stations, its population is imputed to different circular areas 
in equal shares. The potential noise in the calculations induced by this strategy 
is tapered by counterfactual concentrations being computed as the mean across 
stations in the same decile of the distribution of yearly average concentrations. 
As stations in close proximity are likely to register similar yearly levels of 
pollutants, the population in the area is likely to be imputed the same coun
terfactual exposure levels regardless of whether individuals are assigned to one 
station or the other. 
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manufacturing. However, this also means that less urbanized areas are 
disproportionately burdened by the presence of livestock and are unable 
to fully benefit from high air quality. 

Second, looking at Panel B, the areas touched more heavily by air 
pollution from livestock sources, despite lower urbanization, display 
considerably high population density: nearly 7 out of 14 million people 
reside within 50 km of those stations that would benefit from a coun
terfactual level of PM10 concentrations below 30 μg/m3 in our simula
tion. Furthermore, circular areas around stations that would experience 
the highest percentage reduction (>20%, peaking at roughly 25%) 

appear surrounded by almost 2 million inhabitants.26 These findings 
highlight how the estimated deterioration in air quality is likely to affect 
a significant proportion of the population rather than being limited to 
sparsely populated rural municipalities. 

Our simulations advocate for integrated policies in the agricultural 

Fig. 9. Effect heterogeneity - Dropping NH3 stations. 
Notes: The figure plots the estimates of βa from Eq. (1), with Ω = I, when observations from the sensor reported on the horizontal axis are excluded from the sample. 
Horizontal lines in Panel A and B correspond to the coefficients estimated in Table 3, Column 3. In the table, the sample average number of animals per station 
circular area is reported. 

26 In this calculation, we do not factor in individuals residing outside the 60 
km circular areas used to obtain our estimates, as this would require a more 
comprehensive analysis of how pollutants are transported across the region, 
which is beyond the scope of this paper. 
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sector, particularly in densely populated regions with high livestock 
density, like Lombardy, where the secondary formation of ammonium 
nitrates often reaches >50% of the total PM mass (Tao et al., 2016; Wu 
et al., 2020). It is particularly important to target concentration reduc
tion that can effectively minimize the effects of agricultural activities. 
These may include the use of BATs (best available technologies, e.g., 
injector systems and genetic engineering) in agriculture and farming 
practices, improved integrated management of farming activities (such 
as improved animal diet, efficient disposal of slurry and manure, and 
efficiency in the production system), and livestock intensity (Ammann 
et al., 2022; OECD, 2019). 

7. Conclusion 

This paper estimated the marginal impact of cattle and swine 
farming on the levels of ammonia and PM10 in the Lombardy region. We 
used daily observations from 12 ammonia monitoring stations and 75 
PM10 measuring points and combined them with monthly fluctuations in 
livestock units and daily weather conditions. 

The results showed that an increase in upwind cattle and swine 
presence by 1000 units respectively raised ammonia levels by 0.332 μg/ 
m3 (around 1.8% variation from mean concentrations) and 0.04 μg/m3 
(around 0.26% with respect to mean concentrations), and PM10 levels by 
0.289 μg/m3 and 0.04 μg/m3 respectively. The results are robust to 
different weighting schemes and provide information on the average 
relative contribution of livestock to station-level recorded 

Fig. 10. Effect heterogeneity - Dropping PM10 stations. 
Notes: The figure plots the estimates of βa from Eq. (1), with Ω = I, where observations in the province reported on the horizontal axis are excluded from the sample. 
Horizontal lines in Panel A and B correspond to the coefficients estimated in Table 3, Column 3. In the table, the sample average number of animals per station 
circular area is reported. 
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concentrations of pollutants. Our simulation showed that livestock 
presence is expected to cause sensitive deterioration in air quality for a 
sizeable share of the region’s population. Hence, the study provides 
insights into the potential impact of changing livestock in the Lombardy 
region and highlights the need for further research to understand the 
role of livestock in air pollution. In particular, future research should 
focus on carefully evaluating the cost-benefit tradeoff involved by 
technology and organizational practices available in the industry to 
prevent harmful effects on individual health and guide the evolution of 
the industry onto a more sustainable path. 
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Appendix A. Appendix Tables  

Table A1.1 
Estimates robustness - probability weighting.    

NH3   PM10   PM10
ASN   

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Δ - Cattle 0.289***  0.201 0.351***  0.392** 0.069  0.128  
(0.126)  (0.133) (0.060)  (0.060) (0.144)  (0.150) 

Δ - Swine  0.060*** 0.0596***  0.002 0.0089***  0.020 0.0218   
(0.018) (0.018)  (0.003) (0.003)  (0.020) (0.020) 

Observations 16,579 13,919 13,919 109,202 109,650 109,650 3299 2790 2790 
Adj R2 0.5690 0.5656 0.5657 0.5215 0.5213 0.5217 0.5228 0.5367 0.5370 
Dep. Var. Mean 15.53 15.53 15.53 30.42 30.42 30.42 10.68 10.68 10.68 
Weather Controls Y Y Y Y Y Y Y Y Y 
Month FE Y Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y Y 
Sensor-by-quadrant FE Y Y Y Y Y Y Y Y Y 

Notes: the table reports the estimates of βa from Eq. (1), where Ω is an identity matrix (absence of distance weighting). Analytical weighting assigning greater 
importance to sensor-day observations toward the end of each month is applied. Weather controls include temperature, wind direction, wind speed, rainfall, radiance, 
humidity, and average PBLH, interacted with each other up to three lags. Robust standard errors are reported in parentheses. 

*** p < 0.001. 
** p < 0.01. 
* p < 0.05. 

Fig. 11. Counterfactual PM levels and population exposure. 
Notes: the figure shows the counterfactual scenario simulating the absence of bovine and swine livestock units. For visual purposes, sensors are grouped into twenty 
bins, calculated conditioning on yearly average concentrations. Panel A shows the relationship between average daily concentration and the corresponding per
centage daily average reduction in each bin in the absence of swine and cattle. Panel B relates reduction under the counterfactual scenario with the population 
residing within a 50 km radius of a station. Marker’s size varies with the calculated percentage reduction in PM10 in the absence of livestock units. 
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Table A1.2 
Estimates robustness - linear distance weighting.    

NH3   PM10   PM10
ASN   

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Δ - Cattle 0.975***  0.824** 0.738***  0.830*** 0.38  0.345  
(0.306)  (0.322) (0.128)  (0.128) (0.42)  (0.45) 

Δ - Swine  0.062* 0.0667*  0.062* 0.0212***  0.062* 0.0290   
(0.037) (0.037)  (0.037) (0.037)  (0.04) (0.04) 

Observations 16,579 13,919 13,919 109,202 109,650 109,650 3299 2790 2790 
Adj R2 0.5768 0.5693 0.5698 0.5145 0.5143 0.5146 0.5061 0.5109 0.5113 
Dep. Var. Mean 15.53 15.53 15.53 30.42 30.42 30.42 10.68 10.68 10.68 
Weather Controls Y Y Y Y Y Y Y Y Y 
Month FE Y Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y Y 
Sensor-by-quadrant FE Y Y Y Y Y Y Y Y Y 

Notes: the table reports the estimates of βa from Eq. (1), where Ω is populated using linear weights. Weather controls include temperature, wind direction, wind speed, 
rainfall, radiance, humidity, and average PBLH, interacted with each other up to three lags. Robust standard errors are reported in parentheses. 

*** p < 0.001. 
** p < 0.01. 
* p < 0.05.  

Table A1.3 
Estimates robustness - Gaussian (<50) distance weighting.    

NH3   PM10   PM10
ASN   

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Δ - Cattle 0.418***  0.355** 0.328***  0.380*** 0.15  0.174  
(0.137)  (0.144) (0.066)  (0.066) (0.17)  (0.18) 

Δ - Swine  0.054*** 0.0552***  0.004 0.0118***  0.018 0.0188   
(0.020) (0.020)  (0.003) (0.004)  (0.02) (0.02) 

Observations 16,579 13,919 13,919 109,202 109,650 13,919 3299 2790 13,919 
Adj R2 0.5767 0.5694 0.5698 0.5145 0.5143 0.5146 0.5061 0.5110 0.5114 
Dep. Var. Mean 15.53 15.53 15.53 30.42 30.42 30.42 10.68 10.68 10.68 
Weather Controls Y Y Y Y Y Y Y Y Y 
Month FE Y Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y Y 
Sensor-by-quadrant FE Y Y Y Y Y Y Y Y Y 

Notes: the table reports the estimates of βa from Eq. (1), where Ω is populated using Gaussian weights, with maximum radius 50 km. Weather controls include 
temperature, wind direction, wind speed, rainfall, radiance, humidity, and average PBLH, interacted with each other up to three lags. Robust standard errors are 
reported in parentheses. 
*p < 0.05. 

*** p < 0.001. 
** p < 0.01.  

Table A1.4 
Estimates robustness - Gaussian (<60) distance weighting.    

NH3   PM10   PM10
ASN   

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Δ - Cattle 0.397***  0.341** 0.301***  0.350*** 0.14  0.171  
(0.127)  (0.133) (0.060)  (0.060) (0.16)  (0.17) 

Δ - Swine  0.046** 0.0464***  0.004 0.0113***  0.017 0.0180   
(0.019) (0.019)  (0.003) (0.003)  (0.02) (0.02) 

Observations 16,579 13,919 13,919 109,202 109,650 109,650 3299 2790 2790 
Adj R2 0.5767 0.5694 0.5699 0.5145 0.5143 0.5146 0.5061 0.5110 0.5114 
Dep. Var. Mean 15.53 15.53 15.53 30.42 30.42 30.42 10.68 10.68 10.68 
Weather Controls Y Y Y Y Y Y Y Y Y 
Month FE Y Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y Y 
Sensor-by-quadrant FE Y Y Y Y Y Y Y Y Y 

Notes: the table reports the estimates of βa from Eq. (1), where Ω is populated using Gaussian weights, with maximum radius 60 km. Weather controls include 
temperature, wind direction, wind speed, rainfall, radiance, humidity, and average PBLH, interacted with each other up to three lags. Robust standard errors are 
reported in parentheses. 
*p < 0.05. 

*** p < 0.001. 
** p < 0.01. 
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Appendix B. Appendix Figures

[I] Cattle

[A] Inflow [B] Births

[C] Outflow (alive) [D] Outflow (slaughter)

[II] Swine

[A] Inflow

[C] Outflow (alive) [D] Outflow (slaughter)

Fig. A2.1. Livestock movements around stations - Sample averages (2015–2020). 
Notes: the figure plots the average monthly inflows (A), births (B), outflows (C), and slaughtered units (D) of cattle [I] and swine [II] throughout the sample period. 
Birth data is not separable from the overall inflow of swine. Animals displaced for slaughtering purposes are considered as an immediate depletion of the munic
ipality’s stock. Blue circles represent circular areas around sensors which includes municipalities within a 50 km radius of each station. For brevity, the figure is only 
plotted for NH3 stations.  
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[A] NH3

[B] PM10

Fig. A2.2. Estimates sensitivity to expanding circular areas. 
Notes: the figure shows the estimates of βa from Eq. (1), estimated using increasing values of r, at 2 km increment. Hence, only the variation in livestock units within r 
distance from the sensor is used to explain variation in pollutant concentrations. Weather controls (temperature, wind direction, wind speed, rainfall, radiance, 
humidity, average PBLH, interacted with each other and up to three lags), month, year, and sensor-by-quadrant fixed effects are included. Robust standard errors 
are reported. 

[I] – Ammonia [II] – PM10

Fig. A2.3. Model residuals and fitted values. 
Notes: the figure plots the residuals of our model versus fitted values. Both variation in cattle ande swine units is included in absence of weighting (corresponding to 
columns 3 and 6 in Table 3), and the plot is reported for ammonia (Panel I) and PM10 (Panel II). The plots show a rather linear trend in residuals, with increased 
variance toward the right end of the fitted values distribution, supporting the correction for heteroskedasticity in our standard errors.  
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Fig. A2.4. Multi-animal farming incidence. 
Notes: the figure reports the share of farms in the Lombardy region specializing in each combi- nation of the most prevalent farming animals: cattle, pigs, 
and chicken. 

Source: ISTAT, 2010 Agricultural Census.

[A] [B]

[C]

Fig. A2.5. Distributions of simulated weighted variation in livestock units (quadrant). 
Notes: the figure reports the resulting distribution of a 10,000 iterations simulation of ΔL× Ω, where ΔL is a 1000-unit positive variation around a station. A unit is 
located at random distance ̃d ∼ U(0, r). It is then weighted through Ω according to three different specifications: linear (A), Gaussian <50 km (B), Gaussian <60 km 
(C). The resulting headcount distribution, corresponding kernel density, and median outcome are plotted. 

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eiar.2024.107456. 
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